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 The paper proposes a method for the analysis and synthesis of self-oscillations 

in the form of a finite, predetermined number of terms of the Fourier series in 

systems reduced to single-loop, with one element having a nonlinear static 

characteristic of an arbitrary shape and a dynamic part, which is the sum of 

the products of coordinates and their derivatives. In this case, the nonlinearity 

is divided into two parts: static and dynamic nonlinearity. The solution to the 

problem under consideration consists of two parts. First, the parameters of 

self-oscillations are determined, and then the parameters of the nonlinear 

dynamic part of the system are synthesized. When implementing this 

procedure, the calculation time depends on the number of harmonics 

considered in the first approximation, so it is recommended to choose the 

minimum number of them in calculations. An algorithm for determining the 

self-oscillating mode of a control system with elements that have dynamic 

nonlinearity is proposed. The developed method for calculating  

self-oscillations is suitable for solving various synthesis problems. The 

generated system of equations can be used to synthesize the parameters of 

both linear and nonlinear parts. The advantage is its versatility. 
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1. INTRODUCTION 

The use of dynamic nonlinearities in control systems of technical objects expands the possibilities of 

synthesis of these systems. We classify dynamic elements as nonlinear elements that contain links that make it 

possible to obtain, in general terms, the sums of products of coordinates and their derivatives of arbitrary 

degrees and orders. In addition, the system may include elements with static nonlinear characteristics. In some 

of these systems, the operating modes are stable periodic oscillations-of self-oscillations. Such properties are 

typical for control systems for electromechanical objects, electrical power systems, and electric drives with 

frequency regulation. 

Currently, there is practically no information on possible methods for calculating such systems. 

Attempts to use, for these purposes, methods for studying the calculation of systems with static nonlinear 

characteristics turned out to be ineffective, due to either low universality or unsuitability for synthesis [1]. 

Digital modeling, which has become quite widespread in recent years, can be expensive or time-consuming if 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Investigation of auto-oscilational regimes of the system by dynamic nonlinearities (Isamidin Siddikov) 

231 

it is not preceded by a study of the system using approximate or exact methods [2], [3]. Therefore, it seems 

appropriate to use a computer in the analytical approach to solve a system of equations, some of which are 

nonlinear algebraic. 

In works [4]–[10] a numerical-analytical method for calculating self-oscillations in systems with 

elements having static nonlinear characteristics was presented. For the development of the results obtained, it 

is of interest to be able to extend them to systems with dynamic nonlinearities while retaining such advantages 

as universality and algorithm city. Let the system under study of the class under consideration satisfy the 

following restrictions: [11]–[14]: i) They can be divided into two parts - linear (LP) and nonlinear (NP), which 

in turn can consist of static (NSP) and dynamic (NDP) parts; ii) The function describing the nonlinear static 

part satisfies the Dirichlet conditions; and iii) The output variable of the system is a periodic arbitrary 

waveform. 

The block diagram of the system from the class under consideration is shown in Figure 1. The transfer 

function of the linear part is not degenerate and has the form: 

 

𝑊(𝑝) = 𝑀(𝑝)/𝑁(𝑝) = ∑ 𝑏𝑖𝑝𝑖𝑚
𝑖=0 / ∑ 𝑎𝑖𝑝𝑖𝑛

𝑖=0 ,  (1) 
 

where 𝑝 = 𝑑/𝑑𝑡; 𝑎𝑖 , 𝑏𝑖 − polynomial coefficients, 𝑚 < 𝑛. 
The nonlinear static characteristic is described using a polynomial spline of degree 𝑟 defect 𝑘 on the 

grid  : 

 

𝑦 = 𝐹(𝑥) + 𝑆𝑟,𝑘(𝑥) = ∑ 𝑎𝑠𝑖𝑥𝑖𝑟
𝑖=0 , ∀𝑥 ∈ ∆ (2) 

 

where 𝑎𝑠𝑖  - spline coefficients 𝑥𝑖- input variables. 

The link of the NDP system performs the transformation of the input variable (𝑣𝑐) weekend (𝑦𝑑) the 

following kind: 

 

(𝑦𝑑) = ∑ 𝑐𝑖𝑗𝑦𝑠
𝑖𝑦𝑠

(𝑗)𝐼,𝐽
𝑖,𝑗=0 .  (3) 

 

here 𝑦𝑠 - static characteristic output, 𝑦𝑑  - output dynamic response, 𝑐𝑖𝑗  - coefficient transformations. 

In what follows, for definiteness, we will consider the NDP link, in which only the coefficients 𝑐00 

and 𝑐11 in expression (3) are different from zero, i.e., 

 
(𝑦𝑑) = 𝑐00𝑦𝑠 + 𝑐11𝑦𝑠𝑝𝑦𝑠  (4) 

 

Desired self-oscillations 𝑧(𝑡) write in the form (5), 

 

𝑧(𝑡) = 𝐴𝑧0 + ∑ 𝐴𝑧𝑘sin(𝑘ω𝑡 + α𝑧𝑘)𝐿
𝑘=1   (5) 

 

where L- specified number of harmonics to be considered; 𝐴𝑧𝑘 - self-oscillation amplitudes; α𝑧1=0 as a result 

of the choice of origin. The procedure for analyzing self-oscillations (5) consists of two stages [15]–[18]: 

ii) calculation of the parameters of all possible periodic modes in a given system and ii) selection of stable 

modes (self-oscillations) from all modes. 

 

 

 
 

Figure 1. Block diagram of the system 

 

 

The following is the order in which the material is presented: section 2 explains the method of solving 

the problem and reveals the essence of the proposed algorithm. Section 3 contains the simulation results that 

were used to verify the proposed self-oscillatory modes of the system by dynamic nonlinearities. Section 4 

concludes with a conclusion and recommendations for further use and development of the proposed approach. 
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2. METHOD 

For any system from the class under consideration, the balance equations for amplitudes and phases 

are valid, which follows from the strong connectivity of the system graph. They look like this: 

 

𝑦𝑑𝑘|𝑊(𝑗𝑘ω1)| = 𝐴𝑧𝑘 , 𝑘 ∈ [0, 𝐿]; β𝑑𝑙 + arg𝑊(𝑗𝑙ω1) = α𝑧𝑙 , 𝑙 ∈ [1, 𝐿]  (6) 

 

where 𝑦𝑑(𝑡) = 𝑦𝑑0 + ∑ 𝑦𝑑𝑘sin(𝑘ω1𝑡 + β𝑑𝑘)∞
𝑘=1 ; and 𝑦𝑠(𝑡) = 𝑦𝑠0 + ∑ 𝑦𝑠𝑘sin(𝑘ω1𝑡 + β𝑠𝑘)∞

𝑘=1  

Taking into account expression (4), we can obtain a relationship between the coordinate parameters 

𝑦𝑑(𝑡) and 𝑦𝑠(𝑡): 

 

𝑦𝑑0 = 𝑐00𝑦𝑠0;  

𝑦1 =
1

2
𝑐11𝑦𝑐1𝜔1√𝑦0

2 + 𝑦𝑠2
2 + 2𝑦0𝑦𝑠2cos(2β𝑠1 − β𝑠2 − β𝑠0)+. . . , 

β𝑑1 = β𝑑1
′ + π; tgβ𝑑1

′ =
𝑦0sin(β𝑠1 − β𝑠0) + 𝑦𝑠2sin(β𝑠2 − β𝑠1)+. . .

𝑦0cos(β𝑠1 − β𝑠0) + 𝑦𝑠2cos(β𝑠2 − β𝑠1)+. . .
,   

 

where  

 

𝑦0 = 2√𝑦𝑠0
2 + 𝑐00

2 /(𝑐11
2 ω1

2);      𝑡𝑔β𝑠0 = −𝑐11𝑦𝑠0/𝑐00  (7) 

 

The system of (6), taking into account relations (7), is formally sufficient to determine the parameters 

𝑧(𝑡), however, it is not possible to obtain efficient solution procedures due to its complexity. It is advisable, 

keeping the system (6), to supplement it with one more equation, which will allow solving the newly formed, 

extended system of equations. 

We use the analytical-numerical method for calculating essentially nonlinear systems [1] to obtain the 

required additional equation [19]–[21]. Let us write the equations of dynamics of the system under study from 

the class under consideration in the following form: 

 

𝑥 + 𝑧 = 0;    𝑦𝑠 = 𝐹(𝑥);    𝑦𝑑 = 𝑐00𝑦𝑠 + 𝑐11𝑦𝑠𝑝𝑦𝑠,    𝑧 = 𝑊(𝑝)𝑦𝑑 . (8) 

 

where 𝐹(𝑥) - functional. 

Further coordinates 𝑦𝑠(𝑡) and 𝑧(𝑡) expanded into the Taylor series in the neighborhood of some 

arbitrarily chosen expansion point 𝑡𝑝, 𝑡𝑝 ∈ [0, 2𝜋/𝜔1), in which the y-axis is placed: 

 

𝑧(𝑡𝑝 + 𝑡) = ∑ 𝑅𝑧𝑖𝑡
𝑖/𝑖!∞

𝑖=0 ,  𝑦𝑠(𝑡𝑝 + 𝑡) = ∑ 𝑅𝑦𝑖𝑡
𝑖/𝑖!∞

𝑡=0 . (9) 

 

where 𝑅𝑧𝑖 and 𝑅𝑦𝑖 - Taylor series coefficients. 

Between odds 𝑅𝑧𝑖 and 𝑅𝑦𝑖 near (9) there is a one-to-one relationship determined from the relations 

between the coordinates 𝑥, 𝑦𝑠, and z for instance,  

 

𝑅𝑦0 = ∑ 𝑅𝑠𝑖(−𝑅𝑧0)𝑖𝑟
𝑖=1 ,   𝑅𝑦1 = 𝑅𝑧1 ∑ 𝑖𝑎𝑠𝑖(−𝑅𝑧0)𝑖−1𝑟

𝑖=1 ,  

 

Let us transform the third and fourth equations of system (8) into one equation for the possibility of 

referring to the solution procedure. To do this, we will make the following transformations: 

 

−𝑀(𝑝)𝑦𝑑 = −𝑀(𝑝)(𝑐00𝑦𝑠 + 𝑐11𝑦𝑠𝑝𝑦𝑠) 

= −𝑀(𝑝) [𝑐00𝑦𝑠 + 𝑐11𝑦𝑠 (𝑅𝑦1 + ∑
𝑅𝑡𝑖

(𝑖−1)!

∞
𝑖=2 )] = −𝑀1(𝑝)𝑦𝑠 − ∑

𝐻𝑖𝑡𝑖

𝑖!

∞
𝑖=0  (10) 

 

where 𝑀1(𝑝) = (𝑐00 + 𝑐11𝑅𝑦1)𝑀(𝑝); ∑
𝐻𝑖𝑡𝑖

𝑖!

∞
𝑖=0 = 𝑐11𝑀(𝑝) [∑

𝑅𝑦𝑖𝑡𝑖

𝑖!

∞
𝑖=0 ] ∑

𝑅𝑦𝑖𝑡𝑖−1

(𝑖−1)!

∞
𝑖=2 ; 𝐻0 = 𝑐11𝑏1

𝑅𝑦0𝑅𝑦2

0!𝑖!
 

+2𝑐11𝑏2 (
𝑅𝑦1𝑅𝑦2

1!1!
+

𝑅𝑦0𝑅𝑦3

0!2!
) +. ..,  

Taking into account transformations (10), a system of (8) can be written as 𝑥 + 𝑧 = 0  

 

−𝑎𝑠1𝑥 + 𝑦𝑐 = ∑
𝑇𝑖𝑡𝑖

𝑖!

∞
𝑖=0 ,     −𝑀(𝑝)𝑦𝑐 + 𝑁(𝑝)𝑧 = ∑

𝐻𝑖𝑡𝑖

𝑖!

∞
𝑖=0 .  (11) 
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Next, the system of (11) is transformed according to Laplace, and the solution is found 𝑧(𝑠) (s-complex 

variable) according to Cramer's rule, we obtain 

 

𝑧(𝑠) =
𝑆𝑄(𝑠)+𝑀1(𝑠) ∑ 𝑇𝑖𝑠−𝑖∞

𝑖=0 +∑ 𝐻𝑖𝑠−𝑖∞
𝑖=0

𝑁(𝑠)+α𝑠1𝑀1(𝑠)

1

𝑠
= ∑ 𝑅𝑧𝑖𝑠

−1 1

𝑠

∞
𝑖=0 , (12) 

 

where 𝑄(𝑠) - polynomial of preinitial. 

From (12) we determine the coefficients 𝑅𝑧𝑖, 𝑖 ∈ [0, 𝑛]. For this, the complementary equation of the 

analytical-numerical method can be obtained from the expression for 𝑅𝑧𝑛, because the coefficients 𝑅𝑧𝑖, 𝑖 ∈

[0, 𝑛 − 1] identically equal 𝑧0
(𝑖)

. We have (13): 

 

∑ (𝑐00 + 𝑐11𝑅𝑦1)𝑏𝑖𝑇𝑖
𝑚
𝑖=0 + 𝐻0 − ∑ [α𝑖 + α𝑠1(𝑐00 + 𝑐11𝑅𝑦1)𝑏𝑖]𝑧0

(𝑖)𝑛
𝑖=0 = 0 (13) 

 

In (13) relates the parameters of the system to the parameters of periodic oscillations. After 

transformations, we obtain an algebraic equation, for example, the amplitude 𝐴𝑧1 first harmonic: 

 

∑ α𝑖𝐴𝑧1
𝑖2𝑟

𝑖=0 = 0, (14) 

 

where α𝑖 = α𝑖(𝑝𝑘 , ω1, α𝑧𝑒 , α𝑗, 𝑏𝑗 , 𝑐00, 𝑐11, α𝑠𝜆, 𝑡𝑝);  𝑝𝑘 =
𝐴𝑧𝑘

𝐴𝑧1
. 

The complete system of equations for unknown parameters of periodic modes takes the following 

form [22]–[24]: 

 

∑ 𝛼𝑖𝐴𝑧1
𝑖2𝑟

𝑖=0 = 0;    𝑦
𝑑𝑘

|𝑊(𝑗𝑘𝜔1)| = 𝑝
𝑘

𝐴𝑧1,    𝑙 ∈ [0, 𝐿];  (15) 

β
𝑑𝑙

+ 𝑎𝑟𝑔𝑊(𝑗𝑙ω1) = 𝛼𝑧1,    𝑘 ∈ [1, 𝐿].  

 

We assume that the desired periodic regime exists in the form of two components: some first 

approximation 𝑧𝑝.𝑝(𝑡), and a segment of the Fourier series 𝑧𝐹(𝑡), obtained from the complete solution z(t), 

minus the first approximation. An iterative procedure for step-by-step calculation of two components with 

subsequent refinement 𝑧𝑝.𝑝(𝑡), due to accounting 𝑧𝐹(𝑡), ends when the predetermined accuracy of the solution 

is reached. 

Definition of harmonic composition 𝑧𝑝.𝑝 and 𝑧𝐹, based on a preliminary study of the system. As a first 

approximation 𝑧𝑝.𝑝(𝑡), includes the fundamental harmonics of the oscillations 𝑧(𝑡), (for many systems this is 

one and often the first harmonic), which is 𝑧𝐹(𝑡), can contain harmonics both smaller and larger than the 

harmonics 𝑧𝑝.𝑝(𝑡), frequencies. Let us write down the system of equations for determining the parameters of 

the first approximation 𝑧𝑝.𝑝(𝑡), having the form of a harmonic signal with a constant component: 

 

𝑧𝑝.𝑝(𝑡)𝐴𝑧0 + 𝐴𝑧1𝑠𝑖𝑛ω1𝑡  (16) 

 

Let us introduce the following notation: 

 

𝑊(𝑗𝑙ω1) = [𝑀𝑅𝑙(ω1) + 𝑗𝑀𝐼𝑙(ω1)]/[𝑁𝑅𝑙(ω1) + 𝑗𝑁𝐼𝑙(ω1)] 
𝑀𝑅𝑙(ω1) = ∑ (−1)0.5𝑖𝑏𝑖(𝑙ω1)𝑖𝑚

𝑖=0 ,  𝑁𝑅𝑙(ω1) = ∑ (−1)0.5𝑖α𝑖(𝑙ω1)𝑖𝑛
𝑖=0 ,  𝑖 = 0, 2 … , 

𝑀𝐼𝑙(ω1) = ∑ (−1)0.5(𝑗−1)𝑏𝑗(𝑙ω1)𝑗𝑚
𝑗=0 ,  𝑁𝐼𝑙(ω1) = ∑ (−1)0.5(𝑗−1)α𝑗(𝑙ω1)𝑗𝑛

𝑗=0 ,  𝑗 = 1, 3 …. 

 

Then from the system of (15), considering relations (7), after transformations, we obtain 

 

∑ 𝑑𝑖𝐴𝑧1
𝑖2𝑟

𝑖=0 = 0 ,  𝑐00𝑏0𝑦
𝑠0

= α0𝐴𝑧0; 

𝑦𝑠1√𝑐00
2 + 𝑐11

2 𝑦𝑠0
2 ω1

2√𝑀𝑅1
2 + 𝑀𝐼1

2 √1 + 𝑝𝑦2
2 + 2𝑝𝑦2cos(2β𝑠1 − β𝑠2 − β𝑠0)+. . . = 𝐴𝑧1√𝑁𝑅1

2 + 𝑁𝐼1
2 ; 

sin(β𝑠1−β𝑠0)+𝑝𝑦2sin(β𝑠2−β𝑠1)+...

cos(β𝑠1−β𝑠0)+𝑝𝑦2cos(β𝑠2−β𝑠1)+...
=

𝑀𝑅1𝑁𝐼1−𝑀𝐼1𝑁𝑅1

𝑀𝑅1𝑁𝐼1+𝑀𝐼1𝑁𝑅1

  , (17) 

 

where 𝑝
𝑦2

= 𝑦
𝑠2

𝑦
0

⁄ .  
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Often the components 𝑦𝑠𝑘 (𝑘 > 1) of the coordinate 𝑦𝑠(𝑡) are significantly smaller than the 

components 𝑦𝑐0 and 𝑦𝑐1. In this case, the second and third equations of system (17) are simplified and have 

the following form: 

 

𝑦𝑠1√𝑐00
2 + 𝑐11

2 𝑦𝑠0
2 ω1

2√𝑀𝑅1
2 + 𝑀𝐼1

2 = 𝐴𝑧1√𝑁𝑅1
2 + 𝑁𝐼1

2 ;    
𝑐00tgβ𝑠1+𝑐11𝑦𝑠0ω1

𝑐00−𝑐11𝑦𝑠0ω1tgβ𝑠1
=

𝑀𝑅1𝑁𝐼1−𝑀𝐼1𝑁𝑅1

𝑀𝑅1𝑁𝐼1+𝑀𝐼1𝑁𝑅1
 .    (18) 

 

In the case of an unambiguous static nonlinear characteristic and the first approximation in the form (16), the 

phase is equal to (19): 

 
𝑐11𝑦𝑠0ω1

𝑐00

=
𝑀𝑅1𝑁𝐼1−𝑀𝐼1𝑁𝑅1

𝑀𝑅1𝑁𝐼1+𝑀𝐼1𝑁𝑅1

 .  (19) 

 

In the case of calculating systems for describing the static nonlinear characteristics of which the cubic 

splines of the defect are used 1 (r=3, k=1), and the degrees of polynomials 𝑊(𝑝) − (1): 𝑚 = 1, 𝑛 = 4, 

coefficients at the lowest 𝑑0 and senior 𝑑6 degrees 𝐴𝑧1 are determined by the following expressions: 

 

𝑑0 = 𝑐00𝑏0(α𝑠0 − α𝑠1𝐴𝑧0 + α𝑠2𝐴𝑧0
2 − α𝑠3𝐴𝑧0

3 ) − α0𝐴𝑧0 ; 

𝑑6 = 3𝑐11α𝑠3
2 ω1sin4ω1𝑡𝑝[𝑏0sinω1𝑡𝑝cosω1𝑡𝑝 + 𝑏1ω1(5cos2ω1𝑡𝑝 − sin2ω1𝑡𝑝)] . 

 

When determining the parameters and form of the periodic mode by calculating a certain first 

approximation and its subsequent refinement taking into account harmonics with smaller amplitudes, an 

approach is proposed that allows one to abandon harmonic linearization and accept the spline approximation 

[25]. We transform the system of (8) into one nonlinear differential equation. 

 

𝑁(𝑝)𝑧 = 𝑀(𝑝)[𝑐00𝑆(𝑧) + 𝑐11𝐹1(𝑧)𝑝𝑧] ,  (20) 

 

where 𝑆(𝑧) = 𝑆𝑟,𝑘(−𝑧) = 𝑦𝑠 = ∑ (−1)𝑖α𝑠𝑖𝑧𝑖𝑟
𝑖=0  ;   𝐹1(𝑧)𝑝𝑧 = 𝑆𝑟,𝑘(−𝑧)𝑝𝑆𝑟,𝑘(−𝑧) = [∑ (−1)𝑖α𝑠𝑖𝑧

𝑖−1𝑟
𝑖=0 ] . 

When determining the parameters of the first approximation 𝑧𝑝.𝑝(𝑡) from (20) one can obtain a system 

of equations for any of 𝑘 harmonics, 𝑘 ∈ [𝑘1, 𝑘𝑛], included in 𝑧𝑝.𝑝(𝑡): 

 

𝑁(𝑝)𝑧𝑝𝑘 = 𝑀(𝑝)𝑦𝑑𝑘 ,  

 

where 𝑧𝑝.𝑝(𝑡) = ∑ 𝑧𝑛𝑘(𝑡)𝑘𝑛
𝑘=𝑘1

 ;   𝑦
𝑑
(𝑡) = ∑ 𝑦

𝑑𝑘
(𝑡)𝑘𝑛

𝑘=𝑘1
= 𝑐00𝑠(𝑧𝑝.𝑝) + 𝑐11𝐹1(𝑧𝑝.𝑝)𝑝𝑧𝑝.𝑝. 

To calculate the component 𝑧𝐹(𝑡) and clarifications 𝑧𝑝.𝑝(𝑡) the following system of equations can be 

obtained: 

 

𝑁(𝑝)𝑧𝑝𝑘 = 𝑀(𝑝)(𝑦𝑑𝑘 + 𝐹𝑝𝑘) ,  𝑘 ∈ [𝑘1, 𝑘𝑛] ;   𝑁(𝑝)𝑧𝐹𝑙 = 𝑀(𝑝)(𝑦𝑑𝑙 + 𝐹𝐹𝑙) ,  𝑙 ∈ [𝑙1, 𝐿] ,  (21) 

 

where 𝑧𝐹𝑙(𝑡) = ∑ 𝑧𝐹𝑙(𝑡)𝐿
𝑙=𝑙1

  ,  𝐹(𝑡) = 𝐹𝑝.𝑝(𝑡) + 𝐹𝐹(𝑡) = ∑ 𝐹𝑛𝑘(𝑡) + ∑ 𝐹𝐹𝑙(𝑡)𝐿
𝑙=𝑙1

𝑘𝑛
𝑘=𝑘1

= δ𝑦𝑑. 

At each iteration, the first (kn-k1+1) equations of system (21) are used to determine and refine the 

parameters 𝑧𝑝.𝑝(𝑡) the following (L-l1+1) equations, to determine and refine the parameters 𝑧𝐹(𝑡). When 

implementing this procedure, it turned out that the calculation time to the greatest extent depends on the number 

of harmonics taken into account in the first approximation, so it is recommended to choose the number 𝑘𝑛 

minimally and increase it only in the following cases: 1) in the absence of 𝑧𝑝.𝑝 in a priori chosen form, 2) with 

poor convergence of the proposed procedure. 

In order to single out stable regimes (auto-crawling), it is sufficient to investigate the stability of the 

oscillations found in the small. Then (20) can be written in vector form in the following form: 

 

𝐷1𝑝𝑧 = 𝐴𝑧 + 𝑐00𝐵𝑆(𝑧) ,  (22) 

 

where  

 

𝑧 = 𝑐𝑜𝑙𝑜𝑛(𝑧1, 𝑧2, … , 𝑧𝑛); 𝑝𝑧 = 𝑐𝑜𝑙𝑜𝑛(𝑧1, 𝑧2, … , 𝑧𝑛); 𝐴 = 𝑑𝑖𝑎𝑔(𝐴1, 𝐴2, … , 𝐴𝑛); 

𝐵 = 𝑐𝑜𝑙𝑜𝑛(𝐵1 , 𝐵2, … , 𝐵𝑛) ; 𝑧𝑖 = 𝑊𝑖(𝑝)𝑦𝑑 =
𝐵𝑖

𝑝−𝐴𝑖
𝑦𝑑 ; 𝑧 = ∑ 𝑧𝑖

𝑛
𝑖=1  .  
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From (22) one can obtain the equation of the first approximation in variations 𝛿𝑧, which represent deviations 

from the unperturbed motion - the regime studied for stability 𝑧(𝑡) : 

 

𝑝δ𝑧 = 𝐷3δ𝑧,  (23) 

 

where  

 

δ𝑧 = 𝑐𝑜𝑙𝑜𝑛(δ𝑧1, δ𝑧2, … , δ𝑧𝑛) ; δ𝑧 = ∑ δ𝑧𝑖
𝑛
𝑖=1  ; 𝐷3 = 𝐷2

−1𝐷1 ; 

𝐷2 = 𝐴 + 𝑐00𝐵𝑆δ ; 𝑆δ =
𝑑𝑆(𝑧)

𝑑𝑧
. 

 

Equation (23) corresponds to some characteristic equation: 

 

φ(𝑝0) = 𝑑𝑒𝑡[𝐷3 − 𝑝0𝐸] = 0.  (24) 

 

Having estimated the roots of (24), we can conclude that the periodic regime is stable. To find roots 

𝑝𝑜𝑖 , 𝑖 ∈ [1, 𝑛], it is necessary to determine 𝑛 systems of partial solutions of the system of (23) on the period 

𝑇𝑧 = 2𝜋/𝜔1, satisfying the initial conditions forming the identity matrix. The developed method for calculating 

self-oscillations is suitable for solving various synthesis problems. The generated system of equations (15) can 

be used to synthesize the parameters of both the linear and nonlinear parts. The advantage is its versatility. 

From the whole variety of synthesis problems, we will consider the most characteristic problem for 

this class of systems, the problem of synthesis of coefficients 𝑐00 and 𝑐11 dynamic nonlinear part. For 

coefficient synthesis 𝑐00 and 𝑐11 according to the given parameters of self-oscillations, (6) of the balance of 

amplitudes and phases are used. For definiteness, let us consider the case of the presence of self-oscillations in 

the system in the form (16) provided that the components 𝑦𝑠𝑘 , 𝑘 > 1, less 𝑦𝑠0, and 𝑦𝑠1. Then the system of 

equations for determining the coefficients 𝑐00 and 𝑐11 and unknown frequency ω1 according to the given 

parameters 𝐴𝑧0 and 𝐴𝑧1 is combined as (25): 

 

𝑐00 = 𝑝0𝑎0 𝑏0⁄ ; (𝑐00
2 + 𝑐11

2 𝑦𝑠0
2 ω1

2)
𝑀𝑅1

2 +𝑀𝐼1
2

𝑁𝑅1
2 +𝑁𝐼1

2 = 𝑝1
2;   

 

𝑐11 =
𝑐00

𝑦𝑠0ω1

𝑀𝑅1𝑁𝐼1−𝑀𝐼1𝑁𝑅1−(𝑀𝑅1𝑁𝐼1+𝑀𝐼1𝑁𝐼1)tgβ𝑠1

𝑀𝑅1𝑁𝑅1+𝑀𝐼1𝑁𝐼1−(𝑀𝑅1𝑁𝐼1−𝑀𝐼1𝑁𝑅1)tgβ𝑠1
; (25) 

 

where 𝑝 = 𝐴𝑧𝑘 𝑦𝑠𝑘⁄ , 𝑘 ∈ [0, 1]. 
Substituting the third equation into the second of the system (25), we obtain an algebraic equation for 

the frequency ω1; 

 

с00(𝑀𝑅1
2

+ 𝑀𝐼1
2 ) = 𝑝

1
|(𝑀𝑅1𝑁𝑅1 + 𝑀𝐼1𝑁𝐼1)cosβ

𝑠1
+ (𝑀𝑅1𝑁 + 𝑀𝐼1𝑁𝑅1)sinβ

𝑠1
|. (26)  

 

 

3. RESULTS AND DISCUSSION 

Let us find the parameters of self-oscillations in the system shown in Figure 1, the nonlinear dynamic 

part of which is described by (4). The characteristic of the NSP link is approximated by a spline S3,1(x) on an 

uneven grid ∆: −18 ≤ 𝑥 ≤ 18. The parameters of the links of the NDP and LP are as follows: c00 = 1; c11 = 1; 

m = 0; b0 =15; n= 4; α0=1; α1=4.9; α2=8.3; α4=1.2. 

As a first approximation 𝑧𝑝.𝑝(𝑡) chooses a harmonic signal with a constant component (16). To find 

its parameters 𝐴𝑧0, 𝐴𝑧1 and 𝜔1 we use the first and second equations of system (17), the first equation of system 

(18), and (19). As a result, we get (27): 
 

𝑧𝑝.𝑝(𝑡) = 3.08 + 10.9𝑠𝑖𝑛1.06𝑡  (27) 

 

Next, we calculate the component 𝑧𝐹(𝑡). The number of harmonics taken into account by it is limited, for 

example, by the condition 𝐴𝑧𝑘 ≥ 0.1𝐴𝑧1, 𝑘 > 1 and specify the parameters 𝑧𝑝.𝑝(𝑡). Having performed two 

iteration steps, we finally obtain the following values of the oscillation parameters 𝑧(𝑡). 
 

𝐴𝑧0 =3.5; Az1=9.2; Az2=2.6; Az3=0.9; αz1=1.27; αz2=4.04; αz3=-0.71.  

|1 − 𝐴𝑧𝑘𝑙 𝐴𝑧𝑘(𝑙−1)⁄ | ≤ 0.1,   𝑘 ∈ [0, 1].  
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where 𝐴𝑧𝑘𝑙 and 𝐴𝑧𝑘(𝑙−1) – harmonic amplitude values 𝑧(𝑡) respectively on l - th and (l -1) – th iteration. 

Using the first Lyapunov method, it was found that the oscillations found are stable, i.e.,  

self-oscillations. Let's find the coefficients 𝑐00 and 𝑐11 of the NDP link, described by (4), providing obtaining 

in the system of Figure 1 self-oscillations in the form (16) with given parameters 𝐴𝑧0=3, and 𝐴𝑧1=11. The 

frequency is determined during the synthesis. 

From decomposition 𝑦𝑠(𝑡) in a Fourier series according to known 𝐴𝑧0, 𝐴𝑧1 and by the NSP link we 

find: 𝑦𝑠0 =0.61; 𝑦𝑠1 =5.36; 𝛽𝑠1 = 𝜋. From the first equation of system (25) we calculate 𝑐00 = 0.328. Of the 

eight roots of (26), only three are positive: 𝜔1−1 =0.59; 𝜔1−2 =2.65; 𝜔1−3 =2.56. From the third equation of 

system (25) we determine the corresponding values of the coefficient 𝑐11: 𝑐11−1 =-0.9; 𝑐11−2= -10.47;  

𝑐11−3= 9.69.  As shown by checking the stability of given oscillations in a system with synthesized coefficients 

c00 and 𝑐11, frequency only ω1-1=0.59 corresponds to self-oscillations: 
 

𝑧(𝑡) = 3 + 15 sin 0.5𝑡,  (28) 
 

In this case, the parameters of the NDP link are as follows: 𝑐00= 0.328; 𝑐11= -0.9. To check the correctness of 

the synthesis, we calculated self-oscillations in a system with synthesized 𝑐00 and 𝑐11, and oscillations (28) 

were chosen as the first approximation. As a result of one step of iterations, self-oscillations are found that 

actually take place in the system. 
 

𝑧(𝑡) = 3 + 14.97 sin(0.59𝑡 + 0.16) + 3.05 sin(2 ∗ 0.59𝑡 − 0.8) + 1.16 sin(3 ∗ 0.59𝑡 + 3.9). 
 

 

4. CONCLUSION 

An algorithm for determining the self-oscillating mode of a control system with elements having 

dynamic nonlinearity is proposed. When determining the parameters and form of the periodic regime by 

calculating a certain first approximation and then refining it, taking into account harmonics with smaller 

amplitudes, we use an approach that allows us to abandon the harmonic linearization and accept the spline 

approximation. The developed method for calculating self-oscillations is suitable for solving various synthesis 

problems. A comparative analysis of the proposed approach with such well-known methods as the spectral 

analysis method showed its effectiveness associated with the linearization of nonlinear characteristics of the 

control system. The generated system of equations can be used to synthesize the parameters of both the linear 

and nonlinear parts. The advantages include its versatility. 
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