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 The images obtained from remote sensing consist of background 

complexities and similarities among the objects that act as challenge during 

the classification of land scenes. Land scenes are utilized in various fields 
such as agriculture, urbanization, and disaster management, to detect the 

condition of land surfaces and help to identify the suitability of the land 

surfaces for planting crops, and building construction. The existing methods 

help in the classification of land scenes through the images obtained from 
remote sensing technology, but the background complexities and presence of 

similar objects act as a barricade against providing better results. To 

overcome these issues, an improved artificial bee colony optimization 

algorithm with convolutional neural network (IABC-CNN) model is 
proposed to achieve better results in classifying the land scenes. The images 

are collected from aerial image dataset (AID), Northwestern Polytechnical 

University-Remote Sensing Image Scene 45 (NWPU-RESIS45), and 

University of California Merced (UCM) datasets. IABC effectively selects 
the best features from the extracted features using visual geometry group-16 

(VGG-16). The selected features from the IABC are provided for the 

classification process using multiclass-support vector machine (MSVM). 

Results obtained from the proposed IABC-CNN achieves a better 
classification accuracy of 96.40% with an error rate 3.6%. 
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1. INTRODUCTION 

The rapid growth in satellite development has led to an increase in the number of high-resolution 

remote sensing images. High-resolution remote sensing photographs provide more detailed geographic 

information than low-resolution ones, which is advantageous for the sectors of agriculture, defense, geology 

and atmosphere [1], [2]. Remote sensing images further exhibit images with fine resolution, multi-source, 

expanded range, and quantitative data due to the developing trends in remote sensing satellites, imaging 

radars, and unmanned aerial vehicle technology. As a result, the classification of vast volumes of remote 

sensing image data illustrating land areas is a crucial subject of study, researchers have focused on extracting 

a variety of efficient feature representations throughout the last few decades to enhance the performance of 

remote sensing image scene categorization [3]–[5]. Remote sensing scene classification can be characterized 

https://creativecommons.org/licenses/by-sa/4.0/
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as a technique that divides remote sensing scenes into a number of categories in accordance with their 

contents [6], [7]. Areas with a lot of unstructured data require varying levels of annotation to prevent 

categorization oversight. However, the majority of remote sensing images that are now in use, lack properly 

created ontological structures [8], [9], making it impossible to include learned features with high-level 

semantic interpretations from category labels [10]. 

High-resolution remote sensing images are frequently used in a range of sizes and include a variety 

of content, much like multidirectional targets set against a complicated background [11], [12]. Classification 

of remote sensing scenes is categorized into Handcrafted features, midlevel features, and deep features [13], 

[14]. The method of feature fusion has emerged as a potential means of enhancing the performance of the 

deep features extracted from pre-trained convolutional neural networks (CNNs) [15], [16]. A successful CNN 

with deep learning features can extract various layers of image data for scene semantic classification, and has 

in-depth domain expertise for identifying and interpreting remote sensing image features [17], [18]. To 

extract features from images and subsequently create feature representation for scene categorization, deep 

CNN models are frequently employed as feature learning techniques [19]. An improvised artificial bee 

colony algorithm is used in this study to choose the pertinent elements for remote sensing scene 

classification. The related works based on classifying the remote scene are presented as follows: 

Xu et al. [20] developed an enhanced classification system that utilized a recurrent neural network 

combined with a random forest (RNN-RF) classifier to classify the images of land scenes obtained from the 

satellite. The input images were obtained from the UC Merced land (UCM) dataset which consisted of 21 

classes of labeled high-resolution images. The RNN-RF classification system provided an effective visual 

analysis of various features, and also enhanced classification to detect objects. The combination of RNN and 

RF obtained higher optimization during cross-validation on the UCM dataset and provided multi-scale views 

with better accuracy during classification. Since UCM is a smaller dataset, the RNN-RF classification system 

performed well. But for a well-versed dataset, the classification of images using the RNN-RF system 

remained a challenge. 

Li et al. [21] developed a multi augmented attention-based convolutional neural network  

(MAA-CNN) to classify the land scene from high-spatial-resolution remote sensing (HRRS) images. The 

MAA-CNN captured the region of discrimination from the images of HRRS and performed attention 

cropping and augmentation. Attention cropping was utilized to improvise the required regions and perform 

attention maps. The augmentation was utilized to push the attention map channels to obtain various features. 

Bilinear attention pooling was used to combine the features, and the interclass distance was narrowed using 

regularized loss function. The MAA-CNN exhibited poor performance in classifying the images for the 

NWPU-45 dataset.  

Xu et al. [22] presented a framework based on deep feature aggregation (DFA) using graph 

convolutional network (GCN) to classify the high spatial resolution (HSR) image obtained from remote 

sensing. Initially, the feature extraction was performed using the pre-trained VGG-16 to obtain multiple 

layers of features. GCN extracted the feature maps of each layer and provided scenes of HSR images by 

generating a graph for undirected adjacency. The multiple features produced by VGG-16 were combined 

using the weighted concatenation method. At last, the images were predicted using a linear classifier. 

However, the DFA-GCN faced consequences in classifying similar ground objects like man-made structures 

and roads. 

Shen et al. [23] presented a dual-model architecture along grouping attention fusion strategy to 

improvise the efficiency in land scene classification. The dual model consisted of two CNNs to extract the 

features, and a grouping attention fusion strategy was utilized to combine the CNN features in a multi-scale 

way. A loss function was generated for diversities in small intra classes and large inter-class distances that 

produced an enhanced classification performance. The dual model architecture showed better performance 

than the single CNN model by providing enhanced feature selection. However, misclassification occurred in 

classifying similar objects. 

Guo et al. [24] introduced a saliency dual attention residual network (SDAResNet) to mine the 

cross-channels and spatial information, for classifying land scenes in remote sensing images. The 

SDAResNet consists of two types of attention: spatial attention and channel attention, where the spatial 

attention was embedded in a low-level feature to highlight and quash information on the background. The 

channel attention was utilized for combining the high feature levels to mine information from meaningful 

saliencies. The land scene classification using SDAResNet utilized an attention mechanism and offered a 

better classification accuracy. However, the challenge was faced in classifying the natural images such as 

trees, and mountains, since they appeared similar in visual aspect.  

The major contributions of this research are listed as follows: 

a. The artificial bee colony (ABC) optimization algorithm is in remote sensing land scene classification, but 

it produces poor classification accuracy using probability selection. To overcome this issue, the improved 
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artificial bee colony (IABC) optimization algorithm is proposed, which performs based on neighborhood 

selection and helps the classifier to provide better classification results.  

b. Feature extraction is performed with the help of VGG-16, where the image data is converted into array 

data which helps to extend the dimensions of the array with various sizes. 

c. This research employs MSVM to create an optimal hyperplane and classifies it into a linear pattern. 

MSVM verifies the input pattern and performs classification, providing better classification results in 

lower dimensions. 

The remaining paper is organized as follows: section 2 presents a detailed explanation of the IABC 

algorithm. The results and discussion are provided in section 3. Finally, section 4 represents the overall 

conclusion of this paper. 

 

 

2. IABC OPTIMIZATION ALGORITHM FOR FEATURE SELECTION 

The classification of land scenes from the remote sensing images is a challenging process in remote 

sensing interpretation. This research proposed an IABC optimization algorithm that is employed in feature 

selection. The features selected using the proposed IABC make classification process easier, by providing 

better accuracy and removing unnecessary partitions from the image. A detailed description of the overall 

process involved in land scene classification is discussed in the following sections. The overall process 

involved in the classification process is diagrammatically represented in Figure 1. 

 

 

 
 

Figure 1. Process involved in the classification of remote sensing land scenes 

 

 

2.1.  Dataset 

This research made use of three publicly available datasets based on land scene classification using 

remote sensing technology to evaluate the efficiency of the proposed method. The three datasets include 

aerial image dataset (AID), Northwestern Polytechnical University-Remote Sensing Image Scene 45 

(NWPU-RESIS45), and University of California Merced (UCM) dataset. The descriptions of the 

aforementioned datasets are provided in the following sub-sections: 

 

2.1.1. AID 

The AID [25] is collected from Google Earth by Wuhan University which consists of a large-scale 

land-use dataset for HRRS images with 30 land scenes. The 30 land scenes include airports, parking, 

stadium, beach, schools, desert, farmland, meadow, bridge, and port. The AID dataset includes 10,000 

images with a pixel size of 600×600 for every individual image and these images are labeled by remote 

sensing image experts. 
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2.1.2. NWPU-RESIS45  

The NWPU-45 [26] is one of the challenging databases for classifying HRRS images. The database 

contains 45 category HRRS images with a pixel size of 256×256 in the color space of red, green, and blue 

(RGB) and each category in NWPU-45 consists of 700 images. The NWPU-45 dataset contains about 31,500 

images in total. The 45 categories contain commercial plots, forests, mountains, harbors, and these categories 

consist of abundant images. The images in various categories seem to be similar, so it is quite challenging to 

attain superior performance with these images. 

 

2.1.3. UCM dataset 

The UCM dataset [27] is utilized in classifying the various surfaces of land obtained from  

high-resolution remote sensing images. The UCM dataset is collected from USGS University of California, 

Merced which is categorized into 21 classes with a total of 2,100 images. Each image present in the UCM 

dataset has a pixel size of 256×256. 

 

2.2.  Pre-processing 

After collecting the data from the datasets, pre-processing is necessary to be performed. In this 

research, the collected data is initially processed by radiometric and geometric modifications followed by 

clipping of images. The useless portions present in the images are removed, while the noises and 

discrepancies present in the image are detached using digital filters. 

 

2.2.1. Normalization 

Normalization is an essential process that aids to ease the extraction of features and classification of 

remote-sensing land scenes. Normalization is defined as processing the images for varying values of pixel 

intensities. In this research, the image data is scaled using min-max normalization to improvise the learning 

speed. The normalization function takes image data 𝑥 and produces a normalized image. The intensity of the 

image may be in the range of 0 to 255 and sometimes in negative values, so min-max normalization is 

applied to the input image data and is transformed in the range of 0 to 1. The min-max normalization is 

computed using (1). 

 

𝑁 =
𝑥−𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛
 (1) 

 

where the maximum and minimum values of the pixels are represented as 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 respectively. The 

output from normalization is provided as input for the process of feature extraction. 

 

2.3.  Feature extraction 

The normalized output image is provided as the input for the feature extraction process. In this 

research, the visual geometry group-16 (VGG-16), which is a convolutional neural network (CNN) model, is 

deployed to extract the deep features from the image. Since VGG-16 provides better accuracy value for the 

ImageNet dataset (a vast dataset with around fifteen million images), it is utilized in this research. The  

VGG-16 has 13 convolutional layers where the size of the filter is 3×3 and the pooling layer has the size of 

2×2. Moreover, two fully connected layers along with a soft max function are present in the architecture of 

VGG-16. In VGG-16, the image data is converted into array data which helps to extend the dimensions of the 

array with various sizes. Generally, the architecture of the VGG-16 model is deep and helps to adjust the 

values of pixels, which efficiently aids in extracting the features from the image data. The architectural 

diagram of the VGG-16 model is represented in Figure 2. 

 

2.4.  Feature selection using IABC optimization algorithm ABC optimization 

There are various types of optimization algorithms introduced from inspiration by nature. Likewise, 

the ABC algorithm is inspired by the intelligent behavior of bees. Generally, bees keep on trying to search for 

a better source of food with more nectar. The bees present in the swarm are categorized into three categories 

namely, employer bee, onlooker bee, and scout bee. In the process of iteration, the bees perform various 

operations to get a good source of nectar. In the initial stage, the swarm has 𝑆 solutions, and the 𝑖𝑡ℎ iteration 

of solution 𝑋𝑖 to find the food in the swarm is represented in (2). 

 

𝑋𝑖 = 𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝐷 (2) 

 

where 𝑆 is known as swarm size, 𝑥𝑖 is abandoned solution, and the dimension size is denoted as 𝐷. The 

complete operation process involved in the food search of ABC is mentioned below. 
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Figure 2. Architecture of VGG-16 

 

 

2.4.1. Search phase of employer bee 

In this stage, the employer bee searches for an optimal solution and operates to identify a good 

source of food. 

 

𝑉𝑖,𝑗𝑟
∗ = 𝑋𝑖,𝑗𝑟 +  𝜙𝑖,𝑗𝑟.(𝑋𝑖,𝑗𝑟 − 𝑋𝑘,𝑗𝑟) (3) 

 

where the variable 𝑉𝑖,𝑗𝑟
∗  is used to provide candidate food position, the value taken from the whole swarm is 

denoted as 𝑋𝑘 and the random integer is denoted as 𝑗𝑟 which lies in the range [1, D]. The weighted function 

created among the range -1 and 1 is denoted as 𝜙𝑖,𝑗𝑟 . When the search for employer bee is completed as per 

(3), the new solution 𝑉𝑖 is created which is represented in (4). 

 

𝑉𝑖,𝑗 = {
𝑉𝑖,𝑗𝑟                 

∗ 𝑖𝑓 𝑗 = 𝑗𝑟

𝑋𝑖,𝑗   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
 (4) 

 

where the value of 𝑗 = 1,2, … , 𝐷. To obtain a better solution, a methodology based on greedy selection is 

used which is mentioned in (5). 

 

𝑋𝑖 = {
𝑉𝑖 , 𝑖𝑓 𝑉𝑖  𝑜𝑢𝑡𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑠 𝑋𝑖   

𝑋𝑖,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

 

2.4.2. Search phase of onlooker bee 

In this stage, the neighborhood search for all solutions is completed using the employer bees. After 

this, the onlooker bees obtain the information from the employer bees. Some of the best solutions are chosen 

to proceed with the search at this phase. The better solution is described by selecting the probability 𝑝𝑖 for 

every individual solution. The probability 𝑝𝑖  is evaluated using the formula mentioned in (6). 

 

𝑝𝑖 =
𝑓𝑖𝑡(𝑋𝑖)

∑ 𝑓𝑖𝑡(𝑋𝑖)𝑆
𝑖=1

 (6) 

 

where the fitness value of 𝑋𝑖  is denoted as 𝑓𝑖𝑡(𝑋𝑖) and it is computed using (7). 

 

𝑓𝑖𝑡(𝑋𝑖) = {

1

1+𝑓(𝑋𝑖)
, 𝑖𝑓 𝑓(𝑋𝑖) ≥ 0

1 + |𝑓(𝑋𝑖)|,   𝑖𝑓 𝑓(𝑋𝑖) < 0
 (7) 
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where the value of the objective function 𝑋𝑖 is represented as 𝑓(𝑋𝑖). For every onlooker bee in the swarm, the 

better solution 𝑋𝑖 is chosen based on 𝑝𝑖 value. A new offspring is created using the (3) and (4), and a better 

solution is obtained among 𝑋𝑖  and 𝑉𝑖 . 
 

2.4.3. Search phase of the scout bee 

Based on (5), a new solution is created with the solution from their parents. The search in the 

neighborhood becomes successful when 𝑉𝑖 is better than 𝑋𝑖, and the search in neighborhood also denotes 

when 𝑉𝑖  is worse than 𝑋𝑖. The search of the neighborhood is monitored using a failure counter 𝑡𝑟𝑖𝑎𝑙𝑖.  
When the search becomes successful, the 𝑡𝑟𝑖𝑎𝑙𝑖 is set as 0 and when the search becomes a failure, 𝑡𝑟𝑖𝑎𝑙𝑖 is 

added as 1. The updated 𝑡𝑟𝑖𝑎𝑙𝑖 is mentioned in (8). 

 

𝑡𝑟𝑖𝑎𝑙𝑖 = {
0, 𝑖𝑓 𝑉𝑖  𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑋𝑖   

𝑡𝑟𝑖𝑎𝑙𝑖 + 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (8) 

 

When the value of 𝑡𝑟𝑖𝑎𝑙𝑖 is greater than the limit, the respective solution 𝑋𝑖  is prohibited. The prohibited 𝑋𝑖  is 

replaced using (9). 

 

𝑥𝑖,𝑗 = 𝑙𝑜𝑤 + 𝑟𝑎𝑛𝑑(0,1). (𝑢𝑝𝑗 − 𝑙𝑜𝑤𝑗) (9) 

 

where the value of 𝑗 = 1,2, … , 𝐷 and the randomly created value in the range [0,1] is denoted as 𝑟𝑎𝑛𝑑(0,1). 
The marginal limitation for the upper limit and the lower limit is denoted as 𝑢𝑝𝑗 and 𝑙𝑜𝑤𝑗 respectively. 

 

2.5.  Improvised artificial bee colony optimization 

The ABC optimization algorithm is improvised using the neighborhood selection method. The 

conversion of ordinary ABC optimization to an improvised ABC includes changes such as the developing of 

neighborhood selection, which replaces probability selection. The altered search approaches are created and 

finally the search phase of the scout bee is improvised using a radius of the neighborhood. 

 

2.5.1. Selection of neighborhood 

The development of selection of neighborhoods is made, which is applied instead of probability 

selection. The solutions present in the colonies create a ring formation where the methodology of  

k-neighborhood is utilized, and k is the parameter of the neighboring radius. The k-neighborhood 

methodology consists of solutions of 2𝑘 + 1, when the neighboring radius fulfills the condition that 1 ≤ 𝑘 ≤
𝑆−1

2
. In every individual solution in the swarm 𝑋𝑖 , the worthy solution 𝑋𝑖𝑏 is selected in the k-neighborhood 

methodology. In the proposed methodology, the selection probability does not need to be chosen for every 

individual solution. 

 

2.5.2. Altered search approach 

The k-neighborhood methodology is used in an altered search approach for employer bees. In the 

previous section, 𝑋𝑖 is replaced by a worthy solution 𝑋𝑖𝑏. So, the employer bees need not search for the 

neighborhood for every solution of 𝑋𝑖  , and so the search is performed for the solution 𝑋𝑖𝑏 only. In (10) 

provides an altered search approach as (10). 

 

𝑉𝑖,𝑗𝑟
∗ = 𝑋𝑖𝑏,𝑗𝑟 +  𝜙𝑖,𝑗𝑟.(𝑋𝑖𝑏,𝑗𝑟 − 𝑋𝑘,𝑗𝑟) + 𝜙𝑖,𝑗𝑟.(𝑋𝑏𝑒𝑠𝑡,𝑗𝑟 − 𝑋𝑖𝑏,𝑗𝑟)  (10) 

 

where the best solution obtained from 𝑘-neighborhood is denoted as 𝑋𝑖𝑏. According to (4) and (10), a new 

solution 𝑉𝑖 is obtained. For 𝑖th onlooker bee, 𝑘 neighborhood selects the 𝑋𝑖𝑏 which is represented in (11). 

 

𝑉𝑖𝑏,𝑗𝑟
∗ = 𝑋𝑖𝑏,𝑗𝑟 +  𝜙𝑖,𝑗𝑟.(𝑋𝑖𝑏,𝑗𝑟 − 𝑋𝑘,𝑗𝑟) + 𝜙𝑖,𝑗𝑟  (11) 

 

𝑉𝑖𝑏,𝑗 = {
𝑉𝑖𝑏,𝑗𝑟,

∗ 𝑖𝑓 𝑓(𝑉𝑖𝑏) < 𝑓(𝑋𝑖𝑏)

𝑋𝑖𝑏,𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
 (12) 

 

where 𝑗 = 1,2, … 𝐷. According to the values from 𝑉𝑖𝑏  and 𝑋𝑖𝑏, the better solution is selected based on (13). 

 

𝑋𝑖 =   {
𝑉𝑖𝑏 , 𝑖𝑓 𝑓(𝑉𝑖𝑏) < 𝑓(𝑋𝑖𝑏)

𝑋𝑖𝑏,                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 
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2.5.3. Altered search phase using scout bee 

In the solution 𝑋𝑖, each status is controlled by 𝑡𝑟𝑖𝑎𝑙𝑖. When the 𝑡𝑟𝑖𝑎𝑙𝑖 ≥ 𝑙𝑖𝑚𝑖𝑡, the solution 𝑋𝑖 is 

neglected. After this a new 𝑋𝑖 is created as a substitute for a neglected solution. When the search space in the 

swarm of scout bees decreases, a random solution is included to improvise the search region. Neglecting the 

solution 𝑋𝑖, three solutions 𝑈1, 𝑈2, and 𝑈3 are produced, and the best solution among the three is chosen to 

replace the neglected 𝑋𝑖. The value of 𝑈1 is created randomly, same as in the ABC algorithm which is 

previously described in (9). 𝑈2 is created from 𝑘-neighborhood and the best solution 𝑋𝑖𝑏 is selected. This can 

be represented mathematically as (14). 

 

𝑈2,𝑗 = 𝑋𝑖𝑏,𝑗 + 𝑟𝑎𝑛𝑑(0,1). (𝑋𝑟1,𝑗 − 𝑋𝑟2,𝑗) (14) 

 

where 𝑗 = 1,2, … , 𝐷 and the two randomly chosen solutions from the scout bee swarm are denoted as 

𝑋𝑟1 and 𝑋𝑟2. 

In 𝑈3, 𝑋𝑖𝑏 is chosen as the best neighbor from the neglected solution of 𝑘-neighborhood. The 

generation of 𝑈3 takes place according to (15). 

 

𝑈3,𝑗 = 𝑋𝑗
𝑚𝑖𝑛 + 𝑋𝑗

𝑚𝑎𝑥 − 𝑋𝑖𝑏,𝑗  (15) 

 

The values of 𝑋𝑗
𝑚𝑖𝑛 and 𝑋𝑗

𝑚𝑎𝑥 are denoted as min{𝑋𝑖,𝑗} and max{𝑋𝑖,𝑗} respectively. The value of 𝑖 lies 

between the range of [1-𝑆], and 𝑗 lies between the range of [1-D]. Where the boundaries of the scout bee are 

represented as 𝑋𝑗
𝑚𝑖𝑛 and 𝑋𝑗

𝑚𝑎𝑥 . When all the solutions of 𝑈1, 𝑈2 and 𝑈3 are created, the best of three solutions 

is chosen to replace the neglected 𝑋𝑖 . Thus the best feature is selected using the proposed IABC optimization 

algorithm. The fitness evaluation in IABC is performed based on the neighborhood selection method and is 

evaluated using (16). 

 

𝑓𝑖𝑡(𝑋𝑖) = {

1

1+𝑓(𝑋𝑖)
, 𝑖𝑓 𝑓(𝑋𝑖) ≥ 0

1 + |𝑓(𝑋𝑖)|,   𝑖𝑓 𝑓(𝑋𝑖) < 0
 (16) 

 

where the objective value is denoted as 𝑓(𝑋𝑖). 

 

2.6.  Classification 

The high-resolution remote sensing images obtained from the feature selection process undergo the 

process of classification where the various land scenes are classified. The classification of land scenes is 

performed using multiclass-support vector machine (MSVM). The features selected using IABC are given as 

input to obtain an accurate classification of remote sensing images that are acquired from the various datasets 

discussed previously. The MSVM is created by combining multiple-binary SVM in the classification process. 

The MSVM is used to create an optimal hyperplane and then classifies it into a linear pattern. MSVM 

verifies the input pattern and performs classification, which provides better classification results in lower 

dimensions. 

 

 

3. RESULTS AND ANALYSIS 

This section provides the results and analysis of this research. The result portion is classified into 

performance analysis and comparative analysis, represented in the following sections. In performance 

analysis, the efficiency of the classifier is evaluated and the efficacy of the optimization algorithm inclusive 

of the proposed approach is evaluated. In comparative analysis, the performance of the proposed approach is 

evaluated with the existing approaches.  

 

3.1.  Performance analysis 

The performance of the MSVM classifier with feature selection is compared with the existing 

classifiers namely, k-nearest neighbor (KNN), naïve Bayes (NB), support vector machine (SVM) and 

multiclass support vector machine (MSVM). The performance analysis of the classifier with feature selection 

is represented in Table 1. In Table 1, it is shown that feature selection using IABC with the MSVM classifier 

performs better than the existing classifiers that are, KNN, NB, SVM, and MSVM. MSVM classifier 

combines multiple binaries during the classification process, and performs classification in a linear pattern, 

thus acting as a reason to provide better classification in lower dimensions. The MSVM attained an accuracy 

of 96.96%, which is comparatively higher than that of KNN (94.23%), NB (95.28%) and SVM (95.55%). 

The performance of classifiers with feature selection is graphically represented in Figure 3. 
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Table 1. Performance analysis of various classifiers with feature selection 
Classifier Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Error rate (%) 

KNN 94.23 92.79 96.91 94.93 5.77 

NB 95.28 91.96 93.79 92.82 4.72 

SVM 95.55 92.80 93.96 95.24 4.45 

MSVM 96.40 97.00 94.91 95.46 3.6 

 

 

 
 

Figure 3. Graphical representation of classifiers with feature selection 

 

 

Table 2 shows the classification performance of the MSVM classifier without the feature selection 

process. The performance of MSVM is reduced without the feature selection process which helps in 

providing a selected feature and eases the classification process. Although, MSVM classifier performs well 

when compared to the existing classifiers such as KNN, NB, and SVM. The analyses from Tables 1 and 2 

exhibit the significance of the feature selection process. Therefore, feature selection is important in providing 

better classification accuracy. The performance of classifiers without feature selection is graphically 

represented in Figure 4. 

 

 

Table 2. Performance analysis of various classifiers without feature selection 
Classifier Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Error rate (%) 

KNN 91.23 91.86 91.32 90.56 8.77 

NB 90.28 89.63 91.79 89.27 9.72 

SVM 92.55 90.18 93.96 92.46 7.45 

MSVM 93.45 95.81 94.56 93.32 6.45 

 

 

 
 

Figure 4. Graphical representation of classifiers without feature selection 
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3.2.  Performance of optimization algorithms 

In this research, the feature selection process is performed using IABC optimization algorithm. 

IABC algorithm is an advanced optimization technique of ABC where neighborhood selection is involved, 

instead of probability selection. Here, the performance of IABC optimization with the existing optimization 

algorithms such as particle swarm optimization (PSO), ant colony optimization (ACO), fruit fly optimization 

algorithm (FOA), ABC optimization, and IABC optimization algorithms are evaluated based on parameters 

like accuracy, sensitivity, specificity, F1 score and error rate. Table 3 provides the performance of various 

optimization algorithms. 

From Table 3, it is seen that the performance of IABC optimization algorithm is better when compared 

with other optimization algorithms. Due to improved search strategies and selection using the neighborhood 

method, the IABC achieved better results. It achieved a better classification accuracy of 96.40% and a less error 

rate of 3.6%. The performance of optimization algorithms is graphically represented in Figure 5. 

 

 

Table 3. Performance of optimization algorithm 
Algorithms Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Error rate (%) 

PSO 87.66 90.27 89.93 90.49 12.34 

ACO 92.35 91.70 90.99 91.34 7.65 

FOA 94.78 93.36 92.16 93.73 5.22 

ABC 94.96 94.25 93.25 94.91 5.04 

IABC 96.40 97.00 94.91 95.46 3.6 

 

 

 
 

Figure 5. Graphical representations for the performance of the optimization algorithm 

 

 

3.3.  Comparative analysis 

The comparative analysis of the proposed IABC-CNN with the existing methodologies namely, 

multi-augmented attention-based convolutional neural network (MAA-CNN) [20] and deep feature 

aggregation framework driven by graph convolutional network (DFAGCN) [22] is discussed in this section 

with regard to classifying land scenes in remote sensing data. The comparative table of the proposed  

IABC-CNN with existing MAA-CNN [20] and DFAGCN [22] is represented in Table 4. 

From the above comparative Table 4, it is shown that the proposed IABC-CNN exhibits better 

performance when compared with existing methodologies, MAA-CNN [20] and DFAGCN [22]. The CNN 

model (VGG-16) is used for feature extraction and IABC algorithm is used for selecting the optimal features. 

The IABC is utilized in selecting the features which are extracted from the CNN model. The extracted 

features reduce the redundancy and increase the learning speed. These extracted features are selected using 

the proposed IABC algorithm, which aids in better classification of land scenes in HRRS images. The  

IABC-CNN provides better classification accuracy of 96.40%, which is comparatively higher than the  

MAA-CNN (91.67%) and DFAGCN (88.50%). 

 

 

Table 4. Comparative table 
Methods Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) 

MAA-CNN [15] 91.67 71.67 95 78.33 

DFAGCN [17] 88.50 83.50 86 83 

IABC-CNN 96.40 97.00 94.91 95.46 
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4. CONCLUSION 

Remote-sensed photographs play a significant role in monitoring environmental conditions, disaster, 

mitigation and other remote sensing applications. Due to complex backgrounds, poor imaging conditions and 

similarities, it is difficult to classify the remote sensing images on various land surfaces. In this research, the 

input images are obtained from three familiar datasets: AID, NWPU-RESIS45, and UCM dataset. The input 

images are pre-processed using the normalization technique, where they are adjusted for the intensities of the 

pixels. The preprocessed images undergo feature extraction using VGG-16 model where the values of pixels 

are efficiently extracted from the image data. Then feature selection is performed using the proposed IABC 

algorithm, which selects the significant features and finally, the remote sensing land scene images are 

classified using the MSVM classifier. The experimental results show that the proposed IABC-CNN model 

delivered better performance than the existing MAA-CNN and DFAGCN by providing better classification 

accuracy of 96.40% while MAA-CNN and DFAGCN achieved 91.67% and 88.50%, respectively. In the 

future, the research work can be extended by using deep learning models to improve classification accuracy 

during categorizing land surfaces. 
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