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 It is not always easy to predict the outcome of a surgery. Peculiarly, when 

talking about the risks associated to a given intervention or the possible 

complications that it may bring about. Thus, predicting those potential 
complications that may arise during or after a surgery will help minimize 

risks and prevent failures to the greatest extent possible. Therefore, the 

objectif of this article is to propose an intelligent system based on machine 

learning, allowing predicting the complications related to a flexible uretero-
renoscopy with laser lithotripsy for the treatment of kidney stones. The 

proposed method achieved accuracy with 100% for training and, 94.33% for 

testing in hard voting, 100% for testing and 95.38% for training in soft 

voting, with only ten optimal features. Additionally, we were able to 
evaluted the machine learning model by examining the most significant 

features using the Shaply additive explanations (SHAP) feature importance 

plot, dependency plot, summary plot, and partial dependency plots. 
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1. INTRODUCTION 

A surgical intervention has a number of risks, some of which are more likely than others depending 

on the circumstances. Surgical procedures such as cardiothoracic or pulmonary surgery, hepatobiliary 

surgery, abdominal surgery, prostate removal, and major osseous and articular surgery all have higher risks. 

Further, depending on their health, certain patients are at higher risk of complications: malnutrition, diabetes, 

obesity, and antecedents of cardiac insufficiency are all factors that increase the surgical risk.  

Like all operations, kidney stone surgery by uretero-renoscopy (URS) presents an increasing rate of 

infectious complications. These URS related complications may increase the risk of mortality and morbidity 

especially in high-risk patients. Prophylactic antibiotic use, stent and operation dwell time restriction, early 

detection and treatment of urinary tract infections (UTIs) and urosepsis, careful planning in patients 

presenting with a load of substantial calculus and numerous comorbidities are some examples of these 

complications. With improving technology, flexible minimally invasive URS with laser lithotripsy 

(FURSLL) has recently been introduced as a new technic to improve the outcome of ureterorenal stone 

surgery. Even for individuals with proximal kidney and ureter stones smaller than 20 mm, FURSLL has 

become an attractive option [1], [2]. For this kind of stones, stone-free FURSLL rates can be as high as 

https://creativecommons.org/licenses/by-sa/4.0/
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94.1% with an overall 28% risk of preoperative complications [3], [4]. Although flexible URS lithotripsy is a 

less intrusive procedure, there is a possibility that complications could emerge [5]–[7]. 

The complications caused by URS have been divided into two categories: minor and major. 

complications are considered minors if they can be effectively treated without surgery. They include 

asymptomatic ureteral perforations, ileus, and fever. Major complications are those that necessitate surgery or 

present a life-threatening situation. Seldom avulsions, tears, perforations during basketing, intussusception, 

and infection are among the second category of serious complications that are commonly correlated to stone 

extractions [8]. It is noteworthy, in some cases, following URS for stone removal, Necrosis of ureteral 

segments is observed [9]. Major complications of URS can have serious and lasting consequences. Usually 

open or laparoscopic surgery is almost always required in major complications and the basic goal is to restore 

ureteral continuity [10].  

Machine learning (ML) is attracting more and more interest as a method for analyzing statistically 

the complex and expanding body of medical data in order to enhance patient treatment on an individual basis. 

Integrating the use of ML-based decision support tools into surgical practices can have many benefits. ML 

refers to algorithms that can be designed to evaluate and make predictions based on new and complex 

features [11]. A system with ML model that incorporates the full range of patient data offers a way to stratify 

patients with nephrolithiasis to avoid potential complications after surgery. These systems deserve to be used 

as supportive in a complementary manner, and based on data inputs in a multidisciplinary, multifunctional 

surgical risk analysis and large reduction protocol. The necessary steps of the decision-making process 

should be based on the predicted risk stratification data they offer. For renal surgery teams, an equivalent 

process and technology integration point has the potential to be advantageous for patient safety. Thus, the 

aim of this work is to propose an intelligent decision support system based on ML, in order to predict the 

complications for the cases of the patients who underwent a surgical operation using a flexible URS.  

The remainder of this article is organized as follows: section 2 presents related works. Section 3 

describes the methodology used to predict the operating time of lithotripsy by flexible URS. The simulation 

results are presented in section 4. Section 5 discusses the experimental results. Finally, conclusions and some 

recommendations for research perspectives are given in section 6. 

 

 

2. RELATED WORKS 

By imitating cognitive capacities, artificial intelligence (AI) refers to the capacity of computer to 

accomplish tasks [12]. ML is a subset of AI that allows algorithms, to train models to learn from massive and 

complicated data then produce valuable predictive outputs [13]. New patterns and associations can be 

identified by using ML algorithms on new, massive data sets, and these results may have positive effects on 

clinical practice in medicine [14]. A large number of studies have examined at the use of ML approaches in 

healthcare and prove how they significantly increase healthcare quality and safety [15], [16]. Table 1 

illustrates the latest applications of ML methods in predicting surgical outcomes.  
 

 

Table 1. Latest applications of ML methods in predicting surgical outcomes 
Paper Year Surgery Data Set (Size) Best Model 

Zeng et al. [17] 2019 Cardiac 2308 paediatric patients eXtreme gradient boosting classifier Boost (XGBBoost) 

prediction model with a SMOTE-optimized approach 

Merali et al. [18] 2019 Neurosurgery 757 patients Random forest (RF) 

Mark et al. [19] 2019 Urosurgery Not applicable Proposed model 

Khanna et al. [20] 2020 Cardiothoracic 17,433 postoperative patients Not applicable 

Zhong et al. [21] 2021 Cardiogenic 6844 XGBoost 

Shah et al. [22] 2021 Orthopedic 545 patients Novel ML-based ensemble algorithm 

Lit al. [23] 2021 Orthopedic 1330 hip fracture surgical patients Random survival forest (RSF) machine-learning 

algorithm 

Cole et al. [24] 2021 Visceral 

surgery 

93,024 patients undergoing 

exploratory laparotomy 

Not applicable 

Kumar et al. [25] 2021 Orthopedic Clinical data from 2153 primary 

anatomic total shoulder arthroplasty 

(TSA) patients and 3621 primaryr 

everse TSA patients were analyzed 

XGBoost 

Devana et al. [26] 2021 Orthopedic 150,000 patients Gradient boosting 

Bunn et al. [27] 2021 Visceral 

surgery 

Not applicable An ensemble of the best models including, 

LogisticRegression (LR), RF, and XGB machines 

Penny-Dimri 

et al. [28] 

2021 Cardiac/uro 

surgery 

Not applicable  

Shi et al. [29] 2021 Vascular 

surgery 

672 consecutive patients who had 

undergone aortic arch surgery 

Naïve Bayes 

Fernandes et al. [30] 2021 Cardiac 5,015 patients XGBoost 
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Although still in their infancy, machine learning algorithms provide surgeons an opportunity to take 

capitalize on the abundance of clinical data and enhance personalized patient care. Although artificial 

intelligence has been increasingly being utilized in healthcare, research still mostly focuses on 

cardiovascular, nervous system, and cancer problems since they are the main causes of disability and death. 

Chronic and infectious diseases like diabetes, inflammatory bowel disease, and Clostridium difficult 

infections have also received some attention. By increasing the quality of the extraction of clinical data and 

implementing that data into a properly trained and verified system, early diagnosis can now be achieved for a 

variety of conditions. To the best of our knowledge, no paper up to the moment has addressed the subject of 

predicting complications related to flexible uretero-renoscopy with laser lithotripsy. This is why we have 

initiated this work, in order to fill this gap. 

 

 

3. METHOD 

Predicting the post-operative complication risks is very important for physicians to identify patients 

who need intensive monitoring or any additional interventions. Risk prediction also concerns patients and 

their families for decision-making during surgery. However, an intelligent system for estimating the risk of 

complications will be of a paramount importance. 

The methodology proposed in this study aims to implement a real-time prediction system for the 

complications risks during flexible ureteroscopy with laser lithotripsy operations, using ML. The 

methodology adopted is described in Figure 1. The proposed system is developed using an initial dataset 

consisting of 5 classes [31]. These classes correspond to the five types of complications that can occur during 

a flexible ureteroscopy with laser lithotripsy operation according to the clavien-dindo scale (the clavien-

dindo) classification scale makes it possible to classify these complications into 5 different classes, according 

to the severeness and the required interventions to fix these complications, varying from the absence of 

complications to the death of the patient [32]. Since this dataset is imbalanced and has some classes with only 

one observation, it cannot be used without being preprocessed. 
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Figure 1. Description of the proposed methodology 

 

 

3.1.  Data preprocessing  

During the data preprocessing phase, the dataset is reorganized into three main classes instead of 5. 

The classes (0: which corresponds to the class of no complications, 1: representing the class of complications 

of degree 1 and 2: which represents the class of complications of degree 2) according to the Clavien-Dindo 

classification scale. Classes 3 and 4 are ignored because they contain very limited number of entries that 

cannot be augmented in the following step. In this phase, a quality verification of the data is ensured. This 

verification is guaranteed by eliminating redundant values, solving the problems of missing values as well as 
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categorical values such as textual ones. Although we preprocessed the dataset the best we could, the size of 

the dataset is still scarce class wise, henceforth, it needs some augmentation as well a balancing of these classes.  

 

3.2.  Data augmentation 

The dataset resulting from the preprocessing contains a small number of elements of classes 2 and 3 

compared to the number of observations of class 0, the proposed prediction system attempts to predict a large 

number of observations during the test as being of class 0, which will influence the performance of our 

predictive system. To fix this problem, data augmentation is applied to balance the dataset by generating 

observations for classes with a very low number of observations. The data augmentation method adopted in this 

study is the synthetic minority over-sampling technique (SMOTE), based on the generation of synthetic 

observations between each sample of the class with a low number of elements and its closest observations [33]. 

 

3.3.  Features selection 

Once the dataset is balanced, a selection of the most relevant features is applied. This selection is 

performed by using six different feature selection algorithms. The features selection techniques used in this 

study are presented in Table 2. The most relevant features selected after the selection phase, are then used by 

ML models. 

 

 

Table 2. List of used features selection algorithms  
Features selection algorithms 

F_classif [34] 
Embedded (random forest) [35] 

Recursive feature elimination (RFE) [35] 
Hybrid recursive feature addition (H_RFA) [35] 

Sequential forward selection (SFS) [35] 
Sequential backward selection (SBS) [35] 

 

 

3.4.  Proposed classification system 

In order to build a more efficient classification system, several methods were compared. First, 

classification is performed on the entire data set. Then, only the features retained by the best feature selection 

algorithm among the techniques compared are used. 

The second step of classification consisted of an estimation of the risks of complications. The 

estimation is done by adopting a predictive model based on the vote, without and with the use of 

hyperparameters. This is to make a final decision while improving the performance of estimating the 

complication risks of the proposed system. The search for hyper-parameters is ensured by using the tuning 

function. This technic consists in training the system according to different possibilities for each hyper-

parameter and keeping the best parameterization having generated the best score during the classification.  

For the voting ensemble model proposed in this study, two voting modes were compared. The soft 

voting based on the sum of prediction probabilities of each class among all models of proposed system and 

the hard voting based on the label majority of different models of the proposed system [36]. The obtained 

results of complication risks estimation are compared to retain the method providing the best prediction 

performance. Finally, a comparison of the variables according to their impacts during the classification is 

carried out, this classification of the variables retained according to their importance is provided by using the 

SHAP value. The different classifiers used for the system proposed are listed in the following Table 3. 

 

3.5.  Performance metrics 

Performance metrics are an integral part of the ML model evaluation process. They are very useful 

for measuring and comparing model performance. The metrics used in this work are: 

− The accuracy: Which represents the rate of correct predictions of the classes. The accuracy is described 

by the following (1) [37]. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 

 

− The recall which represents the number of true positives compared to true positives and false negatives. 

The following (2) represents the recall [37]. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (2)  
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− The precision representing the number of true positives compared to true positives and false positives. 

Precision is represented by (3) [37].  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (3) 

 

− The F1-score which is a metric combining precision and recall with respect to a specific positive class, it 

is a weighted average of precision and recall. The following (4) describes the F1-score [37]. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

 

Table 3. Description of the used models  
Model Classifier 

Ensemble methods Ada boost classifier (ABC) [38] 

Bagging classifier (BC) [39] 

Extra trees classifier (ETC) [40] 

Gradient boosting classifier (GBC) [41] 

Random forest classifier (RF) [42] 

Linear models Logistic regression CV (LRC) [43] 

Passive aggressive classifier (PAC) [44] 

Ridge classifier CV (RC) [45] 

SGD classifier (SGDC) [46] 

Perceptron (PC) [47] 

Naive Bayes (NB) Bernoulli NB (BNBC) [48] 

Gaussian NB (GNBC) [49] 

Trees Decision tree classifier (DTC) [50] 

Extra tree classifier (TETC) [51] 

Discriminant analysis Linear discriminant analysis (LDAC) [35] 

Quadratic discriminant analysis (QDAC) [52] 

KNN K-Neighbors classifier (KNNC) [35] 

XGB XGB classifier [53] 

Gaussian Gaussian process classifier (GPC) [54] 

Support vector machine (SVM) SVC (SVC) [34] 

 

 

4. SIMULATION RESULTS 

4.1.   Dataset description 

In order to predict the potential postoperative complications during a flexible uretero-renoscopy with 

laser lithotripsy, the dataset used in this study is composed of 682 observations with 21 features representing 

three classes. Class 0 representing the case of no complications. Class 1 for grade 1 complications and class 2 

for grade 2 complications based on the Clavien-Dindo scale. The distribution of these classes is shown in the 

Table 4. 

We observe that the dataset is unbalanced, with a percentage of 90% the class 0 is the majority, 

compared to 5% for the two other classes 1 and 2. A dataset balancing was applied using the SMOTE 

augmentation method. Figure 2 represents the data from the original dataset and the data balanced by class. 

 

 

Table 4. Description of the dataset 
Dataset size Classes Size Size in Percentage 

682 Class 0 611 90% 

Class 1 36 5% 

Class 2 35 5% 

 

 

4.2.  Technical description of the used calculator  

The experiments conducted were executed on a computer equipped with one processor: Intel® -

Core™ i7-8550U with a frequency of 1792 MHz. This processor has 2 cores and 2 threads. The computer is 

equipped with 8 GB of RAM DDR3 and no GPU. 

 

4.3.  Simulation results using all dataset features 

Table 5 represents the results of the different predictive models used, implemented on the dataset. 

The results are ranked by the accuracy as a criterion. The models generate different results, which vary 

between 34% and 96% for the classification of the different observations. 
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Figure 2. Imbalanced dataset description 

 

 

Table 5. Obtained results using the whole dataset sorted by performance 
Classifier Accuracy Precision Recall F1-score Time STD 

RF 0.964546 0.97 0.97 0.97 2.351014 0.011473 

ETC 0.962901 0.97 0.97 0.97 1.735743 0.013103 

GBC 0.948174 0.95 0.95 0.95 10.324434 0.011771 

XGBC 0.938358 0.94 0.94 0.94 3.858799 0.014813 

BC 0.935083 0.93 0.93 0.93 0.660065 0.014287 

DTC 0.890906 0.89 0.89 0.89 0.171835 0.021187 

TETC 0.868511 0.86 0.86 0.86 0.062524 0.024295 

ABC 0.79869 0.8 0.8 0.8 1.302251 0.028541 

KNN 0.75011 0.75 0.75 0.74 0.189993 0.027075 

BNBC 0.673224 0.67 0.67 0.67 0.076299 0.023681 

LDAC 0.661763 0.66 0.66 0.66 0.099243 0.029559 

RC 0.655756 0.66 0.66 0.66 0.079234 0.031138 

QDAC 0.614819 0.59 0.61 0.59 0.05547 0.021746 

GNBC 0.566886 0.61 0.57 0.54 0.050787 0.051238 

LRC 0.491572 0.48 0.49 0.49 35.585023 0.030065 

GPC 0.479568 0.77 0.48 0.4 36.914091 0.028373 

SGDC 0.363323 0.35 0.35 0.35 0.156019 0.027466 

PAC 0.348028 0.38 0.38 0.37 0.1261 0.047485 

PC 0.342572 0.34 0.34 0.34 0.093727 0.049332 

 

 

4.4.  Results with sequential feature selector method 

The previously compared algorithms were reused, except that in this case using the sequential 

feature selector (SFS) method. The SFS method was chosen based on the good classification performance 

obtained by using this technique compared to the other feature selection techniques. Table 6 represents the 

results obtained in decreasing order of classification accuracy. We can observe that the overall performance 

of the different models has improved from an accuracy that varies between 34% and 96% to an accuracy that 

varies between 72% and 89.6%. 

 
 

Table 6. Results obtained by applying the SFS method of features selection 
Classifier Accuracy Precision Recall F1-score Time STD 

ABC 0.895908 0.8 0.9 0.85 0.621365 0.057029 

GPC 0.895908 0.8 0.9 0.85 1.784786 0.057029 

LRC 0.895908 0.8 0.9 0.85 2.404244 0.057029 

RC 0.895908 0.8 0.9 0.85 0.082582 0.057029 

BNBC 0.895908 0.8 0.9 0.85 0.040798 0.057029 

LDAC 0.895908 0.8 0.9 0.85 0.054753 0.057029 

TETC 0.894459 0.85 0.89 0.86 0.04488 0.050158 

ETC 0.891539 0.84 0.89 0.86 0.896618 0.048591 

XGBC 0.891496 0.8 0.89 0.84 0.373503 0.057713 

RF 0.887127 0.85 0.89 0.86 1.1961 0.048557 

KNN 0.887106 0.83 0.89 0.85 0.064682 0.060538 

DTC 0.885656 0.84 0.89 0.85 0.047142 0.046637 

GBC 0.884207 0.81 0.88 0.84 0.546534 0.053396 

SGDC 0.881223 0.8 0.89 0.84 0.097078 0.053173 

BC 0.878303 0.84 0.88 0.85 0.178523 0.036519 

QDAC 0.847506 0.82 0.85 0.83 0.047974 0.034877 

GNBC 0.806351 0.84 0.81 0.82 0.048964 0.168637 

PAC 0.735656 0.81 0.62 0.7 0.075248 0.270387 

PC 0.723487 0.82 0.72 0.77 0.053181 0.284594 
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4.5.  Results using voting ensemble and SFS method without models hyperparameter tuning 

In this section, we use the hard and soft voting-based classification without models’ hyper-parameter 

tuning. This classification is performed on the features selected by the SFS method. The results of this 

experiment are summarized in Table 7. To better compare results, the ensemble prediction system’s 

performances, based on the vote (hard and soft), during the training and the test, using the whole dataset is 

presented on Figure 3.  

 

 

Table 7. Results by voting without hyper-parameters tuning and applying the SFS features selection 

algorithm 

Selection method 

Hard voting accuracy Soft voting accuracy 

Training w/bin 

mean 

Test w/bin 

mean 

Test w/bin 

3*std 

Training w/bin 

mean 

Test w/bin 

mean 

Test w/bin 

3*std 

Mutual Inf 98.93 92.31 +/- 2.50 99.91 93.73 +/- 2.12 

fclassif 95.65 88.35 +/- 3.77 97.81 89.47 +/- 3.89 

Embedded 97.83 89.65 +/- 3.21 99.49 90.62 +/- 3.74 

RFE_Features 98.68 91.75 +/- 2.65 99.87 92.93 +/- 3.07 

h_RFA_Features 81.05 58.69 +/- 7.37 94.28 59.58 +/- 6.04 

SFS 99.35 92.33 +/- 2.96 99.95 94.38 +/- 2.25 

SBS 98.27 90.96 +/- 4.07 99.6 92.4 +/- 3.27 

All Balanced Dataset 99.43 94.04 +/- 3.19 99.88 94.78 +/- 2.74 

 

 

 
 

Figure 3. Algorithms comparison for all balanced datasets using votes without hyper-parameter search 

 

 

4.6.  Results using voting ensemble, SFS method and models hyperparameter tuning 

This section represents the results obtained by adopting a hard and soft voting based on 

classification with hyper-parameter tuning, and SFS method. Table 8 represents the obtained results. The 

Figure 4 represent as example performances of predictions, in terms of accuracy estimation of post-operatory 

complication risks, obtained both hard and soft voting over 10 epochs via the ensembling predictive model 

using SFS feature selection. 

 

 

Table 8. Results by voting without hyper-parameter fine-tuning and using SFS algorithm for feature selection 

Selection Method 

Hard voting accuracy Soft voting accuracy 

Training w/bin 

mean 

Test w/bin 

mean 

Test w/bin 

3*std 

Training w/bin 

mean 

Test w/bin 

mean 

Test w/bin 

3*std 

Mutual Inf (MI) 100 93.45 +/- 2.79 100 94.49 +/- 2.65 

fclassif 98.3 88.73 +/- 5.08 99.65 89.95 +/- 4.65 

Embedded 99.98 90.75 +/- 3.62 100 92.45 +/- 3.54 

RFE_Features 100 93.36 +/- 2.99 100 94.38 +/- 2.72 

h_RFA_Features 90.76 57.93 +/- 5.81 68.58 45.05 +/- 8.21 

SFS 100 94.33 +/- 3.80 100 95.38 +/- 2.75 

SBS 99.94 92.27 +/- 2.62 100 93.38 +/- 3.04 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 971-982 

978 

 
 

Figure 4. Algorithms comparison for SFS feature selection using votes with hyper-parameter search 

 

 

5. DISCUSSION 

The results obtained by the different classifiers trained on the complete dataset (21 variables), 

without features selection, are represented in Table 5. Based on these results, the random forest, extra tree 

classifier, gradient boosting classifier, XGBClassifier and BaggingClassifier algorithms constitutes the top 

five classifications. These algorithms provide an estimation the estimation of the risk of complications with 

an accuracy of 96.45%, 96.29%, 94.82%, 93.83%, and 93.51% respectively. The result generated by RF is 

relatively better with a standard deviation of 0.011473 compared to 0.013103 for ETC. Other algorithms are 

less efficient with a classification accuracy varying between 34.26% and 89.10%. The PC classifier is the 

least efficient among all the models used. The Figure 5 represents a comparative performance of the different 

classifiers used on the whole dataset. 

In terms of execution time, the RF and ETC algorithms provide estimations in 2.351014 s and 

1.735743 s respectively. Nonetheless, the algorithm that consumes more time is the GPC with 36.914091 s 

and an accuracy which does not exceed 47%. The SFS method was selected as the feature selection 

technique. Analyzing the results in Table 6, generated by the different algorithms proposed in this study 

using the SFS method, the ABC, GPC, LRC, RC, BNBC and LDAC algorithms allow a prediction with an 

accuracy of around 90%, and the execution time varying between 0.04 s and 2.4 s. The PC algorithm 

represents the least-performing classifier with a classification accuracy of about 70%. The application of the 

SFS variable selection method has significantly improved the performance of the lowest performing models 

by over 36%. Therefore, the accuracy of PC classifier increased from 34% to 70% and the GPC increased 

from 48% to 89.6%, hence the interest of using the most important features. Figure 6 represents a comparison 

of the classification results of the different models used in this section. 

 

 

  
 

Figure 5. Algorithm’s comparison using all dataset 

 

Figure 6. Algorithm’s comparison using SFS method 

 

 

The use of a hard and soft voting-based ensemble prediction system could improve the performance 

of individual models. Decision making by combining the estimates of several models would be of great 

interest. The training of the proposed hard and soft vote-based ensemble prediction model without the use of 

hyper-parameters, and using the different features selection methods, generated the results shown in Table 7. 
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These results show that the use of the variables selected by the SFS method allows an estimation with the 

highest accuracy. The accuracy in this case was respectively 99.35% and 92.33% for training and testing in 

the hard vote and 99.95% and 94.38% respectively for training and testing in the soft vote. 

The execution of the same proposed model, but with the use of hyper-parameters, provides the 

results shown in Table 8 for the different features selection methods. The use of hyper-parameters 

significantly increases the estimation performance of the proposed model and the SFS method is also the best 

feature selection methods in this case. The accuracy is 100% for training and, 94.33% for testing in hard 

voting and 100% for testing and 95.38% for training in soft voting. The soft vote generates a better prediction 

in both cases, without and with the use of hyper-parameters. The study of the impact of the different variables 

on the performance of the predictive model, during the classification, is accomplished by calculating the 

SHAP value for the different variables. Figure 7 represents the SHAP value of the selected features. 

 

 

 
 

Figure 7. SHAP value of the features selected by the SFS technique during the classification 

 

 

The most important feature is nephretic_colic, high values for this value have a significant negative 

impact on the estimation of the classification system, while low values of this variable have a positive impact 

on the performance of the system. The other variables that have a significant impact on the prediction are size 

and density_TDM. Figure 8 presents the impact of the different features on the different classes of the 

dataset. Figure 8 shows that the variables nephretic_colic, size and density_TDM have a significant impact 

on all classes of the dataset. The three classes of the dataset use the most relevant variables almost equally, 

except that the size variable is used more by classes 1 and 2. 

 

 

 
 

Figure 8. SHAP value of the features selected by the SFS technique by class 
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6. CONCLUSION 

Despite their power, AI systems cannot replace medical and surgical teams. But they can be used in 

certain cases to help these teams make better decisions. For example, these systems can be used to predict the 

likelihood of complications during surgery. Kidney surgery is a high-risk field that seeks to reduce problems 

and enhance surgical methods and results. The contemporary surgeon operates in a technology setting and 

has access to a wealth of data input before, during, and after surgery. ML has the potential to be employed in 

more creative ways to enhance patient safety during kidney surgery and raise the likelihood of successful 

outcomes. 

The use of ML in urologic surgery was highly heterogeneous, and this, together with the 

preponderance of single studies, shows that there is a significant potential for further refining the studies in 

this field. The ensemble approach proposed in this work appeared to be successful in predicting postoperative 

complications in urological surgery, by predicting with precising a variety of surgical results. Ongoing use of 

ML through well-developed clinical decision support systems is probably going to reduce complication rates 

and improve the safety and quality of surgery. Our future work consists on developing a system that 

integrates. Our future work consists of developing operational decision support software for surgeons that 

incorporates these ML models. 
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