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 Blackjack is a classic casino game in which the player attempts to outsmart 

the dealer by drawing a combination of cards with face values that add up to 

just under or equal to 21 but are more incredible than the hand of the dealer 

he manages to come up with. This study considers a simplified variation of 

blackjack, which has a dealer and plays no active role after the first two 

draws. A different game regime will be modeled for everyone to ten 

multiples of the conventional 52-card deck. Irrespective of the number of 

standard decks utilized, the game is played as a randomized discrete-time 

process. For determining the optimum course of action in terms of policy, 

we teach an agent-a decision maker-to optimize across the decision space of 

the game, considering the procedure as a finite Markov decision chain. To 

choose the most effective course of action, we mainly research Monte Carlo-

based reinforcement learning approaches and compare them with q-learning, 

dynamic programming, and temporal difference. The performance of the 

distinct model-free policy iteration techniques is presented in this study, 

framing the game as a reinforcement learning problem. 
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1. INTRODUCTION 

The experimental version of blackjack is played as follows: at the beginning of each round, the 

agent and dealer will each get two cards from a deck of size, where size equals 52. The first dealer's card 

value and the total worth of the dealer's hand both form their features in the construction of state spaces. The 

agent can then select from the action space, action (state)=hit or stick, with the resulting consequences of 

drawing a new card for the agent's hand or submitting the existing hand for scoring, respectively. Given the 

limitations of the game's play, the agent is urged to obtain the maximum squared score possible. 

Techniques for reinforcement learning (RL) rely on input from the outside world to help learners 

progress. The agent is guided in formulating its policy by feedback, which comes as a monetary reward 

signal. A Markov decision process (MDP) is typically used to represent the environment. An MDP comprises 

several phases, activities, simulated results, and predicted rewards. Each action has a chance of being chosen 
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and a value linked to it that reflects the expected benefit of doing the action. The most beneficial activity is 

one that is motivated by greed. The agent must strike a balance between exploring and making use of the 

surroundings to learn. The agent tries a greedy approach throughout the exploration to enhance its 

assessments of their values.  

The agent will update the state values and, in addition to that, state-action values on these methods 

independently. We then present the results of applying each technique in terms of the win, draw, and loss 

percentage per game regime and each process for each game regime, respectively. The framework to 

mathematically formalize this optimization problem is modelled as RL. It was proposed that, given a discrete 

step, t, the values of states are linked recursively by the Bellman equation. Value functions allow the agent to 

determine the immediate value of being a resident of a state s or acting in a way that starts with s while 

adhering to specified norms. These value functions might technically be defined as in (1) and (2): 

 

𝑉𝜋(𝑆) = 𝐸𝜋  { ∑ 𝛾𝑘 𝑟𝑡+𝑘+1 | 𝑆𝑡 = 𝑆 
∞

𝑘=0
} (1) 

 

𝑄𝜋(𝑆, 𝑎) = 𝐸𝜋  { ∑ 𝛾𝑘 𝑟𝑡+𝑘+1 | 𝑆𝑡 = 𝑆, 𝑎𝑡 = 𝑎 
∞

𝑘=0
} (2) 

 

The agent can calculate the predicted benefit using V(S), the state-value function, of being in state s 

and following policy. The agent can determine the immediate value of being in state S, acting in method a, 

and subsequently carrying out policy based on the action-value function Q*(S, a). The activities that produce 

the highest long-term reward make up an optimum policy. The ideal state-value function is denoted by V*(s), 

while the perfect action-value part is characterized by Q*(s, a). The properties of different learning 

algorithms and their behavior are listed in the following section, namely Monte Carlo (MC) algorithm, 

q-learning (QL) algorithm, dynamic programming (DP) algorithm, and temporal difference (TD) learning 

algorithm.  

The MC technique is used to solve the blackjack problem. It is simple to set up exploration states 

that consider all potential outcomes because the episodes are based on simulations of games. In this instance, 

the player's total, the dealer's cards, and the player possessing a usable ace are all chosen randomly with the 

same chance. The estimated policy that stays on only 20 or 21 from the last blackjack instance is used as the 

initial strategy. For all state-action couples, the initial action-value function can be zero. 

Consider the situation where we need to approximate v(s), the assessment of state' s' using policy, 

having a collection of episodes we acquired by subsequent and transitory through s. A visit to s refers to each 

instance of state' s' in an episode. Although s could appear more than once in a single episode, let's guide to 

the initial appearance as the first visit to s. Each visit using the MC technique is considered as the average of 

the yields after all trips to s, whereas the initial visit MC technique approximates v(s) as the mean of the 

returns after initial visits to s. Although the theoretical characteristics of these two MC approaches are 

similar, they differ somewhat. The independent estimations for each state are a crucial aspect of MC 

techniques. Unlike DP, the estimate for the state does not add to the approximation of other states [1]–[7].  

The heuristic moves update the means of all actions performed first on their intersections with the 

same color as the first move with the score after a random game with a score rather than updating the mean 

of the actions of the random game. Symmetrically, the steps as-first heuristic modifies with the opposite 

score the means of all movements performed first on their intersections with various colors from the first 

move. Overall, this heuristic updates nearly every move's mean as though it were the initial move in the 

random game. This heuristic could be more accurate since it may update two movements with the same score 

even if they have distinct impacts based on the timing of their play. Since TD errors in RL are dependent on 

estimations of the value function, which are dynamically changing, it is evident that they are pretty noisy. 

Furthermore, in this issue, the policy is also altering. Hence one would anticipate that the TD errors 

would not be stable. Estimating q(s, a), the predictable return while being in initial state s, using action a, and 

after policy, is the goal of the policy analysis problem for action values. The MC techniques are substantially 

similar to those previously discussed for matters for states, except we now speak about trips to state-action 

duo rather than a state. When a state is reached, and action is reserved in a given episode, the pair of action-

state s is said to have been visited. The value of the action-state duo is estimated by each visit using the MC 

technique as the returns average that trailed all the visits to it. The returns after the state were visited and the 

action was chosen for the first time in each episode are averaged using the first-visit MC approach. As more 

visits are made to each state-action pair, the techniques, as previously, converge quadratically to the valid 

anticipated values. The agent is restricted to searching for optimal actions via updates. In other words, the 

agent may find an optimal action from trajectories identical to the current state, and this is contrary to QL, 

where the agent may search for any state that matches the current rather than being restricted to those states 

that arose from identical trajectories. 
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The QL algorithm is the TD method that gets the closest to Q*(s, a). Q*(s, a) estimations are 

modified at every step using incremental algorithms in TD approaches like QL. Below is a description of the 

QL in (3). Given that learning may occur while playing, the QL algorithm is a great way to approximate the 

best blackjack strategy. As a result, it is an excellent option for the blackjack problem domain. Blackjack is 

phrased as a serialized activity, with each hand's finish signifying the end of a single episode. The agent's 

current point total, the dealer's face-up card value, the hand's softness, and the possibility of splitting are all 

included in the state representation [8]–[16]. 

 

𝑄(𝑠, 𝑎) <= 𝑄(𝑠, 𝑎)+ ∝  [ 𝑟 +  𝛾 𝑚𝑎𝑥𝑎′  𝑄(𝑠′, 𝑎) − 𝑄(𝑠, 𝑎)] (3) 

 

A class of techniques known as DP combines solutions to sub-problems to solve more significant, 

complicated issues. A known MDP may be solved using DP approaches in planning by identifying the 

optimal value function and its accompanying optimal policy. A fundamental tenet of optimal control is 

Bellman's principle, which argues that if an optimum policy has already been chosen, the subsequent choices 

must also be optimal in light of the state created by the prior decisions, and this is often referred to as the 

discrete-time Hamilton Jacobi Bellman equation or the Bellman optimality equation. The best course of 

action would then be as in (4). 

 

ℎ∗(𝑥𝑘) = 𝑎𝑟𝑔 𝑚𝑖𝑛ℎ(.) (𝑟 (𝑥𝑘 , ℎ(𝑥𝑘)) 𝛾𝑉∗
(𝑥𝑘+1) (4) 

 

Bellman's principle in (5) results in a time approach calculated backward for resolving the optimum 

control issue since one has to know the ideal policy at time usage to derive the optimal policy at time k. It is 

the foundation for the DP techniques widely used in operations research, control system theory, and other 

fields. These are offline planning techniques. 

 

𝑉𝜋(𝑆) = 𝐸𝜋  [∑ 𝛾𝑡  𝑟𝑡  | 𝑆0 = 𝑆 
∞

𝑡 =0
]  =  ∑ 𝑃

𝑠𝑠′
𝜋(𝑠)

𝑠′𝜖 𝑆   [𝑅
𝑠𝑠′
𝜋(𝑠)

+  𝛾 𝑉𝜋 (𝑠′)]   (5) 

 

Action-value functions are used to store the policy implicitly. The policy is greedy concerning the 

value-action-function Q is known if, for any state' s', a value-action Q (s, a) is accessible for all actions. With 

this modification, policies won't need to be stored explicitly. To keep the value function, it should be noted 

that moving from V to Q increases the memory need by a factor of |A| [17]–[26]. 

One approach to solving RL issues is using TD. The predicted long-term payoff for performing a 

particular action in a state is estimated by TD techniques using a value function. The TD method is an online 

learning approach. The agent updates the state value during a trajectory or episode rather than waiting until 

the game is finished and then updating over the explored trajectory sequentially using (6). 

 

𝛿𝑡 =  𝑟𝑡 + 1 +  𝛾𝑄(𝑆𝑡 + 1 , 𝑎𝑡+1) −  𝑄(𝑆𝑡  , 𝑎𝑡) (6) 

 

The value function is trained in TD models by calculating a value-prediction error signal every 

instant the agent switches the states. The transformation between the estimated value and the actual value, 

which includes the instant reward, as seen during the switchover, is represented by the letter “d”. The 

previous state's value estimate can be reorganized based on d to be closer to the observed value. This “d” 

signal manifests in response to unexpected rewards, propagates with learning from rewards to pre-emptive 

incentives, and modifies in response to variations in predicted reward. The interest of RL is to create the best 

possible policy that maximizes value across all possible states. The methods employed could iteratively build 

such a policy from data. For the policy to be evaluated by on-policy algorithms, it must primarily be greedy 

regarding value function estimations [27]–[35]. 

 

 

2. EXPERIMENTS AND EVALUATION 

Hit-and-stick actions are included, and an effort is made to maintain the integrity of the game using 

all feasible measures. The following summarizes the reward system: For every action that does not change to 

a terminal state, a zero reward is awarded. The agent is rewarded according to the game's outcome when a 

terminal condition is attained. For instance, if the agent gains $1 and wins the hand, they are rewarded with a 

+1. If the hand is lost, the agent is rewarded -1. Due to the state representation's inability to foresee which 

cards may come into subsequent hands, a static betting approach is employed. 

The performance of the learning agent was evaluated using two hardcoded players (dealer and 

player). The acts of the first player are wholly arbitrary, whereas the second player employs a basic plan. 
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Using a basic strategy, the best course of action for the state representation selected reduces the casino edge 

to less than one percent. We utilize several runs in the experiment, each consisting of a loop of test and 

training hands. During training, the agent interacts with the environment states and uses the same lookup 

tables. The agent competes against the player, and the player uses basic strategy during the test hands. After 

performing a series of first random trials, every trial places the opening card. While the number of test hands 

stays fixed, numerous bets are eventually reached by gradually increasing the amount of training hands 

towards each run. 

 

 

3. RESULTS AND DISCUSSION 

Mean-variance optimization in MDPs and work on resilient MDPs both focus on increasing the 

safety of policies. However, it should be noted that the method suggests a combined criterion that considers 

both the mean and variance of the value function, which is much more expensive to optimize. Furthermore, 

even if needed later on, optimal values and policies cannot be retrieved in that work since the value function 

is not learned individually. The controllability only influences the action options; the optimal values are 

unaffected by controllability values and are done to retain the value function's correctness. 

The initial policy of the RL agent is entirely arbitrary. Therefore, it will likely produce similar 

results to the random player. Because the QL method closely approximates Q*, the learning agent's strategy 

should reach a fundamental approach as the quantity of training hands rises (s, a) and is accurate even for the 

best practice, highlighting the difficulty of gaining money when playing blackjack. Based on a comparison 

between the two, the learning agent outperforms the random player significantly. It is clear that perhaps the 

agent is picking up relevant knowledge during the iteration. The efficiency of the learning agent improves as 

it asymptotically approaches that of a player adopting a primary strategy and is the predicted Q* since the QL 

process directly approximates the ideal action-value function Q* (s, a). 

Figure 1 illustrates the strategy to hit to stick for each card the learner adopts during the game. The 

learning is improved over a higher number of iterations. The value function differs when using the ace card, 

as shown in Figure 2. The dealer and player values are plotted against the state value. This investigation 

involved an agent learning to model a finite MC decision chain. A natural extension is to consider an infinite-

sized deck such that now the agent would attempt to model a Markov chain-MC-based RL; For this; we 

expect the agent to find the stationary per-game score value, which appears to be converging. Including 

additional blackjack game actions like split and double would make the application more attractive and, in 

turn, cause the action space to become A = hit; stick and edge the agent’s policy closer to real-life 

application, but in addition to that, exponentially increasing the size of the state space. The snapshot of the 

state-action space of the implementation is indicated in Figure 1. 
 

 

  
 

Figure 1. Strategy outcome and state space snapshot 
 

Figure 2. Value function with/without ace 

 

 

4. CONCLUSION 

The blackjack game is studied and explored for optimal strategies using the MC-based RL 

technique. The foundation study of different RL techniques like QL, DP, and TD learning is also being 
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carried out in the work. This investigation found that training an agent to play a simplified version of 

blackjack produces desirable results; the agent can see a policy p that makes an average win, draw and loss 

rate of 38:26 across different policy iteration methods. The best blackjack strategy employing the MC 

method was investigated in this study using RL. It has been shown that the learning agent outperformed 

random and converged to a nearly ideal policy. Although the results are positive, there is still potential for 

development. The outcomes could be improved with a better exploration technique like the Bayesian MC 

Learning Algorithm. Additionally, a policy outperforming basic strategy may result from a more robust state 

representation combined with a dynamic betting approach. The effect on value function based on the rule 

change related to including or not including the ace is also studied. 
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