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We have an example of a synergetic effect between neuroscience and 
connectome via artificial intelligence. The invention of Neocognitron, a machine 
learning algorithm, was inspired by the visual cortical circuitry for complex 
cells to be  made by combinations of simple cells, which uses a hierarchical 
convolutional neural network (CNN). The CNN machine learning algorithm is 
powerful in classifying neuron borderlines on electron micrograph images for 
automatized connectomic analysis. CNN is also useful as a functional framework 
to analyze the neurocircuitry of the visual system. The visual system encodes 
visual patterns in the retina and decodes them in the corresponding cortical 
areas. The knowledge of evolutionarily chosen mechanisms in retinas may help 
the innovation of new algorithms. Since over a half-century ago, a classical style 
of serial section transmission electron microscopy has vastly contributed to 
cell biology. It is still useful to comprehensively analyze the small area of retinal 
neurocircuitry that is rich in natural intelligence of pattern recognition. I discuss 
the perspective of our study on the primary rod signal pathway in mouse and 
macaque retinas with special reference to electrical synapses. Photon detection 
under the scotopic condition needs absolute sensitivity but no intricate pattern 
recognition. This extreme case is regarded as the most simplified pattern 
recognition of the input with no autocorrelation. A comparative study of mouse 
and macaque retinas, where exists the 7-fold difference in linear size, may give us 
the underlying principle with quantitative verification of their adaptational designs 
of neurocircuitry.
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1. Introduction

Electron microscopy resolved the controversy between Cajal’s neuron theory and Golgi’s 
reticular theory by observing synaptic clefts between two nerve cells. However, the situation is 
not as simple as imagined. There are wide and narrow types of synaptic clefts: approximately 
20 nm and 2 nm. Each neuron is bounded by its own cell membrane and has specialized 
organelles for contact communication: chemical and electrical synapses. Chemical synapses 
have wide clefts, while electrical synapses have narrow clefts. Cajal predicted the existence of 
chemical synapses which are characterized by unidirectional flow of information and 
connectional specificity. But he rejected the hypothesis of intercellular coupling. In his time, light 
microscopy could not identify gap junctions. The electrical synapses are characterized by the 
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bidirectional flow of electricity and cytoplasmic continuity via 
connexons. If Cajal had modestly reserved his judgment on the 
intercellular coupling, his prediction could have become even more 
satisfactory (Cowan and Kandel, 2001; Sterling and Laughlin, 2015).

After half a century since then, two new waves have emerged, 
deep learning and connectome. Deep learning is software for pattern 
recognition with a hierarchical architecture of the convolutional 
neural network (CNN) empowered by an end-to-end supervised-
learning algorithm called backpropagation (LeCun et al., 1989, 2015). 
Connectome is a complex of hardware and software for the 
automatization of efficiently making serial sections for scanning 
electron microscopy and image processing for 3D reconstruction of 
neurocircuitry (Seung, 2012). Hubel and Wiesel explained how a 
complex cell is generated by a combination of simple cells (Figure 1A) 
by using a model of the CNN of the visual cortical circuitry (Hubel 
and Wiesel, 1962). Being inspired by those physiological findings, 
Fukushima made a new algorithm called Neocognitron for pattern 
recognition, which has a hierarchical architecture of CNN and 
consequently a unique function not affected by deformations and 
shifts in the position of input patterns (Figure 1B) (Fukushima, 1980, 
1988). The CNN machine learning algorithm used by current 
connectome software is powerful for pattern recognition to classify 
neuron contours on electron micrographic images. This exemplifies a 
synergetic effect between neuroscience and connectome via 
artificial intelligence.

A classical style of serial section transmission electron microscopy 
(SSTEM) has contributed to cell biology for over a half-century. The 
classical SSTEM we use is still useful to comprehensively analyze the 
small area of retinal neurocircuitry that is rich in natural intelligence 
of pattern recognition. Here, I discuss the perspectives of our study on 
the neuronal circuitry in mouse and monkey retinas with special 
reference to gap junctions. We need some functional framework for 
interpreting the structural data. So, my first question is whether CNN 
is applicable to retinal circuits as a functional framework. Using the 
hypothetical CNN framework, the next question is how structural 
parameters are related to the information-processing functions of 
neuronal circuitry.

2. Application of CNN motifs to retinal 
circuitry

The layer of CNN is another name for the layer comprised of 
receptive fields (RFs) from the architectural point of view. The RF of 
a neuron in the visual system can be defined as the area of the retina 
from which the activity of a neuron can be  influenced by light 
(Nicholls et al., 2001). For example, the activity of a ganglion cell (GC) 
in the retina or a cortical cell in the visual area shows an increase or 
decrease in the firing rate only when illumination is changed over a 
restricted area of the retina known as an RF. The RF is characterized 
by the sensitivity gradient profile that is generally high at the center 
and becomes lower toward the surround. The RFs of several GCs 
partially overlap such that every point in intermediate space is covered 
almost equally (Borghuis et al., 2008). The retinal GCs encode visual 
signals, which are decoded through the corresponding areas in the 
central nervous system with a hierarchical architecture of CNN. Both 
encoding and decoding systems must be closely reflected on each 
other in some orchestrating way.

Is CNN applicable to the connectomic study of retinal neural 
networks? At first glance, supervised-learning algorithms such as 
backpropagation seem irrelevant to the retinal circuitry because 
retinal circuitry is neither involved in learning nor furnishing such 
neuronal feedback mechanisms. Nevertheless, the retina shows 
various adaptive circuitry designs from the evolutionary perspective. 
So, if we reserve the yet unknown but possible alternative mechanisms 
for the feedback part of the deep learning scheme, its forward part 
seems to be applicable. Next, the retinal circuitry differs from most 
central nervous systems in that only GCs evoke typical action 
potentials. Other retinal cells, rod and cone photoreceptors, bipolar 
cells (BCs), and horizontal cells except amacrine cells usually operate 
by means of graded potentials. This is simply because long-distance 
communications are rarely required within the retina, just fitting to a 
principle of economical wiring (Sterling and Laughlin, 2015). Finally, 
according to the current CNN model by LeCun et al. (2015), a typical 
neuron has three key processes: ① weighted reception, ② pooling, and 
③ nonlinear activation. All these processes are adopted by the linear–
nonlinear (LN) model of retinal neurons that combines ① a linearly 
weighted sum (or ② pooling) and ③ an instantaneous (or static) 
nonlinearity function (Sakai et al., 1995; Chander and Chichilnisky, 
2001; Chichilnisky, 2001; Kim and Rieke, 2001). In addition, the CNN 
model has four key architectural motifs: ① local connections, ② shared 
weights, ③ pooling, and ④ multiple layers. Before item-by-item 
checking, we brief the rod pathway in the next.

3. How signal-to-noise ratio is 
conditioned by structural parameters

Barlow once suggested a criterion that may help in establishing a 
candidate signal as a really utilized neurophysiological code in a work 
session of Neuroscience Research Program (Perkel and Bullock, 1968). 
That criterion is the efficiency measured as signal-to-noise ratio (S/N) 
in the neural output compared to the S/N of the input. Researchers 
may postulate more than one candidate which are all plausible from 
the statistical point of view. If one of them is obviously subject to the 
evolutional adaptation to the surrounding conditions in their 
structural architecture, that candidate code may be regarded as the 
true one. This requires clarifying what neuronal (input–to–output) 
connections and what associated structural parameters are closely 
related to improving the S/N. The varying number of synaptic contacts 
and the areal range of their summation are both closely related to the 
S/N improvement in the CNN scheme.

Figure 1C illustrates the CNN model of the primary rod signal 
pathway which is dealt with in this article. The first input units are rod 
photoreceptors, and the first hidden units (H1) are rod bipolar cells 
(RBCs) (Figure 1E). Both units are connected by a convolutional layer. 
But the unique feature of this primary rod pathway is that the second 
hidden units (H2) consist of a complex of AII amacrine cells and 
On-cone bipolar cells (On-CBCs), which are directly or indirectly 
coupled together through gap junctions, forming a syncytium. The 
resultant pooled signals are relayed to output units GCs by chemical 
synapses and then GC signals are emitted to the central 
nervous system.

Figure 1D shows the distribution of rod spherules (green) and 
RBCs (orange) whose circuitry makes their signals destined for an AII 
amacrine cell (light blue) in mouse and macaque retinas (Tsukamoto 
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and Omi, 2013 for mouse; unpublished data for macaque). More 
numerous rods and RBCs converge to a downstream AII amacrine 
cell, and the rod-collecting area of an AII amacrine cell is linearly 
2-fold greater, in the macaque retina than in the mouse retina. These 
differences may be related to their eye sizes. The length encompassed 
by 1° of visual angle on the retinal surface is approximately 30 μm in 
mice and 210 μm in macaque monkeys, resulting in a ratio of 1:7. As 
this size increases, the image resolution per unit length becomes 
higher (7-fold) but the photon density decreases. Therefore, the larger 
rod-collecting area in the macaque retina still retains high resolution 
(3.5-fold) by increasing the number of collected rods (1.2-fold) in 

comparison with the mouse retina. These numerical differences are 
furthermore reflected in the synaptic weightings at other parts of this 
primary rod pathway. The wider space is capable of harnessing more 
powerful signal transmission devices: more synaptic contacts and 
larger synaptic areas. The number of RB invaginating dendrites into a 
rod spherule is 1.2-fold greater (2.4 versus 2 dendrites/rod), and the 
synaptic contact area between RB invaginating dendrites and the rod 
spherule membrane is 1.8-fold greater (2.5 versus 1.4 μm2/rod), in the 
macaque retina than the mouse retina (Tsukamoto and Omi, 2022). 
Thus, we can quantify the differences in the adaptation to the different 
sizes of optical images by comparing mouse and macaque retinas.

FIGURE 1

(A) Convolutional neural network (CNN), (Redrawn from Hubel and Wiesel, 1962) on the model circuitry for producing complex cells from simple cells 
in the cat visual cortex. (B) Neocognitron (Redrawn from Fukushima, 1980, 1988), a machine learning algorithm inspired by the above CNN model, for 
pattern recognition with lateral shift-invariance. (C) CNN applied to the primary rod pathway in the retina. Each rod in the first layer (Input units) sends 
photon capture signals to 1  ~  3 rod bipolar cells (RBCs) at the second layer (Hidden units H1). Each RBC collects signals from 25  ~  30 rods, reduces 
them into a single value, and diverges it to 10  ~  20 AII–amacrine cells (AII–ACs). AII–ACs and on cone bipolar cells (On-CBCs) (Hidden units H2) are 
mutually coupled through gap junctions to form a syncytial network. On ganglion cells (On-GCs) (Output units) send signals to the central nervous 
system. (D) Top-down view illustration of three-layered networks from rods (orange) to RBCs (green) to AII-ACs (light blue) in macaque and mouse 
retinas. (E) Side view illustration of the primary rod pathway: (1) Rods, (2) RBCs, (3) AII–ACs, (4) On-CBCs, and (5) On–GCs.
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4. How CNN is compatible with the 
rod pathway

The key neuronal processes [N_] and architectural motifs [A_] of 
CNN are compared to the properties of the rod pathway as follows.

[A_④ Multiple layers: Rod pathway] Photon detection is 
challenging for mouse vision under starlit night conditions. To ensure 
this, a neural circuit for S/N improvement is implemented in the rod–
rod bipolar–AII amacrine pathway. This pathway exemplifies how 
structural data can help with analysis. Figure 2 provides an overview 
created by editing the previously published data (Tsukamoto and Omi, 
2013, 2017, 2022). Figure 2A compares electron microscopy images of 
mouse and macaque Rod–RB synapses. Figure  2B shows the 
distribution of rod synaptic terminals in the mouse retina. Those rod 
outputs transmit via nine RBCs (Figure 2C) to AII* amacrine cell 
(Figure  2D). Figures  2D,E present the locations and electron 
microscopy images of gap junctions among AII amacrine cells (AII* 
and AII**) and type-identified On-CBCs (5a and 5b).

[N_③ Nonlinear activation: Rod–RBC] The rod–to–RBC synapses 
perform the thresholding transform to reduce noises (Field and Rieke, 
2002). In most cases, the number of outputs from a rod terminal is two.

[N_① Weighted reception: RBC] An RBC receives ~25 weighted 
rod signals. The weight coefficients are mostly one but in a few 
cases two, where on RBC connects with one rod through two 
invaginating dendrites... dendrites.

[N_② Pooling: RBC] An RBC pools many rod signals through the 
dendritic arbor and produces a representative output signal. Under 
starlit night conditions, each rod rarely absorbs a photon; this 
convergent pathway is thought to increase the probability of photon 
absorption. Under mesopic light conditions, however, many rods 
absorb one or more photons simultaneously; this convergent pathway 
is thought to convey the graded light response.

[N_③ Nonlinear activation: RBC–AII] The signal transfer from 
an RBC to an AII amacrine cell is well described using linear–
nonlinear cascade model (Jarsky et al., 2011).

[A_① Local connections: RBCs] In mice, ~25 rods in the vicinity 
contact with one RBC through ribbon synapses.

[A_② Shared weights: RBCs] Neighboring RBCs have similar 
lateral strides and dendrites, thus they receive similar numbers (~25) 
of rod inputs.

[N_① Weighted reception: AII*] The number of RBC–AII* 
synapses varies greatly among RBCs. The central three RBCs have 
many contacts (24 to 34), while the surrounding six RBCs have few 
contacts (1 to 8) as depicted by colored circles (Figure 2C).

[N_② Pooling: AII] Electrical potential spreads electrotonically 
for averaging within the AII amacrine cell.

[A_① Local connections: AIIs] In mice, ~10 RBCs in the vicinity 
contact with one AII amacrine cell through ribbon synapses.

[A_② Shared weights: AIIs] Three neighboring AII amacrine cells 
had the similar distribution profiles of the number of contacts with 9 
to 12 RB axon terminals (Tsukamoto and Omi, 2013).

[N_③ Nonlinear activation: AII–AII–On-CBC] AII amacrine cells 
are electrically coupled to other AII amacrine cells and 
On-CBC. Electrical transmission is linear, but its efficacy depends on 
frequency components. Lower frequencies are more transferable than 
higher frequencies.

[A_③ Pooling: AII–AII–On-CBC] The pooling area is large. AII 
amacrine cells in the neighboring area make a syncytial network via 

gap junctions. This coupling extends to On-CBCs as well 
(Figures 2D,E). However, Tian et al. showed that AII amacrine cells 
were coupled electrically but Na channel-mediated effects on EPSPs 
appeared to occur at the single-cell rather than the AII network level 
(Tian et al., 2010). The Na channel-mediated acceleration may occur 
in rather restricted areas (Tamalu and Watanabe, 2007).

[N_③ Nonlinear activation: On-CBC–GC] On-CBC nonlinearly 
activates GC (Field et al., 2009).

5. EM methodology for 3D 
observation

Every methodology has its own pros and cons. Our relatively thick 
(~90 nm) sections for SSTEM (at 80 kV) have two major (i, ii) and two 
minor (iii, iv) advantages. (i) Thicker sections contain richer 
supramolecular constituents whose spatial relationship remains intact 
within that thickness. Micrographic images with rich cytological 
contexts provide many clues that help human pattern recognition to 
solve jigsaw puzzles for 3D circuitry reconstruction, (ii) Tilting and 
reimaging the sections at higher magnifications ensures that electrical 
synaptic contacts are identified as gap junctions, (iii) The number of 
sections required to cover the same sample volume decreases inversely 
with thickness. This idea is not extraordinary because high-voltage 
electron microscopy pursues this merit to observe the volume of a 
sample efficiently, and (iv) Using the thick sections is safer for making 
serial sections without loss.

As an example of (i), Figure 2A shows the rod spherule ribbon 
synaptic complexes in the mouse (A-1) and the macaque (A-2). 
Presynaptic fluffy density indicates the structural marker of molecular 
complexes involved in synaptic transmission (Ueda et  al., 1997; 
Martemyanov and Sampath, 2017). As an example of (ii), Figure 2E 
shows gap junctions between three different couples of On-CBCs and 
AII amacrine cells (Tsukamoto and Omi, 2017). The filamentous 
density beneath the surface indicates cytoskeletal architecture. Our 
classic SSTEM has several advantages but requires long hours of 
human labor. Therefore, we limit our samples to only small areas, 
pieces of retinas.

To overcome the limitations of the classic EM, two new EM 
physical procedures have been in progress: Serial block-face 
scanning electron microscopy (SBSEM) (Denk and Horstmann, 
2004) and the automated tape-collecting ultramicrotome (ATUM) 
(Hayworth et al., 2014). One of the advantages of SBSEM is that 
photographing the block faces physically assures the alignment 
between successive images. SBSEM facilitates automatic image 
processing, but reimaging is impossible. ATUM preserves the 
ultrathin sections that are collected from the knife’s water boat on 
a conveyor belt made of plastic tape. The SEM images of the 
surface of sections are gathered for surveillance at low resolution. 
Then, the regions of interest are reimaged at high resolution. In 
conjunction with these hardware developments, many levels of 
software are created for automatic operations, such as KNOSSOS 
(Helmstaedter et al., 2011), Fiji (Schindelin et al., 2012), TrakEM2 
(Cardona et  al., 2012), CATMAID (Witvliet et  al., 2021), and 
VAST (Berger et  al., 2018). Notably, another example of the 
synergetic effect between neuroscience and the machine learning 
algorithm of CNN is demonstrated for detecting global contours 
(Chen et al., 2014; Lee et al., 2015).
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FIGURE 2

(A) Electron micrographs of ribbon synapses in mouse (A-1) and macaque (A-2) rod terminals where rods release glutamate by vesicular exocytosis 
toward RB dendrites and horizontal cell (HC) processes. Two ribbons (triangles) are each in front of an RB dendrite (B1 or B2) and flanked by two 
horizontal cell processes (H′ and H″). The rod cell membrane sites (brackets) facing the RB dendrites are endowed with fluffy presynaptic density 
(arrowheads). This subcellular web substantiates that rod–RB contact sites are rich in trans-synaptic molecules. (B–D) Illustrations of a pathway of rods 
(B), RBCs (C), and AII* amacrine cell (D) in the top-down view in the mouse retina. A total of 174 rods are collected via 9 RBCs (B14–B22) which are 
summed at AII* amacrine cell with different weights (as depicted by colored circular areas). Neighboring AII* and AII** amacrine cells are mutually 
coupled via gap junctions. (E) Electron micrographs of gap junctions (arrows) between (1) two AII amacrine cells, (2) Type 5a On-CBC and AII amacrine 
cell, and (3) Type 5b and 5a On-CBCs in the mouse retina. Cytoskeletal fibrous materials are found in the subsurface cytoplasm.

https://doi.org/10.3389/fncel.2023.1281786
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Tsukamoto 10.3389/fncel.2023.1281786

Frontiers in Cellular Neuroscience 06 frontiersin.org

6. Circuitry-based computational 
functions of electrical synapses

Two neurons connected via a gap junction are electrically coupled. 
This connection passes current between two cells according to their 
voltage difference. The difference may have both signs, positive and 
negative. So, the current is bidirectional. This electrotonic conduction is 
passive and very fast, almost instantaneous. Because it performs no 
amplification, energetically it is costless. Also, a gap junction needs no 
extra space for placing connexons in the opposed membranes of adjacent 
cells. This primitive analogue device is economically favoured and widely 
utilized in retinal neurocircuitry to establish various meaningful 
functions (Sterling and Laughlin, 2015). Four examples are below.

Noise reduction: Visual input pattern consists of numerous patches 
with various shapes and sizes. Intensities are similar within each patch. 
Signals of the patch carried by a group of neurons are mutually 
correlated but they are also superposed by noise components that are 
uncorrelated. The noise mostly originates in photon fluctuation, 
intracellular cascades, and synaptic transmissions. Noise components 
are random in both amplitude and phase. When all the neurons in that 
group are electrically coupled via gap junctions, the correlated 
components do not change much but the uncorrelated components 
efficiently cancel each other. Thus, gap junctions reduce noise (DeVries 
et al., 2002). In other words, they execute average pooling.

Modulation between sensitivity and resolution: Dopamine regulates 
electrical coupling between AII amacrine cells through a cAMP–mediated 
PKA cascade. The dopamine release from surrounding dopaminergic 
amacrine cells is modulated by light conditions. Consequently, the light 
conditions affect the coupling between AII amacrine cells. Under scotopic 
conditions, the AII-AII coupling area is so small as to gather only RBC 
synaptic inputs which diverged from a single photon-activated rod by 
avoiding noises from the surrounding inactive area, to increase absolute 
sensitivity. Under mesopic conditions, the AII-AII coupling area becomes 
larger to gather numerous RBC synaptic inputs which originate in many 
photon-activated rods to increase the contrast sensitivity of graded signal. 
Under photopic conditions, AII amacrine cells are involved with cone 
signals. The AII-AII coupling area becomes small again to increase 
resolution (Bloomfield and Volgyi, 2009).

Frequency filtering: Gap junction coupling in a 2D array of cone 
photoreceptors passes low spatial frequencies and attenuates high ones. 
Low spatial frequencies produce gradually changing voltage differences 
whereas high frequencies produce sharply changing voltage differences. 
Both conditions make the current flow slow and fast, respectively, 
through their membrane capacity (Cangiano and Asteriti, 2021).

Synchronized activity: Classical work in the retina revealed that 
neighboring retinal ganglion cells exhibit significant spike synchrony. 
The subsequent studies verified that gap junction–mediated electrical 
signals synchronize neural activity on millisecond timescales via 
cooperative interactions with chemical synapses (Trenholm and 
Awatramani, 1995; Trenholm et al., 2014).

7. Discussion

EM pictures of nervous tissues consist of sectional images of cell 
membranes and intracellular and extracellular spaces at various angles. 
We imagine 3D models of neurons in our brains by observing every 
morphological trait of EM images in the context of cell biology. Then, to 
express the result of our observation we trace cell contour lines and 

marked characteristic structures such as synapses. In this sense, we see 
EM pictures by our eyes but read EM pictures by our brains.

Seung explained how bad computers are at seeing edges, with the 
aid of a well-known illusion called the Kanizsa triangle (Seung, 2012). 
Briefly speaking, our mind can fill in the missing parts of the edges 
only when provided with the context of the other shapes. His 
explanation is helpful for us to consider our problem to reconstruct 
3D neuronal circuitry. We interpret cell contour lines in conjunction 
with planar gradation on EM pictures. Experienced photographers 
prefer to use softly and adequately shaded pictures because shadings 
may sometimes contain more meaningful information than just lines. 
Annotation needs a high level of pattern recognition which we must 
cultivate over a long period of time. Such human pattern recognition 
may be  still necessary even after advanced machine learning 
algorithms are introduced in computer-aided image analysis systems. 
Gap junctions seem to be especially challenging to handle smoothly 
even by the advanced connectomic inspection (Witvliet et al., 2021).

Connectomic studies on visual processing may deepen our 
understanding of the natural intelligence of pattern recognition (Sawant 
et al., 2023). In turn, that knowledge may contribute to the development of 
new algorithms of artificial intelligence and scaling up connectomic studies.
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