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 In machine learning, datastream prediction is a challenging issue, 

particularly when dealing with enormous amounts of continuous data. The 

dynamic nature of data makes it difficult for traditional models to handle and 
sustain real-time prediction accuracy. This research uses a multi-processor 

long short-term memory (MPLSTM) architecture to present a unique 

framework for datastream regression. By employing several central 

processing units (CPUs) to divide the datastream into multiple parallel 
chunks, the MPLSTM framework illustrates the intrinsic parallelism of long 

short-term memory (LSTM) networks. The MPLSTM framework ensures 

accurate predictions by skillfully learning and adapting to changing data 

distributions. Extensive experimental assessments on real-world datasets 
have demonstrated the clear superiority of the MPLSTM architecture over 

previous methods. This study uses the transformer, the most recent deep 

learning breakthrough technology, to demonstrate how well it can handle 

challenging tasks and emphasizes its critical role as a cutting-edge approach 

to raising the bar for machine learning. 
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1. INTRODUCTION 

In the era of big data, traditional machine learning methods can be computationally burdensome 

and complex, making them unsuitable for processing such large-scale datasets. To achieve accurate 

predictions for data, traditional machine learning techniques often struggle to handle the challenges posed 

by big data, including its sheer volume, complexity, and high-dimensional nature [1]. On the other hand, 

data-driven methods utilizing deep learning have attracted interest due to their capacity to perform 

statistical analysis and information extraction automatically and successfully on large-scale, multi-source, 

and high-dimensional data., thereby overcoming the limitations of traditional prediction methods [2]. 

Recurrent neural networks (RNNs) are a kind of neural network that is particularly good at handling 

sequential data. have a feedback connection, in contrast to conventional feedforward neural networks, 

which enables them to keep an internal memory of prior inputs. This memory enables RNNs to effectively 

capture temporal dependencies and patterns in sequential data. However, traditional RNNs experience the 

“vanishing gradient” problem, where the gradient signal weakens with time and makes it difficult to 

adequately capture long-term dependencies. To overcome this restriction, variants like long short-term 

memory (LSTM) and gated recurrent unit (GRU) were developed. Incorporating gating mechanisms that 

selectively remember or forget information, these models are better able to capture and spread pertinent 

information over longer sequences [3]. Additionally, in neural networks (NNs), the pre-assignment of 

https://creativecommons.org/licenses/by-sa/4.0/
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parameters defines the network's topology and has an impact on how computationally intensive training 

and prediction are. Therefore, optimizing the parameters is crucial for achieving excellent performance. 

However, like other deep learning (DL) networks [4], LSTM also faces the challenge of parameter 

selection, which often requires hand-engineered adjustments. Manual parameter adjustment is difficult, 

particularly when dealing with vast amounts of data and very deep network structures. To address this 

issue, a grid search (GS) is employed to look for the ideal settings for multi-processor long short-term 

memory (MPLSTM), leading to predicting the datastream flow. This approach aims to build a suitable 

model structure and increase the MPLSTM's prediction accuracy. A multi-processor LSTM framework for 

real-time data stream processing is the main goal of this study. It conducts a comprehensive analysis of 

MPLSTM using a real-life dataset, offering valuable insights into monitoring the parallel approach. 

 

 

2. THE PROPOSED DATASTREAM MULTIPROCESSING LSTM FRAMEWORK 

In this section, a framework for real datastream analysis is presented that harnesses the strengths of 

MPLSTM along with other techniques to attain superior accuracy in real-time data processing. Figure 1 

demonstrates the framework’s overall architecture and gives a visual representation of the intricate details 

that underlie its operational procedures. The framework is made up of several parts, including an output 

layer, a hidden layer, and a layer for data input. 

 

 

 
 

Figure 1. The details of the proposed MPLSTM framework 

 

 

2.1.  Data acquisition and preprocessing 

The pre-processing stage is essential for getting the data ready for input into MPLSTM. This phase 

involves several steps, including data cleaning, normalization, splitting, and reshaping [5]. Firstly, data 

cleaning is performed to remove any missing or inconsistent data that can adversely affect the model's 

performance. Secondly, normalization, splitting, and reshaping the input data into a form that is compatible 

with the LSTM unit to scale the data and bring it within a specified range to avoid bias in the model's 

performance [6]. 

 

2.2.  The learning model 

After splitting the dataset into train and test, the training set is divided into chunks and processed in 

parallel using the multiprocessing pool. The pool manages a pool of worker processes, automatically 

assigning tasks to available workers and handling the communication between the main process and the 

worker processes. After that, the proposed MPLSTM framework is trained with various hyperparameters 

adjusted through multiple experiments until reaching a stable state, optimizing the weights with a grid search 

algorithm for best performance. 
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2.2.1. Parallelization using multiprocessing pool 

Parallelizing LSTM-based models using multiprocessing [7] enables faster processing of input 

sequences, efficient resource utilization, scalability, and flexibility in model design and optimization. It can 

be particularly useful in scenarios where large sequences or computationally intensive models need to be 

processed within a reasonable time frame. To apply multiprocessing, there are some steps [8] that must be 

followed: i) split the data into smaller chunks that can be processed independently, ii) create a function that 

will be executed in parallel by multiple processes, iii) this function will take a data chunk as input and 

perform LSTM processing on that chunk, iv) inside the function, create an instance of the LSTM model and 

train or predict on the input chunk, v) set up a multiprocessing pool, vi) the pool manages a group of worker 

processes that will execute the parallel processing function, vii) specify the number of worker processes to 

utilize, typically based on the available hardware resources, viii) collect the results from the parallel 

processes, and ix) however, it is important to note that the level of parallelism achievable depends on factors 

such as the number of available CPU cores, memory capacity, and the size of the input sequence. Parallel 

execution can be increased potentially by having a higher number of CPU cores, allowing for the execution 

of more processes in parallel. Similarly, the presence of sufficient memory capacity is crucial to 

accommodate the running of data and processes in parallel without being constrained by memory-related 

issues. 

 

2.2.2. Dropout layer 

To increase the network's speed and sturdiness, dropout regularization has been incorporated [9]. A 

regularization method is frequently employed in neural networks. It randomly deactivates a fraction of the 

neurons in the previous layer during each training iteration. This dropout of neurons helps prevent overfitting 

[10] by reducing the reliance of the network on specific neurons and encourages the learning of more robust 

and generalizable representations. During inference, the dropout layer is typically turned off, and the full 

network is used for making predictions. By incorporating dropout layers, the network becomes more resilient 

to overfitting and can improve its generalization performance on unseen data [11], [12]. 

 

2.2.3. Dense layer 

A fully connected layer is a fundamental component of a neural network. It consists of multiple 

nodes, or neurons, where every neuron is linked to every other neuron in the layer below. An activation 

function is applied to the weighted sum of the inputs from the layer before to determine each neuron's output 

in a dense layer [13]. To maximize the network's performance on the specified task, these weights and biases 

are learned throughout the training phase [14]. 

The model consists of several dense layers that are fully connected to all the activations in the 

former layer. These dense layers combine the complicated feature maps to produce a feature vector that is 

flattened. The occurrences are then categorized using the softmax [15] output probabilities produced by the 

last dense layer. 

 

2.2.4. Adam optimizer 

This section highlights the importance of parameter optimization in improving the model's 

performance. MPLSTM was trained using the Adam optimizer algorithm. A well-liked optimization 

technique frequently employed in deep learning is the Adam optimizer [16]. It combines the advantages of 

both the adaptive gradient algorithm (AdaGrad) and root mean square propagation (RMSProp) algorithms by 

adapting the learning rate for each parameter individually. This adaptive learning rate helps in achieving 

faster convergence as well as improved performance while training. The Adam optimizer is used to reduce 

the categorical cross-entropy loss function with a learning rate of 10−4. By using the Adam optimizer, 

MPLSTM by successfully updating its weights and biases, can reduce the loss function and boost its 

accuracy overall. 

 

2.3.  Prediction 

In the prediction phase, the input data is fed forward through the network, The softmax function is 

applied in the output layer to create a probability distribution over the classes [17]. The anticipated class label 

is normally determined by the class with the highest probability. Softmax makes sure that the projected 

probabilities are restricted between 0 and 1 and add up to 1. Because of this, it is appropriate for multi-class 

classification problems in which each instance belongs to a single class.  

 

𝑃𝑖 =
𝑒𝑥𝑝(𝑍𝑖)

∑ 𝑒𝑥𝑝(𝑍𝑗)
𝑛

𝑗=1

 (1) 
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where n is the total number of classes, 𝑍𝑖 is the raw output value for class 𝑖. By applying softmax, the neural 

network can provide a probability-based prediction, allowing for decision-making based on the highest 

probability class. 

 

2.4.  Evaluation 

Datastreams often exhibit changes in the class distribution of incoming instances regularly. These 

metrics provide a more comprehensive assessment of the model's performance, considering the evolving 

nature of the data stream and allowing for timely adaptation and monitoring. To evaluate the results, 

MPLSTM uses the following evaluation metrics: classification accuracy: it compares the predictions of 

MPLSTM with the actual target values from the dataset [18]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (2) 

 

Where 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠: This refers to the count of instances where MPLSTM correctly 

predicts the target value, 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠: This is the total number of instances for which 

predictions were made by the MPLSTM. The result will be a value between 0 and 1, representing the 

percentage of correct predictions made by MPLSTM. 

Then, three error metrics mean square error (MSE), root mean squared error (RMSE), and mean 

absolute error (MAE) Loss are used to assess the model's performance. These measures are employed to 

evaluate several facets of the model's precision and prognostication [19]. 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑡 − �̅�𝑡)2𝑛

𝑖=1  (3) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (y𝑡 − �̅�𝑡)2𝑛

𝑖=1  (4) 

 

𝑀𝐴𝐸 =  
1

𝑛
∑ |(y𝑡 − �̅�𝑡)|𝑛

𝑖=1     (5) 

 

Where n is the number of samples, y𝑡, �̅�𝑡 the predicted and actual values respectively. RMSE measures the 

average magnitude of the prediction errors by taking the square root of the mean squared difference between 

the predicted y𝑡  and actual values �̅�𝑡. It gindicateshow accurately the model predicts the desired variable. 

While MAE measures the average absolute difference between y𝑡, �̅�𝑡. 

 

 

3. LSTM enhancement 

Inspired by the transformer model's innovations [20], we enhance LSTM by incorporating 

transformer principles. This fusion includes self-attention and cross-attention mechanisms [21] similar to 

transformers, improving LSTM's ability to capture complex data dependencies, especially in large datasets. 

The resulting TransLSTM architecture combines LSTM and transformer strengths, making it adaptable and 

powerful for real-world applications and predictions. Figure 2 illustrates TransLSTM: input encoding 

converts tokens to continuous vectors, positional encodings provide context and positional information, 

transformer encoder blocks process sequences with multi-head self-attention and feedforward networks, 

LSTM Integration captures sequential dependencies, attention mechanism combines information from both 

sources, and the output layer produces final predictions. 

 

 

 
 

Figure 2. TransLSTM architecture 
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4. RESULTS AND DISCUSSION 

This section outlines the comparative study conducted to assess the performance of MPLSTM. The 

experimental procedure employs statistical analysis to evaluate the results obtained across all datasets, 

comparing MPLSTM with several state-of-the-art algorithms for data stream classification. The results of this 

study provide important new information about the performance of the proposed MPLSTM framework and 

its competitive position in the field of data stream classification techniques. 

 

4.1.  Dataset 

A total of 29 different time-series datasets were used in this study and came from the UCR 

repository, which is accessible to the public [22]. Stream clustering [23], anomaly detection [24], and data 

stream density estimation are just a few of the applications for which these datasets have been used in 

research in the past. Each dataset comprises of instances of a one-dimensional time series with a built-in grid 

structure. 

The IMDB dataset [25], introduced by Maas et al. [26], is a prominent benchmark for sentiment 

classification. It comprises 25,000 reviews in both the training and test sets, each limited to 30 reviews per 

movie for diversity. This balanced dataset contains an equal number of positive and negative reviews, 

establishing a 50% accuracy baseline if predictions were random. 

 

4.2.  Case study 1 

The study encompassed a comprehensive exploration of various established techniques, aiming to 

encompass all algorithm families proposed in the literature for the given problem. Table 1 provides an 

overview of the evaluated classifiers, organized by their respective families, and includes the abbreviations 

used throughout this paper [27], [28]. The results obtained from the conducted experiments are presented and 

discussed. Additionally, the processing time on each dataset is analyzed, considering the significance of 

speed-up in a data streaming scenario. 

 

 

Table 1. Utilized models for case study1 
Classifier Abbreviation Family 

Naive Bayes NaivBy Bayesian classifiers 

Adaptive Size H T AdptSHOFT Decision tree 

Stochastic gradient-descent StoGrdD Function classifiers 

Single classifier drift SnglCDrft Drift classifiers 

Leveraging bagging LvrgBag Meta classifiers bagging 

Adaptive random forest AdptRnF Meta classifiers bagging 

Boosting using adwin BoAdwin Meta classifiers boosting 

Multi-layer perception MLPrecept Neural networks 

 

 

Hyperparameter selection typically involves using rule-of-thumb parameters or proven combinations 

from previous studies. However, a systematic approach like grid search (GS) [29] is employed for meticulous 

hyperparameter selection. Grid search is favored due to its simplicity, parallelizability, and effectiveness in 

low-dimensional spaces. It entails discretizing hyperparameter value ranges and systematically testing all 

possible combinations. This approach explores diverse model configurations. Before training the final 

models, a validation run optimizes hyperparameters based on accuracy assessments. The training process 

ends when the maximum epoch limit is reached. MPLSTM configuration details are summarized in Table 2. 

In this paper, the Adam optimizer is chosen post-validation for its computational efficiency and slightly 

superior test results. A batch size of 32 is used for all models, and the sparse categorical cross entropy as a 

loss function [30] is employed. This loss function calculates the negative logarithm of the predicted 

probability for the true class index when applied to class indices, showing the model's level of assurance in 

the accuracy of its class prediction. 

 

 

Table 2. Hyperparameters used in tuning MPLSTM framework 
Network Parameter Configuration 

Dense 10 

Epochs number 200 

Optimization function ADAM optimizer 

Size of a batch  32 

Learning rate 0.001 

Activation function Softmax 

Loss function Sparse categorical cross entropy 
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𝑆𝑝𝑎𝑟𝑠𝑒 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑦𝑖 𝑙𝑜𝑔(𝑦�̂�)
𝑛
𝑖=1     (6) 

 

where n represents the classes’ number, 𝑦 represents the true label or target value of the ith class, and �̂� 

represents the predicted probability for the corresponding class. 

 

4.3.  Performance evaluation 

Batch sizes above 30 exhibit stable accuracy and processing times regardless of the number of 

batches, offering flexibility in parameter selection. However, batch sizes below 30 significantly degrade 

performance, hindering model adaptability to evolving data streams. Very small batch sizes overly focus on 

individual examples, preventing learning of overall data distribution changes. MPLSTM achieves high 

accuracy across various datasets, showcasing LSTM's suitability for time-series data streaming. 

Convergence of training and validation loss lines during model training is a positive indicator, 

signifying learning progress. MPLSTM reduces processing time significantly through parallel processing, 

enhancing accuracy and predictive capabilities. The trade-off with increased computational time should be 

considered based on application requirements. Figure 3 demonstrates parallel processing consistently 

outperforming sequential processing across 29 datasets, ensuring MPLSTM's effectiveness. 

 

 

 
 

Figure 3. A comparison between sequential and parallel execution processing times 

 

 

The FacesUCR dataset exhibits a speedup of 2 times when processed in parallel, indicating a 

significant improvement in processing time compared to sequential processing. Similarly, for the Pendigits 

dataset, the parallel model achieves a speedup of 1.7, further demonstrating the efficiency of parallel processing 

over the sequential approach in this case. Several other datasets, such as PhalangesOutlinesCorrect and 

TwoPatterns, also exhibit notable speedups larger than 1.5 times when processed in parallel. These findings 

further emphasize the effectiveness of MPLSTM in reducing processing time. The observed speedup across 

multiple datasets as shown in Figure 4 underscores the model's ability to leverage parallelism efficiently, 

resulting in faster dataset processing. 

By harnessing parallel processing, the MPLSTM demonstrates its capability to significantly improve 

performance and expedite data analysis tasks. Upon closer analysis, the processing time of individual 

datasets, such as the ECG5000, demonstrates notable improvements in processing time as shown in Figure 5, 

although the magnitude of the speedup may not be extremely high. However, when examining the Pendigits 

dataset, with its larger size and increased complexity, the benefits of parallel processing become increasingly 

pronounced. Consequently, the speedup achieved becomes substantially larger. 
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Figure 4. Dataset speedup curve when applying the MPLSTM framework 

 

 

  
 

Figure 5. A Comparison of the processing time of sequential and parallel execution of two datasets ECG5000 

and Pendigits 

 

 

Figure 6 displays the learning curves, which depict the accuracy improvement across each epoch for 

two different datasets ECG5000 and Pendigits. These curves visually demonstrate how the model's accuracy 

increases as the training progresses. The learning curves for the two datasets show how well the model was 

trained and how well it could learn from the data. The consistent improvement in accuracy over the course of 

the epochs implies that the model is not just remembering the training data but also generalizing well to new 

data. This is encouraging for the model's ability to predict outcomes using fresh data. 

Similarly, Figure 7 illustrates the decrease in loss across each epoch for the same mentioned datasets. 

All these learning curves provide crucial insights into the model's performance and offer valuable guidance for 

enhancing its architecture and training procedure. The learning curves provide valuable insights into the model's 

performance and offer guidance for optimizing its architecture and training process. By addressing overfitting 

and considering early stopping, the model's accuracy can be further improved while maintaining good 

generalization capabilities. 
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In Table 3, The proposed MPLSTM framework's effectiveness was assessed using MSE, RMSE, 

and MAE as evaluation metrics. It is desirable to have low values for these metrics as they indicate better 

performance. In this study, the framework yielded promising results with low values for example, it gives 

MSE=0.237 for the ECG5000, RMSE=0.583 for the PhalangesOutlinesCorrect, and MAE=0.074 for the 

pendigits. This implies that the predictions made by the MPLSTM model were close to the actual values. The 

model performed well because it was able to learn the patterns and relationships in the data. This led to 

accurate predictions and shows that the MPLSTM framework is an effective way to address this problem. 

Table 4, The accuracy table showcases the performance evaluation results for MPLSTM on the UCR dataset. 

It provides a comprehensive overview of the accuracy achieved by the framework in predicting the target 

variable. The table offers a detailed breakdown of the accuracy scores across different metrics or 

experimental configurations, allowing for a comprehensive analysis of the framework's performance. 

Researchers and practitioners can refer to this table to assess the effectiveness and reliability of MPLSTM in 

accurately predicting the target variable on the UCR dataset. 

 

 

  
 

Figure 6. The Accuracy curves of training and validation sets in two datasets ECG5000 and Pendigits 

 

 

  
 

Figure 7. The loss curves of training and validation sets of two datasets ECG5000 and Pendigits  

 

 

Table 3. Performance of MPLSTM in terms of MSE, RMSE, and MAE 
Dataset MSE RMSE MAE 

Wafer 0.449 0.670 0.2247 

Pendigits 0.390 0.625 0.074 

ECG5000 0.237 0.478 0.113 

HandOutlines 0.361 0.601 0.361 

PhalangesOutlinesCorrect 0.340 0.583 0.340 

ChlorineConcentration 1.11 1.0536 0.340 
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Table 4. Accuracy of the top 7 classifiers for the UCR datasets compared with the MPLSTM framework 
Dataset Proposed 

DPMLSTM 

AdaptRnf MLPrecept NaivBy SnglCDrft AdaptSHOFT LvrgBag BoAdwin StoGrdD 

Wafer 0.100 0.982 0.991 0.194 0.192 0.356 0.963 0.960 0.542 

Pendigits 0.976 0.950 0.938 0.824 0.784 0.850 0.867 0.909 0.800 

ECG5000 0.941 0.856 0.877 0.750 0.772 0.750 0.752 0.843 0.833 

ElectricDevices 0.85 0.526 0.526 0.456 0.456 0.456 0.468 0.457 0.194 

HandOutlines 0.638 0.720 0.634 0.533 0.533 0.533 0.530 -0.084 0.475 

PhalangesOutlinesCorrect 0.659 0.377 0.060 0.134 0.134 0.133 0.245 0.277 0.072 

ChlorineConcentration 0.533 0.149 0.082 0.122 0.122 0.001 0.063 0.001 0.099 

 

 

4.5.  Case study 2 

In this study, LSTM is integrated and the Transformer model to create TransLSTM, a novel 

architecture. TransLSTM leverages the Transformer's success in handling sequential data and capturing long-

range dependencies. This fusion enhances LSTM's ability to model complex relationships and temporal 

dependencies in sequential data by incorporating self-attention and cross-attention mechanisms from the 

Transformer. The investigation demonstrates how TransLSTM can address LSTM's limitations, potentially 

leading to more accurate and efficient predictions. This case study highlights the innovative potential of 

combining diverse neural architectures for enhanced predictive capabilities. 

 

4.6.  TransLSTM evaluation 

The training history curves in the provided case study offer insights into the performance of two 

different models, LSTM and TransLSTM, across multiple epochs. In Figure 8, the first and the third curves 

represent training loss for LSTM and TransLSTM, while the second and fourth curves represent validation 

loss for LSTM and TransLSTM, respectively. These curves depict the evolution of training loss over epochs, 

showing a decreasing trend, and indicating learning from the training data. TransLSTM consistently achieves 

lower training loss and outperforms LSTM in validation loss, indicating better generalization to new data. 

Similarly, the other figure displays training and validation accuracy curves, with the first and the third curves 

representing training accuracy for LSTM and TransLSTM, and the second and the fourth curves representing 

validation accuracy. Both models exhibit an increasing trend in training accuracy, demonstrating efficient 

learning from the training data as well as the capacity to generalize to new, untried data. TransLSTM 

achieves higher training and validation accuracy, highlighting its superior data modeling capabilities. 

 

 

  
 

Figure 8. Comparison between LSTM and TransLSTM training and validation loss and accuracy 

 

 

5. CONCLUSION 

In conclusion, this paper presents a novel framework for datastream regression, referred to as 

MPLSTM. The proposed framework effectively addresses the challenges associated with handling 

continuous and large-scale data in real-time prediction scenarios. By leveraging the inherent parallelism of 

LSTM networks, MPLSTM achieves a remarkable balance between high prediction accuracy and 
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computational efficiency. Experimental evaluations, conducted on real-world datasets including the UCR 

dataset, validate the superior performance of MPLSTM compared to traditional regression models. The 

framework's ability to capture temporal dependencies and long-term patterns in streaming data is 

demonstrated through accurate predictions, as evidenced by accuracy measures and loss calculations. 

MPLSTM emerges as a promising approach for datastream prediction, showcasing improved performance 

and outperforming existing results in terms of accuracy and loss. 
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