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 Early detection of diseases in growing olive trees is essential for reducing 

costs and increasing productivity in this crucial economic activity. The 

quality and quantity of olive oil depend on the health of the fruit, making 

accurate and timely information on olive tree diseases critical to monitor 

growth and anticipate fruit output. The use of unmanned aerial vehicles 

(UAVs) and deep learning (DL) has made it possible to quickly monitor 

olive diseases over a large area indeed of limited sampling methods. 
Moreover, the limited number of research studies on olive disease detection 

has motivated us to enrich the literature with this work by introducing new 

disease classes and classification methods for this tree. In this study, we 

present a UAV system using convolutional neuronal network (CNN) and 
transfer learning (TL). We constructed an olive disease dataset of 14K 

images, processed and trained it with various CNN in addition to the 

proposed MobileNet-TL for improved classification and generalization. The 

simulation results confirm that this model allows for efficient diseases 
classification, with a precision accuracy achieving 99% in validation. In 

summary, TL has a positive impact on MobileNet architecture by improving 

its performance and reducing the training time for new tasks. 
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1. INTRODUCTION  

The evolution of agriculture technology has not only played a pivotal role in transforming food 

production but has also significantly enhanced farming practices, ushering in more efficient methods for 

planting, harvesting, and managing crops and livestock [1]. These technological advances have led to 

increased yields and improved crop quality, effectively meeting the growing global demand for food while 

also minimizing the environmental impact of agriculture [2]. Key examples of agricultural technology 

include precision farming, drones, genetic engineering, and smart irrigation systems, empowering farmers to 

make informed decisions, optimize yields, minimize waste, and conserve natural resources [3]. In the context 

of unmanned aerial vehicle (UAV)-enabled olive disease classification, transfer learning has the potential to 

revolutionize disease detection. By using pre-trained models on large-scale datasets from related domains, 

such as general plant pathology or agricultural images, we can exploit the learned features and 

representations to adapt to the specific olive disease classification task [4]. While several studies have 

explored UAV applications in agriculture [5]–[9], including disease detection, the use of transfer learning 

specifically for olive disease classification represents a novel approach that can significantly enhance the 

accuracy and speed of disease identification. This research aims to bridge the gap between traditional disease 
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assessment methods and cutting-edge technology, ultimately benefiting olive growers and the agricultural 

community at large. Amidst these remarkable technological advancements, the field of olive disease 

classification has emerged as a critical component in identifying and categorizing diseases affecting olive 

trees. By standardizing disease descriptions and diagnoses, classification systems facilitate effective 

communication among researchers, extension workers, and farmers [10]. Among these systems, the 

international code of nomenclature for cultivated plants (ICNCP) classifies olive diseases based on affected 

plant parts and symptoms, while other systems categorize diseases based on their causative agents, including 

fungal, bacterial, viral, and phytoplasma diseases. Examples of olive diseases include Verticillium wilt, 

Xylella Fastidiosa, and olive knot. Precise disease management hinges upon accurate diagnosis facilitated by 

these classification systems, enabling the implementation of targeted strategies such as selecting disease-

resistant cultivars, practicing crop rotation, and employing appropriate fungicides and control measures [11]. 

The continuous expansion of olive cultivation across the Mediterranean region, spanning approximately 750 

million hectares, faces significant challenges from various factors, including insects, nematodes, and 

pathogens. In particular, pathogenic agents and pests pose a substantial threat to olive crop yields in the 

European Union, exacerbated by factors such as commercialization, climate change, and evolving 

agricultural practices. Consequently, there is an urgent need for advanced solutions in disease detection and 

classification to mitigate these adverse effects and safeguard the productivity and sustainability of olive 

production [12]. Recent breakthroughs in computer vision and machine learning have revolutionized disease 

classification across diverse domains. One particularly promising technique is transfer learning (TL), which 

harnesses pre-trained deep neural networks (DNNs) to address novel classification tasks with limited data 

[13]. In the context of UAV-enabled olive disease classification, transfer learning presents a transformative 

opportunity. By leveraging pre-trained models from vast datasets in related domains, such as general plant 

pathology or agricultural images, transfer learning enables the adaptation of learned features and 

representations to accurately classify olive diseases. This article aims to capitalize on the synergistic potential 

between cutting-edge drone technology and transfer learning techniques for smart agriculture development, 

with a specific focus on olive disease classification. Our research seeks to expand existing knowledge and 

provide novel insights that will prove invaluable to olive growers and the broader agricultural community 

[14], [15]. The upcoming sections of this article are organized in the following manner: section 2 presents an 

in-depth exploration of the theoretical background of deep learning (DL), while section 3 reviews recent 

related works. Section 4 presents an overview of the method and simulation workflow used in our research. 

Finally, section 5 delves into the experimentation results for olive disease classification, followed by a 

comprehensive discussion of the contributions and challenges faced. By showcasing the relevance and 

effectiveness of UAV-enabled olive disease classification based on transfer learning, our research aims to 

drive more efficient and data-driven smart agriculture practices in the olive industry. 

 

 

2. BACKGROUND 

2.1. Convolutional neuronal network 

CNN is an abbreviation for convolutional neural network, a deep learning algorithm widely 

employed for image classification and object recognition. CNNs are designed to handle image-based data and 

are particularly effective for image classification problems. They draw inspiration from the structure and 

function of the visual cortex in the human brain and are comprised of multiple layers of artificial neurons that 

learn to identify patterns in images. CNNs have found applications in diverse fields, such as computer vision, 

natural language processing, and speech recognition [16]. 

 

2.2.  Transfer learning 

Transfer learning (or learning by transfer) allows deep learning to be performed without the need for 

a month of computations. The idea is to leverage the information gained by a neural network while solving 

one issue to solve another that is similar but not identical. As a result, knowledge is transferred. Also, transfer 

learning prevents overfitting while also speeding up network training. When the number of input photos is 

minimal, a strong recommendation is to avoid training the neural network from scratch (i.e., with random 

initialization) due to the considerably larger number of parameters to learn compared to the number of 

images. This approach carries a high risk of overfitting [17]. 

 

2.3.  Unmanned aerial systems for agriculture  

Unmanned aerial systems (UAS), commonly referred to as drones, have revolutionized the way 

agriculture is conducted. These systems have made it possible to monitor crops and livestock with great 

precision and efficiency. UAS can capture aerial images and data, providing farmers with valuable 

information on crop health, soil moisture, and nutrient levels. Utilizing this information enables informed 
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decisions on crop management, such as fertilization and irrigation, leading to increased productivity and 

reduced costs. Moreover, UAS can rapidly cover extensive areas, making it possible to identify potential 

issues early on and take corrective action before they escalate [18]. 

 

 

3. RELATED WORKS 

3.1. Techniques for plant diseases classification based on deep learning 

Research works in the field of olive disease classification is very limited in number, hence the 

integration of plant disease classification review in general and olive in particular. First, Bi et al. [19] design a 

system that can identify apples are classified according to their color and distinct specular reflection patterns. 

Additional information like average apple size is used to weed out incorrect results or to account for many 

apples growing areas. Second, Prasetyo et al. [20] employed the ResNet-9 architecture to construct an optimal 

CNN model for classifying corn plant diseases. They conducted comparisons across various epochs to 

determine the best model, with the highest accuracy achieved at the 100th epoch. Moreover, Singh et al. [21] 

present an extensive study on the plant village dataset, whose images were collected using a formalized process, 

with highly perfect post-processing background development results, when the images were acquired under real 

conditions. It is also necessary to mention the work of Jadon [22] that explain the difficulty of learning and 

performance on relatively small volumes of data. This is an important parameter affecting the quality of the 

results achieved through the contribution of this study. In the same way, Tassis et al. [23] considered a dataset 

consisting of several plant types with different sample size characteristics. This is used to challenge the 

performance of CNNs under various conditions. Deep learning networks composed of different dataset sizes 

allow for enhanced comprehension of the advantages and limitations of these types of networks. Also 

noteworthy is the relevant work of Long et al. [24] that review methods developed for inductive transfer 

learning using convolutional networks. In addition, inductive transfer learning was then studied by Li et al. [25], 

where they describe the notion of regularization and tuning parameters to improve the performance of the target 

model. The mentioned research articles in Table 1 focus on developing deep learning models for the detection 

and classification of olive tree diseases using deep learning techniques. Alshammari et al. [3] proposed a 

method based on both the vision transformer (ViT) and CNN models for olive disease classification. They 

achieved high accuracy in detecting multiple types of diseases. In another study by Alshammari et al. [12], an 

optimized deep learning approach winged optimized artificial neural network (WOA-ANN) was developed for 

the identification of olive leaf diseases. The proposed method used a transfer learning technique and achieved 

higher accuracy than previous studies. Also, Ksibi et al. [26] proposed a hybrid deep learning model called 

mobile residual neural network (MobiRes-Net) for detecting and classifying olive leaf diseases. Their model 

combined the advantages of MobileNet and ResNet architectures and achieved high accuracy in detecting 

multiple types of diseases. In addition, Uğuz and Uysal [10] developed a deep convolutional neural network 

based on visual geometry group (VGG) for classifying olive leaf diseases. Their model achieved high accuracy 

in identifying four types of diseases. Uğuz [27] proposed an automatic olive peacock spot disease recognition 

system using a single shot detector (SSD) method. The proposed method achieved high accuracy in detecting 

this disease. On the same direction [28] developed an efficient model for olive disease detection. They used 

transfer learning and achieved high accuracy in detecting three types of diseases. Finally, Milicevic et al. [29] 

developed deep learning models designed to identify the flowering phenophase in olive trees. They achieved 

high accuracy in detecting the flowering phenophase, which can be used for predicting fruit yield. Collectively, 

these studies showcase the potential of deep learning models in accurately detecting and classifying olive tree 

diseases, which can help in the early detection and management of these diseases to improve crop yield and 

reduce economic losses. 

 

 

Table 1. Comparison of performance on olive diseases classification systems 
Ref  Paper  Validation accuracy  Augmentation  Transfer learning  CNN architecture 
[3] Alshammari et al. 2022 96% Yes Yes Vision transformer 
[10] Uğuz and Uysal 2020 95% Yes Yes VGG 
[12] Alshammari et al. 2023 99% Yes Yes WOA-ANN 
[26] Ksibi et al. 2022 97.08% Yes Yes MobiRes-Net 
[27] Uğuz 2020 96% Yes No SSD 
[28] Alruwaili et al. 2019 99.11% Yes No Alexnet 
[29] Milicevic et al. 2020 97.20% Yes No VGG-inspired network 

 

 

3.2.  Techniques for plant diseases classification based on UAV imagery 

This section focuses on classification studies that utilize unmanned aerial vehicle (UAV) imagery to 

detect olive tree diseases, which have been relatively scarce in the literature. The studies cited in Table 2 
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explore the applications of UAVs and multispectral imagery in olive tree cultivation. The papers present 

various findings, including the use of different algorithms for classification, the incorporation of ground truth 

data, and the use of different spectral bands for disease detection. Overall, the studies demonstrate the 

potential of UAV-based classification techniques for detecting olive tree diseases and improving agricultural 

management practices. First, Šiljeg et al. [5] used geographic object-based image analysis with randomized 

truncated cluster (GEOBIA RTC) and vegetation indices to extract olive tree canopies from very  

high-resolution UAV multispectral imagery. They achieved high accuracy in detecting olive trees, and their 

approach can potentially be used for precision agriculture and monitoring of olive trees. Then in [6] 

developed a residual neural network (ResNet50) for classifying olive tree cases based on UAV imagery. 

Their model achieved high accuracy and can potentially be used for monitoring the growth and health of 

olive trees. After that, Nisio et al. [7] follow an approach using latent Dirichlet allocation (LDA) on all the 

available spectral information. The performance in classification was excellent, achieving a sensitivity of 

98% and precision of 100% on a test set that comprises 71 trees, 75% of which were afflicted. Also, Jurado 

[30] used multispectral mapping to characterize individual olive trees. Their approach can potentially be used 

for precision agriculture, monitoring tree growth and health, and optimizing orchard management. In 

addition, Rallo et al. [31] explored the use of UAV imagery to support genotype selection in olive breeding 

programs. They found that UAV imagery can potentially provide valuable information for selecting superior 

olive genotypes based on traits such as canopy volume and shape. Castrignanò et al. [8] used UAV multi-

resolution image segmentation with mask regions with convolutional neural networks (Mask R-CNN) to 

estimate olive tree biovolume. Safonova et al. [9] devised a rapid detection technique to identify Xylella 

Fastidiosa-infected olive trees using multispectral imaging from UAVs. Their method holds promise for early 

detection and continuous monitoring of this detrimental plant pathogen in olive trees. Additionally, Neupane 

and Baysal-Gurel [32] introduced a semi-automatic approach for the early detection of Xylella Fastidiosa in 

olive trees, leveraging UAV multispectral imagery and geostatistical-discriminant analysis. Their approach 

achieved high accuracy in detecting Xylella Fastidiosa-infected trees. 

 

 

Table 2. Comparison of performance on drone-based similar classification systems 
Ref Paper Validation accuracy Augmentation Transfer learning CNN architecture 
[5] Šiljeg et al. 2023 88% Yes No GEOBIA RTC 
[6] Sehree and Khidhir 2022 97.2% Yes No ResNet50 
[7] Nisio et al. 2020 98% Yes No LDA 
[8] Castrignanò et al. 2020 77% No No LDA 
[9] Safonova et al. 2021 95% Yes No Mask R-CNN 

 

 

4. METHOD 

4.1. Drone description 

In Figure 1, we are presented with a striking image of a drone, thoughtfully equipped with an 

impressive array of sensors. Among these sensors, the forward-facing and downward-facing ones hold 

particular significance, serving as crucial components for the Mavic Pro sophisticated obstacle detection and 

avoidance capabilities. Proudly manufactured by DJI, the Mavic 2 Pro takes center stage as a top-of-the-line 

UAV. With its state-of-the-art technology and cutting-edge features, the Mavic 2 Pro unquestionably ranks 

among the most advanced and coveted drones available in the market today [32]. 

 

4.2.  Simulation workflow  

The simulation architecture employed in our study encompasses a well-structured series of tasks 

crucial for image classification techniques, as illustrated in the schematic diagram presented in Figure 2. 

Initially, meticulous attention is given to adjusting the flight plan of the UAV to ensure precise and 

comprehensive image capture of the olive trees within the study area, yielding high-quality data for analysis. 

Subsequently, the data collection phase commences, wherein the UAV carries out image acquisition, 

capturing multispectral images of the olive trees from different perspectives. To prepare the collected data for 

classification, thorough preprocessing steps are undertaken to eliminate any unwanted noise or artifacts that 

might impede the accuracy of the classification process. The subsequent steps revolve around selecting 

suitable classifiers and feature extraction methods that can effectively and accurately identify and classify the 

various olive tree diseases present in the collected images. Diverse training modes are thoughtfully chosen to 

optimize the selected classifiers’ performance, empowering the model to deliver precise disease classification 

results. Moreover, an optimization algorithm is applied to further enhance the classification model’s 

accuracy. To refine and fine-tune the classification results, comprehensive post-classification processing is 

conducted, aiming to ensure the highest level of accuracy and reliability in disease identification. The 
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performance of the model is meticulously evaluated using a range of essential metrics providing 

comprehensive insights into the model’s efficacy. Overall, this simulation architecture is meticulously 

designed to ensure the accurate and efficient classification of olive tree diseases, leveraging the cutting-edge 

combination of UAV-based image acquisition and deep learning techniques. The seamless integration of 

these components empowers our study to unlock novel and invaluable insights into disease detection and 

management, paving the way for sustainable and optimized olive crop production. 

 

 

 
 

Figure 1. MAVIC 2 PRO drone and sensor deployed for this research 

 

 

 
 

Figure 2. General schema for experimental studies 

 

 

4.3.  Study area  

The study area highlighted in Figure 3 is the olive groves in the Béni Mellal-Khénifra region, which 

is situated in the central part of the country and covers an area of 17,125 square kilometers. This region is 

characterized by a very continental climate with an average altitude of 400 to 700 meters and precipitation 

that ranges from 300 to 750 mm, varying on the year. The main activity in the region is agriculture, which 

accounts for 81% of the active rural population in 2008 and has a profound effect on the regional economy, 
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especially in the plains (Tadla) that have abundant water resources suitable for modern and industrial 

agriculture development. The region’s suitability for olive cultivation is based on favorable climatic and 

geological conditions, as well as expertise in olive oil production, while the number of olive varieties present 

is an additional factor, but not the sole justification [33]. 

 

 

 
 

Figure 3. Study area in the Béni Mellal-Khénifra region 

 

 

4.4.  Drone flight  

Planning drone flight planning is an essential process that involves preparing for and executing a 

safe and efficient drone flight. This process includes several steps, such as researching the flight area, 

checking local regulations and restrictions, obtaining necessary permits, ensuring the drone is in good 

working condition, choosing a safe and efficient flight path, checking the weather conditions, inspecting the 

drone before flight, establishing communication with individuals in the area, flying the drone following the 

planned route, monitoring the drone’s flight status, and evaluating the flight after completion. Once the flight 

plan is set as presented in Figure 4, the Mavic Pro 2 will take off and follow the set plan. During the flight, 

adjustments can be made if necessary, using the DJI GO 4 app. Upon completion, the drone will 

automatically return to its starting point and land. 

 

 

 
 

Figure 4. UAV flight planning 

 

 

4.5.  Data collection  

To prepare the images for the training model, data collection was conducted in two stages using a 

drone equipped with cameras. The first stage involved collecting images of trees with symptoms on their 
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fruit, leaves, or bark, such as anthracnose, fumigina, or knot, at a low altitude. The second stage involved 

collecting images of trees with symptoms on their foliage, such as verticilliose, at a higher altitude using 

downward vision and infrared sensors. The drone flight was conducted on a clear, windless day, and the 

flight height was set at 20 m with a 70% overlapping rate for the photos taken. To allow the MobileNet-

transfer learning model to efficiently learn the olive spectral features of tree diseases in visible images, the 

olive images were manually annotated.  

 

4.6.  Data preprocessing  

First, the data pre-processing task starts with a span of data points. Second, implement a data split, 

80% for training and 20% for validating. Then, the data augmentation method was applied to improve the 

distribution of pixels at various intensities. In complement, low spatial resolution UAV images frequently 

have low contrast, poor texture, and minimal edge information. So many critical traits are typically lost after 

a sequence of convolution and amplification procedures. To address these challenges, the authors propose an 

image reconstruction technique. The method serves to improve the spatial resolution of UAV olive imagery, 

resulting in clearer edge contours, best contrast, and enhanced textures to better preserve canopy edge 

information. 

 

4.7.  Data augmentation  

The issue of overfitting during the training process phase of CNN can be overcome. Different data 

augmentation techniques are used in this step, including transformations like rotating, flips and intensity 

perturbations. In addition, Gaussian noise processing operations are also used. So, the data enrichment 

process is done through fine-tuning. By generating additional data through data augmentation as presented in 

Figure 5 with imbalanced dataset distribution in Figure 5(a) and balanced dataset distribution in Figure 5(b), 

the model is exposed to more variations in the data. Implementing this can aid in mitigating overfitting, a 

situation where the model becomes overly adapted to the training data and exhibits poor performance on 

unseen data. In an imbalanced dataset, the minority classes may be underrepresented, and the classifier may 

tend to predict the majority class more often, resulting in poor performance for the minority classes. To 

overcome this issue, several techniques can be used, such as resampling the data to balance the classes, using 

different methods to class imbalance, or modifying the learning algorithm to give more weight to the 

minority class. In this case study after applying data augmentation techniques, the dataset became balanced 

with 2,000 images per class, resulting in a total of 14,000 images. 

 

 

  
(a) (b) 

 

Figure 5. Olive diseases dataset distribution (a) before data augmentation and (b) after data augmentation 

 

 

4.8.  Deep transfer learning model 

Various algorithms have been employed to classify and detect plant diseases, the exception of 

MobileNet architecture was demonstrated on our initial research and are best suited on mobile devices. This 

CNN model combined with a transfer learning algorithm in image classification proves beneficial as it 

leverages existing knowledge and training for image classification tasks, resulting in more efficient outcomes 

compared to training from scratch. In addition, the initial research studies conducted on was very helpful to 

support contribution, perspective research and use of new architectures to enhance the olive diseases 

classification system. Overall, transfer learning with MobileNet architecture involves using a pre-trained 

MobileNet model as a feature extractor, adding new trainable layers, and fine-tuning the model on a new 

dataset. The key benefit of transfer learning is that it can significantly reduce the amount of data required to 

train a model while improving the model’s performance. 
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5. RESULT AND DISCUSSION 

5.1. Results 

Accuracy and training loss per training period are shown below. As we are dealing with hundreds of 

thousands of observations, it is not uncommon to see a neural network model converge rapidly. In this case, 

the batches contain 64 observations. In each era, the model will be exposed to more than 5,000 different lots. 

Few epochs can be enough to lead to high accuracy and low levels of loss from the start of the training 

session. In this exercise, 10 epochs were planned, as the authors were interested in studying potential 

overfitting. In a final implementation, a shorter formation is considered and shown in Figure 6 with training 

loss in Figure 6(a), training accuracy in Figure 6(b), validation loss in Figure 6(c) and validation accuracy in 

Figure 6(d). Also, the Table 3 shows the performance of several convolutional neural network models trained 

to classify five different classes of olive diseases: healthy, anthracnose, cyclonium, fumigina, and 

verticilliose. 

The following metrics are provided for each model: training accuracy, loss and validation accuracy, 

loss. The training loss measures the error of the model during training, while the validation loss measures the 

error on a separate validation set. The training accuracy and validation accuracy measure the percentage of 

correctly classified samples during training and on the validation set, respectively. Based on the table, the 

performance of the models varies significantly across the different disease classes. For the healthy class, all 

models achieved high accuracy and low loss on both training and validation sets. The MobileNet-TL model 

achieved perfect training accuracy on this class. For the other classes, the performance of the models varied. 

For anthracnose, the MobileNet-TL model achieved the highest accuracy and lowest loss, while the 

EfficientNetB7 model performed the worst. For cyclonium, the MobileNet-TL and DenseNet models 

achieved the optimal accuracy and loss, while the EfficientNetB7 model performed the worst. For fumigina 

and verticilliose, the MobileNet-TL model again achieved the optimal accuracy and loss, while the ResNet50 

model performed the worst. As a reminder, the columns in the confusion matrices correspond to the predicted 

classes, whereas the rows relate to the actual classes. 

 

 

 
 

  
(a) (b) 

 

  
(c) (d) 

 

Figure 6. Accuracy and Loss by CNN architectures (a) training loss, (b) training accuracy, (c) validation loss, 

and (d) validation accuracy 
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Table 3. The performance evaluation outcomes of CNN models based on the utilized olive disease classes 
Olive disease classes CNN model Training loss Training accuracy Validation loss Validation accuracy 

Healthy ConvNet 0.5394 0.9479 0.5399 0.8958 

EfficientNetB7 0.9377 0.6513 1.4931 0.8125 

InceptionV3 0.1991 0.8620 0.3648 0.8750 

MobileNet-TL 0.0327 1.0000 0.1458 0.9987 

DenseNet 0.2038 0.9115 0.2531 0.8750 

VGG19 0.2048 0.8281 0.3570 0.8750 

ResNet50 0.4667 0.7943 0.4113 0.8542 

VGG16 0.2796 0.8516 0.4553 0.8125 

Anthracnose ConvNet 0.1809 0.8802 0.3211 0.8333 

EfficientNetB7 0.9578 0.8208 1.9992 0.1875 

InceptionV3 0.4050 0.9587 0.1985 0.9167 

MobileNet-TL 0.0664 1.0000 0.0168 1.0000 

DenseNet 0.2370 0.9375 0.0996 0.9583 

VGG19 0.4084 0.9225 0.1306 0.9792 

ResNet50 0.5161 0.7943 0.5342 0.7500 

VGG16 0.4037 0.8516 0.1562 0.9792 

Cyclonium (OP) ConvNet 0.5352 0.9141 0.6262 0.8542 

EfficientNetB7 0.2928 0.8450 0.2947 0.8333 

InceptionV3 0.2192 0.9193 0.2067 0.9375 

MobileNet-TL 0.0257 1.0000 0.0169 0.9988 

DenseNet 0.0269 1.0000 0.1443 0.9583 

VGG19 0.2267 0.9219 0.1707 0.9792 

ResNet50 0.4752 0.8090 0.3995 0.8333 

VGG16 0.1908 0.9089 0.2862 0.8542 

Fumigina ConvNet 0.1479 0.9507 0.2802 0.8542 

EfficientNetB7 0.16012 0.8906 0.2857 0.8333 

InceptionV3 0.1534 0.9479 0.1310 0.9375 

MobileNet-TL 0.0241 1.0000 0.0458 0.9956 

DenseNet 0.1228 0.9609 0.2039 0.9167 

VGG19 0.3500 0.8411 0.3091 0.8542 

ResNet50 1.8556 0.9245 2.9247 0.7917 

VGG16 0.2581 0.9010 0.2619 0..8958 

Verticilliose ConvNet 0.1479 0.9507 0.2802 0.8542 

EfficientNetB7 0.1602 0.8906 0.2857 0.8333 

InceptionV3 0.1534 0.9479 0.1310 0.9375 

MobileNet-TL 0.0241 1.0000 0.0458 0.9925 

DenseNet 0.1228 0.9609 0.2039 0.9167 

VGG19 0.3500 0.8411 0.3091 0.8542 

ResNet50 1.8556 0.9245 2.9247 0.7917 

VGG16 0.2581 0.9010 0.2619 0..8958 

Knot ConvNet 0.1479 0.9507 0.2802 0.8542 

EfficientNetB7 0.1602 0.8906 0.2857 0.8333 

InceptionV3 0.1534 0.9479 0.1310 0.9375 

MobileNet-TL 0.0241 1.0000 0.0458 0.9952 

DenseNet 0.1228 0.9609 0.2039 0.9167 

VGG19 0.3500 0.8411 0.3091 0.8542 

ResNet50 1.8556 0.9245 2.9247 0.7917 

VGG16 0.2581 0.9010 0.2619 0..8958 

Saisetia Oleae ConvNet 0.1586 0.9543 0.2823 0.8842 

EfficientNetB7 0.1602 0.8906 0.2862 0.8323 

InceptionV3 0.1534 0.9479 0.1310 0.9375 

MobileNet-TL 0.0344 1.0000 0.0248 0.9952 

DenseNet 0.1228 0.9703 0.1933 0.9167 

VGG19 0.3543 0.8411 0.3091 0.8533 

ResNet50 0.3322 0.9245 2.9247 0.7917 

VGG16 0.2524 0.9024 0.2613 0.8837 

 

 

Figure 6 shows the performance results for various CNN architectures with training loss in 

Figure 6(a), training accuracy in Figure 6(b), validation loss in Figure 6(c) and validation accuracy in 

Figure 6(d). The included CNN architectures are ConvNet, EfficientNetb7, InceptionV3, MobileNet, 

DenseNet, VGG19, ResNet50 and VGG16. Also, Figure 7 shows the confusion matrix, which provides 

actual and predicted values for each class of olive diseases, respectively: healthy, anthracnose, cyclonium 

(OP), fumigina, verticiliose, knot, and saisetea oleae. In classification problems, the model’s overall 

performance can be assessed through various metrics. Along with the traditional calculation of statistical 

performance measures directly from “predicted” and “actual” test tensors. In addition, confusion matrices 

provide a visual and quantitative assessment of model performance on both an aggregate and “per-class” 

basis. So, the performances are evaluated here with statistical metrics and confusion matrices for the 

MobileNet-TL model. The compared result between classes illustrated in the confusion matrix presented in 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 891-903 

900 

Figure 7 show that some classes present better results than the ones in example class 1, 2, 4 and 5 are best 

suited for using transfer learning than 3,6 and 7. This will be discussed in the next section to get more 

explanations. 

 

 

 
 

Figure 7. Confusion matrix of ODD classification for MobileNet-TL 

 

 

The ROC curve presented in Figure 8 depicts the performance of the MobileNet-TL model in 

detecting anthracnose disease, which is just one of the seven classes studied. The results clearly indicate that 

the MobileNet-TL model demonstrated superior accuracy compared to the other models. However, a more 

detailed analysis and explanation of the findings will be provided in the subsequent discussion section. 

 

 

 
 

Figure 8. Receiver operator characteristic (ROC) curve by anthracnose disease class 
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5.2.  Discussion  

The findings of this research, focusing on deep learning and the classification of different olive 

diseases using drone-collected images, are highly noteworthy, particularly from the perspective of 

data science education. The results confirm that the combination of CNN and transfer learning methods 

yields highly accurate remote detection and classification of olive diseases. The importance of data 

pre-processing is emphasized, as it significantly influences the results. Furthermore, the study demonstrates 

the effectiveness of transfer learning, although the selection of an appropriate number of trees and 

depth parameters can have a notable impact on the results. The authors experimented with lower tree counts 

and shallow depth architectures, which led to some degradation in performance, as anticipated. Nevertheless, 

when appropriately manipulated, transfer learning proves to be an excellent predictive tool, with performance 

on par with more complex and sophisticated algorithms. In addition, The MobileNet-transfer learning- 

based model outperformed CNN alone, as evident from the confusion matrices. This highlights the 

importance of selecting the right architecture and hyperparameters. Some potential improvements, such as 

handling asymmetric features, cross-validation, and hyperparameter optimization, were left unexplored but 

may be revisited in future research to further enhance performance. The primary aim of this research is to 

initiate a series of research endeavors geared towards enhancing drone utilization and democratizing drone 

technology for small and medium-sized olive farms. Upon analyzing the confusion matrices, specific patterns 

emerge, notably a higher level of confusion between classes 3 and 6, indicating a substantial number of 

incorrect predictions. Moreover, the overall accuracies by crop class remained consistently high, surpassing 

97%, except for “class 7,” which exhibited relatively lower accuracies due to its limited representation in the 

dataset. Remarkably, deep learning demonstrated superior performance compared to other methods in 

predicting broadleaf classes, underscoring its effectiveness in addressing challenges related to poorly 

represented classes. These findings hold significant implications for the future development and application 

of UAV-enabled olive disease classification systems. Transfer learning, involving the use of a pre-trained 

model on a large dataset as a starting point for a new task or dataset, is a valuable technique. In the context of 

mobile architecture, transfer learning enhances model accuracy by leveraging knowledge gained from  

pre-training on a large dataset. Two common approaches to transfer learning with mobile architecture are 

using the pre-trained model as a feature extractor and finetuning the model. The former extracts feature from 

input data using the pre-trained model, which are then fed into a smaller model trained specifically for the 

task. The latter approach fine-tunes the pre-trained model’s weights on the specific task, allowing it to adapt 

its learned features further. The research results obtained from UAV imagery, as outlined in the 

results section, outperform similar and related works in terms of accuracy, enhancing the contribution of 

transfer learning in the case study of multi-spectral images of olive trees. The achieved average accuracy of 

99% for the seven studied classes demonstrates the potential for improving and optimizing olive crop 

production. 

 

 

6. CONCLUSION AND FUTURE SCOPE  

In conclusion, the authors try to address the classification problem of olive diseases, based on 

transfer learning techniques and UAV imagery, in order to cover larger areas of olive cultivation and more 

disease types. The data collected in this study were aerial and lateral images of olive trees acquired via 

cameras in low and high-altitude drone flight, in the study area of Béni Mellal-Khénifra region of Morocco at 

different growth stages on the base of seven classes, six of them sick and the seventh healthy. The purpose of 

the study was to identify the olive disease classes with minimum of cost and maximum of efficiency and 

precision. The proposed MobileNet-TL model based on CNN architecture and transfer learning methods 

obtained an accuracy of 99% overcoming the limitations of random sampling methods, overfitting, and 

capabilities to deploy the application on mobile devices, also the results is higher than similar research works 

presented previously, in terms of accuracy, data volume and types of diseases. To expand this work in the 

future, it is recommended to design an integrated intelligent smart agriculture system based on microservices 

architecture using UAV classification service combined with smart irrigation service, the aim will be to adapt 

the classification system to different environmental variables in order to improve the learning capacities of 

the AI system applied to olive crop and more particularly to the early detection and classification of olive tree 

diseases. 
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