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Abstract: The spectral luminescent properties of dipyrromethenates halogenated with bromine
on both ends of the long axis and coordinated using boron fluoride, zinc, or cadmium in neutral
ethanol and acidified with hydrochloric acid solutions were studied. The constants of the acid–base
equilibrium of the complexes in the proton-donor solvents in the ground and excited states was
determined. The mechanisms of complex protonation were discussed, depending on the structure of
the compounds. The electronic structures of the neutral and protonated compounds were modeled
and analyzed based on the quantum-chemical method. The structures and spectral-luminescence
properties were calculated using the SMD model of ethanol solvent using the TD-DFT theory with the
B3LYP functional and the composite def2-SVP/def2-TZVP/def2-TZVPP_ECP basis sets, depending
on the atomic number of the elements.

Keywords: dipyrromethene complexes; spectroscopy; protonation; stability of complexes; TD-
DFT analysis

1. Introduction

The chemistry of dipyrromethene (dpm) compounds has been widely developed due
to the existing variety of their various metal complexes, which have outstanding spectral
and photophysical characteristics. Covalent dpm complexes with cations of p-, d-, and
f-elements exhibit high chromophore activity in the visible region of the electromagnetic
spectrum. Efficient fluorescence yields and high photostability of dpm complexes with
boron fluoride BODIPY have been established [1–4]. The complexes of d-elements with
two dpm ligands have been synthesized relatively recently. They also exhibit efficient and
stable luminescence, with a tunable emission wavelength. The spontaneous coordination
of these metal complexes enables them to construct self-assembled nanoarchitectures, such
as supramolecules, low-dimensional nanostructures, and metal–organic frameworks [5–8].

The specific spectral-luminescence and photochemical properties allow for predicting
and designing the broad avenue of materials based on dpm compounds in their practical
use as active components of various optical devices: fluorescent probes [9–11], optical
sensors [12–14], and photosensitizers for the generation of singlet oxygen [15–17]. Moreover,
the high sensitivity of spectral-luminescent characteristics to changes in the structure of
the ligand and the properties of the medium makes them very promising fluorescent
pH sensors [18–20]. Moreover, potential applications of various dipyrromethene metal
complexes, such as for catalysis and thermoelectric and photoelectric conversion, are widely
discussed [7,21]. For successful creation of such novel optical materials, the information
on their chemical stability under the operating conditions of a particular device in various
environments, including at different acidity, is required.

Despite the large number of works describing the synthesis, there is a lack of published
studies devoted to a detailed analysis of the influence of electronic, structural, and solvation
factors on the stability and photo-induced properties of dpm and their metal complexes. The
manifested properties have only recently begun to be analyzed [22–24]. The practical use of
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complex organic molecules—in particular, dpm compounds—requires deep study and an
understanding of their inherit physical and chemical properties exhibited under different
conditions; therefore, this is the most important step in designing such optical devices. The
great practical importance is to establish the interaction between the complexing agent,
ligand, and solvating medium influents on the associative, acid–base, and coordination
properties of dpm. This knowledge could make the purposeful synthesis of metal complex
structures with the desired characteristics and the subsequent creation of optical devices
based on dpm compounds both easier and cheaper.

Thus, our research was aimed at studying the protonation processes of bromine
substituted dipyrromethene complexes with various complexing agents such as metalloid
B vs. transition metals Zn and Cd in regards to the structural stability and photophysical
properties of these compounds in neutral and acidic solvents. The information about the
features of protonation becomes important in the practical use of these complexes, namely,
the incorporation of dyes into solid-state polymer matrices because the polymerization
process often proceeds at low pH, i.e., in acidic media, which certainly affects the spectral
and luminescent properties of the materials. In order to establish the influence of neutral
and acidified environments, the dpm complexes, both in the ground and in the excited
state, were investigated for a practical assessment of their stability in proton-donor media.
The obtained values of the acid–base interaction constants and the revealed patterns of
the influence of structural and solvation factors will allow us to optimize the search for
leading compounds with the most successful combination of spectral and photophysical
characteristics in dpm and their metal complexes.

2. Results
2.1. Experimental Stability Study

It has been established that the mechanism of proteolytic dissociation of BODIPY
complexes includes several stages [25–27]. The initial step of proton binding to the fluorine
atoms of BF2-dpm [BF2L] makes the B-N and B-F coordination bonds weaker. The weak-
ening leads to their cleavage, with proton attaching to the pyrrole nitrogen that forms the
protonated ligand H2L+ through one isosbestic point. As was noted in these publications,
the isosbestic point indicates that the third chromophore, the molecular form of HL, does
not accumulate in solution at recorded concentrations. However, it should be borne in mind
that this is typical only for boron fluoride dpm complexes. For other dpm metal complexes,
a change in the “classical” protonation mechanism, i.e., that the coordination center is not
modified in the first place [22], should be assumed. Moreover, it has been hypothesized [28]
those electronegative substituents, such as heavy bromine atoms in the structure of the
studied molecules, can pull the electron density onto themselves, which should essentially
reduce the proton attack on the coordination center and even change the known mecha-
nism of the structural dissociation. Nevertheless, protonation occurs in any case, which is
manifested in the registration of the electronic absorption and fluorescence spectra.

The experiment showed that in acidified ethanol solutions, the studied dpm complexes
entered into an exchange reaction with hydrochloric acid. The electronic absorption spectra
of the products corresponded to the spectra of the protonated structures formed in the
exchange reactions of the ligands, with the presence of an isosbestic point (500 nm) in the
patterns of irreversible spectral transformations (Figure 1a). Table 1 shows the blue spectral
shifts to shorter wave-length segment and values of −lg[HCl]50 in the corresponding state
of the acidified ethanol solutions for BF2, Zn, and Cd diBr-substituted dpm complexes. The
trend is supported by the TD-DFT calculations (see details in Section 2.2) of the compounds,
as well as their HCl acidified forms in the ethanol. Moreover, the measured and calculated
wavelengths are very similar for all the complexes in the acidic solvent, whereas the
absorption time of BODIPY in a neutral environment is significantly longer than that in
the cases of the remaining systems, based on the transition elements. Among the studied
compounds, Br2(CH3)4BODIPY is the most stable in the ground state and dissociates only
with a significant addition of acid (at the highest acid concentrations) in the solution.
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Nevertheless, protonation occurs in any case, which is manifested in the registration of the
spectra of acidified ethanol solutions. Based on the spectral shifts, the −lg[HCl]50 values
for the Franck–Condon state S1 were determined, from which it follows that the stability of
the excited BODIPY complex is higher than that in the ground state, which is consistent
with the high photostability of BODIPY-based laser media.
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Figure 1. Changes in the absorption (a) and fluorescence (λex = 470 nm) (b) spectra of
Br2(CH3)4BODIPY in ethanol upon the addition of 36% (11.6 M) HCl, in varying amounts. Ex-
perimental titration curves for the ground state S0 (λ = 528 nm) (c) and excited state S1 (λ = 544 nm) (d).

Table 1. Stability characteristics of the dpm complexes in proton-donor media for the ground (S0),
Frank–Condon (S1)F-C, and fluorescence (Sfl) states. Experimental/calculated * absorption (λabs)
wave-lengths (in parentheses), with oscillator strengths of the compounds in ethanol solvent, neutral
and acidified, using hydrogen chloride (acidic).

Compound λabs, nm
(Neutral)

λabs, nm
(Acidic)

−lg[HCl]50
(S0)

−lg[HCl]50
(S1)F-C

−lg[HCl]50
(Sfl)

Br2(CH3)4BODIPY 528/528 (0.85) 489/488 (0.95) −0.2 −3.2 −0.4
Zn[Br2(CH3)4dpm]2 504/504 (1.12) 489/485 (1.15) 4.3 3.1 4.3
Cd[Br2(CH3)4dpm]2 498/502 (1.12) 488/487 (1.15) 4.7 3.9 5.0

* Calculated numbers +40 nm for neutral and +30 nm for acidic conditions.

Changes are also observed in the fluorescence spectra (Figure 1b). Complete data
for changes in the spectra are presented in Figure S1. When the ligand passes into the
protonated form, the fluorescence intensity decreases due to a decrease in the concentration
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of the BODIPY fluorophore and an increase in the proportion of protonated H2L+ ligands
formed, the fluorescence quantum yield of which does not exceed 0.003.

When ethanol solutions are acidified, Zn and Cd dpm complexes also enter into irre-
versible exchange reactions with hydrochloric acid. The degree of conversion of complexes
into intermediate and final products of the proteolytic dissociation processes clearly reflects
changes in the electronic absorption and fluorescence spectra (Figures 2 and 3). Complete
data for changes in the spectra are presented in Figures S2 and S3. The intense band of
the Zn or Cd complex transforms into a spectrum formed by the protonated ligand Hdpm
and the salt with the mineral acid HCl under increasing concentrations of hydrochloric
acid in the solution, leading to the significant short-wavelength shift of the absorption
maxima (Figures 2a and 3a). The single intersection point at 495–500 nm of absorption
spectra formed in solutions of neutral or low HCl concentration vs. those of high acidity is
observed and assumed as an isosbestic point. Thus, only two stable chromophore forms
are confirmed by the existence of some transition point between the spectra of dpm metal
complexes in neutral ethanol and their protonated forms in acidified solution.
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Figure 2. Changes in the absorption (a) and fluorescence (λex = 460 nm) (b) spectra of
Zn[Br2(CH3)4dpm]2 in ethanol upon the addition of 36% (11.6 M) HCl, in varying amounts. Ex-
perimental titration curves for the ground state S0 (λ = 504 nm) (c) and excited state S1 (λ = 515 nm) (d).
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Cd[Br2(CH3)4dpm]2 in ethanol upon the addition of 36% (11.6 M) HCl, in varying amounts. Ex-
perimental titration curves for the ground state S0 (λ = 498 nm) (c) and excited state S1 (λ = 508 nm) (d).

The attribution of absorption in the acidic solution to the protonated ligand is con-
firmed by the coincidence of the spectra of the acidified solutions of metal dpm (Zn and Cd)
and BF2 in the corresponding complexes with the structurally identical ligands: 488–489 nm
for Br2(CH3)4BODIPY, Zn[Br2(CH3)4dpm]2, and Cd[Br2(CH3)4dpm]2. At the same time,
the absorption spectra of the corresponding neutral dpm differ significantly (by 22–28 nm)
(Table 1).

In our case, it should be taken into account that the introduction of bromine atoms
increases the stability of the complexes. It can be assumed that, due to the high electroneg-
ativity of bromine atoms, there is a decrease in the electron density in the coordinated
nitrogen atoms and accordingly, in their basicity, which makes it difficult for the proton
to attack the coordinated nitrogen atoms in the initial, limiting process of the proteolytic
dissociation of these metal complexes. As a result, the described effect dominates over
the opposite effect of the weakening of the Me-N coordination bonds, caused by the same
structural factor, i.e., the outflow of electron density to the bromine atoms.

Based on the dependence obtained by Foerster, the −lg[HCl]50(S1)F-C values for the S1
Franck–Condon states were determined (Table 1). It follows from the table that complexes
with Zn and Cd in proton-donor media are less stable (they decompose at a lower acid
concentration), both in the ground state and in the excited S1

F-C states, compared with the
BODIPY complex.

Changes during protonation are also observed in the fluorescence spectra (Figures 2b and 3b):
fluorescence intensity of the protonated ligand decreases due to an increase in the propor-
tion of protonated nearly nonfluorescent ligands formed with an insignificant maximum
short-wavelength shift, in accordance with changes in absorption. Upon transition to
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the fluorescent S1 state, the stability of the protonated form slightly decreases due to the
influence of the equilibrium solvation shell, which stabilizes the change in the electron
density at the bonds with the complexing agent and reduces the efficiency of the proton
addition to the dpm molecule.

2.2. Quantum Chemical Calculations and Theoretical Analysis

A high accuracy of the calculated spectral-luminescence properties of the isolated
halogen–dpm compounds coordinated with BF2, Zn, and Cd was achieved in our previous
theoretical description and the explanation of the observed photo-induced processes [24,29].
The same TD-DFT settings for optimization in both the ground and fluorescence states,
as well as for calculating the long wavelength regions of absorption and emission spectra
of the brominated compounds in neutral and HCl acidified forms in the ethanol solvent
model were used in the present research (Table 2). This led to a perfect agreement with
the measured fluorescence (Figures 1–3). The electronic density (ED) of two identical dpm
fragments of the Zn an Cd compounds provides the vanishing intensity of the longest
wavelength band (544, 531 nm, respectively), which corresponds to the lowest energy dark
state. The next higher bright state is nearly the same for both complexes (508, 507 nm),
while Br2(CH3)4BODIPY exhibits an intensive first band at 528 nm, which determines high
fluorescence efficiency vs. the Zn and Cd complexes.

Table 2. Absorption (λabs) and fluorescence (λfl) wave-lengths with oscillator strengths (in parenthe-
ses) of the compounds in ethanol solvent neutral and acidified states using hydrogen chloride (acidic).

Compound λfl, nm; Neutral λfl, nm; Acidic λabs, nm;
Neutral λabs, nm; Acidic

Br2(CH3)4BODIPY 528.3 (0.467) 528.9 (0.482) 487.5 (0.854) 451 (0.405)

Zn[Br2(CH3)4dpm]2
543.7 (0.001)
508.2 (0.343)

530.8 (0.002)
507.6 (0.356)

482.8 (0.001)
464.4 (1.122)

477.0 (0.001)
455.1 (1.145)

Cd[Br2(CH3)4dpm]2
532.3 (0.000)
507.4 (0.287)

521.5 (0.001)
504.6 (0.332)

472.3 (0.001)
461.8 (1.122)

473.0 (0.001)
456.5 (1.159)

The two lowest states show the same symmetry of ED localization on both fragments,
forming a dissipative channel of internal conversion between the bright and dark states
preferable over emission, leading to very low quantum harvest of fluorescence from the
higher state (Figure 4 and [29]). On the other hand, despite the small oscillator strength
of the dark state, it contributes an intensity to the emission spectra such that the spectral
feature corresponds to the observed very weak emission intensities of the Zn and Cd
systems (Figures 2 and 3), with the peak at 515 and 508, respectively, as well as the small
hill near 550 nm for both compounds, recognizable on the spectral manifolds.

The mechanism of losing emission intensity is simpler for the BF2-based compounds,
which exhibit very efficiency fluorescence, but halogenation, particularly with Br, quenches
the process due to increasing nonradiative intersystem spin crossing from the lowest excited
photoactive singlet to the triplet system [29]. The calculated longwave absorptions for
all the compounds in the neutral solvent are blueshifted about ∆λabs = 40 nm relative to
the measured spectra (Table 1), which is an acceptable accuracy in comparison with the
previous TD-DFT results, as previously discussed [24,29].

The experimental and theoretical values show the same trend of spectrum shortening
from lighter to heavier complexing elements, but the energy gaps between systems based
on B and Zn are essentially wider than those between Zn and Cd (Tables 1 and 2). The
calculations predict the lowest dark states of the Zn and Cd compounds, which are not
observed on the measured spectra. The wavelengths of these transitions are comparable
with Br2(CH3)4BODIPY in the range of 472–487 nm, while the next absorption intensive
bands of the Zn and Cd compounds are 462 nm and 464 nm, respectively.
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the green to the magenta areas for the Br2(CH3)4BODIPY and Cd[Br2(CH3)4dpm]2 absorption (left
side) and their emission (right side) in neutral ethanol. Global ESP minima (red circles) inside the
mesh isolines 0.44 eV, with preferable directions of proton attack, are presented below. The bottom
images are the same as the uppermost ones, but for the acidified (HCl) compounds.

Br2(CH3)4BODIPY, based on the metalloid, is much more stable than the complexes of
two dpm fragments coordinated with the transition metals M[Br2(CH3)4dpm]2 (M = Zn,
Cd), and the dissociation mechanisms are different. The fact that the halogen substituents
partially pull the electron density protonation of complexing BF2 remains the main reason
for BODIPY dissociation, whereas the case of the Zn and Cd are more complicated because
their low stability depends on weaker metal bonds of the transition elements with two
dpm fragments, although the protonation of the halogenated ends does not make the
bonds stronger.

The most preferred points of the metalloid complex in the ground and excited states
for protonation are near the strongly negatively charged two fluorine atoms (Figure 4) at
the global minima (−1.65 eV and −1.60 eV, respectively). All electrostatic potential (ESP)
minima were calculated using MultiWFN [30]. The vicinities of the complexing transition el-
ements are protected by dpm fragments, with methyl groups oriented almost perpendicular
to each other. Such a configuration allows the ESP minima to be equivalently located only
near the halogenated ends for all bromines (−0.59 eV) of both M[Br2(CH3)4dpm]2 in the
ground state because of the nearly C2v symmetry of the compounds (Figures 4, S1 and S2,
Tables S2–S7). The symmetry is distorted significantly in the excited state [29], provid-
ing different ED’s on the dpm ends and the nearby ESP minima. The deepest minimum
(−0.84 eV and −0.82 eV) was chosen to study the HCl acidification of the excited Zn and
Cd complexes, respectively, and one of the minima in ground state. Only the interaction
HCl with F2 was considered in both the ground and excited states of Br2(CH3)4BODIPY
because this is the main method of dissociation.

The protonation of the brominated ends can only make a quantitative, rather than a
qualitative, contribution, where the ESP minima are −0.44 eV for the ground states and



Molecules 2022, 27, 8815 8 of 12

−0.65 eV in the fluorescent conformation. It could be also noted that the difference between
the measured and calculated results is less for the acidified compounds ∆λabs = 30 than for
the neutral solvent because of slight distortion symmetry (Table 1).

Acidification scarcely changes the fluorescence wavelengths (Table 2) of all the com-
pounds, which coincides with the measure values, while absorption undergoes the blue
spectral shift at less than ∆λabs = 10 nm for M[Br2(CH3)4dpm]2, which is significantly
stronger than that of ∆λabs = 30 nm in Br2(CH3)4BODIPY. Moreover, the last system demon-
strates a clear increase in the dissociated product with an increase in acidity, in comparison
with the rest of compounds, where complexing center is protected from proton attack.

3. Materials and Methods

The presented dpm complexes were synthesized at the G.A. Krestov Institute of So-
lution Chemistry of the Russian Academy of Sciences (Ivanovo). The descriptions of the
synthesis and control of the purity of the structure using thin-layer chromatography and
IR spectroscopy are described in [31–33]. Structural formulas of 3,3′,5,5′-tetramethyl-4,4′-
dibromo-2,2′-dipyrromethene complexes coordinated with BF2, Zn, and Cd, which are ab-
breviated in this work as Br2(CH3)4BODIPY, Zn[Br2(CH3)4dpm]2, and Cd[Br2(CH3)4dpm]2,
respectively, are shown in Figure 5. Full chemical structures and designations are provided
in the Supplementary Materials (Table S1).
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the following colors: C (gray), N (blue), and H (white), halogenated with Br (red) and coordinated
using both Zn and Cd (yellow) or B (pink), terminated by F (light blue).

The studied complexes differ in the complexing agents (BF2, Zn, Cd) and contain
heavy Br atoms located on the periphery of the dpm core in the β-position, i.e., all dpm
fragments halogenated with Br on both ends of the long axis. Undried ethanol was used as
a solvent. The solutions were acidified using a high-purity 36% aqueous HCl (11.6 M).

The absorption spectra of the studied compounds were recorded on a Cary5000 spec-
trometer (Varian) in a quartz cell with an optical path length of 1 cm under standard
conditions. The spectra of fluorescence were measured using a Cary Eclipse spectrom-
eter (Varian) at room temperature (298 K). The typical concentration of the investigated
compounds was 10−5–10−6 M.

To determine the quantitative characteristics of the dye’s stability by spectrophoto-
metric titration, a series of water–ethanol solutions of dpm complexes with a successively
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changing content of hydrochloric acid were studied. After adding the acid, the solutions
were held for up to 180 min to establish equilibrium, which was confirmed by the invariance
of the absorption spectra.

Taking into account the results of the work in [34,35], which discussed the mechanisms
of protonation of such compounds, to assess the stability of dpm complexes, we chose the
value −lg[HCl]50. In this case, the concentration of the complexes decreases due to their
decomposition by 50% with the formation of a protonated ligand and the release of the
complexing agent from the complex. The titration curves were obtained as dependences
of the relative change in absorption at the chosen wavelength ∆D/D0 or fluorescence
∆I/I0 on −lg[HCl]50. The lower the −lg[HCl]50 value, the higher the stability of the
complexes in the proton-donor media, i.e., the higher the acid concentration required to
achieve 50% conversion of the complex to a protonated ligand according to the classical
definition [36–38].

In the case of the acid titration of neutral molecules with a pronounced proton acceptor
center, the value of −lg[HCl]50 can be used to estimate the pKa value, which characterizes
the basicity of the molecule and is proportional to the efficiency of proton abstraction
from the acid conjugated to a given base [39]. In this regard, by analogy with the basicity
characteristics, the value of −lg[HCl]50 (S1

F-C) in the excited Franck–Condon states of S1
was estimated from the shifts of the absorption bands from the neutral complex to the
protonated ligand due to the Foerster relation [40,41].

In order to reveal the spectral-luminescent features of the dpm complexes and their
acidified forms, electronic structures were optimized in both the ground and fluorescence
states, and the photophysical properties were calculated in the continuum of the solva-
tion model using the electron density (SMD) [42] of the ethanol solvent by means of the
hybrid B3LYP [43,44] exchange-correlation function implemented in Gaussian 16 [45] of
the TD-DFT method, in combination with the composite def2-SVP[H, B, C, N, F]/def2-
TZVP[Br, Zn]/def2-TZVPP_ECP[Cd] basis sets for different elements of the compounds, as
successfully used in a recent study [24,29].

4. Conclusions

The experimental and theoretical competitive evaluation of the stability and photo-
physical properties of 3,3′,5,5′-tetramethyl-4,4′-dibromo-2,2′-dipyrromethene complexes co-
ordinated with Zn, Cd, and BF2 (Zn[Br2(CH3)4dpm]2, Cd[Br2(CH3)4dpm]2, Br2(CH3)4BODIPY)
was carried out in the proton-donor media. The mechanisms of the dissociation of BF2
vs. Zn and Cd complexes in neutral and acidified ethanol solvents were confirmed by
analyzing the titration curves and comparing the spectral data for both absorption and
fluorescence in different hydrochloric acid concentrations. The theoretical assumptions
about the protonation pathways were confirmed using quantum-mechanical calculations.

The electronic structures of the neutral and HCl acidified Br2(CH3)4BODIPY,
Zn[Br2(CH3)4dpm]2 and Cd[Br2(CH3)4dpm]2 were optimized in the ground and fluo-
rescent states to calculate their spectral-luminescence properties in the ethanol solvent
SMD model using TD-DFT theory with the B3LYP functional and the hybrid def2-SVP[H,
B, C, N, F]/def2-TZVP[Br, Zn]/def2-TZVPP_ECP[Cd] basis sets. The calculations exhibited
the expected correlation between the measured and theoretical absorption spectra for the
neutral, and better correlation for acidified, structures, as well as perfect agreement for
fluorescence. The pathways of the protonation attacks were detected, based on ESP analysis.
In addition, these results point to differences in the initial stages of proteolytic dissociation,
depending on the nature of the complexing agent. In BODIPY complexes, the primary
interaction occurs with the complexing agent BF2, but in the transition metal Zn and Cd
complexes of dipyrromethenes, the most preferable direction for initial protonation is along
the long axis of the dpm fragments between the brominated end and HCl from the solvent.
Thus, it has been shown that the introduction of halogen atoms has a significant effect on
the protonation process of the dipyrromethene metal complexes, engaging in interaction
with the protons of the medium and screening the coordination centers of the molecules.
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The obtained results show that the highest stability in the ground and excited states is
typical for BODIPY. This complex is stable, even in strongly acidified media, while the metal
complexes of dpm (Zn and Cd) are more likely to undergo dissociation in the proton donor
solvents. In the future, it is necessary to develop approaches to increase the stability of the
dpm metal complexes for their successful practical application in various optical devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27248815/s1, Table S1: Structures and designations
of dipyrromethene complexes; Figure S1: Changes in the absorption and fluorescence spectra upon
protonation for the boron dipyrromethene complex; Figure S2: Changes in the absorption and
fluorescence spectra upon protonation for the zinc dipyrromethene complex; Figure S3: Changes in
the absorption and fluorescence spectra upon protonation for the cadmium dipyrromethene complex;
Figures S4 and S5: The complexes calculated for absorption in the ground states; Tables S2–S7: The
complexes calculated for fluorescence in the excited states.
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