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Abstract: Photoactive, optically transparent heterostructures from silver nanowires and titanium
dioxide were obtained by the sol-gel method on the surface of a polyethylene terephthalate film.
The characteristics of optical transmission on the wavelength and those of dielectric permittivity,
conductivity and dissipation on frequency in the range of 25–1,000,000 Hz were investigated.

Keywords: thin metal-oxide films; heterostructures; transparent electroconductive coatings; silver
nanowires; titanium dioxide

1. Introduction

Transparent conductive electrodes (TCFs) are used in various optoelectronic devices
such as OLED, solar batteries and touch screens as they determine characteristics of these
devices such as light transmission, absorption, injection and emission [1–3]. A promising
research direction now is creating flexible optoelectronic devices on transparent polymer
substrates as, in addition to the convenience of application of such devices, another ad-
vantage of their use consists in replacing conventional vacuum technologies of production
with alternative methods, such as 2d printing and the deposition of transparent conductive
layers by solution technologies. Among the widely used electroconductive transparent
oxides, indium tin oxide (ITO), most often applied in TCF, has low resistance and a high
transmission coefficient. However, bending an ITO film electrode leads to its damage,
and it loses losing electric characteristics. Moreover, ITO electrodes are produced on ex-
pensive vacuum equipment, increasing the prices of the goods in which this material is
used. Among other materials that are considered to be potential alternatives to ITO are:
silver nanowires, carbon nanotubes and graphene and metal grids [4–7]. These materials
make the electrode flexible, whereas nonflexibility is among the ITO electrodes’ drawbacks.
However, layers of graphene or carbon nanotubes as well as metal grids deposited on the
surface of flexible transparent substrates have low electric and optical properties compared
with ITO and high costs of production and dispersion into homogeneous suspensions
without bundles or aggregates (carbon nanotubes) or separate sheets (graphene) and thus
remain at the research stage [8,9]. One of the advantages of silver nanowires over the
other above-mentioned alternative materials is that TCFs can be produced by employing a
very simple coating process, which makes their production costs low, while the nanowire
coating resistance and transmission characteristics are similar to those of conventional ITO
electrodes. In particular, silver nanowire TCFs are suitable for producing flexible TCFs
because their resistance changes under mechanical deformation and the layers of silver
nanowires can be formed on TCF at low temperatures [10].
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We have earlier studied the optical and dielectric properties of nanocomposites ob-
tained on the surface of a transparent polyethylene terephthalate film by the layer-by-layer
method combining the sol-gel technology and colloid-chemical reduction of silver and
gold ions and alternating them with layers of titanium dioxide films. We have obtained
optico-dielectric characteristics of coatings from titanium dioxide and TiO2, TiO2/Ag
and TiO2/Ag/TiO2 silver anisotropic nanoparticles and found the interconnection of the
optical transmission with the frequency dependence of the dissipation factor for these
materials [11,12].

The aim of this study is to identify regularities of mutual effects of spectral and
dielectric characteristics of thin metal-oxide films on the spectral and dielectric properties
of heterostructures obtained by combining films with different conductivity types and
optical characteristics. We also aim to develop a low-temperature method of obtaining
photoactive metal-oxide semiconductor films on flexible transparent polymer substrates.

One of the goals of the study was to obtain transparent electroconductive coatings by
using nanoheterostructures of silver nanowires and titanium dioxide films on a flexible
transparent substrate from polyethylene terephthalate. Another task was to compare the
effect of combining isotropic and anisotropic silver fillers of films on their optical and
dielectric properties.

Metal nanowires of the same size can be synthesized by different chemical methods,
among which the most astonishing results are achieved by the polyol process [13,14]. In
the polyol synthesis, silver ions are reduced as a result of the following reactions in heated
ethylene glycol:

2HOCH2CH2OH→ 2CH3CHO + 2H2O
2Ag+ + 2CH3CHO→ CH3CHO-OHCCH3 + 2Ag + 2H+

It is assumed that the process of silver nanowire formation in polyol synthesis follows
the scheme shown in Figure 1 [15,16].
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The authors studying silver nanostructures synthesized by the polyol method have
shown that the process of initial nucleation has a great effect on the final product morphol-
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ogy [13]. The process of crystallization nuclei formation is normally controlled by adding
inorganic ions or organic molecules to the reaction system [17]. The authors of works [18,19]
synthesized different silver nanostructures including nanocubes, nanowires and nanotetra-
hedrons using the polyol process with a chloride addition known as “oxidative etching of
nuclei”. By changing the concentration and synthesis duration it is possible to control the
diameter of silver nanowires [13]. At the same time, changes in the concentration have a
greater effect on product morphology, whereas the possibilities to control the diameter by
changing the reaction duration are quite limited [13,14,18–24].

2. Materials and Methods
2.1. Synthesis of Components for Consecutive Deposition of Electroconductive Photoactive Layers

The TiO2 sol was prepared by the low-temperature sol-gel method using titanium
tetraisopropylateTi(OC3H7)4 (98%, Aldrich, St Louis, MO, USA) as a precursor [25]. To do
so, 10 mL titanium isopropylate was slowly added, by drops and under constant mixing,
to bid stilled water (100 mL) heated to 80 ◦C. This immediately produced a white fluffy
precipitate. The precipitate suspension was mixed with nitric acid (65% HNO3, Aldrich,
St Louis, MO, USA) at the ratio [Ti]/[H+] = 2.5. The obtained colloid was mixed at 70 ◦C
for 4 h with the aggregated amorphous precipitate, due to peptization and heat effects,
transformed into a transparent colloidal opalescent TiO2 sol that was used for forming
films on the surface of the transparent polyethylene terephthalate substrate and obtaining
a dry powder.

Figure 2 presents the XRD (D8 Advance, Bruker, Germany) pattern of prepared sample.
The qualitative phase composition was determined using the PCPDFWIN database, the
full-profile analysis program POWDER CELL 2.4. and the data from the crystallographic
and crystallochemical database for minerals and their structural analogs (URL http://
database.iem.ac.ru/mincryst (accessed on 1 October 2022)).
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Figure 2. X-ray diffraction analysis of titanium dioxide TiO2 powder obtained by low-temperature
sol-gel.

The TEM image (TEM JSM-6510LV, JEOL Ltd, Japan) of titanium dioxide nanoparticles
are shown in Figure 3. The sample has a homogeneous structure with a narrow particle size
distribution (BET method, NOVA 1200e gas sorption analyzer, Quantachrome, Boynton
Beach, FL, USA).
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Figure 3. Characteristics of titanium dioxide nanoparticles obtained by low-temperature sol-gel
method: (a) TEM-image; (b) general diffraction; (c) nitrogen sorption isotherm and pore size distribu-
tion.

The TiO2 film morphology was analyzed by atomic-force microscopy (SOLVER P47H-
PRO, NT-MDT, Russia) (Figure 4). The obtained data indicate the uneven distribution of
titanium dioxide nanoparticles in the film, which enables the effective interphase interaction
of titanium dioxide with the silver nanoparticles. Additionally, the narrow size distribution
of titanium dioxide nanoparticles with the maximum around 16 nm contributes to the
formation of tight contacts on the interphase boundary TiO2-Ag.
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2.2. Development and Optimization of Conditions of Polyol Synthesis of Silver Nanowires as Fillers
of TiO2/Ag and TiO2/Ag/TiO2 Nanoheterostructures

Our polyol synthesis technique included the following original reagents: ethylenegly-
col (EG) (Aldrich, St. Louis, MO, USA) as the solvent and reducing agent, AgNO3 (Aldrich,
St. Louis, MO, USA) and polyvinylpyrrolidon- PVP (MW = 55,000) (Aldrich, St. Louis, MO,
USA). KCl (Aldrich, St. Louis, MO, USA) and K4Fe(CN)6 were used as intensifiers of the
anisotropic growth of Ag nanowires during the synthesis procedure.

The syntheses conducted in advance, in which the quality of the obtained nanowires
was controlled by optical microscopy, showed that the optimal ratio of the components
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ensuring the largest yield of the target product with the minimum content of Ag isotropic
nanoparticle impurities during the synthesis was: In a typical procedure of synthesizing
silver nanowires (Ag_NW), 1.3 g of PVP was added to 6.67 mL of EG and heated over an oil
bath (at the temperature of 150 ◦C) for 1 h with a magnetic agitator (260 rpm). Then, 13.3 mL
of a solution containing 1 g AgNO3 and 0.00213 g KCl in EG precooled in a refrigerator
was added to the mixture by drops from a light-proof syringe. The solution color changed
during the synthesis procedure from transparent colorless to yellow (over 1 min), then it
became orange-red (over 3 min), then gradually turned green (over 5 min) followed by
dimming and gradual transition from green to brown-red (over 30 min) and, finally, to
a nontransparent grey-crème color. After Ag nanowires were formed, the reaction was
stopped by cooling the reaction vessel in a water bath. The centrifuged sediment was
washed with acetone and water to remove the excess EG and PVP, dried and redispersed
in isopropyl alcohol.

Silver nanowires were also obtained via microwave treatment of the systems used
earlier in the synthesis with direct heating. In this case, solutions of silver nitrate, PVP, KCl
or K4Fe(CN)6 in ethylene glycol were mixed util complete dissolution was achieved in a
dry box in a nitrogen atmosphere (Ag_NW_MW). Then they were poured into a Teflon
vessel with a lid. This reactor was placed into a microwave oven (sample preparation
system MC-6 (OOO NTF Volta, St. Petersburg, Russia) at atmospheric pressure) with power
regulation from 200 to 1000 W. To prevent excessive pressure rise inside the reactor, the
microwave during the synthesis was heated with power pulses for 1.0 min with subsequent
relaxation for 0.5 min. The total duration of the microwave heating was 6 min. Then the
reactor was cooled to room temperature. The fluffy layer of silver nanowires formed on the
surface was separated, washed with deionized water and acetone, dried and redispersed
in isopropyl alcohol.

2.3. Obtaining of Optically Transparent Electroconductive Films on the Surface of a
Polyethyleneterephthalate Substrate

To obtain functional films of titanium dioxide, a sol with the known titanium concen-
tration was deposited on the substrate surface and evenly distributed on the surface with
an air brush. Then, the obtained film was dried in a drying box in an air environment at
the temperature of 70 ◦C. To obtain a layer of silver wires, an aliquot of silver nanowire
suspension with the known weight concentration was deposited on the substrate surface
and evenly distributed over the surface also with an air brush. The concentration was
controlled by visually monitoring when percolation was achieved.

2.4. Experimental Apparatuses and Methods

The film transmission coefficients in UV, visible and near IR-region of the spectrum
were studied with spectrophotometers Cary 100 and ЛOMOБИK (LOMO BIK). The studies
of dielectric characteristics of the films at room temperature were conducted with an RCL
meter E7-20. For dielectric measurements, we used a cell with cylindrical stainless-steel
electrodes. The electrodes were forced against each other with a strong spring. In this case,
we applied a polyethylene terephthalate film (with an indium-tin oxide layer deposited
on it by magnetron deposition) as the platform for composite coating formation. This
conductive layer was used as the bottom electrode of the capacitor, which was connected
with the sensing wire of the RCL-meter E7-20. The surface of the indium-tin oxide film was
first coated with a layer of titanium dioxide by dipping from solution into a layer of silver
by the technique described above. The obtained sandwich was fixed in the capacitor cell,
and measurements were made.

3. Results and Discussion

Optical conductivity is one of the most powerful instruments for studying electronic
states in materials. The frequency dependence of dielectric properties reflects the fact that
material polarization does not immediately react to the applied electric field. For this
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reason, the dielectric constant is often viewed as a complex function of the frequency of the
applied field. An ideal dielectric is a nonconductive material. Materials with low dielectric
losses prevent the spread of electromagnetic energy that could increase their conductivity.
The real component of optical conductivity (σ) of a crystal is the function of the image
component of dielectric permittivity [26,27]: σop = Im (ε).

The ratio of direct current conductivity to optical conductivity σdc/σop is often used
as a quality indicator for evaluating properties of transparent electrodes. The high value
of σdc/σop indicates that an increase in the transmission coefficient T is accompanied by
low resistance of the conducting layer Rsh. The interrelation between T, Rsh and σdc/σop in
works [26,27] is expressed by the following empirical formula:

T = (1 +
Z0σop

2Rshσdc
)
−2

Z0 = 377 Ohm is the vacuum impedance. However, no direct interrelation has been
established between the transmission coefficient and the material electric properties. That
is why in practice, the conductivity and transmission coefficient of the films under study
are compared with those of indium-tin oxide films. It should be said that for anisotropic
systems, such as composites of silver nanowires, carbon nanotubes and graphenes, optical
transmission and electric conductivity depend on the measurement direction. Common
practice is to measure the surface conductivity of such composites in the XY plane and the
axial light transmission along the Z axis, which is not quite correct. That is why in this
work, we used optical and electric characteristics of films obtained by transmitting light
and electric current along the Z axis.

Figure 5 shows an image of silver nanowires obtained by adding K4Fe(CN)6 in the
field of an optical microscope. As the data shows, the images have no obvious nanowire
agglomerates.
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The structural characteristics of the silver nanowires synthesized by both conven-
tional and microwave methods were studied by scanning electron microscopy (SEM).
Figure 6 shows the SEM images of Ag_NW nanowires obtained by the conventional
method (Figure 6a) and those obtained by microwave radiation (Figure 6b).

According to the atomic-force microscopy data (Figure 7), a silver nanowire has a
uniform distribution by thickness of about 200 nm and by length of about 7 µm.
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The data of the energy dispersion analysis (Table 1) indicate that the element concen-
trations during the synthesis procedure and in the obtained material are the same.

Table 1. Properties of the sintered specimens.

Element, wt (%) Ag_NW Ag_NW_MW

Ag 93.38 98.16
O 6.62 1.84

Sum 100 100

As Figures 8 and 9 show, the appearance of absorption maxima on the absorption
spectra of the TiO2/Ag/TiO2 nanocomposite for the film on the polyethylene terephthalate
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surface is characteristic of elongated anisotropic particles of nanowires. The obtained
results confirm the shape of metal nanoparticles obtained by processing the SEM image
data. It should be mentioned that the essential factor for achieving Plasmon resonance in
nanosystems is obtaining nanoparticles in the range from 10 to 20 nm. All this means that
the appearance of characteristic absorption peaks for a composite with silver nanowires
can be caused by the surface plasmon effect characterized by quanta of high-density charge
vibrations propagating along the boundary of the metal particles’ surface.
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The frequency-dependent conductivity and dielectric permittivity of a film are, to a
large extent, determined by the Maxwell–Wagner–Sillars mechanism [28–30] (Figures 10–12).
A big difference in the conductivity between a silver nanowire and titanium dioxide leads
to large charge accumulation at the interface because it prevents the free current flow
across the interface. The accumulated charges are directly proportional to the difference
in conductivities between the metal and dielectric phases, and the interface behaves as
a nanocapacitor. The formation of numerous nanocapacitors at the interface of silver
nanowires and titanium dioxide is realized through the Maxwell–Wagner–Sillars mecha-
nism. For illustrative purposes, we can use an RC scheme to present the interface and its
behavior when alternating current flows through it. In this case, the nanocapacitor can be
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considered a series connection of a plane capacitor (C) and a resistor (R). The plane capaci-
tor denotes the function of accumulation of electric charges, while the resistor denotes the
function of resistance to the current. When alternating current flows through such scheme,
at a certain frequency the electrons jump over the nanocapacitor, and the conductivity of
the alternating current increases, but the accumulated charges decrease. As a result, this
leads to higher conductivity in the interlayer and reduces the dielectric permittivity with a
frequency increase.
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Films of TiO2/Ag and TiO2/Ag/TiO2 nanoheterostructures have been obtained on a
flexible polyethylene terephthalate substrate and their dielectric and optical properties were
studied. We also studied the effect of the layer-by-layer introduction of silver nanoparticles
of anisotropic structure and those in the form of nanowires into the structure of TiO2/Ag
and TiO2/Ag/TiO2 nanoheterostructure films on the optical and dielectric properties of
materials.

4. Conclusions

We studied a multilayer TiO2/Ag/TiO2 heterostructure with a silver nanowire filler as
the transparent composite electrode that demonstrated high conductivity and good trans-
parency. A layer of silver nanowires between the TiO2 layers sharply reduces the composite
resistance without a significant decrease in the transparency. The TiO2 film uniformly
coats the silver nanowires filling the cavities and covering the transitions between the Ag
nanoparticles. The upper TiO2 layer that fills the cavities between the silver nanowires
facilitates concentration of charge carriers on the interphase boundary. The resulting inter-
facial polarization on the interphase boundary metal semiconductor, in accordance with
the Maxwell–Wagner–Sillars theory, with an increase in the frequency of the alternating
current flowing in the system, leads to conductivity growth and reductions in dielectric
permittivity.
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