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 Transparent hypervisor-level checkpoint-restart mechanisms for virtual 

clusters (VCs) or clusters of virtual machines (VMs) offer an attractive fault 

tolerance capability for cloud data centers. However, existing mechanisms 
have suffered from high checkpoint downtimes and overheads. This paper 

introduces Mekha, a novel hypervisor-level, in-memory coordinated 

checkpoint-restart mechanism for VCs that leverages precopy live migration. 

During a VC checkpoint event, Mekha creates a shadow VM for each VM 
and employs a novel memory-bound timed-multiplex data (MTD) transfer 

mechanism to replicate the state of each VM to its corresponding shadow 

VM. We also propose a global ending condition that enables the checkpoint 

coordinator to control the termination of the MTD algorithm for every VM 
in a VC, thereby reducing overall checkpoint latency. Furthermore, the 

checkpoint protocols of Mekha are designed based on barrier 

synchronizations and virtual time, ensuring the global consistency of 

checkpoints and utilizing existing data retransmission capabilities to handle 

message loss. We conducted several experiments to evaluate Mekha using a 

message passing interface (MPI) application from the NASA advanced 

supercomputing (NAS) parallel benchmark. The results demonstrate that 

Mekha significantly reduces checkpoint downtime compared to traditional 
checkpoint mechanisms. Consequently, Mekha effectively decreases 

checkpoint overheads while offering efficiency and practicality, making it a 

viable solution for cloud computing environments. 
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1. INTRODUCTION  

Cloud computing enables the creation of a virtual cluster (VC) or cluster of virtual machines (VMs) 

to run distributed and parallel applications. Users can select desired operating systems, software stacks, and 

computing environments for their applications, making the VC an attractive platform for high-performance 

computing (HPC) applications [1]. However, as cloud providers scale out hardware resources to meet user 

demands, the number of failures increases [2]–[4], making fault tolerance mechanisms essential for large-

scale cloud computing environments. Checkpoint-restart [5] is a widely used technique for mitigating failures 

by periodically saving the state of processes to storage and restarting the computation from the saved state 

when a failure occurs. Most checkpoint-restart mechanisms are implemented at the application [6]–[8], user 

[9]–[11], and operating system [12]–[14] levels. These mechanisms have been integrated with message 

passing interface (MPI) libraries and runtime systems to support MPI applications; however, using them is 

not straightforward. Users often need to modify source codes, programming libraries, or runtime systems. 

https://creativecommons.org/licenses/by-sa/4.0/
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Hypervisor-level checkpoint-restart [15]–[17] is an alternative to the previously mentioned solutions. This 

approach saves and restores the state of VMs instead of application processes. The advantage of this 

approach is that the hypervisor can perform checkpoint-restart operations of a VM independently and 

transparently from the VM's computation. Users do not have to modify application source code, 

programming libraries, runtime systems, or guest operating systems (guest OSes). 

In the past, a few coordinated checkpoint systems have been created on top of hypervisor-level 

checkpoint-restart mechanisms. These systems allow users to run MPI applications on guest OSes without 

modification. We will discuss them in more detail in Section 5. Nevertheless, these systems suffer from the 

following drawbacks: i) They require complex communication subsystems. In some works, users have to 

modify the network stack of the host [18] or create a virtual network [19] to provide global consistency and 

prevent message loss. Such an endeavor is complicated and necessitates major software development work; 

ii) They can cause long downtimes. Some early works such as those in [20]–[22] pause the computation of 

every VM in a VC simultaneously, save VMs state to checkpoint storages, and then resume VMs 

computation. We call this approach the “stop-and-save approach”. This approach causes long checkpoint 

downtimes, especially when VMs in the VC run memory-intensive applications; iii) They can cause long 

checkpoint latency. Works such as [19], [23], [24] apply traditional precopy live migration of VMs to reduce 

the checkpoint downtimes. We call this approach the “traditional-precopy approach”. This approach 

encounters two problems. First, the traditional precopy live migration may perform for a long time due to 

high VM memory updates [25]. Second, the checkpoint operation duration of each VM in a VC may be 

imbalanced; thus, the latency of a VC checkpoint operation can be prolonged by an extremely long 

checkpoint operation of a single VM. 

This paper proposes Mekha, a coordinated hypervisor-level checkpointing system for a VC. Since 

Mekha is implemented at the hypervisor level, it is highly transparent to applications and guest OS. We have 

developed a novel coordinated checkpointing protocol using barrier synchronizations to guarantee global 

consistency. We propose a rendezvous time synchronization mechanism to provide fine-grained barrier 

synchronizations for the protocols. Additionally, we introduce the concept of time virtualization and leverage 

the network data retransmission mechanism in the guest OS to effectively handle message loss situations. 

Mekha is designed to solve the prolonged precopy duration problem and the imbalance of precopy 

durations among VMs. On a VC checkpoint operation, Mekha creates a new VM (namely a shadow instance) 

for each active instance and uses it as an in-memory storage. To transfer state of each active instance to its 

shadow, we employ a novel precopy live migration mechanism called memory-bound time-multiplexed data 

transfer (MTD). The MTD overcomes the prolonged checkpoint duration problem by finishing the VM state 

transfer within a memory-bound period of time. We also introduce the concept of global ending condition in 

the MTD mechanism and Mekha's checkpoint protocol to handle imbalanced precopy durations among active 

instances. 

We implemented a prototype of Mekha and conducted extensive experiments to compare it with two 

other VC checkpoint-restart mechanisms: the stop-and-save approach and the traditional precopy approach. 

We performed checkpoint operations on VCs that were running a block tridiagonal (BT) solver, a class D 

MPI benchmark program from the NASA advanced supercomputing (NAS) parallel benchmark [26]. Our 

results showed that: i) Mekha does not require modifications to applications, MPI implementation, and the 

guest OSes of the VM. Our protocol can provide global consistency and effectively handle message loss 

without the need to modify the communication subsystem of the guest OS and host OS, ii) Mekha's 

checkpoint overheads and downtimes are up to 90% lower than those of the stop-and-save mechanism when 

saving checkpoint files on low write bandwidth storage area network (SAN) storage. On the other hand, 

Mekha's checkpoint latency is comparable to other checkpoint mechanisms when using the same type of 

checkpoint storage, iii) Mekha's checkpoint overheads, downtimes, and latencies are comparable to those of 

the manually finetuned traditional precopy approach, which could be higher without finetuning, iv) Mekha's 

global ending condition can effectively handle the imbalance of precopy duration among VMs, leading to 

lower checkpoint overheads and latencies than the traditional precopy approach. 

The contents of this paper are organized as follows. Section 2 proposes the Mekha system. Section 3 

discusses its implementation. Section 4 elaborates on the experimentation and discusses experimental results. 

Section 5 discusses related works. Section 6 describes the limitation of Mekha and future improvement. 

Finally, Section 7 summarizes the paper. 

 

 

2. MEKHA SYSTEM 

2.1.  Architecture 

Mekha consists of a checkpoint coordinator, agents, VM instances, and networks, as illustrated in 

Figure 1. The coordinator is responsible for controlling the checkpoint and restart protocols and monitoring 
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all events occurring in the VC when performing VC checkpoint and restart operations. It controls VMs by 

sending instructions through the agents, which are daemon processes running on every host and sitting 

between the coordinator and VMs. There are two types of VM instances in Mekha: active and shadow 

instances. These instances are spawned, destroyed, and monitored by the agent running on the same physical 

host. Active instances are primary VMs that execute user tasks and are members of a VC. When Mekha starts 

a VC checkpoint operation, it spawns a shadow instance for an active instance; this shadow instance serves as 

a transient in-memory storage to store the state of the corresponding active instance. After the checkpoint 

operation is completed, the coordinator instructs these shadow instances to lazily save their state to persistent 

storages before terminating them once the state-saving process finishes. 

 

 

 
 

Figure 1. Architecture of Mekha 

 

 

2.2.  VC checkpoint protocol 

This section describes the checkpoint protocol of Mekha, as illustrated in Figure 2. The figure 

contains a coordinator and a VC with three active instances, each running on a different host. The active 

instance and its corresponding shadow instance are both running on the same host. We assume that this 

protocol operates during a failure-free period; for simplicity, we omit the checkpoint agents from the figure. 

We will discuss how the checkpoint protocol of Mekha guarantees global consistency and maintains reliable 

communication in Section 2.6 and 2.7 respectively. The checkpoint protocol comprises the following steps: 

1) Spawning shadow instances: The coordinator broadcasts a SPAWN command to all checkpoint agents (at 

“r” in the figure), instructing them to spawn a shadow instance for each active instance on the same host. 

All shadow instances are suspended from VM computation from the start. 

2) Starting MTD and performing the precopy stage: After receiving notifications that all shadow instances 

have been launched successfully. The coordinator broadcasts (at “u”) the START-MTD command to the 

hypervisors of all active instances to start the MTD algorithm, a modified version of the memory precopy 

algorithm of VM live-migration (to be fully described in Section 2.3) Mekha uses this MTD algorithm to 

reduce checkpoint downtime duration; in Figure 2, the boxes labeled “pre” in the timeline of every active 

instance represent the precopy stage of the MTD. In the MTD design, there are two types of active 

instances: the starter and non-starter. The starter instances are the majority of active instances that end the 

precopy stage by themselves. These instances (e.g., the instance 1 and 2 in Figure 2) will send the MTD-

EMPTY message to inform the coordinator and enter the extended precopy stage (“ext” in Figure 2). 

During this stage, the MTD will continue transferring dirty pages of the active instance to the shadow 

instance until it receives the END-MTD message from the coordinator. On the other hand, the remaining 

active instances (e.g., the instance 3 in Figure 2) are the non-starter active instances that will continue 

performing the precopy stage until they receive the END-MTD message from the coordinator. 

3) Evaluating the global ending condition: The global ending condition allows the coordinator to collaborate 

with the MTD algorithm in determining when to terminate the MTD precopy phase for all active 

instances. The coordinator evaluates the global ending condition every time it receives the MTD-EMPTY 

message from the active instances. In our design, the global ending condition is satisfied if and only if the 

coordinator receives the END-MTD message from the majority of the active instances in the VC. We will 

discuss this issue further in Section 2.4. 

4) Suspending the VC and performing stop-and-copy stage: When the global ending condition is met, the 

coordinator initiates a rendezvous time barrier synchronization to simultaneously suspend the VM's 

computation of all active instances. In this method, the coordinator calculates the rendezvous time (at 
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Marker “A” on the coordinator's timeline in Figure 2) and sends the END-MTD command, along with the 

calculated rendezvous time information, to all active instances. The calculation of the rendezvous time 

will be discussed in Section 2.5. Upon receipt of the END-MTD command, the MTD algorithm on each 

active instance will enter the “stop-and-copy” state. In this state, the algorithm will defer the suspension 

of the active instance for a period of time (“df1” in the figure), until the local time reaches the rendezvous 

time, 𝑡𝑠. Then, the VM of the active instance will be suspended (“pause” in the figure). After the 

suspension, the MTD algorithm on each active instance transfers the remaining memory pages (“transfer 

remaining” in Figure 2) from the active instances to the shadow instance (see Section 2.3). Then, the 

MTD algorithm terminates. 

5) Creating new overlay disk images: After the MTD algorithm completes, the hypervisor of each active 

instance sends a status report to the coordinator. The coordinator then sends the NEW-OVERLAY message 

back to the hypervisor, as shown in Figure 2. It is important to note that the coordinator does not wait to 

receive reports from every instance. Instead, it responds to each active instance individually. Upon 

receiving the NEW-OVERLAY message, the hypervisor changes the current disk image to an immutable 

backing file and creates a new, copy-on-write, overlay disk image on top of it. The new overlay disk 

image will store all disk updates that the active instance will make when the VM computation is resumed 

in the future. The backing file represents the disk image snapshot that is consistent with the VM state 

stored in the shadow instance. Finally, the hypervisor informs the coordinator that the new image has 

been created. 

6) Resuming the VC: The coordinator launches another rendezvous time barrier synchronization to resume 

the VM’s computation of the active instances. After receiving image creation notifications from every 

active instance in the VC, the coordinator calculates a rendezvous time (at Marker “B” on the 

coordinator's timeline in Figure 2) and broadcasts the RESUME-VM command with the rendezvous time, 

𝑡𝑟, to all active instances. Upon receiving this message, the hypervisor of each active instance waits for a 

“df2” duration before resuming the active instance at time 𝑡𝑟. In Mekha's design, hypervisors must wait 

until computation of the VM is resumed before notifying the coordinator. As resumption times of VMs 

depend on VM-specific properties such as workloads, the lengths of “resume” periods may be varied for 

each instance as shown in Figure 2. 

7) Saving state of shadow instances: The coordinator sends the SAVE-VM message to the shadow instances, 

instructing them to save their state to persistent checkpoint storage after all active instances in the VC 

have been resumed. Once the saving process is complete, the hypervisor of each shadow instance sends a 

report of the results back to the coordinator. The coordinator then sends the TERM-VM message to 

terminate the shadow instances. The checkpoint protocol ends when all shadow instances in the VC have 

been successfully saved to persistent checkpoint storage (at time “z”). 

 

 

 
 

Figure 2. Mekha's checkpoint protocol 

 

 

2.3.  Memory-bound time-multiplexed data transfer 

The development of the VM state saving mechanism is a crucial part in the creation of a VC 

checkpoint mechanism. According to the VC checkpoint protocol of Mekha in Section 2.2, the hypervisor of 

every active instance must transfer the state of its VM to the shadow instance while the VM is running. 
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Although we can use traditional precopy live migration to transfer VM state and minimize VM downtime at 

the same time, it is unsuitable for VMs running memory-intensive workloads [27]. Since workloads of the 

VM can be unpredictable, it is difficult to determine an appropriate maximum acceptable downtime value, the 

default parameter for ending the precopy stage of the traditional precopy live migration in QEMU [28]. If this 

value is too low, the precopy algorithm may continue transferring memory pages for an extended period until 

the applications have terminated. The default value of this parameter in QEMU is 300 milliseconds, which is 

too low for numerous memory-intensive applications [27]. 

We propose a new memory-bound time-multiplexed data transfer (MTD) algorithm to address the 

prolonged precopy duration problem previously discussed. In MTD, the VM state consists of the CPU state, 

memory state, and device state. Since the memory state is generally large, MTD transfers the memory state to 

the shadow instance while the active instance is running. MTD separates memory pages into three sets: 

initial, clean, and dirty. Initial pages are memory pages in the initial set that have never been transferred to 

the shadow instance. Clean pages are memory pages in the clean set that have been sent to the shadow 

instance and have not been modified by the VM after being sent. Dirty pages are memory pages in the dirty 

set that have been modified after being sent to the shadow instance. Note that a memory page can only 

belong to one set at a time. The MTD algorithm transfers the initial and dirty pages from the active instance 

to the shadow instance in a time-multiplexed style. It alternates between transferring the initial pages and the 

dirty pages using two user-defined timeout parameters: the initial-set timeout and the dirty-set timeout. These 

parameters determine the duration of time that the MTD spends transferring the initial and dirty pages to the 

shadow instance, respectively. 

At the start of the transfer, the hypervisor of the active instance creates a migration thread to run the 

MTD algorithm concurrently with the VM’s computation. Initially, the algorithm assigns every memory page 

to the initial set, leaving the clean and dirty sets empty. It also shortly pauses the VM to activate the memory 

update tracking mechanism, which starts monitoring memory updates made by the VM from that point 

forward. In our implementation, we utilize the memory tracking mechanism of KVM. Since this tracking 

mechanism can cause overhead for VM execution, it will be turned off once the MTD finishes. 

Figure 3 illustrates the FSM diagram of the MTD algorithm, which consists of four states. These 

states are associated with three stages of the MTD operation. The first stage is the precopy stage, which 

comprises the operations in the “copy-initial-set” and “copy-dirty-set” states. The second stage is the 

extended precopy stage, which corresponds to the operation in the “wait-for-EMD-MTD” state. Finally, the 

stop and copy stage represents the operation in the “stop-and-copy” state. 

The MTD begins by performing memory page transfer operations associated with the “copy-

initialset” state, as shown in Figure 3. During this stage, the algorithm transfers the contents of the initial 

pages to the shadow instance until the initial set is empty or the initial-set timeout expires. The transmitted 

pages are then moved from the initial set to the clean set. If the initial set is empty, the MTD will send an 

MTD-EMPTY message to inform the coordinator and change to operate at the “wait-for-END-MTD” state. On 

the other hand, if the initial-set timeout expires, the MTD algorithm moves to operate at the “copy-dirty-set” 

state, as shown in Figure 3. 

 

 

 
 

Figure 3. An FSM diagram of the MTD algorithm 
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At the “copy-dirty-set” stage, the MTD transfers the contents of dirty pages to the shadow instance 

until it changes operational state. The MTD moves every transmitted dirty page from the dirty set to the clean 

set. If the VM modifies any page in the clean set, the memory tracking module will keep track of them. 

According to the FSM diagram in Figure 3, the MTD will keep transferring dirty pages until the dirty-set 

timeout expires before transitioning back to the “copy-initial-set” state. However, if the dirty set is emptied 

before the timeout, the MTD would retrieve all the modified clean pages from the memory tracking module 

and add them to the dirty set. Then, it will continue transferring the dirty pages until the dirty set is emptied 

for the second time or the dirty-set timeout expires. In the former case, if there is some remaining time before 

the dirty-set timeout expires, the remaining time will be added to the initial-set timeout for the next 

operations at the “copy-initial-set” state. In practice, we recommend setting the initial-set timeout to be 

greater than the dirty-set timeout to speed up the completion of the precopy stage since the number of initial 

pages is generally greater than that of dirty pages. We discuss these timeout values used in our experiments 

in Section 4.2. 

In the “wait-for-END-MTD” state, the MTD will repeatedly transfer the contents of dirty pages to the 

shadow instance. The transferred dirty pages will be moved from the dirty set to the clean set, as usual. If the 

dirty set is empty, the MTD will move the clean pages updated by the VM from the clean set to the dirty set. It 

will then continue transferring the dirty pages to the shadow instance. On the other hand, if the dirty set is 

empty but there are no updated clean pages, the algorithm will wait and periodically poll the memory tracking 

module until newly updated clean pages are found. The MTD algorithm in the “wait-for-END-MTD” state 

keeps performing the dirty page transfers and polling described above until it receives the END-MTD 

command from the coordinator. After receiving the command, the MTD enters the “stop-and-copy” state. 

One of the key features of the MTD algorithm’s design is its cooperation with the global ending 

condition mechanism of the coordinator, which handles the imbalance of precopy durations among active 

instances. According to the FSM diagram in Figure 3, the MTD algorithm running in the hypervisor of each 

active instance will stop operations and immediately transition to the “stop-and-copy” state upon receiving 

the END-MTD command from the coordinator. This can happen at any of the “copy-initial-set”, “copy-dirty-

set”, or “wait-for-END-MTD” states. If the command is received while the MTD is operating in the “copy-

initial-set” or “copy-dirty-set” state, the initial set or the dirty set may not be empty when the MTD enters the 

“stop-and-copy” state. Alternatively, if the command is received while the MTD is in the “wait-for-END-

MTD” state, only the dirty set may not be empty when the MTD performs the “stop-and-copy” operation. 

At the “stop-and-copy” state, the MTD algorithm suspends the active instance as a result of the 

rendezvous time mechanism (described in step 4 of Section 2.2) Then, it retrieves the memory pages that 

have been updated by the VM from the memory tracking module and moves from the clean set to the dirty 

set. Note that these pages are those that have been modified since the last time the movement from the clean 

set to the dirty set took place. Next, the algorithm transfers the contents of the remaining memory pages in 

the initial and dirty sets to the shadow instance. These memory pages will be moved from either set to the 

clean set. Eventually, all memory pages will be in the clean set, and the initial and dirty sets will be empty. 

The MTD will then transfer all the device states to the shadow instance and finish. 

 

2.4.  Global ending condition 

The global ending condition is our invention to address the issue of imbalanced durations of the time 

MTD required to empty the initial set. This imbalance can occur due to various factors such as host 

workload, VM workload, and I/O contention. As a result, the coordinator is unable to initiate the step 4 of the 

checkpoint protocol (in Section 2.2) until the longest transferring initial set has been completed. This is 

undesirable in a large VC. Therefore, the global ending condition was created to solve this problem. 

In our design, the coordinator would perform the following algorithm to evaluate the global ending 

condition. Let 𝑛 represents the total number of VMs in a VC, and 𝑐 represents the number of starter active 

instance that sent the MTD-EMPTY message to the coordinator. Initially, 𝑐 = 0.  

− Based on the MTD algorithm shown in Figure 3, the active instance that holds an empty initial set will 

send the MTD-EMPTY message to the coordinator. These are the starter active instances introduced in 

Section 2.2. Upon receiving this message, the coordinator performs 𝑐 = 𝑐 + 1. 

− The coordinator evaluates the (1). 

 

𝑐 ≥ ⌊𝑛/2⌋ + 1 (1) 

 

If the (1) is true, the global ending condition is satisfied. The coordinator will proceed to perform the next 

step. Otherwise, the coordinator will perform the previous step, waiting for additional MTD-EMPTY 

messages from the starter instances. 
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− Finally, the coordinator broadcasts the END-MTD message to all active instances within the VC. Note that 

we call the active instances that did not send the MTD-EMPTY as the non-starter active instances 

(mentioned earlier in Section 2.2). Therefore, based on the (1), the majority of the active instances would 

be the starter instance while the rest are the non-starter. 

In Figure 2, it can be observed that the coordinator identifies the global ending condition as true 

upon receiving the MTD-EMPTY message from two starter active instances (the active instance 1 and the 

active instance 2). Note that after sending the message, the starter instances enter a “wait-for-END-MTD” 

state (or the extended precopy stage), denoted by the “ext” labels in the figure. Conversely, the non-starter 

instance (the active instance 3) continues performing the precopy stage (labeled “pre”) of its MTD operation 

until the END-MTD message is received. 

It is important to note that the global ending condition equation can be generalized to diversify the 

behavior of the VC checkpoint operation. For instance, if we change the (1) to 𝑐 = 𝑛, the checkpoint protocol 

would wait until the initial set of every active instance is emptied. On the other hand, if 𝑐 = 0, the checkpoint 

protocol would send the END-MTD message together with the START-MTD message, causing the MTD 

algorithm to execute the “stop-and-copy” stage without performing the precopy operation. 

 

2.5.  Synchronization using rendezvous time 

The rendezvous time is a predetermined time in the future on a physical host at which the hypervisor 

will execute an operation. This synchronization mechanism was first introduced in [21]. However, the 

calculation of the rendezvous time in Mekha is different. In Mekha, the coordinator calculates the rendezvous 

time using (2): 

 

𝑟𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠 =  𝑛𝑜𝑤 +  𝑛𝑤𝑑 +  𝑜𝑣ℎ (2) 

 

In (2), the rendezvous time is the sum of the current time on the coordinator when the rendezvous time is 

calculated (𝑛𝑜𝑤), the VC-wide network delay (𝑛𝑤𝑑) or the management network in Figure 1, and 

miscellaneous overheads (𝑜𝑣ℎ). To determine the 𝑛𝑤𝑑, the coordinator broadcasts the CHECK-STATUS 

message to the hypervisors of all active instances, which in turn replies with their status back to the 

coordinator. The 𝑛𝑤𝑑 is the duration from the starting time of the broadcasting of the CHECK-STATUS 

message to the time when the coordinator receives the last reply back from the hypervisors. 

We estimate the 𝑜𝑣ℎ using the equation 𝑜𝑣ℎ = 4𝜎, where 𝜎 represents the standard deviation of the 

𝑛𝑤𝑑 values collected by the coordinator offline prior to the checkpoint operation. The multiplier 4 in the 

equation is based on RFC 6298 [29], which specifies that it should be used as the multiplier for the standard 

deviation in the transmission control protocol (TCP) retransmission timeout calculation. In our experiments, 

we calculate 𝜎 from 50 offline broadcasts of the CHECK-STATUS message to determine the 𝑛𝑤𝑑 and set the 

𝑜𝑣ℎ value to 20 milliseconds. 

 

2.6.  Global consistency 

Figure 4 illustrates the space-time diagram of three VMs and the different types of transmissions of 

layer-2 Ethernet frames among them during a VC checkpoint operation. The annotations “r”, “u”, “v”, “w”, 

“x”, “y”, and “z” are used to indicate the starting and ending points of time of each phase. These annotations 

correspond to the same annotations in Figure 2. 

The preparation phase starts at “r”, where the coordinator instructs the hypervisor of every active 

instance to spawn a shadow instance, and ends at “u”, where the coordinator instructs the hypervisor of every 

active instance to perform the MTD algorithm. The precopy phase starts at “u” and ends at “v”, when the 

algorithm suspends the active instance and enters the “stop-and-copy” state for the first time. Next, the 

brownout phase begins when the first active instance is suspended at “v” and ends when the last one is 

suspended at “w”. The blackout phase begins at “w” when all active instances are suspended and ends at “x” 

when the first active instance starts resuming VM computation. The whiteout phase starts at “x” and ends at 

“y” when all active instances are resumed and running. The final phase, the post-checkpoint phase, begins at 

“y” and ends at “z” when the coordinator receives termination notification from all shadow instances. 

In Figure 4, we define the downtime periods (the dotted lines) of every active instance to 

collectively represent a wide cut line that separates events of every VM in the VC into those before and after 

the cut. The cut covers the area from the “S1” line to the “R1” line in the space-time diagram of every VM. It 

has the following properties: i) According to the MTD algorithm, the suspension of each active instance 

always occurs before the resumption of that instance during a VC checkpoint operation; ii) All the suspension 

events of every active instance in a VC happened before all the resumption events of the active instances. 

This is because all the suspension events (represented by the cross-cut line “S1” in Figure 4) are generated 

from the rendezvous time barrier synchronization in step 4 of the checkpoint protocol, while all the 
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resumption events (represented by the cross-cut line “R1”) are generated by the rendezvous time barrier 

synchronization in step 6. 

We define the sets of events that occur before the cut as the “PAST” set and the set of events 

occurring after the cut as the “FUTURE” set, respectively. Based on these definitions, four types of layer-2 

Ethernet frames can occur during communication during a checkpoint operation: type “a” frames are not 

involved in the checkpoint operation, type “b” frames are those sent from send events in the “PAST” set to 

receive events in the “FUTURE” set, type “c” frames are those sent from the “PAST” events to suspended 

VMs in the cut, and type “d” frames are those sent from the “FUTURE” events to suspended VMs in the cut. 

It is important to note that the type “c” and “d” frames are lost as the destination VM is suspended. 

− Theorem 1. The checkpoint protocol of Mekha always generates a set of globally consistent checkpoint 

files. 

− Proof of Theorem 1. According to the checkpoint protocol of Mekha, a VC checkpoint operation creates 

a set of checkpoint files, which contain the state information of each active instance in the VC. The 

protocol ensures global consistency by preventing a send event in the “FUTURE” set from sending a 

frame to a receive event in the “PAST” set in Figure 4. Based on the global consistency principle [30], a 

set of checkpoints is globally consistent if and only if the inconsistent cut does not exist. According to the 

checkpoint protocol in Figure 2, two barrier synchronizations are used to ensure the following: The first 

barrier synchronization at Step 4 ensures that every event in the “PAST” set has occurred before all active 

instances are suspended to perform MTD's stop-and-copy stage. The second barrier synchronization at 

Step 4 of the protocol ensures that the stop-and-copy stage on every active instance must complete before 

any event in the “FUTURE” set occurs. As a result, there cannot be a receive event in the “PAST” that 

receives a frame sent from the “FUTURE”. Therefore, every event in the “PAST” set always happens 

before every event in the “FUTURE” set, making an inconsistent cut impossible.  

 

2.7.  Time virtualization and message retransmission 

In Mekha's design, we apply the concept of time virtualization to every VM in the VC. Under this 

concept, the clock of a VM progress when the computation of the VM progress. If the VM is suspended the 

clock of the VM is stopped. Time virtualization allows us to leverage the TCP retransmission mechanism to 

retransmit any TCP packet that may be lost during a VC checkpoint operation. When Mekha's checkpoint 

protocol suspends every active instance, their clocks are also paused. During that time, some TCP packets 

may be lost. However, the senders of these packets have their copies in the TCP send buffer. When the 

checkpoint protocol resumes the computation of the active instance, the clock on every active instance will 

continue and the TCP retransmission mechanism will retransmit the lost packet. Since the clock on the sender 

VMs resumed from the time when they were suspended, TCP can retransmit the packet immediately without 

suffering retransmission delays caused by TCP exponential backoff or TCP connection termination due to 

long idle time. 

− Theorem 2. For any Ethernet frame transmitted under a data retransmission mechanism in the network 

stack of a VM, if the retransmission of a data frame is valid before the suspension of the VM and after the 

resumption, the frames sent during a VC checkpoint operation will eventually be received and the 

retransmission mechanism will eventually finish. 

− Proof of Theorem 2. In a network stack that employs a data retransmission mechanism for Ethernet 

frames, the frames transmitted by the sender are subject to potential retransmissions until they are 

successfully received by their intended recipients. Based on the TCP retransmission mechanism [31], the 

sender would continue to retransmit data frames until their acknowledgments (ACKs) are received. 

Furthermore, we define the retransmission to be valid as long as the sender does not exceed the maximum 

number of retransmissions allowed by the protocol. 

During the VC checkpoint operation, VMs undergo suspension. This means that their normal 

execution and the progression of virtual time within the VM are temporarily halted. The VM’s network 

stack is also frozen, preventing any further transmission or reception. Once the VM resumes, the network 

stack becomes active again, and the transmission or reception of Ethernet frames continues from the point 

it left off prior to suspension. Consequently, the transmission state of the frames, including those awaiting 

retransmission, remains unaffected during the suspension period. Therefore, any frames that required 

retransmission before the suspension will still be eligible for retransmission after the VM resumes. 

According to Mekha’s checkpoint protocol, we consider the sending of a data frame in two 

cases. The former, namely Case 1, occurs before the VC-wide VM suspension (line “S1” in Figure 4) 

caused by the barrier synchronization at step 4 of the checkpoint protocol. The latter, namely Case 2, 

happens after the VC-wide VM resumption (line “R1” in Figure 4) caused by the barrier synchronization 

at step 6 of the protocol.  
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Figure 4. Phases and transmissions of the layer-2 frames during a Mekha's checkpoint operation 

 

 

Case 1: There are three scenarios in this case. 

− If a transmitted frame arrives at its destination before both the sender and receiver are suspended at 

line S1, the frame is of type “a” frame. The sender will continue retransmitting the frame until it 

receives the ACK for that frame, after which it will continue retransmission under Case 2. 

− If the sender VM transmits a data frame that is lost because the receiver is already suspended, the 

frame becomes the type “c” frame in the figure. In this case, the sender VM will keep transmitting the 

frame until it is suspended. After the VM resumes, the retransmission will continue under Case 2. 

− If the sender transmits a data frame but the frame arrives at the destination after the destination VM 

resumes its computation (beyond the R1 line), the frame becomes the type “b” frame. Under this 

scenario, the retransmission mechanism will continue until the sender VM is suspended at line S1. 

After the resumption, the retransmission mechanism will operate under Case 2. However, if the sender 

VM receives the ACK of the type “b” frame while the retransmission under Case 2 is operating, it will 

immediately terminate the retransmission mechanism of that frame. 

Case 2: After the sender VM resumes, it may transmit brand new or retransmitted data frames left over 

from before the suspension. In any case, if the resumed VM successfully sends a data frame to its 

destination, the frame becomes a type “a” frame. Once the sender receives the ACK for that frame, the 

retransmission will finish. On the other hand, if the resumed VM cannot transmit the frame because the 

destination VM is not yet resumed, the frame becomes a type “d” frame. However, since the resumption 

of the sender and the destination VM is performed under the same barrier synchronization at Step 6 of the 

checkpoint protocol (the “R1” line), the retransmission will eventually succeed and terminate.  

 

 

3. IMPLEMENTATION 

In the implementation of Mekha, we used Java to develop the checkpoint coordinator and 

checkpoint agent. We employed an asynchronous and event-based approach for handling requests and 

responses. Our implementation utilizes RabbitMQ as a middleware for efficient message routing and 

broadcasting between the coordinator and agents. The communication between the coordinator and agents is 

carried out through asynchronous requests and responses. The coordinator sends commands as request 

messages, which are then broadcasted to the agents. The agents receive these commands and translate them 

into the QEMU machine protocol (QMP) format before forwarding them to the instances. 

We have implemented the MTD algorithm by modifying the precopy live migration mechanism of 

QEMU version 4.1. We have implemented two new QMP functions, stop(rendezvous) and cont(rendezvous), 

in the QEMU hypervisor to suspend and resume a VM at the rendezvous time. To implement time 

virtualization, we leveraged the real-time clock (RTC) of the QEMU instance using the 𝑐𝑙𝑜𝑐𝑘 = 𝑣𝑚 option. 
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4. EVALUATION 

We have conducted several experiments to assess the checkpoint performance of Mekha. These 

experiments aim to achieve two primary objectives. First, we aim to evaluate checkpoint performance by 

employing various checkpoint mechanisms across different types of checkpoint storage. Second, we intend to 

measure the impact of differences in precopy durations on the performance of VC checkpoint mechanisms. 

These experiments are vital for gaining a comprehensive understanding of Mekha's checkpoint capabilities 

and their adaptability to various scenarios. 

The experiments were conducted using three physical hosts, i.e., Host1, Host2, and Host3, as shown 

in Figure 5. Host1 and Host2 are used for running a VC while Host3 is used for running the coordinator. 

Host1 and Host2 are Dell PowerEdge R720 servers. Each server has two hyper-threading 10 cores Xeon E5-

2600v2 2.8GHz CPUs and 192GB DDR3 RAM. The local SSD storage is a 500GB Samsung 970 EVO Plus 

NVMe card connected to the PCIe 3.0 of the server. Both hosts are connected to a 36TB Dell PS4110E 

EqualLogic SAN storage via a 10Gbps network and use iSCI protocol to access the storage. Each server has 

two ethernet network interface cards (NICs); the first NIC is connected to a 10Gbps Ethernet network (the 

data network in the figure) and the second NIC is connected to a 1Gbps network (the management network). 

Host3 is a server that has a 1Gbps Ethernet NIC connected to the management network. The network time 

protocol (NTP) is used to synchronize time among these hosts. Figure 5 shows the VC architecture used in 

our experiments. All VMs in a VC are connected to a virtual network created over the 10Gbps Ethernet 

network. We use Open vSwitch [32] to create virtual switches on Host1 and Host2 and link them together 

using a GRE tunnel over the 10 Gbps Ethernet network. 

 

 

 
 

Figure 5. The virtual cluster architecture used in our experiments 

 

 

In our experiments, we created two VCs of different sizes to evaluate the performance of three 

different VC checkpoints and restart mechanisms. 

− The H1 VC consists of 5 VMs, including 1 master VM and 4 worker VMs. The master VM launches MPI 

applications while the worker VMs perform computation. In the H1 VC, we run 2 and 3 VMs on Host1 

and Host2, respectively. Each VM has 16 vCPU cores, 16 GB vRAM, 40 GB of storage, a 1 Gbps virtio-

net virtual network interface (vNIC), and a 10 Gbps vNIC. 

− The H2 VC consists of 17 VMs, including 1 master VM and 16 worker VMs. We assign 8 VMs and 9 

VMs to run on Host1 and Host2, respectively. Each VM has 4 vCPU cores, 4 GB vRAM, 20 GB of 

storage, a 1 Gbps vNIC, and a 10 Gbps vNIC. 

In our experiments, we use both a local NVMe solid-state drive (SSD) and a SAN for checkpoint 

storages. Since we have noticed that I/O often hangs when we simultaneously save state of all instances in 

the H2 VC to the SAN, we have implemented a scheduling algorithm in which the state of at most two 

instances on a host will be saved to storage simultaneously. To test Mekha on computation and 
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communication-intensive applications, we run the MPI version of the Block Tri-diagonal solver (BT) class D 

from the NAS Parallel Benchmark version 3.3.1 [26] in the VCs. The BT has execution times long enough to 

create multiple checkpoints and yet not too long to perform multiple runs. Additionally, the problem sizes are 

suitable for the available resources. 

 

4.1.  Other checkpoint mechanisms 

We have developed two additional VC checkpoint mechanisms for performance comparisons with 

Mekha. They are the virtual cluster checkpoint-restart (VCCR) based on the work of [33] and the In- memory 

virtual cluster checkpoint-restart (IMVCCR) based on the work of [34]. Both mechanisms use a checkpoint 

coordinator to control the checkpoint operation and employ time virtualization and guest OS-level packet 

retransmission mechanisms similar to that of Mekha for maintaining reliable communication during a VC 

checkpoint operation. 

The VCCR protocol is a coordinated checkpointing method that uses a two-phase commit protocol 

to achieve barrier synchronization and maintain global consistency. The protocol begins by suspending all 

VMs after applying a barrier synchronization before proceeding to save the state of each VM to designated 

checkpoint storage. Once all VMs have completed their state savings, the coordinator initiates another barrier 

synchronization to resume the execution of all VMs. We have mapped the operations of the VCCR 

checkpoint protocol into phases, which partially resemble those of the Mekha protocol, as illustrated in 

Figure 4. Like Mekha, the duration of each phase is measured by the coordinator. The preparation phase is 

the duration from the initiation of the checkpoint operation to the first suspension of a VM. The brownout 

phase is defined as the duration from the end of the preparation phase to the suspension of all VMs in the VC. 

The blackout phase begins at the point of all VM suspension and ends at the point of the first VM 

resumption. The whiteout phase is the duration from the end of the blackout phase to the resumption of all 

VMs. The precopy and post-checkpoint phases do not exist in VCCR, as it does not implement the precopy 

algorithm. 

IMVCCR is a VC checkpoint mechanism that uses a modified version of the precopy algorithm for 

VM live migration in order to reduce the downtime of VM checkpointing. Similar to Mekha, IMVCCR uses 

shadow VMs to temporarily save checkpoints in memory before eventually saving them to persistent storage. 

The checkpoint protocol of IMVCCR operates in five phases, which closely resemble those of Mekha. In the 

preparation phase, the coordinator creates a shadow VM for each active instance of the VC. Once all shadow 

VMs have been created, the coordinator initiates the precopy phase, instructing every active instance to begin 

the modified VM live migration mechanism, namely the extended precopy algorithm. This algorithm 

employs traditional precopy live migration techniques to transfer memory pages to the shadow instance until 

the estimated downtime of transferring dirty pages in a single iteration is less than the maximum acceptable 

downtime. The active instance then sends a PRECOPY-CONVERGED message to notify the coordinator. 

After this, the active instance continues to transfer dirty pages. Upon receipt of the PRECOPY-CONVERGED 

message from every VM, the coordinator broadcasts an END-PRECOPY message with a rendezvous time to 

the hypervisors of each active instance. Upon receipt of this message, the hypervisor suspends the VM at the 

rendezvous time, ending the precopy stage and initiating the stop-and-copy stage of live migration. The 

remaining operations in the brownout, blackout, whiteout, and post-checkpointing phases are identical to 

those of Mekha. IMVCCR also uses time virtualization and rendezvous time synchronization similar to 

Mekha. However, unlike Mekha, IMVCCR does not have mechanisms to handle the imbalance of precopy 

durations. We will discuss their differences in Section 4.6. 

 

4.2.  Experimental parameters and configurations 

For Mekha, we assume that the number of the initial pages of the MTD algorithm is greater than the 

number of dirty pages. Therefore, we set the initial-set timeout to 3000 milliseconds, the dirty-set timeout to 

750 milliseconds, and the 𝑜𝑣ℎ value (see Section 2.5) to 20 milliseconds. These values serve as the default 

parameters for all experiments. For IMVCCR, we have to define different values for the maximum 

acceptable downtime parameter used in the execution of the BT benchmark on the H1 and H2 VCs. The 

default value for this parameter in traditional QEMU is 300 milliseconds; however, when running the BT on 

the H1 cluster, the precopy operation does not stop until the benchmark finishes. Therefore, we are required 

to manually set the parameter value to 3500 milliseconds to avoid failure of the experiments. In contrast, the 

default value is sufficient for running the BT benchmark on the H2 VC. 

In both Mekha and IMVCCR, we set the maximum data transfer bandwidth for sending VM state 

from active to shadow instances to its maximum Int 32 value (approximately 2.14 Gigabytes per second or 

17.12 Gbps). This is done to limit interference with other VMs running on the same host. During the 

execution of the BT benchmark on H1 and H2 VCs, the checkpoint interval was set to 8 minutes; this 

means that the coordinator will initiate a checkpoint operation every 8 minutes until the BT benchmark is 
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completed. We evaluated three checkpoint mechanisms (VCCR, IMVCCR, and Mekha) and two storage 

types (SSD and SAN). Since both Mekha and IMVCCR use shadow instances as transient checkpoint 

storage, we defined a SHADOW storage as a baseline measurement of storage performance; using this 

storage the protocols terminate the shadow instance after the precopy algorithm finishes without saving 

state into persistent storage. Thus, giving us 8 cases of a combination of checkpoint mechanisms/storage 

types for experiments on H1 and H2 VCs. Every data point presented here is an average of 10 independent 

runs. 

 

4.3.  VC checkpoint overheads 

The overheads of checkpoint operations are the extra amount of time that the application runs with 

checkpoint capability enabled compared to its normal execution time. The average checkpoint overheads per 

operation (avg.overheads) is referred to the overheads that are created from a single checkpoint operation. 

Since Mekha and IMVCCR perform live migration to replicate the state of active instances to main memory 

before lazily saving them to persistent storage, they are able to effectively hide latency when writing VM 

state to storage, particularly on SAN storage, which has low write bandwidth. Thus, there are three main 

factors that affect the checkpoint overheads of Mekha and IMVCCR: i) the interference from precopy, 

suspension, and resumption operations; ii) the checkpoint downtime duration; and iii) the interference caused 

by saving the state of the shadow VMs to checkpoint storage. In contrast, VCCR pauses VMs during the 

process of saving VM state to storage, and as a result, the checkpoint overheads are dominated by the 

downtime of each VM. Therefore, the checkpoint overheads of VCCR are substantially higher than that of 

Mekha and IMVCCR. 

As shown in Figure 6(a), the avg.overheads of the Mekha and IMVCCR on SAN storage are 

significantly lower than that of the VCCR. The avg.overheads of Mekha on SAN storage on the H1 and H2 

VCs are 91.6% and 83.7% lower, respectively than those of VCCR on SAN storage. However, the overheads 

of VCCR improved significantly when we perform checkpoint operation on the SSD storage that has high 

write bandwidth. In Figure 6(a), the avg.overheads of Mekha on the H1 and H2 VCs are 58.53% and 26.88% 

lower than those of VCCR when using SSD instead of SAN. Finally, we observe that the overheads of 

Mekha and IMVCCR are slightly different from one another since both mechanisms use precopy algorithms. 

We will discuss the impact of the precopy mechanisms in Section 4.5.1. 

 

4.4.  VC checkpoint latency 

The latency of a VC checkpoint operation is the duration from the time the VC checkpoint 

mechanism starts to the time it ends. The average checkpoint latency (avg.latency) is referred to the latency 

that is created from a single checkpoint operation. From Figure 6(b), we can see that avg.latencies for each 

mechanism are dependent on the write IOPS and write bandwidth of checkpoint storage. Our experiments 

have revealed that most of the checkpoint latency is spent on saving VC state to storage, suggesting that 

latency is highly influenced by storage’s write IOPS and write bandwidth. As a result, avg.latencies for SSD 

storage are significantly lower than those for SAN storage due to the superior performance of SSD; for 

example, Mekha’s avg.latencies using SSD storage are 85.6% and 88.5% lower than those using SAN 

storage on H1 and H2 VCs respectively. 

 

 

 
(a) (b) 

 

Figure 6. Comparing checkpoint performance metrics for different checkpoint mechanisms on the H1 and H2 

VCs in (a) average checkpoint overheads per a checkpoint operation (sec) and (b) average checkpoint latency 

per a checkpoint operation (sec) 
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4.5.  Analysis of the checkpoint phases 

The avg.latencies presented in Figure 6(b) can be further dissected into the various checkpoint 

phases, as shown in Figure 7. We analyze the duration of each phase in the following sections. Note that the 

coordinator uses time on its host to record the starting and ending times of each phase. In the beginning, the 

duration of the preparation phase refers to the time that the coordinator uses to prepare the checkpoint 

mechanism. It is generally negligible, as shown in Figure 7(a). The average duration of the preparation phase 

(avg.preparation) of Mekha and IMVCCR is longer than that of VCCR due to the spawning of the shadow 

instance. 

 

4.5.1. Performance of memory precopy mechanism 

According to the MTD algorithm, the length of its precopy duration depends on i) the total amount 

of memory pages used by the VM, ii) the data transfer bandwidth, and iii) the dirty page generation rate. 

Figure 7(b) reveals that the average duration of the precopy phase (avg.precopy) for Mekha in H1 VC is 

longer than that of H2 VC due to the following reasons: i) The amount of memory usage for active instances 

in H1 VC when running the BT benchmark is higher than that of the H2 VC. In our experiment, both H1 and 

H2 VCs ran the same class of BT benchmark consisting of 64 MPI tasks; however, as the H1 cluster has 4 

compute node VMs each VM hosted 16 MPI tasks. On the other hand, each VM in the H2 VC ran 4 MPI 

tasks as there were 16 compute node VMs. Our measurements show that compute node VMs in H1 and H2 

VCs use the memory of approximately 7.99 GB and 2.15 GB, respectively; and ii) Dirty page generation 

rates of compute node VMs in H1 VC are higher than those in H2 VC as H1 VMs run 4 times more MPI 

processes than those on H2 VMs. 

The precopy durations of Mekha and IMVCCR are different since they use different precopy 

algorithms. We will discuss their differences in two cases: i) On H2 VC, avg.precopy durations of Mekha are 

substantially lower than those of IMVCCR because Mekha's global ending condition can handle load 

imbalance better than that of IMVCCR. For instance, avg.precopy duration using SAN storage is 55.38% 

lesser than that of IMVCCR in the Figure 7(b). We will discuss the difference of the precopy duration of 

Mekha and IMVCCR again in Section 4.6; and ii) On the other hand, the precopy durations of IMVCCR are 

slightly lower than those of Mekha in the H1 VC because we had to manually set the maximum acceptable 

downtime value to 3,500 milliseconds (instead of using the default value) in order to achieve desired precopy 

performance as shown in Figure 7(b). Using lower values would result in checkpoint failure since the 

extended precopy algorithm will continue to transfer memory pages from active to shadow instances until the 

BT benchmark completes execution. It is important to note that this problem does not exist in Mekha because 

the MTD algorithm does not rely on the maximum acceptable downtime value to terminate. 

 

4.5.2. VC suspension and resumption performance 

The experimental results confirm the advantages of the rendezvous time synchronization in Mekha 

and IMVCCR over the simple, two-phase commit synchronization mechanism used in VCCR. As shown in 

Figure 7(c) and Figure 7(d), the average duration of the brownout phase (avg.brownout) and the average 

duration of the whiteout phase (avg.whiteout) for Mekha and IMVCCR are significantly shorter than that of 

VCCR. Note that the avg.whiteout of all three checkpoint mechanisms is higher than their avg.brownout 

because the resume VM operation depends on the individual workload of the VM and requires a longer 

duration to complete. 

 

4.5.3. VC checkpoint downtime 

From experiments, it can be observed that the average duration of the blackout phase (avg.blackout) 

of Mekha and IMVCCR is substantially shorter than that of VCCR for two reasons. First, Mekha and 

IMVCCR transfer state of active instances to shadow instances while VCCR saves state of the VM directly to 

persistence storages. Second, Mekha and IMVCCR use memory precopy mechanisms to minimize the 

number of memory pages transferred from active to shadow instances during the blackout phase. From 

Figure 7(e), avg.blackout of Mekha and IMVCCR is much shorter than avg.blackout of VCCR in both H1 

and H2 clusters. 

 

4.5.4. VC state saving latency (VSL) 

For VCCR, the VSL is equivalent to the duration of the blackout phase; however, for Mekha and 

IMVCCR, it is the average duration of the post-checkpoint phase (avg.post-checkpoint). By comparing the 

VSL of each mechanism reported in Figure 7(e) and Figure 7(f) against the checkpoint latencies in  

Figure 6(b), it was determined that VM state saving latencies are a dominant factor in overall latency in each 

case. For example, the VSL of Mekha using SSD and SAN storage on H1 VC in Figure 7(f) account for 

approximately 96.55% and 95.56% of corresponding avg.latencies of Mekha in Figure 6(b). 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) (f) 

 

Figure 7. Comparing the duration of each checkpoint phase for each checkpoint mechanism when performing 

the checkpointing operation on the VC of 5 and 17 VMs with respect to: (a) average duration of the 

preparation phase (sec), (b) average duration of the precopy phase (sec), (c) average duration of the brownout 

phase (ms), (d) average duration of the whiteout phase (ms), (e) average duration of the blackout phase (sec), 

and (f) average duration of the post-checkpoint phase (sec) 

 

 

4.6.  Impacts of the imbalance of durations of VM memory page transfers 

This section aims to investigate the effect of an imbalance in the memory page transfer duration on 

the checkpoint performance of Mekha and IMVCCR. In our study, we chose to analyze the experimental 

results of two representative checkpoint operations, which were conducted on the H2 cluster. Figure 8 

presents the trimmed checkpoint phase diagrams of IMVCCR and Mekha for the selected runs, with 

timelines adjusted to begin at the same point in time and have a consistent timescale. 

From Figure 8(a), it can be observed that the length of the precopy phase of IMVCCR is equivalent 

to the longest “IMVCCR-mandatory-precopy” duration, the dark blue lines in the figure. On each VM, this 

duration starts from the beginning of the precopy operation and ends when it sends a PRECOPY-

CONVERGED message to the coordinator. The active instance of VM4 shows the longest “IMVCCR-

mandatory-precopy” period, which ends when the extended precopy mechanism of IMVCCR estimates the 

downtime to be lower than 300 milliseconds (the default maximum acceptable downtime). 

After a VM sent the PRECOPY-CONVERGED message, it will enter an “IMVCCR-extended-

precopy” period as illustrated by light blue lines in Figure 8(a). During this period, the hypervisor will 

continue to transfer dirty pages until they receive an END-PRECOPY message from the coordinator. 

According to global ending conditions of IMVCCR, the coordinator will broadcast an END-PRECOPY 

message if and only if it received the PRECOPY-CONVERGED message from every active instance. 
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Therefore, VC precopy phase will be prolonged until the completion of the longest “IMVCCR-mandatory-

precopy” duration. 

On the other hand, the length of the VC precopy phase of Mekha depends on the majority of the 

“MTD-mandatory-precopy” durations (the dark blue lines in Figure 8(b)) of the active instances. On each 

VM, this duration starts from the beginning of the MTD precopy operation and ends either when the VM 

sends an MTD-EMPTY message to the coordinator or when it receives an END-MTD message from the 

coordinator. As discussed earlier in Section 2.4, the VC consists of the starter and non-starter active 

instances. In Figure 8(b), the MTD mechanism of the starter active instances will enter the “wait-for-END-

MTD” state (the light blue lines in the figure) after they send the MTD-EMPTY message. During this period, 

the mechanism continues to transfer dirty pages to shadow instances. Since the global ending condition of 

Mekha is true when the coordinator receives MTD-EMPTY messages from the majority of active instances, 

the length of the VC precopy phase will be as long as either the median value (if the number of VMs is odd) 

or the highest of the two middle values (if the number of VMs is even) of the “MTD-mandatory-precopy” 

durations of every active instance. From our analysis, we find the following. 

− The global ending condition of Mekha can effectively handle the imbalance of precopy durations among 

the active instance and reduce VC precopy phase duration substantially. By comparing the duration of the 

H2 VC precopy phase of Mekha and IMVCCR in Figure 7(b), it can be seen that Mekha's precopy phase 

using SAN storage is 55.38% shorter than IMVCCR's; this difference can also be observed in 

visualizations in Figure 8(a) and Figure 8(b). 

− While Mekha reduces the imbalance of the precopy durations among the active instances, the blackout 

duration of Mekha is higher than those of IMVCCR. Since the active instances of Mekha have shorter 

precopy duration than those of IMVCCR, Mekha has more memory pages left to be transferred from the 

active to shadow instances during the blackout phase. The experimental results in Figure 7(e) as well as 

the visualization in Figure 8 support this observation. 
 

 

 
(a) 

 

 
(b) 

 

Figure 8. The trimmed checkpoint phase diagram shows impact of imbalance of the durations of VM 

memory pages transfer of (a) IMVCCR and (b) Mekha on the H2 cluster 

 

 

5. RELATED WORK 

The Emulab system [21], allows users to roll back and replay applications in a testbed environment. 

The checkpoint mechanism in Emulab implements a coordinated checkpointing mechanism, in which all 

virtual machines in the testbed environment are suspended simultaneously before the checkpoint operation 

begins, and then resumed simultaneously after the operation completes. The Emulab system also introduces 

the concept of a temporal firewall, which is used to isolate the time inside the guest operating system from 

that of the physical host. The time virtualization concept of Mekha is similar to Emulab's temporal firewall. 
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Additionally, while the implementation of the temporal firewall in Emulab requires modifications to the 

guest operating system's kernel, Mekha's time virtualization leverages the existing timing options of the 

QEMU software. Emulab also employs time synchronization on all hosts to reduce the effects of clock skew 

caused by the suspension and resumption of virtual machines. Mekha's rendezvous time synchronization is 

inspired by Emulab, however, the rendezvous time and detailed implementation are different. In Emulab, 

every in-flight layer-2 Ethernet frame is saved in Emulab's delay nodes to avoid network data loss, whereas 

no modifications to the networking components are required in Mekha.  

VCCR [33] is another coordinated checkpoint-restart mechanism that uses a barrier synchronization 

to prevent the occurrence of an inconsistent global state during a virtual machine checkpoint operation. Like 

Mekha, VCCR also employs virtual time inside the virtual machines. We have described VCCR and used it 

for performance comparison in Section 4.1 However, a major drawback of VCCR is that it may cause high 

downtime during a checkpoint operation. 

VNsnap [19] is a coordinated checkpointing system that pioneers the use of precopy live migration 

mechanisms for virtual machine checkpoint-restart operations. At a virtual machine checkpoint event, 

VNsnap instructs each VM to perform the traditional precopy live migration mechanism, transferring the 

virtual machine state to a “VNsnap-memory” daemon process while the virtual machine continues running. 

This daemon operates as an in-memory storage, similar to the shadow virtual machine of Mekha. However, 

since the traditional precopy mechanism relies on the maximum acceptable downtime parameter, the precopy 

duration of each virtual machine may differ. To prevent the global inconsistency problem, VNsnap 

implements a specialized virtual network infrastructure, the VIOLIN network, which uses Mattern's 

algorithm [35] to maintain global consistency by dropping some layer-2 Ethernet frames. However, this can 

cause the TCP backoff problem between virtual machines, resulting in long delays in MPI communication 

during and after virtual machine checkpoint operations. To mitigate this issue, VNsnap stores and re-injects 

the layer-2 Ethernet frames that do not create an inconsistent global state during a cluster-wide checkpoint 

operation in buffers provided by the virtual network infrastructure. However, in some cases, storing and re-

injection of the layer-2 Ethernet frames are ineffective, such as re-injecting the frames after the 

retransmission mechanism has begun. On the other hand, Mekha does not control the Ethernet frames in the 

virtual network and lets the TCP handle the occurrence of lost frames. Since VNsnap uses the message 

coloring algorithm to create a consistent checkpoint, the hypervisor needs to check all inbound layer-2 

Ethernet frames during a virtual machine checkpoint event. Therefore, it creates significant overhead, 

especially for a communication-intensive application. 

SyncSnap [24] attempts to alleviate the layer-2 Ethernet frames retransmission problems by 

suspending all virtual machines at the same time to minimize the TCP backoff problems. To do this, it needs 

to adjust the transfer speed of the precopy algorithm of each virtual machine in the cluster. However, finding 

an appropriate transfer speed for arbitrary applications is not a trivial task. Adjusting the precopy speed may 

reduce the overall performance of the virtual machine checkpoint operation and prolong the checkpoint 

latency. In contrast, Mekha synchronizes the suspension and resumption of virtual machines using the 

rendezvous time and does not reduce the precopy speed. 

IMVCCR is a coordinated checkpoint mechanism that is improved from VCCR. It uses a precopy 

algorithm to reduce the number of memory pages that need to be transferred after suspending the virtual 

machine. It uses main memory as transient storage to reduce checkpoint downtime. IMVCCR has two 

drawbacks: i) the performance of the checkpoint mechanism is poor when the VC checkpoint operation runs 

into a workload imbalance situation; and ii) Unless the precopy algorithm is manually configured, the 

precopy algorithm does not stop iterating memory page transfers when virtual machines run computation-

intensive or memory-intensive workloads, thus the checkpoint operation will never complete until the 

workload of virtual machines decreases. 

 

 

6. DISCUSSION 

In this section, we will discuss the costs associated with using Mekha to provide transparent 

checkpointing capabilities in a cloud data center. We will then argue that these expenses are reasonable. 

Regarding expenses, Mekha necessitates the allocation of the following additional resources: i) Using main 

memory as transient checkpoint storage may cause insufficient memory space problems on physical hosts. 

Mekha requires at least twice the current size of running VMs during a checkpoint operation. As the VMs in 

a VC are distributed across multiple hosts, the available memory space on some hosts may be insufficient; 

and ii) In addition, extra CPU cores are required to run the shadow VMs and perform the precopy operation. 

Before the checkpoint operation, the coordinator must run a shadow VM for each active instance. The 

shadow VM requires a single thread of operation to receive memory pages from the active instance and save 

them to the checkpoint storage. During the precopy phase, the hypervisor of each active instance has to 
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spawn a migration thread to perform the MTD precopy algorithm. Most of these tasks operate while the VM 

is running, which may slow down the VM's execution. 

We contend that the cloud management system in the data center can address these issues. 

Possible solutions include the followings. First, the cloud management system can pause or relocate other 

VMs that are not part of the VC to other hosts to free up memory space. Second, the cloud management 

system may move active instances to other hosts that have sufficient memory. Third, the checkpoint 

coordinator can spawn shadow instances on different hosts. Finally, in the worst case where the remaining 

memory space is insufficient, the hypervisor may switch to other hypervisor-level checkpoint mechanisms 

such as VCCR. However, these solutions require further investigation in future work. Additionally, 

although Mekha requires extra resources to perform a VC checkpoint operation, these resources are only 

utilized during a VC checkpoint event. They are not constantly being used throughout the application's 

execution like in the HA solution such as Remus [36]. We believe that if the VC checkpoint operation is 

performed at an appropriate interval or under a practical operational policy, the costs of additional 

resources such as those required to run the shadow VM would be acceptable to users. Once again, more 

research is necessary to explore these issues. 

 

 

7. CONCLUSION AND FUTURE WORKS 

In this paper, we introduce Mekha, a novel hypervisor-level checkpoint-restart mechanism. 

Mekha is specifically designed to efficiently handle checkpoint and restart operations for clusters of virtual 

machines or virtual clusters in cloud computing environments. Mekha operates transparently with the 

guest operating system and applications, allowing users to seamlessly deploy their applications without 

modification. There are three key design principles that make Mekha a practical and efficient mechanism. 

First, Mekha employs a novel memory transfer precopy live migration, namely the MTD, mechanism to 

save the state of each VM in a VC within a memory-bound duration. We also introduce the global ending 

condition to handle the imbalance of the MTD precopy duration among the VMs. Second, Mekha utilizes 

barrier synchronizations to provide a globally consistent state for the checkpoints of every VM. The 

proposed rendezvous time synchronization allows for each VM to perform a VC-wide operation almost 

simultaneously. Finally, Mekha leverages the existing data retransmission mechanisms of the guest 

operating system, under the time virtualization principle, to handle message loss during a VC checkpoint 

operation. Our approach eliminates the need for complex network subsystems or modifications to the 

message passing interface (MPI) library.  

We believe that Mekha is a promising software system for provisioning a checkpoint-restart 

mechanism in a cloud computing environment. By using Mekha, users can run their MPI applications on a 

cluster of VMs without modifying the applications of guest operating system since all checkpoint and restart 

mechanisms are performed at the hypervisor level. In terms of performance, our experimental evaluations 

have shown that Mekha generates low per-checkpoint overhead and latency compared to other hypervisor-

level mechanisms. In future work, we plan to evaluate Mekha under real-world distributed applications and 

examine the performance of the memory transfer mechanism on VMs running other memory-intensive 

applications. 
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