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Patients with acute respiratory distress syndrome (ARDS) have few treatment
options other than supportive mechanical ventilation. The mortality associated
with ARDS remains unacceptably high, and mechanical ventilation itself has the
potential to increase mortality further by unintended ventilator-induced lung
injury (VILI). Thus, there is motivation to improve management of ventilation in
patients with ARDS. The immediate goal of mechanical ventilation in ARDS should
be to prevent atelectrauma resulting from repetitive alveolar collapse and
reopening. However, a long-term goal should be to re-open collapsed and
edematous regions of the lung and reduce regions of high mechanical stress
that lead to regional volutrauma. In this paper, we consider the proposed strategy
used by the full-term newborn to open the fluid-filled lung during the initial
breaths of life, by ratcheting tissues opened over a series of initial breaths with brief
expirations. The newborn’s cry after birth shares key similarities with the Airway
Pressure Release Ventilation (APRV) modality, in which the expiratory duration is
sufficiently short to minimize end-expiratory derecruitment. Using a simple
computational model of the injured lung, we demonstrate that APRV can
slowly open even the most recalcitrant alveoli with extended periods of high
inspiratory pressure, while reducing alveolar re-collapse with brief expirations.
These processes together comprise a ratchet mechanism by which the lung is
progressively recruited, similar to themanner inwhich the newborn lung is aerated
during a series of cries, albeit over longer time scales.
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Introduction

Although acute respiratory distress syndrome (ARDS) was identified as a distinct
pathologic entity in 1967 (Ashbaugh et al., 1967), there are still no treatments for it
other than supportive care involving mechanical ventilation. Unfortunately, mechanical
ventilation itself has the potential to increase mortality by causing unintended ventilator-
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induced lung injury (VILI) (Slutsky and Ranieri, 2013). The current
standard of care for ARDS is low tidal volume ventilation (Acute
Respiratory Distress Syndrome Network et al., 2000). Nevertheless,
mortality associated with ARDS remains unacceptably high (Bellani
et al., 2016), which motivates the search for improved approaches to
mechanical ventilation.

ARDS typically presents as a heterogeneous pattern of injury on
chest imaging, including patches of normal, collapsible, and fully
consolidated tissue throughout the lung (Cereda et al., 2016; Cereda
et al., 2019). This makes the lung particularly susceptible to further VILI
by a mechanism that has been termed the Permeability-Originated
Obstruction Response (POOR), manifesting at interfaces between
normal and collapsed lung tissue regions (Gaver et al., 2020). The
normal parenchyma at such interfaces is distorted by retraction forces
exerted by collapsed regions, resulting in elevated tissue stresses that can
potentially cause volutrauma. In addition, chronic atelectasis increases
the risk of pulmonary infection and fibrosis. However, atelectrauma at
these interfaces is also caused by repetitive opening and closing of alveoli
with abnormal mechanical properties due to surfactant dysfunction,
although such alveoli may not yet fully consolidated (Nieman et al.,
2017).While both volutrauma and atelectrauma are keymechanisms of
VILI, atelectrauma appears to be the primary driver of its progression
(Ramcharran et al., 2022). Both mechanisms together thus cause VILI
to spatially propagate outward from consolidated regions in a “POOR-
get-POORer”manner, wherein edema-induced surfactant deactivation
results in regional areas of instability, with focalized stress multipliers
leading to a perpetuating cycle of VILI. This can result in a cascading,
irrecoverable injury, which has been termed the “VILI Vortex” (Marini
and Gattinoni, 2020; Nieman et al., 2022).

The above considerations indicate that the immediate goal of
mechanical ventilation in ARDS should be to prevent unstable
alveoli from contributing to atelectrauma. A more long-term goal
should be to re-open collapsed and edematous regions and to
eliminate the concentrations of high mechanical stress in adjacent
aerated tissue that lead to regional volutrauma (Knudsen et al.,
2017). Such are the goals of the Open Lung Approach (OLA),
which applies positive end-expiratory pressure (PEEP) to prevent
alveoli from collapsing during expiration, and periodically
administers large, sustained inflations to recruit collapsed tissue
(Writing Group for the Alveolar Recruitment for Acute Respiratory
Distress Syndrome Trial et al., 2017). While scientific and clinical
evidence suggests that the lung would be protected from VILI if
these goals could be achieved (Cinnella et al., 2015; Cereda et al.,
2016; Gaver et al., 2020), the OLA has failed to reduce the mortality
associated with ARDS in randomized clinical trials (Writing Group for
the Alveolar Recruitment for Acute Respiratory Distress Syndrome
Trial et al., 2017). Moreover, physiologic, and radiographic indices
(Writing Group for the Alveolar Recruitment for Acute Respiratory
Distress Syndrome Trial et al., 2017) suggest that the OLA, as currently
practiced, does not maintain durable recruitment of the unstable
regions of the injured lung. Indeed, transient recruitment of the lung
may increase the number of alveoli subject to atelectrauma, if
subsequent derecruitment is not prevented (Halter et al., 2003).

The question remains: is there an approach to mechanical
ventilation that safely reduces repetitive atelectrauma, while
simultaneously reopening collapsed and edematous lung tissue? In
this paper, we consider the strategy used by the full-term newborn to
open the fluid-filled lung during the initial breaths of life. The

newborn’s cry after birth shares key similarities with the Airway
Pressure Release Ventilation (APRV) modality, in which the
expiration duration is sufficiently short to minimize end-
expiratory derecruitment. Using a simple computational model of
the injured lung that incorporates mechanisms for fast and slow
recruitment, we demonstrate that APRV, when administered in an
appropriate manner, may be an answer to the above question.

Opening the fluid-filled lung of the
newborn

At birth, the healthy, full-term infant faces the same problem as
the clinician managing a patient with ARDS—that is, how to open a
fluid-filled lung. The ability to maintain aeration in previously
obstructed, flooded or collapsed lung tissue is critical to the
survival of both the newborn and the patient with ARDS. In a
recent paper, Tingay et al. (2021) explored a strategy by which
nature opens and maintains recruitment in the newborn lung.

The lungs of an early to full-term newborn (i.e., ≥36 weeks
gestation) with a functioning surfactant system are filled with
amniotic fluid at birth. Upon delivery, the newborn inhales
vigorously, and often emits a cry with its first exhalation. This initial
inspiration forces air into the small airways and acini, displacing
amniotic fluid into more distal lung regions, where it may be
cleared through the interstitium (Jain and Eaton, 2006). Following
initial inhalation, the physiological problem shifts to preventing newly
aerated tissue from collapsing during the subsequent exhalation. To do
so, the neonate is believed to impede expiratory flow by partially closing
the glottis to reduce expiratory flow, which transiently raises pressure in
the lung and helps to move gas distally into partially flooded alveoli. A
subsequent series of cries continues to ratchet the lung progressively
open, until it is fully recruited and surfactant function is established. At
this point, the alveoli remain open and stable, such that normal tidal
ventilation can be maintained without further derecruitment. Thus, the
first ratcheting breaths of the crying newborn adds gas volume to the
portion of open lung with each inspiration, without losing ground
during each expiration.

Airway pressure release ventilation for
patients with ARDS

Edematous and collapsed regions of the lung in ARDS can be
difficult to recruit because of proteinaceous fluid entering alveoli
through the disrupted alveolar-capillary barrier, which deactivates
pulmonary surfactant. Even small amounts of recruitment achieved
through the application of high airway pressure may be lost quickly
once such pressure is released (Lu et al., 2006). This is due to both
time and pressure dependencies of alveolar recruitment and
derecruitment. In other words, high airway pressures do not
necessarily open collapsed alveoli immediately. Recruitment may
require a long time to manifest when surfactant deactivation is
severe—possibly even longer than the duration of even the most
protracted single recruitment maneuver.

The APRV modality may allow for such gradual recruitment,
provided it is administered with sufficiently short expiratory
durations. With APRV, expiratory durations are short enough
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such that recruited alveoli are not given sufficient time to close. This
strategy, which reopens edematous lungs (Veneroni et al., 2020;
Tingay et al., 2021), also gradually ratchets open the injured lung
open over an extended period of hours or days, during which
adequate ventilation may be achieved via rapid and periodic
removal of alveolar gas This is similar to the application of an
“adaptive” PEEP to the lungs (Lam et al., 2020; Herrmann et al.,
2021). A more personalized approach to APRV, termed the Time-
Controlled Adaptive Ventilation (TCAV) (Nieman et al., 2020), has
been shown to be an effective means of choosing expiratory
durations that balance alveolar CO2 elimination vs. alveolar re-
collapse. TCAV adjusts the expiratory duration according to the
slope of the expiratory flow curve, which is governed by the
emptying time-constant of the respiratory system (Herrmann
et al., 2021). With TCAV, expiration is terminated when the
magnitude of expiratory flow has fallen to 75% of its peak value
at the start of expiration. TCAV has been shown to be highly
protective against VILI in clinically relevant animal models of
ARDS (Roy et al., 2013; Kollisch-Singule et al., 2015).

The newborn cry compared to APRV: a
computational modeling analysis

Figure 1 compares the volume vs. time and flow vs. time
relationships for a newborn cry and TCAV that demonstrate

some common features. They both employ a rapid inspiratory
phase to aerate lung tissue. The newborn follows this inspiration
with a rapid exhalation, that is, then impeded through mechanisms
such as glottal restriction, which leads to a prolongation exhalation.
For TCAV, the breath-hold maneuver precedes exhalation but,
similar to that of the newborn, this exhalation is quickly
interrupted to prevent collapse of the newly recruited tissue. Such
a breath profile leads to the question: “Can the collapsed and
edematous lung with ARDS also be ratcheted opened, similar to
the neonatal lung?” A secondary question is: “Can such ratcheting
occur simultaneously with the maintenance of adequate ventilation of
alveoli that are already open?”

To answer these questions, it is important to understand how
quickly the expiration should be terminated. This is a critical issue
because derecruitment in the injured lung can be rapid, so significant
alveolar closure can occur even when expiration is substantially
shorter than in conventional mechanical ventilation. If
derecruitment occurs, alveoli that close must be forced open
during the next inspiration, resulting in atelectrauma. This may
be a highly injurious process that quickly leads to severe VILI if
allowed to occur repeatedly (Kollisch-Singule et al., 2014).

In a previous study (Bates et al., 2020), we represented the lung as a
single alveolar compartment that can expand in two orthogonal
directions, as illustrated in Figure 2A. Airway pressure and flow are
denoted as P and _V, respectively. Vertical expansion corresponds to
distension of the open lung, measured by h(t), while horizontal
expansion corresponds to an increase in the open lung fraction
(i.e., recruitment of closed lung units), measured by F(t). It should
be noted that vertical and horizontal directions are not related to the
physical orientation of the lung deformation; rather, they are used for
illustrative purposes. The intrinsic elastic properties of the respiratory
tissues are represented by a spring with stiffness Ers, corresponding to
the elastance of the respiratory system when the lung is fully recruited.
As the lung derecruits, represented by a decrease in the lateral
dimension of the alveolar unit in the model, the apparent
respiratory system elastance increases above the value of Ers, in
inverse proportion to the fraction of lung that remains open. The
alveolar compartment is served by a conduit representing respiratory
system resistance Rrs. We assume that Rrs is dominated by the flow
resistances of the endotracheal tube and ventilator circuit, which are not
affected by recruitment and derecruitment. Thus, for our simulations,
Rrs remains fixed regardless of the state of the lung. The time-constant
of the respiratory system that governs how rapidly the lung empties
during passive expiration is given by τ rs = Rrs/Ers. Accordingly, the
time required for lung deflation decreases as Ers increases due to
derecruitment and the effectively smaller lung volume. The rate at
which the model recruits and derecruits are determined by two
horizontal spring-and-dashpot combinations, which account for
rapid (i.e., intratidal) and slow (i.e., minutes to hours) changes in
the amount of opened lung. The rapid changes are governed by the two
parameters ERDfast and RRDfast that together determine a time-
constant τRDfast � RRDfast/ERDfast of fast recruitment and
derecruitment. The corresponding slow changes are determined by
τRDslow � RRDslow/ERDslow. Additional technical details of the model are
presented in the Online Supplement.

Figure 2B shows how the fraction of open lung F(t) changes
over time when the model simulation is initiated with 25%, 50% and
75% of the lung recruited (i.e., equally distributed to the fast and

FIGURE 1
Comparisons between newborn cry and TCAV lung volume vs.
time and respiratory flow vs. time. The newborn lung volume
waveform shows data from a surrogate measurement (i.e., relative
volume change since birth assessed by electrical impedance
tomography) published by Tingay et al. (2021), then smoothed and
time-differentiated to obtain flow. The TCAV waveforms were
simulated in a single-compartment resistance-compliance-inertance
model of respiratory mechanics. TCAV applies a prolonged high
airway pressure, maintaining high lung volume. Both waveforms
exhibit a rapid initial exhalation (red) with large negative flow rates for a
brief time before an expiratory “brake” abruptly halts volume change.
However, the newborn waveform continues with a second, slower
exhalation phase, whereas TCAV immediately reinflates. Note the
increase in the newborn lung volume between the beginning and end
of the first breath. Note that the newborn breath duration is
approximately 0.7 s, whereas each simulated TCAV cycle is 5 s.
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slow compartments in each case), and is then subjected for 300 s
(i.e., 5 min) to 50 breaths of APRV. The APRV parameters for this
simulation consisted of an inspiratory pressure (Phigh) of 30 cmH2O,
a release pressure (Plow) of 0 cmH2O, an inspiratory duration (Thigh)
of 5.68 s, and an expiratory duration (Tlow) of 0.32 s. Using this value
of Tlow for the 50% derecruitment simulation resulted in the first
expiration being terminated when the magnitude of expiratory flow
had fallen to approximately 75% of its peak value. The
corresponding end-expiratory flows were 71% and 79%,
respectively, for the 75% and 25% derecruitment simulations. In
other words, Tlow = 0.32 s approximated the TCAV strategy in each
case. Minimal breath-to-breath variations occur in F(t) as a result of
the brevity of expiration, although the long-term trend is for F(t) to
increase progressively as the lung is slowly ratcheted opened under
the sustained influence of the high inspiratory pressure. These
simulations also demonstrate that when a greater proportion of
the lung is initially derecruited, the subsequent rate of recruitment is
increased, which speaks to the efficacy of TCAV for gradually
reopening the collapsed lung.

Repeating this simulation with Thigh = 4.5 s and Tlow = 1.5 s
illustrates the problem associated with using typical APRV settings
without the TCAV strategy. The long-term recruitment trends
remain, albeit delayed relative to the simulations with Tlow =
0.32 s, but there are now noticeable oscillations in F(t) resulting
from intratidal recruitment and derecruitment. When the
simulations are repeated yet again, this time with Thigh = 1.5 s
and Tlow = 4.5 s (i.e., shorter inspiratory duration but long
expiration duration), similar to the timing of conventional
mechanical ventilation, the intratidal oscillations in F(t) are
substantial, portending a severe degree of atelectrauma.

Accordingly, these model simulations recapitulate injurious
phenomena at play in the lung during mechanical ventilation,
and demonstrates the key principles motivating the use of APRV
with the TCAV strategy in ARDS.

Conclusion

In summary, we have reviewed the key similarities and
differences between the newborn cry and the mechanical breath
of the APRV/TCAV modality. Nature has devised a unique
mechanical strategy for opening the newborn lung, allowing it to
transition rapidly from its fluid-filled state in utero to the air-filled
state necessary for survival outside the womb. The newborn lung
achieves this vital function by ratcheting lung tissue open over a
series of initial breaths that incorporate brief expirations, to avoid
undoing the gains made with each previous inspiration. A similar
challenge faces the clinician who must ventilation the collapsed and
edematous lung with ARDS, but with an added complication.
Recruitment in an injured lung typically takes longer to manifest
than in the neonatal lung, with ongoing ventilation of those alveoli
already opened. APRV administered using TCAV achieves these
goals, with rapid lung inflation to move fluid from the airways into
the interstitial spaces, thus opening collapsed airways and alveoli.
Extended periods of high inspiratory pressure slowly recruits even
themost recalcitrant alveoli, while brief expirations avoid re-collapse
of those alveoli already opened. These processes together comprise a
ratchet mechanism by which the lung is progressively recruited,
much in the same way that the newborn lung is aerated during a
series of cries, albeit over a longer time scale.

FIGURE 2
(A) Single-compartment model of the respiratory system in which the alveolar compartment expands vertically to represent tissue distension, but
horizontally to represent recruitment. Variables for the model parameters are defined in the text. (B) Open fractions of the lung F(t), simulated by the
computational model depicted in (A). The model was mechanically ventilated with APRV using a breath period of 6 s, starting with 25% (black), 50% (red),
and 75% (green) derecruitment. Simulations were performed with three different expiratory durations (Tlow) as indicated.
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