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Understanding Point and Slope in Linear Equations and Approximations: A Case Study 

 

Kyunghee Moon* 

University of West Georgia  

 

Abstract: This article delves into an intervention designed to enhance a precalculus student’s 
understanding in constructing linear equations and in approximating function values. Before the 
intervention, the student primarily relied on the algebraic formula !!"!"

#!"#"
 to determine slope, knew 

slope geometrically as ∆!
∆#

 solely for integer values, and struggled to construct a linear equation 
without an explicitly shown y-intercept. Through the intervention, the student comprehended 
slope m as a unit rate and expanded this understanding to ∆y = 𝑚∆𝑥 for integer ∆x by iterating m, 
∆𝑥 number of times. She also successfully used this newfound understanding to construct linear 
equations, including tangent line equations, and approximate function values. Nonetheless, she 
faced some challenges in comprehending ∆y = 𝑚∆𝑥 for non-integer ∆𝑥 and in conceiving point 
as a multiplicative object with its coordinates representing covarying quantities. Further 
exploration is needed to validate these findings and address potential difficulties that students 
might face in grasping slope in the context of linear equations and approximations.  

Keywords: Point, slope, multiplicative object, tangent line, linear approximation 
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Introduction 

This study discusses the crucial concepts of point and slope, which are essential for 

comprehending mathematical concepts from algebra to calculus (Carlson et al., 2002; David et 

al., 2019; Nagle et al., 2019; Thompson & Carlson, 2017). Specifically, it focuses on point and 

slope in the context of linear equations and graphs in algebra, as well as tangent lines and linear 

approximations in calculus. Research has found that students often struggle with linear equations 

and graphs due to their inadequate understanding of point and slope, including rate of change 

(Birgin, 2012; Knuth, 2000; Moschkovich et al., 1993; Nagle et al., 2019; Thompson et al., 

2017). Research has also shown that students have difficulty constructing tangent line equations 

and solving approximation problems (Amit & Vinner, 1990; Çekmez & Baki, 2016; Moore-

Russo & Nagle in this volume; Orton, 1983). However, little research has been conducted on the 

potential influence of understanding of slope and point on comprehending tangent line equations 

and linear approximations.  

This study was motivated by my observation that calculus students struggled with tangent 

line equations and approximations of function values, even though they could successfully 

compute derivatives. I suspected that the difficulties partially stemmed from the students’ 

inability to construct linear equations without explicit y-intercepts. Therefore, to investigate 

students’ ability to construct linear equations, I conducted a survey with two precalculus classes. 

The survey included two conversion problems from a graph to an equation: the first graph 

displayed the y-intercept and another point with integer coordinates in the first quadrant, while 

the second graph showed two points with integer coordinates in the first quadrant.  

The result of the survey confirmed my hypothesis. Out of 52 students, only 6 students 

provided a correct equation for the second graph, while 31 did for the first graph. Therefore, I 

designed a teaching experiment (Steffe & Thompson, 2000) and implemented it with three 

precalculus students, aiming to enhance their understanding of slope and line. In this article, I 

report on the results of the implementation, addressing the research question: How do 

precalculus students understand slope and point and use this understanding to construct linear 

equations and approximate function values? I will begin by discussing the theoretical and 

empirical foundations of this study.  
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Theoretical and Empirical Background 

Research has shown that many individuals have an underdeveloped schema of Cartesian 

space, consisting at best of only the axes and points (Herscovics, 1989; Trigueros & Martinez-

Planell, 2010). They may be able to plot points in a plane by making horizontal or vertical moves 

or read off coordinates from given points in simple tasks (Kerslake, 1981; Padilla et al., 1986). 

However, they often have a hard time distinguishing values from points, leading them to 

represent a value such as f(2) as a point (2, f (2)) (Thompson et al., 2017). Moreover, they 

struggle to plot points and sketch graphs when describing dynamic movements of objects as 

graphs (Frank, 2016; Stalvey & Vidakovic, 2015; Thompson et al., 2017).  

Point as Multiplicative Object    

        Individuals’ struggles, as described above, often result from their inability to conceive point 

as a multiplicative object (Saldanha & Thompson, 1998). According to Thompson et al. (2017),   

[w]hen someone conceives a generic point on a graph, either in retrospect or anticipation, 

so that its coordinates represent a state of two quantities’ covariation, she has conceived 

the point as a multiplicative object and the graph containing it as a record of the 

quantities’ covariation. … On the other hand, when someone understands the coordinates 

of a generic point on a graph as “over this much and up that much”, he is conceiving the 

point’s coordinates as a recipe for locating the point (p. 1307). 

Due to the emphasis on quantities and covariation in the notion of point as a 

multiplicative object, studies that use this notion are mostly conducted with contextualized tasks. 

Some studies have investigated individuals’ understanding of graphs of dynamical objects 

moving in a plane (Frank, 2016; Thompson et al., 2017), or of parametric functions related to the 

volume and height of bottles (Stalvey & Vidakovic, 2015). Other studies have analyzed 

individuals’ comprehension of exponential growth (Ellis et al., 2015) with quantities of height 

and time, or of rate of change with covarying quantities of area of square and temperature 

(Johnson, 2012; Stalvey & Vidakovic, 2015). Yet other studies have used this notion as a 

theoretical basis for task design (Stevens et al., 2017) or the development of another framework 

of static and emergent shape thinking (Moore & Thompson, 2015).  

Unlike the other studies mentioned, this study employs the notion in non-contextualized 

tasks with the aid of the history of numbers. Even if a function equation, such as y = f(x) with x 

and y denoting variables, has no real-life quantities attached with it, it is still possible to reason 
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with quantities. Indeed, variables indicate varying numbers, and numbers indicate quantities of 

magnitudes (Lakoff & Núñez, 2000; Smith & Confrey, 1994; Thompson et al., 2017).  

Line, Slope, and APOS Theory 

Students often struggle with linear equations and graphs as they fail to discriminate 

between x and y intercepts; switch x and y coordinates when plotting, omit x in the linear 

equation, or do not understand the role of b in y = mx + b in graphs (Barr, 1980; Birgin, 2012; 

Cho & Nagle, 2017; Moschkovich,1996). Additionally, students may compute slope using “run 

over rise” instead of “rise over run,” disregard the direction of rise and run, mix up the 

coordinates when using the formula  %!"%"
&!"&"

, represent a linear equation with a negative slope as 

an increasing line, or fail to determine slope when a linear equation is not in the slope intercept 

form, y = mx + b (Birgin, 2012; Cho & Nagle, 2017; Kondratieva & Radu, 2009). While some of 

these errors may stem from procedural issues or other factors, many of them can be attributed to 

students’ insufficient, conceptual understanding of slope (Birgin, 2012; Cho & Nagle, 2017; 

Kondratieva & Radu, 2009). Indeed, slope is a complex concept that requires the connections 

among multiple representations and has multiple facets that are expressed differently in various 

situations (Cho & Nagle, 2017; Johnson, 2015; Lobato, Ellis, & Muñoz, 2003; Nagle et al., 2013; 

Nagle et al., 2019; Moore-Russo et al., 2011; Stump, 2001).  

Meanwhile, Nagle et al. (2019) explained eleven conceptualizations of slope using the 

APOS framework (Arnon et al., 2014). In this study, I utilize three of these conceptualizations 

that are relevant to my study: algebraic ratio (AR), geometric ratio (GR), and the function 

property (FP). Below is a summary of Nagle et al.’s description of the action and process stages, 

as well as the transition level from action to process for the three conceptualizations.  

Someone with an action conception of slope as an AR can compute slope using the 

formula %!"%"
&!"&"

, but she has no geometric referent to justify %!"%"
&!"&"

= 𝑚. At a transition level of 

slope as AR, she may know that slope is independent of two specific points and can apply this 

understanding to a fixed point (𝑥', 𝑦') and any point (𝑥, 𝑦) on the line. However, she may only 

understand it algebraically and be unable to geometrically justify the equation %"%"
&"&"

= 𝑚. 

Additionally, at a transition level, she may have “interiorized properties of real numbers into 

symbolic manipulation processes” (Nagle et al., 2019, p. 5) as AR and imagine obtaining y−y1 = 

m(x−x1) from the formula, %"%"
&"&"

= 𝑚.  
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In contrast, someone who holds an action conception of slope as GR perceives slope as a 

static image of rise (Δ𝑦) over run (Δ𝑥) and typically determines slope by counting grids. 

Consequently, she may not keep track of the directions in rise and run nor comprehend that Δ𝑦 

varies as Δ𝑥 varies at the same rate. At a transition level of slope as GR, she may visualize slope 

with dynamic images via different sized similar triangles. She may recognize that slope is 

independent of the triangle’s size and apply this understanding to describe the behaviors of lines, 

such as increasing or decreasing. Yet she may not have an algebraic referent to justify the 

geometric ideas.  

When someone connects %"%"
&"&"

 and (%
(&

 with understanding that Δ𝑦 has the same meaning 

as 𝑦 − 𝑦'	and Δ𝑥	as 𝑥 − 𝑥', and has a transition level of slope as both AR and GR, she is moving 

towards a process stage of slope. To attain a process stage, however, she needs to comprehend 

slope as a rate of change—the change in output is m when the change in input is 1, a transition 

level of FP—by linking FP with both AR and GR. Additionally, with the unit rate as GR and a 

dynamic imagery of slope, she needs to understand Δ𝑦 = 𝑚Δ𝑥 geometrically for any Δ𝑥.	To 

achieve a process stage, she also needs to be able to explain the algebraic equation y−y1 = 

m(x−x1) using Δ𝑦 = 𝑚Δ𝑥, without explicitly computing or drawing. 

Tangent Lines and Approximation of Function Values 

The concept of tangent lines is crucial in mathematics, as it is related to other 

fundamental concepts such as derivative and linear approximations. However, students often 

develop misconceptions and inconsistent concept images (Vinner, 1983) of tangent lines, due to 

the multitude of terms and definitions associated with the concept (Sierpinska, 1985; Vinner, 

1991) as well as the complexity of the derivative concept involved (Asiala et al., 1997; Orton, 

1983; Zandieh, 2000). Most of the research on tangent lines, such as the studies mentioned 

above, has primarily focused on how students determine the existence of tangent lines at specific 

points (such as cusps or points of inflection) in various curves, or how they define or conceive of 

the tangency in multiple contexts, such as geometry and calculus. However, there has been little 

research conducted on the challenges students face when constructing tangent line equations. 

Studies have shown that students typically use the point-slope form of a linear equation, 

𝑦 − 𝑓(𝑥') = 𝑓)(𝑥')(𝑥 − 𝑥'), or its treated form, 𝑦 = 𝑓′(𝑥')(𝑥 − 𝑥') + 𝑓(𝑥'), to construct 

tangent line equations (Amit & Vinner, 1990; Biza & Zachariades, 2010; Çekmez & Baki, 2016; 

Orton, 1983). However, constructing tangent line equations is not easy for students, with only a 
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31% success rate reported among a group of high school students (Biza & Zachariades, 2010). 

Students’ difficulties with tangent lines may be due to a lack of skills in computing derivatives 

(Orton, 1983) or an insufficient understanding of the relationship between the derivative and the 

slope of the tangent line (Amit & Vinner, 1990). However, it is possible that their ability to 

construct tangent lines is also affected by a lack of familiarity or ability to work with the point-

slope form, as many individuals only have the slope-intercept form in their concept image 

(Vinner, 1983) of slope (Nagle & Moore-Russo, 2013) and rely heavily on it when constructing 

linear equations (Cho & Nagle, 2017). 

Linear approximation of a function, 𝑦 = 𝑓(𝑥), involves approximating the function with 

its tangent line, 𝑦 = 𝐿(𝑥) = 	𝑓′(𝑥)(𝑥 − 𝑥') + 𝑓(𝑥'), at the point of tangency, 

(𝑥', 𝑓(𝑥').	Consequently, when x is close to 𝑥', 𝑓(𝑥) can be estimated by 𝐿(𝑥). Previous studies 

have indicated that students struggle with linear approximations and approximations of function 

values even if they are able to compute derivatives, (Amit & Vinner, 1990; Moore-Russo & 

Nagle in this volume). However, research on student understanding of linear approximation is 

limited and does not offer much insight into the kinds of understanding or difficulties students 

have with the concept, highlighting a need for further research.  

Methodology 

Setting 

The participants of the intervention were three precalculus students at a small state 

university located in the southeastern region of the US. I reached out to precalculus instructors to 

request recommendations for their students and sent an invitation email to all 15 recommended 

students. Among them, three students responded to my invitation and agreed to participate in the 

intervention. They were compensated at a rate of $10 per hour for their participation. For this 

study, I primarily focus on Tanya (pseudonym), one of the three participants. Tanya was a local 

high school student enrolled in our dual enrollment program. She had completed Algebra 2 at her 

high school and had not previously taken precalculus or calculus.  

All precalculus classes in the university utilized the same textbook, Algebra and 

trigonometry (Abramson, 2018), and followed a uniform syllabus. The topic of linear functions 

was typically covered in one session, lasting approximately one and a quarter hour, at the 

beginning of the semester. The textbook primarily uses the formula, %!"%"
&!"&"

, to explain the slope 

between two points on a line. It also explains slope geometrically, mainly as move over and up, 
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and states %!"%"
&!"&"

= (%
(&

 with minimal explanation. In addition, it employs the move over and up 

technic to convert between linear equations and graphs with rational slopes and integer-

coordinated y-intercepts. The text also introduces the point-slope form, y−y1 = m(x−x1) as an 

equation of a line passing through the point (x1, y1) with a slope of m. However, it quickly 

transforms the form into 𝑦 = 𝑚𝑥 + 𝑏, with little explanation linking the slope %"%"
&"&"

= 𝑚	and the 

equation 𝑦 = 𝑚𝑥 + 𝑏. 

Participants were interviewed for a total of 5-7 sessions at the end of the semester, after 

having learned linear functions. Each interview session lasted approximately one and a half 

hours. During the first one to two sessions, I utilized a semi-structured clinical interview form 

(Ginsburg, 1997) to investigate their understanding of slope as well as their ability to construct 

linear and quadratic equations and graphs. For the remaining sessions, I used a teaching 

experiment form (Steffe & Thompson, 2000) to intervene in their understanding of the concepts. 

As the interviews progressed, I modified tasks based on their responses. The tasks shown in 

Figures 1, 2, and 3 are examples of the implemented tasks and primarily utilized in this paper for 

the analysis of Tanya’s understanding.   

Instrument 

Figure 1  

Task on Linear Equations 

(a)                                  (b)                                  (c)  

 
 

The Figure 1 task aimed to investigate and intervene in their use of slope in constructing 

linear equations. Based on past studies (Amit & Vinner, 1990; Nagle & Moore-Russo, 2013; Cho 

& Nagle, 2017) and the results of my survey, I hypothesized that the participants would face 

challenges with Figure 1bc due to the absence of explicit y-intercepts in the graphs. The Figure 2 
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and 3 tasks aimed to investigate and intervene in their ability to construct tangent line equations 

and approximate function values. 

These tasks were specifically designed to allow the participants to respond to the 

questions based on their knowledge of slope, regardless of their knowledge of derivatives. This 

ensured that the difficulties the participants encountered in constructing tangent line equations or 

approximating function values were attributed primarily to their limited understanding of slope 

and linear equations rather than their understanding of derivatives. Moreover, the complexity of 

the tasks gradually increased, progressing from providing ∆𝑥 as an integer to a non-integer, from 

representing the slope as a numerical value to as a formula, and from providing graphs to not 

providing any. 

Figure 2 

Task on Tangent Line and Approximation of Function Values 

 

 
Figure 3 

More Tasks on Approximation of Function Values 

                        (a)                                                                                     (b) 
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Data Analysis 

Data analysis commenced at the beginning of the interviews. Following each interview, I 

viewed the video recordings and created a brief written record of the video content, which 

included rough transcripts of “interesting” moments. Simultaneously, I developed codes based 

on the research questions, the study framework, and student understanding observed in the data 

(Miles & Huberman, 1994). During this preliminary analysis phase, I formulated hypotheses on 

the student’s understandings and difficulties. In the subsequent phase, I constantly compared and 

revised codes in the spirit of the constant comparative method (Glaser & Strauss, 1967) to 

confirm, refute, or revise the hypotheses.  

Results 

The results presented in this section pertain to Tanya’s varying levels of comprehension 

of slope and related ideas. The first segment outlines her understanding and difficulties mainly 

associated with the Figure 1 task, which is framed as linear equation tasks. The second segment 

describes her understanding and difficulties mainly associated with the Figure 2 and 3 tasks, 

which are framed as tangent line and approximation of function value tasks. 

Linear Equations and Graphs 

Action Stage  

Tanya demonstrated an action conception of slope as AR at the beginning of the 

interviews. For each of the three graphs in Figure 1, she chose two integer-coordinated points on 

the graph and used the formula,  %!"%"
&!"&"

, to determine the slope. However, she relied almost 

entirely on the formula to determine slope, even when it was unnecessary. For instance, when 

asked to find the slope of y = 3x + 5, provided with the two points (4, a) and (6, b) on the line, 

she found the values of a and b and used the formula instead of identifying the slope from the 

equation y = 3x + 5.  

Tanya’s concept image (Vinner, 1983) of line solely involved the slope intercept form, 

 y =  𝑚𝑥 + 𝑏. When asked to determine an equation representing “a collection of all points (x, y) 

that satisfy the following condition: the slope between (5, 6) and (x, y) is 3,” she wrote y = 3𝑥 +

𝑏 after plotting the points (5, 6) and (6, 9), but was unable to determine the value of b using the 

two points. Moreover, when asked to interpret the equation, !"#
$"%

= 5, she confessed that she had 



                                                                                                                                  Moon p.      

 
 

550  

seen it before but had never understood it. When prompted again to interpret it, she manipulated  
!"#
$"%

= 5	into 𝑦 = 5𝑥 − 7 and described it as a line with a slope of 5 and a y-intercept of −7. 

Due to her action conception of slope as AR and her reliance on the slope-intercept form, 

Tanya could only construct a linear equation for the graph in Figure 1a where the y-intercept was 

explicitly shown. However, when the y-intercepts were not explicitly displayed, as in the graphs 

of Figures 1b and 1c, she provided the linear equations as 𝑦 = '
*
𝑥 − 0.3 and y =  '

+
𝑥 + 3.3 by 

visually estimating the value of b, both of which were incorrect. 

Transitional Level from Action to Process Stage  

As she had difficulty with graphs in Figure 1b and 1c, I prompted her to determine the 

value of b in Figure 4 to intervene in her understanding. She constructed the equation, '
+
=

,"("')
*"+

, as an equivalence between two slopes—1/4 as slope as AR between (0, -2) to (4, -1) and  

,"("')
*"+

 between (4, -1) and (3, b), showing a transition level of slope as AR. I then prompted her 

with some questions that might activate her understanding of slope as FP. See Excerpt 1 for the 

conversation between Tanya and me. I was the interviewer (I) and Tanya was the participant (T). 

When prompted what the slope of ¼ meant, Tanya initially described it as “[y]ou go up 

once and go over 4 times”—showing an action stage of slope as GR (lines 1-3, Excerpt 1). She 

also knew that when run was 1, rise was ¼ (lines 4-7). However, when asked to use this 

understanding to find the value of b in (3, b), she was unable to apply the knowledge. Her 

knowledge of '
+
=

"
#
'

 as equivalent ratios was limited to numbers only, and she had not yet made 

the connection to equivalent ratios of  ∆%
∆&

 (GR) or understood slope as a rate of change (FP) (lines 

8-12). With some prompts (lines 14-17), she extended her understanding of '
+
=

"
#
'

 as numbers to 

an understanding of slope as ∆𝑥 = 1 and ∆𝑦 = '
+
 as well as ∆𝑥 = −1 and ∆𝑦 = − '

+
 —a 

transition level of slope as GR and FP. She then used the understanding to determine b by 

drawing the horizontal and vertical segments from (4, -1) to (3, b) and basing on the reference 

point of (4, -1), while saying “it must be 1/4 smaller than -1.” 

Afterwards, I asked her to construct an equation for Figure 1c, a task she had previously 

failed. She selected the reference point (-1, 3) and determined the y-intercept using the reference 

point and the unit rate. She said, “from here, I go over 1 and up 1/4, so b must be ¼ more than 
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3,” with no work other than adding 3 and ¼ as fractions. Her work seemed to indicate that she 

conceived a point as a multiplicative object (Saldanha & Thompson, 1998) since she consistently 

determined a new point—(3, b) or the y-intercept— based on the reference point with the 

expectation that “its coordinates represent a state of two quantities’ covariation” (Thompson et 

al., 2017, p. 1307). However, in subsequent tasks, she showed that her understanding of the point 

as a multiplicative object was uncertain.  

Excerpt 1 

I: You said the slope of this line is 1/4 (pointing Figure 1a). What is the meaning 

of the slope of ¼. 

T: You go up once and go over 4 times. 

I: OK. Then, if run is 1, what is rise? 

T: ¼ 

I: How do you know? 

T: Because ¼ is ¼ over 1.  

I: Ok. Then, can you use that understanding to determine the coordinates of this point 

(the point (3, b) in Figure 4) 

T: The rise is 1 and the run is 4. (She stopped talking and did not seem to know how to 

move forward.) 

I: You said that the slope of ¼ means for every increase of 4 in x, there is an increase of 1 

in y.  

T: Yes, every time when x is increased by 4, y is increased by 1.  

I: Yeah. So, every time x is increased by 1, y is increased by what? 

T: ¼ 

I: OK. What if x is decreased by 1? What happens to y? 

T: Then, y is decreased by ¼. 

I: Ok. Then can you use the understanding to find the value b here (in Figure 4)? 

T: Ok. So, x is decreased by 1 and y is decreased by ¼ (she drew horizontal and vertical 

segments and wrote -1 and -1/4, respectively). So, it must be -1-1/4.  
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Figure 4  

Slope in Linear Equation and Its Use in Approximation 

                            
Issue in Conceiving Point as a Multiplicative Object  

When determining the linear equation for the graph in Figure 5, she found the slope of 

the line as GR by simply inspecting the graph. She then wrote 𝑦 = '
/
𝑥 +  (with the blank 

replacing b in her mind) and tried to determine b. She said, “each time I move left by 1, I need to 

go down by 1/5. So, I need to go down by 3 times 1/5,” while writing 3 ∙ '
/
—indicating that she 

understood Δ𝑦 as '
/
Δ𝑥, with '

/
 as a unit rate.  

Figure 5 

Constructing Linear Graph Integrating Point and Slope as Multiplicative Objects 

 
When requested to explain her thought process, she explained how to “locate” the y-

intercept with the understanding of Δ𝑦 = 𝑚Δ𝑥 by saying “I have to know how many times I 

need to move to get to the y-intercept, I mean in x. And then I need to take that into the 

consideration to determine how much move I have to make in y.” Yet when she constructed the 

linear equation, she incorrectly determined the value of b using her correct idea. Instead of 

subtracting Δ𝑦 = *
/
 from the y-coordinate of the reference point (3, 1), she accepted Δ𝑦 = *

/
  as 

the value of b and claimed 𝑦 = '
/
𝑥 + *

/
 as the equation for the graph. Only after being prompted 

with questions, such as “where is your original point” and “3/5 down from what,” she realized 
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that her reference point was (3, 1) and replaced 3/5 with the correct value of 2/5 by subtracting *
/
 

from 1 (see Figure 5). 

Tanya’s confusion between Δ𝑦 and b persisted in a table task where she looked for an 

equation for the relationship between x and y (see Excerpt 2 on the task in Figure 6).  

Excerpt 2 

T: It looks like every time you move over 1 in x, move up 6 in y. 

I: Ok. So, what is the equation? 

T: Ok. Here is 3 and 10. Every time you move over once, go up 6. (She wrote y = 

6x.) It is 3 and you have to go back. So go down 18. So . . . (She was silent for a 

moment and then asked me a question.) What is the formula that we were using that 

was like y-k over something? 

(Conversation omitted here as it is irrelevant to this article.) 

I: I wonder why you stopped there. You said you had to move three times to the left 

and then 18 down. Why did you stop there and try to use a different method? 

T: I stopped because I could not visualize.  

I: Ok. Then can you draw the situation?  

T: So here is the point (3, 10). I go left by 3 and down by 18.  

(She plotted (3, 10) and drew horizontal and vertical segments.) 

I: Ok. So, what is the point (pointing the y-intercept)? 

T:18? 

I: You are saying this (horizontal segment) is 3 and this (vertical segment) is 18. 

Isn’t that what you are saying? 

T: Yeah, I think so. 

I: Ok, then tell me what you are doing in here (pointing the vertical segment). 

T: I want to go down 18. 

I: From where? 

T: Oh, it is from 10. So, it must be 8. 

I: Yeah, somehow you stopped in the middle, so I wondered what you were 

thinking. 

T: I didn’t know where to take the 18 at (from).  
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Figure 6  

Linear Equation for Tabular Representation 

 
She found the slope from the table by visualizing the situation as indicated in her words, 

“you move over 1 in x, move up 6 in y” and “[i]t is 3 and you have to go back. So go down 18” 

(lines 1-4, Excerpt 2). She then used her understanding of Δ𝑦 = 𝑚Δ𝑥 to locate the y-intercept. 

However, with that understanding, she was unable to determine the coordinates of the y-

intercept. Instead, she asked for my help in recalling the formula  %"0
&"1

= 𝑚 that she had utilized 

in a previous task with my assistance. 

When asked why she needed the formula to construct an equation, she said she could not 

determine the y-intercept because she was unable to visualize the situation (lines 8-10, Excerpt 

2). I then suggested her to draw the situation as a graph. She correctly plotted (3, 10) and drew 

the horizontal and vertical segments from the point (3, 10), stating “go left by 3 and down by 

18.” However, she incorrectly claimed that b in 𝑦 = 6𝑥 + 𝑏 was 18. Only after being prompted 

18 was down “from where,” she realized that the reference point was (3, 10) and correctly 

determined b by subtracting 18 from 10 (lines 16-25). It was evident that her struggle did not 

stem from a deficiency in visualization, as she claimed. Instead, her challenge lay in working 

with the coordinates of the reference point in the combination of ∆𝑥 and ∆𝑦, as demonstrated by 

her words, “I didn’t know where to take the 18 at.”  

Tangent Line and Linear Approximation of Function Values 

Transitional Level from Action to Process Stage  

Before introducing the tangent line and linear approximation tasks, I explained to Tanya 

that the function curve and its tangent are almost identical around the point of tangency. To 

illustrate it, I showed her the graphs of f(x) = x3 and g(x) = 3x - 2 zoomed in at the point of 

tangency (1, 1). I also explained to her f(x) could be estimated by g(x), when x is close to 1 due to 

their closeness around (1, 1). Afterwards, I presented the Figure 2 task and asked her to estimate 

f(2.1). Tanya correctly wrote an equation, 𝑦 = '2
/
𝑥 + (with the blank replacing b), determined 

the blank by mentally moving left 1 and down '2
/

 twice from the reference point of (2, 2), and 
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provided a correct tangent line equation, 𝑦 = '2
/
𝑥 − '+

/
 (Figures 7a and 7b). She then asked, 

“[y]ou said they are almost equal around here. Right?” When I said yes, she found an estimate of 

f(2.1) by replacing x by 2.1 in '2
/
𝑥 − '+

/
. It seemed that her understanding of slope and her 

conception of point as a multiplicative object were carried over to the linear approximation task 

without much difficulty. 

Figure 7 

Estimation of a Function Value 

(a)                                                         (b)                                                 (c) 

 
I then requested her to use the geometric approach she had previously used in the linear 

tasks to approximate f(2.1) without relying on the tangent line equation. One advantage of this 

approach is that it can allow her to extend her understanding of ∆𝑦 = 𝑚∆𝑥 from integer ∆𝑥 to 

non-integer ∆𝑥. This understanding is connected to 𝑑𝑦 = 𝑓′(𝑥)𝑑𝑥 in calculus and is crucial for 

understanding the concept of derivatives. To guide her in that direction, I added horizontal and 

vertical segments to the drawing (shown in red in Figure 7b) and asked her to use the drawing to 

estimate f(2.1). She understood my request and said, “I think you want me to find it using slope 

because slope is supposed to be the same no matter what the point is.” She then set up the 

equation, '2
/
= ∆%

.'
 (showing a transition level as GR) and solved for ∆𝑦 = .24 from ∆𝑦 =

'2
/
(. 1)	(see Figure 7c). Afterward, she added .24 to the y-coordinate of the reference point (2, 2) 

and estimated f(2.1) to be 2.24—demonstrating her understanding of ∆𝑦 = 𝑚∆𝑥 derived from 

the computation of  ∆%
∆&
= 𝑚. Had she been a calculus student, I would have recommended using 

dx and dy in place of ∆𝑥 and ∆𝑦. However, since she was a precalculus student, and our 
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discussion revolved around the tangent line, I chose not to correct her notation during this or any 

subsequent tasks. 

In a subsequent task (Figure 3a), Tanya successfully estimated √1.05 using the graphs of 

𝑦 = √𝑥 and its tangent at (1, 1) (Figure 8). She voluntarily drew horizontal and vertical 

segments, set ∆𝑥 as 0.05, set up the equation ½ = ∆%
4.4/

, and determined ∆𝑦 as ½ (.0.05) = 0.025. 

Afterward, she used the reference point (1, 1) to get an estimate of √1.05  as 1 + .025 = 1.025 

(see Figure 8). However, as the problems became more complex, she struggled to use the 

reference points to provide estimates of function values, as shown in the next section. 

Figure 8 

Estimation of a Function Value, √1.05 

 

 
Problem in Conceiving Point as a Multiplicative Object 

Figure 9 

Estimation of a Function Value, f (2.1) when 𝑓(𝑥) = 2𝑥2 + 1 with the Slope of f  4a at x = a 

 

 
In the Figure 2c task, Tanya was asked to estimate 𝑓(2 + ℎ). She began by setting up the 

equation '2
/
=	 ∆%

1
 and subsequently derived ∆𝑦 = '2

/
ℎ, demonstrating again her need of writing  

'2
/
=	 ∆%

1
 to determine ∆𝑦. Nevertheless, she struggled to incorporate the changes (∆𝑥 and ∆𝑦) 
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into the coordinates of the reference point. As a result, she erroneously claimed '2
/
ℎ as an 

estimate of 𝑓(2 + ℎ). Even after being reminded that she needed an estimation for 𝑓(2 + ℎ), she 

continued to incorrectly claim that 2 + ℎ + '2
/
ℎ was an estimate of 𝑓(2 + ℎ). It was only after 

prompting her about the reference point that she was able to correct her mistake, arriving at a 

correct estimate of 2 + '2
/
ℎ.  

Excerpt 3 

I: Tell me what you just did. 

T: Ok. I first had to find this point (referring to (2, 9)). It is 2 times 2 squared plus 1, 

so it is (2, 9) 

I: Ok. 

T: And then I know slope is 4. 

I: Why is it 4? 

T: No, I mean it is 4 times 2. 

I: Ok, so the slope is 8.  

T: Then, I got the change in x, so I am looking for the change in y. 

I: Ok. So, what is the change in x? 

T: It is .1. (She added .1 in the drawing.) 

I: Ok. So, what is the change in y? 

T: It is 8, right? 

I: The change in y is 8? 

T: Umm. Yes. (She wrote . 8 = ∆%
.'

) 

I: Hmm. When you say the slope is 8, what do you mean by that?  

T: When x is changed by 1, y is changed by 8. 

I: Ok. So, in this case (pointing the triangle in Figure 9), what is the change in x?  

T: .1 

I: Yeah, so what is the change in y? 

T: Umm. (She removed the decimal point from . 8 = ∆%
.'

 to change it to 8 = ∆%
.'
.) It 

is .8. 
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 Her struggle continued in the first task of Figure 3b, where she determined an estimate of 

𝑓(2.1) for 𝑓(𝑥) = 2𝑥2 + 1, given the slope of the tangent line at x = a as 4a. She started the task 

by independently sketching the graphs of 𝑓(𝑥) = 2𝑥2 + 1 and its tangent. She then added other 

components to the graph, marking 2.1 on the x-axis, the point of tangency (2, 9), and both 

horizontal and vertical segments. Subsequently, she set up the equation 							"	6
2.'"2

= 							
.'

  to represent 

the slope as AR as depicted in Figure 9. Nevertheless, she became lost during the process and 

fell silent for some time. To gauge her thought process, I initiated a series of questions.  

As indicated in lines 1-8 in Excerpt 3 and Figure 9, she demonstrated understanding of 

the problem and was able to describe the situation with a graph. She also correctly identified the 

slope of the line as 8 and ∆𝑥 as .1. However, she incorrectly claimed that ∆𝑦 was 8 (see lines 9-

15, Excerpt 3). Her miscalculation of ∆𝑦 was surprising in that she had previously determined 

∆𝑦 successfully, even with non-integer ∆𝑥, such as in the approximation of √1.05. One possible 

explanation for her confusion is that her drawing lacked scaling and grid lines, possibly affecting 

her perception of the magnitude of ∆𝑦 in the drawing. Nevertheless, this event indicated that her 

understanding of ∆𝑦 = 𝑚∆𝑥 was not entirely solid in certain situations. 

In another task, the second task of Figure 3b, where she provided an estimate of √1.05$ , 

she correctly found ∆𝑦 by setting up ∆%
.4/
= '

*
 and expressed ∆𝑦 as '

*
 ∙ (.05). However, she 

mistakenly claimed that '
*
 ∙ (.05) was the estimate of √1.05$ , the same error she had made in 

previous tasks. It was only after being prompted to consider what she was looking for and where 
'
*
 ∙ (.05) was in her drawing that she was able to coordinate the reference point (1, 1) with ∆𝑥 

and ∆𝑦 to arrive at the correct approximation of 1 + '
*
 ∙ (.05).  

Summary and Conclusion 

In summary, prior to the intervention, Tanya exhibited several difficulties with slope and 

linear equations as described in other studies. Specifically, she held an action conception of 

slope, primarily as AR, and relied solely on the formula %!"%"
&!"&"

 to determine slopes (Birgin, 2012; 

Cho & Nagle, 2017), even in situations where other approaches would be more effective. While 

she understood slope as GR, as 𝑚 = ∆%
∆&
, she could only use it for integer ∆𝑥 and ∆𝑦 (Cho & 

Nagle, 2017; Thompson & Carlson, 2017). Additionally, she only had the slope-intercept form in 

her concept image (Vinner, 1983) of slope (Nagle & Moore-Russo, 2013) and was unable to 
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construct an equation of a line in the slope-intercept form when the y-intercept was not explicitly 

provided (Cho & Nagle, 2017). Given her limited understanding of slope and line, Tanya would 

face challenges with calculus concepts such as derivatives, tangent line equations, and 

approximations of function values (David et al., 2019; Frank & Thompson, 2021; Nagle et al., 

2022). 

Tanya’s understanding of slope and lines improved to some extent during the 

intervention. She extended her numerical understanding of ¼ = 
"
#
'

 to a transition level of slope as 

GR and FP—conceiving 𝑚 = '
+
  as ∆𝑦 = 1 for ∆𝑥 = 4 as well as the unit rate of ∆𝑦 = '

+
 for 

∆𝑥 = 1. She also used the unit rate to understand ∆𝑦 as 𝑚∆𝑥 for integer ∆𝑥. For instance, she 

visualized ∆𝑦 for ∆𝑥 = 3 as an iteration of '
+
 three times and wrote ∆𝑦 = 3∙ '

+
  with no work. 

However, her interiorization of ∆𝑦 = 𝑚∆𝑥 was limited to integer ∆𝑥; for non-integer ∆𝑥, she 

obtained ∆𝑦 = 𝑚∆𝑥 as a result of computation from 𝑚 = ∆%
∆&

 rather than as a multiple of m and 

∆𝑥. Nagle et al. (2019) state that a process stage of slope involves an understanding of ∆𝑦 =

𝑚∆𝑥 as well as the connection between the geometric and algebraic representations of ∆𝑦 =

𝑚∆𝑥 and 𝑦 − 𝑦' = 𝑚(𝑥 − 𝑥') without explicit work. In Tanya’s case, with her improved 

knowledge of ∆𝑦 = 𝑚∆𝑥, yet lower than the process stage, she successfully determined ∆𝑦 and 

“located” points needed for linear equations or approximation in almost all tasks. The primary 

difficulty she had with linear equation and approximation tasks was determining the coordinates 

of the points.  

When Tanya needed to consider a new point—to find the y-intercept or a point on a 

tangent line for approximation— she correctly made moves of ∆𝑥 and ∆𝑦 from the location of 

the reference point to the location of the new point. However, when she determined the 

coordinates of the new point, she often falsely claimed that ∆𝑦 was the y-coordinate of the new 

point. According to Thompson et al. (2017), conceiving a point on a graph as a multiplicative 

object requires an understanding that coordinates of the point are a representation of “a state of 

two quantities’ covariation” (p. 1307). In Tanya’s case, she knew the location of the new point 

based on the location of the reference point by correctly applying the quantity changes of ∆𝑥 and 

∆𝑦 encoded in the slope. However, she failed to incorporate ∆𝑥 and ∆𝑦 into the coordinates of 
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the reference point to determine the coordinates of the new point, failing to conceive point as a 

multiplicative object.  

Returning to the process stage of slope (Nagle et al., 2019), Tanya never made a direct 

connection between ∆𝑦 = 𝑚∆𝑥 and 𝑦 − 𝑦' = 𝑚(𝑥 − 𝑥') during the intervention. In fact, she 

never understood the point-slope form, 𝑦 − 𝑦' = 𝑚(𝑥 − 𝑥'), or 𝑚 = %"%"
&"&"

, to the level that she 

could successfully use either form to construct linear equations by herself. Nevertheless, with her 

lower than process conception of slope, she could construct a linear equation in the slope-

intercept form on some cases. For instance, when constructing an equation of a line passing 

through the point (𝑥', 𝑦') with the slope of m, she set up the equation, 𝑦 = 𝑚𝑥 + 𝑏, or 𝑦 =

𝑚𝑥 +	, with the blank replacing b, and made the horizontal and vertical moves of ∆𝑥 = 𝑥' and 

∆𝑦 = 𝑚𝑥' to locate the y-intercept (see Figure 10). Subsequently, she subtracted ∆𝑦 from 𝑦' to 

determine the value of b as 𝑦' −𝑚𝑥' and constructed the linear equation, 𝑦 = 𝑚𝑥 + 𝑦' −𝑚𝑥', 

a treated form of the point-slope form, 𝑦 − 𝑦' = 𝑚(𝑥 − 𝑥'). Considering Tanya’s case, one may 

make sense of the slope-intercept form, 𝑦 = 𝑚𝑥 + 𝑏, with the y-intercept b as 𝑦' −𝑚𝑥', by 

combining the conceptions of slope and point as a multiplicative object. 

Figure 10 

Equation of Line that Passes through the Point (𝑥', 𝑦') with the Slope of m 

 

 
The findings of this study suggest that students’ difficulties with tangent lines and 

approximations reported in previous research (Amit & Vinner, 1990; Biza & Zachariades, 2010; 

Çekmez & Baki, 2016; Orton, 1983; Moore-Russo & Nagle in this volume) may be linked to 

their insufficient understanding of critical ideas in linear equations, including slope and point. As 

shown in Tanya’ case, students may not grasp the form, 𝑦 − 𝑓(𝑥') = 𝑓)(𝑥')(𝑥 − 𝑥'), 𝑦 =

𝑓)(𝑥')(𝑥 − 𝑥') + 𝑓(𝑥'), or 𝑓)(𝑥') =
%"7(&")
&"&"

, as a representation of a line passing through the 
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point (𝑥', 𝑓(𝑥')) with a slope of 𝑓)(𝑥'). Additionally, when utilizing a geometric approach to 

solve approximation problems, they may face challenges in determining ∆𝑦 = 𝑚∆𝑥, regardless 

of their ability to compute 𝑚 = 𝑓′(𝑥), and in incorporating ∆𝑥 and ∆𝑦 into the coordinates of the 

reference point (𝑥', 𝑓(𝑥')) for the coordinates of new points. However, since the arguments are 

primarily based on a single student’s experience, additional research is necessary to confirm 

them for a larger population. 

I acknowledge that there are alternative approaches for constructing a linear equation 

requiring different kinds of understanding. For example, one can formulate an equation of a line 

passing through a point (𝑥', 𝑦') with a slope of 𝑚 by setting up the equation 𝑦 = 𝑚𝑥 + 𝑏 and 

determining the value of b by substituting 𝑥' and 𝑦'	into 𝑦 = 𝑚𝑥 + 𝑏. Similarly, one can 

construct the tangent of the function 𝑦 = 𝑓(𝑥) at (a, f(a)) by setting up the equation 𝑦 =

𝑓′(𝑎)𝑥 + 𝑏 and determining the value of b by substituting a and f(a) into 𝑦 = 𝑓′(𝑎)𝑥 + 𝑏. The 

tangent line can then be used to approximate a function value 𝑓(𝑎 + ℎ) by substituting 𝑎 + ℎ 

into x when h is close to 0. These techniques may require less cognitive demand (Stein & Smith, 

1998) and therefore may be more accessible to some students. However, I believe that the 

geometric approach employed in my intervention has the potential to benefit students in some 

ways. It could help them connect algebraic and geometric representations of slope and point, 

conceive slope as a rate of change, understand coordinates as quantities of magnitudes, 

understand ∆𝑦 = 𝑚∆𝑥, and conceive point as a multiplicative object. 

I conclude this study by describing a set of new and revised activities that I plan to 

implement with my college algebra and precalculus students, in addition to the activities 

presented in this study. As suggested by the findings of this study, it is crucial for students to 

engage in various opportunities to develop a deep understanding of point and slope. While these 

activities are designed for college students, I believe they may be also suitable for secondary 

students who possess an action conception of slope as AR and GR. The following section 

provides a detailed description of these activities. 

Activities for Understanding Point, Slope, and Linear Equations 

Activity 1  

a) Plot some points (x, y) that satisfy the following condition: The slope between (1, 2) and 

(x, y) is 3. Construct the graph formed by all points that satisfy the condition and explain 

the graph, including why the graph has no holes.  
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b) Construct an equation representing the graph in part (a) and explain how the equation is 

related to the graph.  

c) Redo parts (a) and (b) using the point (−1, 3) instead of (1, 2) and a slope of -3 instead of 

3. 

d) Redo parts (a) and (b) using the point (x1, y1) instead of (1, 2) and a slope of m instead of 

3. 

Activity 1 is a conversion task from verbal descriptions to geometric and algebraic 

representations of lines. Students in this task construct a line graph consisting of points that 

maintain a constant slope of  (%
(&

 with a given point. They also construct a linear equation in the 

form of 𝑚 = !"!!
$"$!

. In part (a), students will develop a transition level of understanding of slope as 

GR, as they examine the directions and the magnitudes of various ∆𝑥 and ∆𝑦. Initially, they may 

locate new points by drawing tick marks to trace the changes, ∆𝑥 and ∆𝑦. However, as they work 

with different points, they are expected to eventually understand that ∆𝑦 = 3∆𝑥 for all ∆𝑥 and 

conceptualize the new point as (1+ ∆𝑥, 2 + 3∆𝑥) by incorporating ∆𝑥 and ∆𝑦 = 3∆𝑥 into the 

reference point (1, 2). This way, students would conceive points as multiplicative objects, and  

furthermore, they would visualize slope using dynamic images of similar right triangles that 

result from varying x and y, especially while explaining the graph with no holes.  

In part (b), students construct an equation 3 = !"%
$"&

 with a conception of slope as AR, 

initially treating (x, y) as a fixed point. However, as they explain 3 = !"%
$"&

 for all (x, y), they would 

reach a transition level of understanding of slope as AR and realize that 3 = !"%
$"&

 is true for all (x, 

y). Furthermore, students would connect AR and GR (a transition level of slope) and establish a 

connection between the line graph and equation. Moreover, the subtasks (c) and (d) would help 

students generalize their understanding of slope and equation by exploring a negative slope of 

−3 and an unknown slope of m. As a result, they would understand that a line graph is a 

collection of points forming a constant slope with a fixed point. Additionally, they would 

recognize that a linear equation can be represented in the form of 𝑚 = !"!!
$"$!

, which is an equivalent 

form of the line in point-slope form, 𝑦 − 𝑦& = 𝑚(𝑥 − 𝑥&). 

 

 



                                                                                                                  TME, vol. 21, no. 3, p. 

 

563 

Activity 2 

 
(a) Assuming the point (2, c) is on each of the three graphs above, determine the value of c in 

each graph. 

(b) Use the strategy employed in Activity 1 to construct a line equation for each of the graphs 

above.  

(c) A line equation can be represented in various forms, including 𝑚 = %"%"
&"&"

, 𝑦 − 𝑦' =

𝑚(𝑥 − 𝑥'), and 𝑦 = 𝑚𝑥 + 𝑏. Manipulate the equations constructed in part (b) to rewrite 

them in both 𝑦 − 𝑦' = 𝑚(𝑥 − 𝑥') and 𝑦 = 𝑚𝑥 + 𝑏 forms. 

(d) Explain what x, y, m, x1, y1, and b, in part (c) represent in graphs.  

 

 Activity 2 includes tasks that would help students conceive a point as a multiplicative 

object, strengthen their transition level of understanding of slope as FP, and establish 

connections between line graphs and various forms of linear equations. In part (a), students find 

the slopes of various line graphs, including lines with negative slopes, and use them to determine 

the coordinates of (2, c). While determining the value c, they would develop an understanding of 

the unit rate of change and conceive points as multiplicative objects. For example, in the first 

graph in part (a), they would understand 𝑚 = − '
/
 as ∆𝑦 = − '

/
 for ∆𝑥 = 1 and find ∆𝑦 = 2 ∙ − '

/
 

for ∆𝑥 = 2. Subsequently, they determine the value of c by adding 2 ∙ − '
/
 to the y-coordinate of 

the reference point (0, 1), incorporating ∆𝑥 and ∆𝑦 into the coordinates of the reference point. 

 In parts (b) and (c), students may construct linear equations in the form of 𝑚 = %"%"
&"&"

 and 

transform them into both the 𝑦 − 𝑦' = 𝑚(𝑥 − 𝑥') form and the 𝑦 = 𝑚𝑥 + 𝑏 form. However, 

since they may approach this process purely algebraically, they may not grasp the meanings of x, 

y, x1, y1, m, and b in relation to graphs; specifically, they may overlook the interpretation of b as 
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the y-coordinate of the y-intercept in the relation 𝑏 = 𝑦' −𝑚𝑥'. The part (d)) aim to help 

students connect graphs and equations by translating the meanings of the sub-concepts of lines.  

Activity 3 

a) Plot points (x, y) that satisfy the following condition: The slope between (1, 2) and (x, y) 

is 3∆𝑥, where ∆𝑥 represents the signed horizontal distance between (1, 2) and (x, y).  

b) Construct the graph formed by all points that satisfy the condition in (a). Subsequently, 

construct an equation representing the graph.  

c) Redo parts (a) and (b) using the point (-2, 3) instead of (1, 2) and the slope −2∆𝑥 instead 

of 3∆𝑥. 

d) Redo parts (a) and (b) using the point (h, k) instead of (1, 2) and the slope 𝑎∆𝑥instead of 

3∆𝑥. 

Activity 3 is a construction activity focused on parabolic equations and graphs. While 

history and set theory define a parabola as a collection of points equidistant from a fixed point 

and a fixed line, I offer an alternative description of parabola emphasizing slope as a rate of 

change. This activity aims to help students understand the concept of slope beyond linear 

equations and construct a parabola equation in the vertex form, 𝑦 = 𝑎(𝑥 − ℎ)2 + 𝑘.  

In part (a), students may initially use the trial-and-error method to find some points that 

satisfy the given condition. However, as they progress, they may develop strategies to locate 

points that make the slope of 3∆𝑥. For instance, they may fix the x-variable of the point as a 

constant, such as (5, y), and calculate the slope 3∆𝑥 = 12 with ∆𝑥 = 4. They can then calculate 

∆𝑦 = 48 from the equation  ∆%
+
= 12 using their understanding of slope as GR. Subsequently, 

they would incorporate 48	into the y-coordinate of (1, 2) to determine the coordinates of a new 

point (5, 50). While repeating this process for various x-values, they would become aware that 

they can find a point (x, y) that satisfies the given condition for any x. By applying the same 

method, they can locate new points and determine the coordinates of these points as (1 + ∆𝑥, 2 + 

∆𝑦) with ∆𝑦 = 3∆𝑥2 for some ∆𝑥. 

In part (b), students come to realize that for any point (x, y) that satisfies the given 

condition, ∆𝑥 = 𝑥 − 1 and  Δ𝑦 = 𝑦 − 2 by connecting slope as GR and AR. Accordingly, they 

set up the equation %"2
&"'

= 3(𝑥 − 1) derived from (%
(&
= 3∆𝑥. They then transform the equation 

into the form 𝑦 − 2 = 3(𝑥 − 1)2, and further into 𝑦 = 3(𝑥 − 1)2 + 2, a parabola in the vertex 
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form. In doing so, they establish a connection between the parabola equation and graph while 

understanding the characteristics of the parabola, such as its symmetry along the line x = 1 and 

its minimum value of 2 at x = 1. Subsequently, in parts (c) and (d), students generalize the 

situation and construct an equation of the form 𝑦 = 𝑎(𝑥 − ℎ)2 + 𝑘. Moreover, they develop an 

understanding that the sign of a determines the shape of the graph, whether it is an upward 

parabola or a downward parabola. If a > 0, the points satisfying the given condition lie above the 

point (h, k), as ∆𝑦 = 𝑎∆𝑥2 is positive regardless of the sign of ∆𝑥. Similarly, if a < 0, the points 

satisfying the given condition lie below the point (h, k) as ∆𝑦 = 𝑎∆𝑥2 is negative regardless of 

the sign of ∆𝑥. 
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