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DeepPatent2: A Large-Scale 
Benchmarking Corpus for  
Technical Drawing Understanding
Kehinde Ajayi  1, Xin Wei1, Martin Gryder1, Winston Shields1, Jian Wu1 ✉, Shawn M. Jones2, 
Michal Kucer2 & Diane Oyen2 ✉

Recent advances in computer vision (CV) and natural language processing have been driven by 
exploiting big data on practical applications. However, these research fields are still limited by the sheer 
volume, versatility, and diversity of the available datasets. CV tasks, such as image captioning, which 
has primarily been carried out on natural images, still struggle to produce accurate and meaningful 
captions on sketched images often included in scientific and technical documents. The advancement of 
other tasks such as 3D reconstruction from 2D images requires larger datasets with multiple viewpoints. 
We introduce DeepPatent2, a large-scale dataset, providing more than 2.7 million technical drawings 
with 132,890 object names and 22,394 viewpoints extracted from 14 years of US design patent 
documents. We demonstrate the usefulness of DeepPatent2 with conceptual captioning. We further 
provide the potential usefulness of our dataset to facilitate other research areas such as 3D image 
reconstruction and image retrieval.

Background & Summary
Technical illustrations, sketches, and drawings are images constructed to convey information more straightfor-
wardly to humans than using text alone1–3. One goal of computer vision is to build models to understand infor-
mation contained in these images. Specific tasks include recognizing objects and determining their attributes, 
capturing the relationships between sub-images, and understanding the context of objects4. Natural images such 
as those contained in MS COCO5 and ImageNet6 have been used to develop solutions to these tasks using deep 
neural networks. Different from natural images5,6, technical drawings are a type of image frequently found in 
design patents. Although they usually do not contain many features of natural images such as various colors, gra-
dient, and environmental detail, drawings often abstract away unnecessary distractions leaving the strokes, lines, 
and shading that are sufficiently detailed so that drawn objects and aspects are still recognizable by humans. 
Compared with natural images, technical drawings, are under-studied by the computer vision and information 
retrieval communities. Recently, several sketch-based datasets have been developed, e.g.7,8,. QuickDraw consists 
of 50 M images sketched by letting users draw designated objects within a short time9. Other sketch datasets 
are much smaller, including TU-Berlin10, Sketchy3, and sheepMarket11. These free-hand sketches tend to have 
very few strokes and limited viewpoints. Therefore, they are not suitable for tasks that rely on drawing details, 
like understanding scientific and technical information. CLEF-IP 2011 provides two patent image datasets of 
10k images of heterogeneous types, including flow charts and chemical structures, used for patent retrieval and 
classification into 9 classes12. ImageNet-Sketch contains 50k images of 1000 classes, based on search results of text 
queries against Google Image13. The technical drawing data we introduce here is different from these datasets in 
that it contains enriched semantic information, including object names and multiple views of the same object. 
Our dataset also contains segmented figures. Compared with QuickDraw, our dataset contains more details for 
drawings, diverse object names (more than 132,000), and viewpoint information (Table 1). Recently, Kucer et 
al.14 introduced DeepPatent, a dataset of over 350 K images from design patents for image retrieval. However, 
the DeepPatent dataset does not include identification of the objects or descriptions of their viewpoints. In 
addition, compound technical drawings were not segmented to isolate individual figures.

In this paper, we introduce a new dataset, DeepPatent2, consisting of more than 2 million automatically 
segmented and tagged technical drawings from more than 300,000 design patents granted from 2007 to 2020. 
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Figure 1 shows an example of the figures segmented and tagged from a single patent. We use an approach rem-
iniscent of a large-scale image collection for real-world images with real human tags; similar to WebVision15, 
which consisted of 2.4 million images crawled from the Web with associated metadata. It was demonstrated that 
the noisy web images like WebVision were sufficient for training a good deep learning model for visual recog-
nition15. We propose a novel pipeline using natural language processing (NLP) models to extract object names 
and viewpoints from figure captions, using computer vision (CV) methods to segment compound figures, and 
aligning text information with corresponding figures. The pipeline is developed based on our solid results on 
label extraction16, visual descriptor extraction17, and image segmentation18. To demonstrate the usefulness of 
our dataset, we train baseline deep-learning models on conceptual captioning and demonstrate that the perfor-
mance of the models benefits significantly from an increasing size of training data. We expect that DeepPatent2 
will facilitate training robust neural models on other tasks such as 3D image reconstruction and image retrieval 
for technical drawings.

Methods: Building the DeepPatent2 Dataset
overview. DeepPatent2 contains over 2 million technical drawings from the United States Patent and 
Trademark Office USPTO19 design patent documents published from 2007 to 2020. Our dataset extends the 
DeepPatent dataset14 in three aspects.

 1. DeepPatent2 is more than 5 times larger than DeepPatent;
 2. DeepPatent2 contains both original and segmented patent drawings;
 3. The metadata of each drawing contains object name and viewpoint information, automatically extracted 

using a supervised sequence-tagging model with high accuracy.

The pipeline to create the dataset is illustrated in Fig. 2. The pipeline includes three major components, 
namely, data acquisition, text processing, and image processing. A patent document includes an XML file con-
taining textual content and TIFF files containing associated images. One patent TIFF file may contain several 
patent figures, as shown in Fig. 1, which we refer to as a compound figure. In the following, we refer to a “figure 
file” as an image file containing a single or a compound figure. We refer to a “figure” as an individual figure (e.g., 
a figure with a unique label such as “Fig.1”).

The text processing step aims at automatically tagging individual figures with text that a person would use 
to describe them. In addition to extracting the design category information included in the patent XML file, we 
extract human-readable object names from figure captions. One challenge to this goal is that although the XML 
document contains captions and inline references for individual figures, the document does not directly map 
figures to figure files, because a figure file may contain multiple figures. For example, Fig. 1 contains 7 individual 
figures in 4 figure files. To overcome this challenge, we develop modules that first segment compound figures, 
resolve figure labels, and link them to text processing results to associate captions to their respective figures. 
The final data includes JSON files containing metadata, automatically extracted descriptions (object names and 
viewpoints), and images of individual figures, as well as original figure files.

In the following subsections, we elaborate on each module in the pipeline. All computation was performed 
on a Dell server with 4 NVIDIA GTX 2080 Ti GPUs, 24 hyperthreaded Intel Xeon Silver 4116, 300GB RAM, and 
7TB disk space. In addition, we applied AWS Rekognition’s DetectText service on all patent figure files. The total 
size of the dataset is approximately 380GB before compression.

According to USPTO, design patent drawings are illustrations of a manufactured object’s design, which 
includes detailed information about contours, shapes, material texture, properties, and proportions. Drawings 
and text of patent documents are public domain; and are created by writers, artists, and inventors with the 
knowledge that these works will become public domain20.

Dataset Size (number of images) #Categories Captions Viewpoints

ImageNet-1k38 2M photos 1,000 No No

ImageNet-21k6 14M photos 21,000 No No

WebVision15 2.4M photos 1,000 No No

Flickr-8K62 8K photos — Yes No

Flickr-30K63 30K photos — Yes No

ImageNet-Sketch13 50K drawings 1,000 No No

TU-Berlin10 20K sketches 250 No No

QuickDraw9 50M + sketches 345 No No

Sketchy3 75K sketches, 12K photos 125 No No

Sheep 10K11 10K sheep sketches 1 No No

Sketch Flickr15K64 330 sketches, 15K photos 33 No No

CLEF-IP 201112 10k diagrams 9 No No

DeepPatent14 350K + drawings — No No

DeepPatent2 2M + drawings 132,890 Yes Yes

Table 1. DeepPatent2 compared with major sketch-based and natural image datasets. #Categories means the 
number of object names.
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Patent Data Acquisition. We collected patent data ranging from the years 2007 to 2020 from the USPTO 
website in the form of zip and tar files. These files consist of both the full-text (in XML format) and figures (in 
TIFF format). Each TIFF file contains one or multiple figures. Table 2 shows statistics of the raw data. XML files 
before 2006 had a different schema and did not include separate XML tags for individual figures and subfigures, 
which may introduce further errors to figure label parsing and label-figure alignment, so we only include patents 
after 2007. The discrepancy between figure numbers parsed from XML (#Figure XML) and figure numbers from 
segmentation (#Figure Segmented) reflects the imperfection of the text and image processing methods, which 
will be incorporated in assessing the data quality. Figure 3 shows the average number of figure files per patent and 
the average number of figures per patent of our dataset, demonstrating the trends of the increasing popularity of 
using figures in patent applications over the last 14 years.

Text Processing: entity Recognition. The text processing pipeline includes parsing plain text from XML 
documents and extracting semantic information from figure captions. In patent documents, figure captions are 
usually enclosed by special XML tags, so they can be accurately extracted. An inline reference is a sentence in the 
body text that cites one or multiple figures. We used regular expressions to match figure tags (e.g., “FIG.”, “FIGS.”, 
etc.) and then extracted complete sentences as inline references. Figure 4 shows an example of a figure caption 
and its corresponding inline reference in an XML file. Each individual figure has a caption, which we use to 
extract object names and viewpoints.

The detail of the text processing pipeline is elaborated in Wei et al.17. Here, we highlight the best model 
and its performance. We treated this task as an entity recognition problem. The text was first tokenized. Each 
token was encoded as a feature vector by a pre-trained word embedding model. Word vectors were then fed to 
a sequence-tagging neural network. We compared the BiLSTM-CRF (bidirectional long short-term memory or 
BiLSTM followed by a conditional random field or CRF) with a transformer model. Both were usually believed 
as the state-of-the-art sequence-tagging models21. We compared several word embedding models, including 
GloVe22, RoBERTa fine-tuned on GPT-223, the original RoBERTa24, BERT25, ALBERT26, and DistilBERT27. 
The sequence-tagging model incorporated context into the initial feature vector of each word. The CRF layer 
classified each token under the IOB schema. The best performance was achieved using DistilBERT27 with the 
BiLSTM-CRF architecture. The average F1-measures for the overall entity recognition, object name, and view-
point were 0.960, 0.927, and 0.992, respectively.

Fig. 1 An example from DeepPatent2 extraction results for US Design Patent #0836880.

Fig. 2 The architecture of the pipeline to create DeepPatent2. Text in parentheses are examples. The matching 
module links semantic information parsed from captions to individual images segmented from original 
compound figures.

Object name: Pet treat 
Viewpoint: front , top , and left side 
perspective view 
Label: FIG.I 
Caption: FIG. 1 is a front, top, and left 
side perspective view of a pet treat 
according to the new design; 

Object name: Pet treat 
Viewpoint: front elevational view 
Label: FIG.4 
Caption: FIG. 4 is a front elevational view 
thereof; 

Object name: Pet treat 
Viewpoint: rear elevational view 
Label: FIG.5 
Caption: FIG. 5 is a rear elevational view 
thereof; 

Patent Metadata (title, ID) 

Figure Caption 
(FIG. 1 is a front, top, and left side perspective 

view of a pet treat according to the new design;) 

Figure Label 
Detection (FIG. 1) 

Amazon Rekognition 

A&·li·IBMl:14 

~ 

Object Name 
(pet treat) 

Segmented 
compound figures 

Object name: Pet treat 
Viewpoint: left side view elevational view 
Label: FIG.2 
Caption: FIG. 2 is a left side view elevational 
view thereof; 

Object name: Pet treat 
Viewpoint: right side elevational view 
Label: FIG.3 
Caption: FIG. 3 is a right side elevational 
view thereof; 

Object name: Pet treat 
Viewpoint: bottom plan view 
Label: FIG.7 
Caption: FIG. 7 is a bottom plan 
view thereof. 

Metadata 
alignment 

Metadata 

Semantics 

I Images 

Label 
Neural segmentation model _____ Association 

https://doi.org/10.1038/s41597-023-02653-7


4Scientific Data |          (2023) 10:772  | https://doi.org/10.1038/s41597-023-02653-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

The ground truth corpus was created by randomly selecting 3300 patent figure captions from the US design 
patents. Each caption is manually annotated by two researchers independently using brat, a web-based text 
annotation tool28. An example of an annotated caption is shown in Fig. 4. The ground truth was split into train-
ing, validation, and test sets, each consisting of 2700, 300, and 300 captions respectively. We then applied this 
model to all patent figure captions and extracted a total of 132,890 unique object names and 22,394 unique 
viewpoints. The result of post-extraction validation using a random sample of 100 figure captions was consistent 
with the evaluation based on the benchmark.

image Processing: Figure Segmentation and Metadata Alignment. The goal of the image process-
ing pipeline is segmenting compound figures and recognizing figure labels, which is necessary because the patent 
documents do not contain information that maps individual figures’ captions to figure files. This process has four 
steps (Fig. 2). (1) Figure label detection, including text and positions; (2) Segmenting compound figure files into 
individual figures; (3) Associating labels with individual figures; (4) Aligning metadata with individual figures. 
The final dataset product is publicly available at the Harvard Dataverse repository29.

Year #Patent #Figure File #Figure XML #Figure Segmented #Figure Mismatch Mismatch%

2020 34,895 246,971 295,693 296,929 18,417 6.2%

2019 34,813 229,557 287,122 276,276 17,639 5.8%

2018 30,513 199,015 249,137 246,352 14,555 5.9%

2017 30,878 187,913 240,197 239,748 17,385 7.2%

2016 28,886 167,177 221,684 219,822 17,098 7.7%

2015 26,000 149,891 202,949 201,297 15,508 7.7%

2014 23,666 132,661 182,609 181,279 14,471 7.9%

2013 23,478 129,538 179,031 177,580 14,626 8.2%

2012 21,959 116,938 166,015 164,399 15,490 9.4%

2011 21,361 111,089 158,255 157,038 12,906 8.2%

2010 17,082 85,857 124,131 122,680 9,345 7.6%

2009 23,116 110,512 164,448 162,466 12,772 7.8%

2008 25,565 116,531 179,478 176,424 14,143 8.0%

2007 24,063 104,424 166,312 163,472 13,651 8.3%

Total 366,275 2,088,074 2,817,031 2,785,762 208,006 —

Table 2. The number of design patents (#Patent), figure files (#Figure file), subfigures recorded in XML 
(#Figure XML), segmented individual figures (#Figure segmented), mismatched figures due to OCR errors and 
label-figure alignment errors (#Figure mismatch), and the mismatch rate (Mismatch%), calculated as (#Figure 
mismatch)/(#Figure segmented), i.e., Mismatch% is defined as the number of mismatched segmented figures 
divided by the total number of segmented figures.

Fig. 3 Average numbers of figures and subfigures per patent each year from 2007 to 2020.

Fig. 4 An example of a figure caption and its corresponding inline reference in a patent XML file. Orange 
highlighted text stands for object names, and blue highlighted text stands for viewpoints.
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Caption: FIG. 1 is a front, top, and left side perspective view of a pet treat according to the new design. 

Inline reference: The broken lines in FIGS. 1-7 illustrate portions of the pet treat that form no part of the claimed design. 
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Figure Label Detection. The original figure files are in TIFF format, which is not compatible with many optical 
character recognition (OCR) engines and computer vision packages. Therefore, we converted TIFF to PNG 
format, which is widely used in computer vision and does not introduce compression artifacts as in JPEG files. 
We use AWS Rekognition’s DetectText service, a commercial OCR engine, to recognize figure labels, including 
text content and bounding boxes30.

To evaluate the quality of extraction results, we extended our previous work16 and compared several 
top-performing OCR engines using a corpus consisting of 100 randomly selected design patent figures from the 
USPTO dataset in 2020 including both single and compound figures. The evaluation metrics included precision, 
recall, and F1. The precision was calculated as the number of correctly recognized labels divided by the total 
number of labels captured. The recall was calculated as the number of correctly recognized labels divided by the 
total number of labels shown on sampled figures. The results (Table 3) indicate that AWS Rekognition achieves 
the highest F1 (96 80%. ), compared with other OCR engines. In particular, Rekognition achieves the highest 
recall ( .96 03%). Google Vision API shows an excellent F1 (94 10%. ), but the recall score is relatively low (88 90%. ). 
Tesseract, an open-source OCR engine, achieves a relatively high precision (96 60%. ) but a poor recall ( .44 40%). 
Therefore, we adopted Rekognition into our pipeline.

The errors made by Rekognition are due to several reasons. Errors may happen when the labels are rotated by 
90 degrees, resulting in reversed order of label tokens. For example, “Fig.3” in a single figure could be recognized 
as [“3”, “Fig.”], and [“Fig.7”, “Fig.6”] in a compound figure could be recognized as [“7”, “6”, “FIG.”, “FIG.”]. This is 
likely because Rekognition scans the image from top to bottom. In addition, unlike many other OCR engines 
that output a single result, Rekognition outputs multiple results scored from 0 to 1. To address the two issues 
above, we developed a script that rectifies the Rekognition output when the confidence score output by 
Rekognition is above a threshold θ = .0 50  and then reconstructs the labels by “gluing” tokens. This rectifier 
improved the F1 score of figure label recognition by 16%, from .0 806 to 0 968.  (Table 3).

The results of this step are figure labels and their bounding boxes for each figure file. The figure label regions 
in the images are whitened out before figure files are passed to the segmentation module.

Compound Figure Segmentation. A significant number of US patents use compound figures, containing more 
than one individual figure, so they need to be segmented before they are associated with captions. We proposed 
a transfer learning method, with a transformer-based neural model called MedT31 pre-trained on compound 
medical images and then fine-tuned on a small set of annotated patent figures. We compared our model against 
several state-of-the-art image segmentation models on a test set containing annotated patent figures. We then 
associated segmented figures with labels using a proximity-based method. The details of our approach can be 
found in Hoque et al.18. Here, we outline the pipeline and highlight the performance of the best models.

To our best knowledge, there was no labeled dataset that could be used for patent figure segmentation, there-
fore we developed an in-house ground truth dataset consisting of 500 figure files randomly selected from design 
patents. Here, we assume the number of figures in each figure file equals the number of labels detected by the 
OCR engine. If the two numbers do not equal, the segmentation is flagged as an error. The results will still be 
included in the final dataset as challenging cases for future models, but these cases can be easily excluded using 
the flags. In our ground truth of 500 figures, there were 480 compound figures each containing up to 12 individ-
ual figures. Each figure has been annotated by a graduate student using the VGG Image Annotator32 by drawing 
bounding boxes around individual figures. We performed an independent human validation of bounding boxes.

As a baseline, we proposed an unsupervised method called Point-shooting18. The idea is to randomly “shoot” 
open dots onto a compound figure. Dots that overlay any strokes are filled with a single solid color and the other 
dots are removed, so the remaining dots created a region filled with single color pixels. A contour can be drawn 
around the region, outlining the profile of individual figures. A bounding box can then be drawn around the 
contour. Using this method, we can obtain a mask of individual figures and their bounding boxes. The bound-
ing boxes can be directly used for comparing against the ground truth. Point-shooting achieves an accuracy of 
92.5%, calculated as the percentage of individual figures that are correctly segmented.

MedT was designed to train a transformer-based semantic segmentation framework31. The core component 
is a gated position-sensitive axial attention mechanism, designed to overcome the limitation of a vanilla trans-
former so that a more robust model can be trained using relatively small training sets. Because the point-shooting 
method was able to generate masks of individual figures with relatively high accuracy, we used the output of the 
point-shooting method as the training data for MedT. As our result would show, the MedT model achieved 
higher performance on the noisy training data. The training figures were first passed through a convolution 
block before passing through a global branch, which captures dependencies between pixels and the entire image. 

OCR Tools Recall Precision F1

AWS Rekognition with rectifier 96.03 97.58 96.80

AWS Rekognition without rectifier 79.37 81.97 80.65

Google Vision API 88.90 100.00 94.10

AWS Textract 80.16 99.05 88.61

Tesseract65 44.40 96.60 60.84

EAST deep net trained on ICDAR201566,67 11.90 14.29 12.99

Table 3. A comparison of OCR engines on extracting labels and bounding boxes in patent drawings.

https://doi.org/10.1038/s41597-023-02653-7
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The same figure is broken down into patches, which were passed through a similar convolutional block before 
passing through a local branch, which captures dependencies among neighboring pixels. A re-sampler aggre-
gates the outputs from the local branch and generates the output feature maps. The outputs from both branches 
are finally aggregated followed by a 1 × 1 convolutional layer to pool these feature maps into a segmentation 
mask. We fine-tuned the pre-trained MedT model on our training set and achieved an accuracy of 97% with a 
much shorter runtime (≈1/35) on the test set compared with the point-shooting method. MedT outperformed 
point-shooting and other deep learning baselines including U-Net33, HR-Net34, and DETR35.

Label Association and Metadata Alignment. We have two sources of metadata: labels recognized by the OCR 
engine and semantic information parsed from XML files. To generate the contextualized figures, two alignments 
were conducted.

Label Association. This step associates labels output by the OCR engine with segmented figures. This was 
treated as a bipartite matching problem. A general solution is the Ford-Fulkerson method36. Because of the spe-
cialty of our problem, we used a simple heuristic method by matching an individual figure segmented from a 
compound figure with the closest label recognized by the OCR engine. The proximity was calculated as the 
Euclidean distance between the geometric centers between the bounding boxes of labels and figures. Despite the 
simplicity of the method, it achieves an accuracy of 97%, evaluated on a set of 200 randomly selected figures in 
the matching results. The errors in the label-figure alignment are mainly attributed to upstream errors made by 
the OCR engine and the segmentation model, which occurs in 7 5%≈ .  figures (#Figure Mismatch / #Figure 
Segmented) (Table 2). Here, (#Figure Mismatch) refers to the number of figures that could not be aligned with 
labels using the proximity method above. Another type of error is attributed to a compact and irregular arrange-
ment of labels. The output of this step is a set of individual figures with labels. We mark cases in which the num-
ber of labels recognized does not equal the number of segmented figures. For completeness, we still include these 
cases in the data product. Users can easily remove these cases in downstream training/analysis or use them to 
design better algorithms to automatically correct errors.

Metadata Alignment. This step aligns labeled figures with captions extracted from XML files by matching 
figure labels parsed from XML files and labels associated with individual figures in the last step. The result of 
this step contains segmented figures, each having metadata, including the label, the caption, the bounding box 
coordinates, and document-level metadata, including patent ID, year, title, number of figures, etc. The method 
used here is based on strict integer matching, so the errors in the final data are caused by errors propagated from 
upstream processes.

Data Records
The final data product contains about 2 million compound PNG figures, 2.7 million segmented PNG figures, and 
metadata in JSON format. The dataset is organized by year (Table 2). The total size of the compressed dataset is 
314 GB. The size of each year’s data is roughly proportional to the number of figure files (Fig. 3).

The JSON files contain document-level and figure-level metadata (one JSON file per year). Each entry in 
the JSON file represents a segmented figure, which is tagged with the patent ID, original figure file, the object 
name, and viewpoints extracted, the figure labels, the bounding boxes of segmented figures, and their labels. 
The schema and a sample record of this JSON file are shown in Table 4. The patent captions contain an average 
of 12 words with a vocabulary of about 25,000 tokens. The semantic information extraction resulted in a total 
of 132,890 unique object names and 22,394 viewpoints. The distribution of the top 20 object names is shown 
in Fig. 5. The distribution of the top 20 viewpoints is shown in Fig. 6. The perspective view, front view, and top 
plan view are the top 3 viewpoints used in design patents. The object distribution color-coded by the top three 
viewpoints (Fig. 7) indicates that objects are depicted with diverse and disproportionate viewpoints, which poses 
challenges for 3D reconstruction from 2D sketches. The complete distribution is provided with the dataset.

We observe that one object name, such as “bottle”, may appear in multiple patents. Figure 8 shows the distri-
bution of the number of patents per object. Similarly, Fig. 9 shows the distribution of the number of individual 
figures per object. The peak of Fig. 8 happens when the x-axis value is 1, meaning that most frequently, there is 1 
patent for each object name. The peak of Fig. 9 happens when the x-axis value is 7, meaning that most frequently, 
there are 7 individual figures for each object.

The USPTO design patents contain class labels that were manually assigned using the Locarno International 
Classification system, which was developed by members of the Paris Convention for the Protection of Industrial 
Property and administered by the International Bureau of the World Intellectual Property Office WIPO37. The 
system has 32 major categories and 16 minor categories. The fraction of patents assigned with minor cate-
gories is less than 0.5%. A full Locarno classification code is composed of two pairs of numbers separated by 
a hyphen with the first pair showing the top-level design classes and the second pair showing the low-level 
classes. Locarno classification code is available in the first section of each patent document. They follow a fixed 
format and thus can be accurately parsed for all patents in our dataset. Table 5 presents a list of top-level classes 
including the codes and descriptions. Figure 10 illustrates the distribution of patents across different classes (top 
panel), the average number of figures per patent (middle panel), and the average number of figures per object 
(bottom panel) in DeepPatent2. The analysis reveals that, on average, each patent contains approximately 5.48 
figures and each object is illustrated by on average 13.83 individual figures.

The full dataset29 is publicly available under the Harvard Dataverse repository at https://doi.org/10.7910/
DVN/UG4SBD. For each year, the original and segmented figures are in separate tarball files, with a JSON file 
attached.

https://doi.org/10.1038/s41597-023-02653-7
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Technical Validation
Data Validation, evaluation, and Copyright. Our data was automatically generated by high-perfor-
mance machine learning and deep learning methods17,18 (read Section “Methods” for a detailed description). 
However, errors can still occur, propagate, and accumulate leading to errors in the final data product. There are 
four possible error sources, namely, figure label detection, compound image segmentation, label association, and 
entity recognition (ER). Label association is dependent on image segmentation and OCR, but label association 

Field Name Meaning Example

id A unique number representing an individual figure segmented from a 
compound figure 1

patentID The patent ID followed by the patent approval date USD0836880-20190101

patentdate The patent approval date 2019-01-01

figid Segmented/individual figure label 1

caption The figure caption directly extracted from the patent XML file Fig. 1 is a front, top, and left side perspective 
view of a pet treat according to the new design;

object The object name automatically extracted from the figure caption Pet treat

aspect The viewpoint automatically extracted from the figure caption front, top, and left side perspective view

figure_file The original figure file name USD0836880-20190101-D00001.png

subfigure_file The segmented figure file name as shown USD0836880-20190101-D00001_1.png

object_title The title of the patent Pet treat

x_figure
The x coordinate of the upper left vertex of the segmented figure’s 
bounding box in pixels, measured from the upper-left-corner of the 
original figure

614

y_figure
The y coordinate of the upper left vertex of the segmented figure’s 
bounding box in pixels, measured from the upper-left-corner of the 
original figure

91

w_figure The width of the segmented figure’s bounding box in pixels 969

h_figure The height of the segmented figure’s bounding box in pixels 2740

W_label The width of the segmented figure’s label’s bounding box, normalized with 
respect to the original figure 0.0439147

H_label The height of the segmented figure’s label’s bounding box, normalized 
with respect to the original figure 0.0502626

L_label
The normalized coordinate of the upper left vertex of the segmented 
figure’s bounding box, measured from the upper-left corner of the original 
figure

0.119197

T_label
The normalized coordinate of the upper left vertex of the segmented 
figure’s bounding box, measured from the upper-left corner of the original 
figure

0.861215

Table 4. The fields of an individual figure in the JSON file in the final data.

Fig. 5 Distribution of object names identified in DeepPatent2. Only the top 20 object names are shown.
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errors could occur even when image segmentation and OCR are correct. Assuming the label association (LA) can 
be approximated as the mismatch errors (Mismatch% in Table 2), which is 7.5% on average (so the precision 

= .P 92 5%AL ), the overall error rate is calculated as

≈ − × = − . × . ≈ . .E P P1 1 92 5% 96 0% 11 2% (1)A RL E

All figures are preserved in the final dataset, but mismatched figures are marked in their file names, so they 
can be used if needed.

To validate the estimated error rates, we build a verification dataset by randomly sampling 100 compound 
figures each year from 2007 to 2020 for a total of 1400 compound figures. We manually inspected the quality 
of the final data product. Specifically, we inspected whether a compound figure is correctly segmented and 
whether the label, object name, and viewpoint of an individual figure are correctly extracted. We calculated the 
error rates by dividing the number of individual figures containing any errors (404) by the total number of indi-
vidual figures (3464). Figure 11 (Left) shows the error rates calculated for each year and the average error rate.  

Fig. 6 Distribution of viewpoints identified in DeepPatent2. Only the top 20 viewpoint are shown.

Fig. 7 Distribution of top 20 objects with the top three viewpoints color-coded. Note that the bar heights are 
different from Fig. 5 because not all aspects were included. The object names along the abscissa are sorted by the 
total number of figures.
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The verified error is consistent with the estimated error by Eq. (1). Table 6 shows the breakdown of the verified 
errors by source. Note that the Verified Overall row is calculated using direct counts and should not be calcu-
lated from previous rows using Eq.(1), because a fraction of figures have more than one type of errors. We also 
calculate error rates for each class. The verification dataset contains 23 classes, of which 10 classes contain more 
than 40 individual figures. Figure 11 (Right) shows the error rates across classes which have more than 40 indi-
vidual figures in the verification dataset.

Our estimated error rate is on par with other computer vision datasets, especially considering that our meth-
ods produce automated tags. Other auto-tagged computer vision datasets like WebVision estimate up to 20% 
error rates;15 while curated datasets like ImageNet-1k38 have been estimated to have error rates up to 6%39.

USPTO advocates open data, which can be freely used, reused, and redistributed40. The text and drawings 
of a patent are typically not subject to copyright restrictions20. Our dataset is under the Creative Commons 
Attribution (CC-BY 4.0) Generic International License.

Usage Notes
In this section, we demonstrate the usefulness and value of the dataset on a Conceptual Captioning task, which gen-
erates short descriptive text that captures main objects and their viewpoints of a given image. This task was carried 
out on a dataset (hereafter CC18) consisting of natural images collected from the Web41. In this work, we carry out 
this task on the technical drawings presented in our dataset. We demonstrate how to use the dataset and advance 
the visual-to-text conversion task by running a state-of-the-art model on data in the technical drawing domain and 
potentially opening up research opportunities in other topics on patent drawings. In addition, we provide other tasks, 
in which our dataset could be potentially adopted. Here, we focus on demonstrating the potential benefit of improv-
ing the model performance by scaling up the training set using our dataset, instead of developing a new method.

Fig. 8 One object name may be described by multiple patents. This figure shows a truncated distribution of 
the number of patents in one object category. For example, when the x-axis value is 7, the y-axis value is 774, 
meaning each of the 774 objects is described by 7 patents. The x-axis is truncated because data points beyond 
the truncation point are sparse.

Fig. 9 One object name may appear in multiple individual figures. This figure shows the distribution of the 
number of individual figures with one object name. For example, when the x-axis value is 7, the y-axis value is 
23367, meaning each of the 23367 objects appears in 7 individual figures. The x-axis is truncated because data 
points beyond the truncation point are sparse.
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Conceptual Captioning. The task of conceptual captioning involves generating a short textual descrip-
tion of an image. The state-of-the-art models usually employ the encoder-decoder architecture41. We employed 
ResNet-15242, a CNN-based model pre-trained on ImageNet38, and fine-tuned on technical drawings selected 
from DeepPatent2. We varied the training data size from 500 to 1000 to 63,000 and tested the performance of 
each model on a corpus consisting of 600 figures with manually validated object names and viewpoints. The 
training sets were randomly selected from the parent sample. We selected the test set so it did not overlap with 
any samples from the training set. The input to the CNN encoder was an individual figure. The decoder generated 
a template-based caption including the object name and the viewpoint. The dimension of the encoder output was 
2048 and we reduced it to 512 to match the input dimension of the LSTM decoder. We trained the image cap-
tioning network with the cross-entropy loss for 30 epochs with a mini-batch size of 32. We adopted an ADAM43 
optimizer and a learning rate of 0.001.

The models were evaluated using standard metrics including METEOR44, NIST45, Translation Error Rate 
(TER46), ROUGE47, and accuracy. The accuracy was defined as a fraction of the ground-truth patent object 
names and viewpoints that were correctly predicted by the model. The results in Table 7 indicate that increasing 
the training size for automatically tagged data improved the performance of image captioning models.

The computing environment includes a Linux server with Intel Silver CPU, Nvidia GTX 2080 Ti. Because of 
the large size of data, we recommend a disk capacity of at least 500GB for all data. To obtain the subfigures from 
compound images, we used Pytorch >  = 1.4.0, torchvision >  = 0.5.0, and Python 3.8. The OpenCV package was 
used to load PNG images. To load large JSON files, we recommend using ijson > 3.1 package, which helps to 
conserve computer memory space.

Potential Usages of the Dataset. 

•	 Technical drawing image retrieval and semantic understanding. Investigation of effective and efficient 
retrieval methods for technical drawings has attracted the attention of the computer vision community. The 

Class Code Names

1 Foodstuffs

2 Articles of clothing and haberdashery

3 Travel goods, cases, parasols and personal belongings, not elsewhere specified

4 Brushware

5 Textile piece goods, artificial and natural sheet material

6 Furnishing

7 Household goods, not elsewhere specified

8 Tools and hardware

9 Packaging and containers for the transport or handling of goods

10 Clocks and watches and other measuring instruments, checking and signaling instruments

11 Articles of adornment

12 Means of transport or hoisting

13 Equipment for production, distribution or transformation of electricity

14 Recording, telecommunication or data processing equipment

15 Machines, not elsewhere specified

16 Photographic, cinematographic, and optical apparatus

17 Musical instruments

18 Printing and office machinery

19 Stationery and office equipment, artists’ and teaching materials

20 Sales and advertising equipment, signs

21 Games, toys, tents and sports goods

22 Arms, pyrotechnic articles, articles for hunting, fishing, and pest killing

23 Fluid distribution equipment, sanitary, heating, ventilation and air-conditioning equipment, solid fuel

24 Medical and laboratory equipment

25 Building units and construction elements

26 Lighting apparatus

27 Tobacco and smokers’ supplies

28 Pharmaceutical and cosmetic products, toilet articles, and apparatus

29 Devices and equipment against fire hazards, for accident prevention and for rescue

30 Articles for the care and handling of animals

31 Machines and appliances for preparing food or drink, not elsewhere specified

32 Graphic symbols and logos, surface patterns, ornamentation, arrangement of interiors and exteriors

Table 5. The top-level class codes and descriptions of the Locarno International Classification designation 
adopted by USPTO for design patents.
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Diagram and Abstract Imagery competition uses the DeepPatent dataset48. The rich semantic information of 
DeepPatent2 can potentially help build a new multimodal (text + image) ground truth and enable tasks such 
as semantic understanding of abstract drawings and technical document classification49.

•	 Summarization of scholarly and technical corpora. Many existing summarization methods50–52 use only 
text. However, it has been shown that combining multimodal content improves a reader’s understanding 
of each document’s content while reducing the amount of content they must consume53,54. For example, the 
automatic selection of relevant images55 has focused primarily on web resources and natural images. Deep-
Patent2, with its segmented compound figures, can be used to evaluate summary image selection in technical 
corpora.

•	 3D image reconstruction. Although humans are good at perceiving 3D objects from technical drawings, the 
task is challenging for computers. Delanoy et al. developed neural methods to reconstruct 3D images from 2D 
sketches using training datasets corresponding to procedural, vases, and chairs56. Our dataset contains more 
diverse object types with multiple viewpoints and can potentially be used for training high-fidelity models.

•	 Figure segmentation. Segmenting compound figures is a common preprocessing step before individual fig-
ures are used for analysis, retrieval, or machine learning tasks. Using 4000 DeepPatent2 figures, we achieved 
an accuracy of 99.5% at both = .oUI 0 7 and = .oUI 0 9 evaluated on the technical drawings in18. Our data can 
potentially be used for training a large-scale base model that is fine-tunable for scientific or medical figure 
segmentation problems.

•	 Technical Drawing Classification. Sketch classification methods57–59 have been proposed to recognize sketch 
images from the Web. However, these datasets contain a limited number of object categories and viewpoints. 
Our dataset contains more diverse object types and viewpoints and can potentially be used for training robust 
technical drawing classification models.

•	 Create Generative and Multimodal Design Models for Innovation. The Generative Adversarial Networks 
(GAN) and diffusion models perform remarkably well on text-to-image synthesis tasks60 and large language 
models (LLMs) have achieved superior performance on many generative NLP tasks61. Whether it is possible  

Fig. 10 Distribution of patents, figures per patent, and figures per object identified over the patent classes. Only 
the top 32 classifications are shown. The remaining classifications are not listed because they contain less than 5 
figures. The class codes in the abscissa correspond to the Locarno International Classification described in Table 5.
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to combine LLMs with the diffusion models to automatically generate multimodal design models for innova-
tion is an open question. Diffusion models and LLMs are known to be inaccurate in their details, and so the 
object name and viewpoint information of DeepPatent2 could provide the needed detailed technical drawings 
for training multimodal generative models that are accurate enough for design innovation.

Code availability
The code used for preprocessing and segmenting figures is publicly available on GitHub: https://github.com/
lamps-lab/Patent-figure-segmentor and https://github.com/GoFigure-LANL/figure-segmentation. Similarly, the 
software used for extracting semantic information, including object names and viewpoints from patent captions, 
is publicly available at https://github.com/lamps-lab/Visual-Descriptor.
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