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Abstract: While slope is a topic in the algebra curriculum, having a robust understanding of 
slope is needed for students to truly understand several single and multivariable calculus topics 
with any depth. We begin with a review of the topic of slope and present what is known from its 
existing corpus of literature. We then outline the tenets of APOS theory. Building from there, we 
suggest what a robust, flexible understanding of slope involves, as well as how slope is used, 
with the APOS-slope framework acting as a theoretical lens. This is followed by the cases of two 
hypothetical students built from amalgamations of research and experience to emphasize why 
moving easily between different ways of thinking about and the various uses of slope is vital to 
successfully transition into calculus. We offer suggestions as to how university instructors might 
consider slope understanding when teaching calculus, then conclude with suggestions for future 
research on slope. 
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Introduction  

Mathematics courses typically follow a path of progression where topics rely on students’ 

understanding of previous content (Treisman, 1992). Many calculus concepts build on topics that 

have first been introduced to students in precalculus and even algebra (Habre & Abboud, 2006). 

Students’ lack of prerequisite knowledge can lead to challenges in understanding later topics that 

appear in calculus (Pyzdrowski et al., 2013).  

Although typically introduced in the middle grades in the U.S. (Stanton & Moore-Russo, 

2012; Nagle & Moore-Russo, 2014b; Nagle et al., 2022), slope serves as a foundational idea for 

topics in more advanced mathematics courses. Slope helps contrast covariational relationships in 

linear and nonlinear functions in algebra (Lobato & Thanheiser, 2002; Teuscher & Reys, 2010). 

Slope as a measure of steepness ties into the tangent of an angle in trigonometry (Nagle & 

Moore-Russo, 2013a). Slope plays a key role in statistics in describing the nature of a data set 

when a regression line is used (Nagle et al., 2017). Slope also has an important role in the initial 

development of derivatives in calculus (Zandieh, 2000; Zandieh & Knapp, 2006), as noted in 

Asiala and colleagues’ (1997) extensive genetic decomposition of derivatives, and in directional 

derivatives in multivariable calculus (McGee & Moore-Russo, 2015; McGee et al., 2015). In this 

paper, we will focus on how students with different understandings of slope might be impacted 

as they proceed to calculus. More specifically, we report on an amalgamation of cases to create 

two fictional accounts of students who are representative of the very different understandings of 

slope that students can have in introductory university calculus courses. 

Slope 

Without an ability to comfortably move between representations and to think about slope 

as a parameter for linear relationships, students will have a hard time navigating the extension of 

slope to non-linear functions in calculus. Calculus requires students to extend the linear notion of 

slope to recognize that nonlinear functions have variable slope, and to define the slope of a curve 

at a point as the slope of the tangent line to the curve at the point. Calculus also requires students 

to interpret the tangent line’s slope as the instantaneous rate of change of outputs with respect to 

inputs, and to define the derivative function as a new function which produces the instantaneous 

rate of change of f for any input. 

To develop a deep, flexible understanding of foundational concepts in calculus, such as 

instantaneous rate of change and derivative, students must first understand average rates of 
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change and the difference between linear and nonlinear functions (Nagle & Moore-Russo, 

2013b). Yet, it has been reported that students can have a limited understanding of linear 

functions, even when they are able to transition between their different representations (Adu-

Gyamfi & Bossé, 2014). This is the case even for STEM majors at the university level (Newton, 

2018). Students often over rely on symbolic calculations or shape thinking, where a graph is 

treated as a static object (Moore & Thompson, 2015) and may not make critical connections 

between the graphical and symbolic representations used for linear functions (Örnekçi & Çetin, 

2021). When dealing with linear equations, students may reply with recalled responses to 

common symbolic manipulations rather than engaging in meaningful covariational reasoning 

(Thompson & Carlson, 2017) about the linear relation in the task. This has been noted in 

research of students’ explanations of graphical relationships when students reported a slope of 4 

when they had actually calculated the task’s solution to be x = 4 (Huntley et al., 2007). Students 

who rely solely on static shape thinking may be challenged when interpreting slope in non-

standard setting, such as non-homogeneous coordinate systems (Zaslavsky et al., 2002) or when 

using dynagraphs (Nagle & Moore-Russo, in press). They may also struggle to determine the 

derivative for a relatively common function, such as a parabola, as reported by Aspinwall and 

colleagues (1997), due to thinking that the far-right behavior of the parabola would result in 

tangent lines whose slope is undefined.  

Even though secondary teachers express concern for students’ understanding of the slope 

of linear functions, they may reduce slope to rote computations based on memorized procedures 

or focus on buzz words (i.e., “rate of change”) without assessing, or providing adequate support 

for developing, a student’s robust conceptual understanding of slope (Stump, 1999; Styers et al., 

2020). Stump’s (2001a) research findings suggest that teachers rely primarily on ratios as the 

dominant representations of slope. As a result, slope frequently is introduced as a mnemonic 

(e.g., rise over run, change in y over change in x) that can hinder meaningful understanding of 

slope as a constant rate of change of two variables (Walter & Gerson, 2007). This might be a 

result of the limited understanding of slope held by some pre-service and in-service teachers 

(Avcu & Türker Biber, 2022; Coe, 2007; Moore-Russo et al., 2011; Stump, 1999, 2001a). It 

might also be related to the variations found in the ways state standards and other curricular 

materials present slope (Frank & Thompson, 2021; Kim, 2012; Bateman et al., 2021; Dolores 

Flores et al., 2020; Nagle & Moore-Russo, 2014a; Moore-Russo, 2012; Tuluk, 2020). The result 
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is that many students can apply slope only in particular problem contexts (Byerley & Thompson, 

2017), and they are not always able to work with slope in a conceptual way on application tasks 

(Christensen & Thompson, 2012; Lingefjärd & Farahani, 2017).  

How students think of slope often depends on the learning context including the task at 

hand, what it involves, and the representations that are used (Byerley & Thompson, 2017; De 

Bock et al., 2015; Tall & Vinner, 1981) as well as prior knowledge and experiences (Vinner, 

1992). Slope can be thought of in many ways, but previous research suggests that both students 

and teachers often fail to make connections between the various interpretations of slope (Coe, 

2007; Frank & Thompson, 2021; Hattikudur et al., 2011; Hoban, 2021; Lobato & Siebert, 2002; 

Mudaly & Moore-Russo, 2011, Planinic et al., 2012). As a result, the notions that students 

entering post-secondary calculus have of slope may be quite shallow (Dolores-Flores et al., 

2019; Mielicki & Wiley, 2016) and different from the ways professors think of, represent, and 

communicate slope (Nagle et al., 2013). When students have a fragmented or disjoint 

understanding without connections between various ways of thinking about slope, they are not 

able to interpret different representations of slope (Glen, 2017; Tanışlı & Bike Kalkan, 2018). 

So, students may enter calculus with isolated notions of slope and not be able to connect slope as 

a ratio to other ways of conceptualizing slope, such as slope as a measure of steepness (Nagle & 

Moore-Russo, 2013a; Stump, 2001b). Students’ fragile understanding of slope can persist as they 

advance in mathematics. This was noted when 15% of university students tested were unable to 

correctly rank the slope magnitudes of tangent lines at marked points on a single-variable 

function curve at the end of a multivariable calculus course (Christensen & Thompson, 2012).  

Slope can be linked to developing student understanding of multivariable calculus, such 

as has been done with directional derivatives (see Martínez-Planell & Trigueros, 2021; McGee & 

Moore-Russo, 2015) and with tasks that consider the tilt of planes (Bos et al., 2022). However, 

for this paper we focus on how different notions of slope impact student understanding of 

concepts typically addressed in an introductory, single-variable calculus course. We do this by 

building on previous research that has considered how slope is conceptualized by students 

(Moore-Russo et al., 2011; Nagle et al., 2016; Stump 1999, 2001b) and that has identified 

common challenges, such as confusion between slope and the output value of a function at a 

point (Beichner, 1994; Planinic et al., 2012). Such misunderstandings can continue into calculus. 

For example, Orton (1983) reported that almost 20% of the students in his study confused the 
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derivative at a point on a function with the point’s y-coordinate. Moreover, it has been reported 

that even “good” calculus students who perform well on routine calculus tasks struggle with 

nonroutine problems that cover basic calculus concepts (Selden et al., 1994). By working with 

what is known, we consider how different understandings of slope might impact how students 

come to understand common introductory calculus concepts. 

APOS Theory 

APOS theory was proposed by Dubinsky (1984) as an adaptation of Piaget’s reflective 

abstraction (Piaget, 1971; Piaget & Campbell, 2001). APOS theory provides a means to study an 

individual’s development of mathematical knowledge through four stages: Action, Process, 

Object, and Schema (Dubinsky, 2014). According to APOS theory, individuals’ abilities to 

respond to diverse mathematical tasks involving a particular mathematical topic vary depending 

on the stage of their understandings of the topic. In the following paragraphs, we describe each 

of the four stages. 

An Action is a step-by-step transformation of a mathematical notion that an individual 

perceives as external since it is not connected to the person’s other mathematical knowledge. It 

may involve the rigid application of a procedure or a memorized fact, and it is often associated 

with a specific mathematical representation. As an individual repeats and reflects on an Action, it 

may be interiorized into a Process. An individual with a Process stage of understanding can 

perform the same transformation as the Action, but it is internal since it no longer requires 

external stimuli and occurs in the individual’s mind. A Process is linked by some meaningful 

connections to other mathematical knowledge. These connections allow the individual to 

imagine the transformation in a less rigid way, quite often omitting some of the steps that were 

required in the Action stage. These connections also enable the individual to be able to anticipate 

results even before performing the transformation, and they allow the individual to work with 

different mathematical representations of the transformation.  

As a person becomes aware of the total Process as its own entity and develops the ability 

to extend the Process beyond its original context to deal with new situations, then the Process has 

been encapsulated by the person into a mental Object. This stage involves realizing that Actions 

can act on the Process. These Actions may be applied, or the application of such Actions might 

just be imagined. At the Object stage, individuals can extend across, and even beyond, the 

different representations of slope to consider how it may apply in contexts that are novel. While 
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an individual is developing an understanding of some mathematical topic, many Actions, 

Processes, and Objects may be constructed. Once a mental framework is constructed so that 

these Actions, Processes, and Objects form an organized, coherent collection, the individual has 

constructed a Schema for the topic. The Schema allows the individual to determine if and how 

this topic might be applied when encountering different situations, even situations where the 

topic is not explicitly mentioned.  

In APOS theory, Actions, Processes, Objects, and Schemas are stages, but it is also 

possible to consider the transition “levels” between these stages (Arnon et al., 2014). What the 

transition levels involve, and how many there are, depend on the mathematical topic. Rather than 

thinking of APOS theory as a strict linear progression from Actions to Processes to Objects, all 

of which are finally organized in Schemas, it is important to realize that there can be partial 

developments, passages to, and returns from the stages (Arnon et al., 2014). When encountering 

a mathematical task, individuals may try to address the task at hand through existing Actions, 

Processes, Objects, or Schemas. Individuals may complete an Action on a partially constructed 

Process. In this case it may seem that the individuals have constructed a Process on which they 

can do Actions. However, on another task that is related to the same topic but that involves a 

slightly different scenario, the individuals’ transition level structures may not suffice to solve the 

problem. The individuals would need to review their ways of thinking to accommodate sufficient 

mental structures to handle the problem situation. That is, they will need to reconstruct or 

reorganize their existing mental structures, perhaps advancing towards the construction of a 

Process, to assimilate the new problem situation. To an observer, these individuals seem to be 

moving back and forth between Action and Process stages. We will refer to individuals doing 

this to be at a Transition level. Note that a level of development between the Process and Object 

stages has been suggested (Arnon et al., 2014). While one can imagine what this level (referred 

to as Totality) might look like as students encapsulate an idea and are starting to perform Actions 

on it, we leave it for another paper. 

APOS-Slope Framework 

The APOS-slope framework, in Figure 1, was first introduced by Nagle and colleagues in 

2016 and then more thoroughly vetted (Nagle et al., 2019). In that time period, Deniz and Kabael 

(2017) also used APOS theory to study 8th graders’ understanding of slope.  
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Figure 1   

APOS-Slope Framework (adapted from Nagle et al., 2019).  

 
 

The APOS-slope framework, in Figure 1, evolved from earlier work by Sheryl Stump 

(1999; 2001a; 2001b) and then by Moore-Russo and colleagues (Moore-Russo, Conner, & Rugg, 

2011; Nagle et al., 2013; Stanton & Moore-Russo, 2012). These earlier works described 11 

conceptualizations of slope evidenced by students, teachers, and standards documents. For this 

paper, we have slightly modified and extended Nagle and colleagues’ APOS-slope framework to 

consider how different understandings of slope impact students when they are learning 

introductory calculus. 

The APOS-Slope framework builds on decades of research on slope while distinguishing 

between how slope is understood and the purposes for which it is used. It can extend to uses of 

slope in trigonometry, but, in this paper, we consider only slope extensions to calculus, 

especially topics where students build on the slope of a tangent line at a point as the first 

derivative for a specific input in nonlinear functions, as outlined in Table 1. 

Uses of Slope 

The APOS-slope framework distinguishes between the three uses of slope, as shown in 

the vertical columns in Figure 1. Each use is emphasized in algebra (Bateman et al., 2021) but is 

also foundational for different topics in calculus, a select few of which are described in Table 1. 
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Table 1 

Common Uses of Slope in Introductory Calculus 

Slope used in To Describe Behavior To Measure Steepness To Determine Relationships 

Related  
Rates 

Express a rate of change 
mathematically (e.g., dy/dt) by 
interpreting the direction of 
change in the quantity (y) over 
a change in time (e.g., if y is 
the distance between two cars 
driving away from each other, 
then dy/dt is positive); 
Interpret the sign of dy/dt by 
considering the signs of both 
dy/dx and dx/dt, where each 
can be interpreted as slopes 

Recognize the role of slope (dy/dx) 
when determining the rate of 
change of y with respect to time 
(dy/dt); for instance, in examples 
of a point moving along a curve at 
a constant rate of change dx/dt, 
recognize that how quickly y 
changes depends both on dx/dt and 
the steepness of the tangent line to 
f at a given point 

 

Mean  
Value  
Theorem 

  Visually approximate points where a 
tangent line is parallel to a given 
secant line; use the derivative to 
identify input values where the 
instantaneous rate of change is equal 
to the average rate of change over an 
interval 

Differentials & 
Linearization 

Extend the relationship 
between sign of slope and 
(increasing or decreasing) 
behavior of a line to reason 
about whether dx and dy on a 
linear approximation for a 
function have the same or 
opposite signs; use dy = mdx 
to recognize direction of 
change in dy is dependent on 
both the sign of m and the 
value of dx 

Use slope as a tool to measure 
steepness of a linear approximation 
to determine whether a given dx 
will result in a large or small 
corresponding value of dy; 
compare f ′(a) for different values 
of a to describe how the same 
value of dx can result in different 
values of dy, as determined by the 
steepness of the tangent lines at 
various inputs on the function f  

 

Function  
Behavior  

Coordinate behavior of a 
tangent line to f(x) at x = a 
with the sign of f ′(a); 
coordinate intervals on which f 
is increasing, decreasing, 
horizontal with intervals on 
which f ′ is positive, negative, 
zero; recognize that horizontal 
tangent lines to points can 
signal extrema or inflection 
points 

Visually compare severity of tilts 
of tangent lines at different points 
along a function’s domain to 
determine if slopes are increasing 
or decreasing; looking at the 
change in  f ′(a) for a sequential 
series of inputs over a limited 
domain of a function to determine 
concavity of f over an interval 

 

Indefinite  
Integrals 

  Visualize that tangent lines at fixed 
values x = c are parallel for functions 
with vertical translations; recognize 
that functions f(x) = g(x) + C will 
have the same derivative and 
therefore f(x) and g(x) will have equal 
slopes for tangent lines at 
corresponding inputs 
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To describe behavior is to use slope to determine if a line’s graph is (or the value for 

outputs in a linear function are) increasing, decreasing, or horizontal (i.e., constant output values) 

as input values increase. To measure steepness is to use slope to determine the angle of 

inclination of a graph that impacts the severity of tilt of a line’s graph or the rate of increase in 

the outputs in a table with equal increments between inputs. To determine relationships is to use 

slope to decide if linear graphs intersect or systems of linear functions have a solution. This 

involves recognizing slopes of parallel and perpendicular lines as being equal or negative 

reciprocals, respectively. It also entails students recognizing that a system of two linear equations 

with the same slope will either have no solutions or infinitely many.  

Stages and Levels of Slope Understanding 

We now concentrate on the three ways of thinking of slope, namely as a geometric ratio 

(G), algebraic ratio (A), or functional property (F), when at the Action or Process stage (or the 

Transition level between the two), until the three merge into a linear constant (L) 

conceptualization, which would occur at the Object stage. The ways of thinking of slope are 

shown in Figure 1 and summarized in Table 2; each is now described in more detail.  

Action Stage 

At the Action stage, students are constrained by isolated notions of slope where they use 

memorized procedures to do plug-and-chug calculations to produce a slope value. A student can 

exhibit more than one notion of slope but does not exhibit behaviors that suggest any ability to 

make connections between these notions.  

The geometric ratio at the Action stage (AG) represents a student who thinks of slope as 

the rise-over-run calculation without considering the x- and y-coordinates of points in the 

calculation; this stage is restricted to numeric and geometric representations of slope. They may 

only think of up and over, concentrating on the two distances, which they may (or may not) 

envision on a single, static slope triangle.  

Students operating with AG might occasionally misremember whether it is the horizontal 

or vertical displacement that goes in the numerator of the slope fraction since they are 

substituting in numbers without considering what the resulting values represent. These students 

might also fail to consider any negative displacement values that would be associated with the 

slope of a decreasing line, or they might ignore axes that are non- homogeneous when comparing 

the slopes of the graphs of two linear functions (Zaslavsky, Sela, & Leron, 2002).  
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Table 2 

Descriptions of Possible Stages and Levels for Slope Understanding 

Stage/Level Description 

Action Stage  

Geometric Ratio  
(AG) 

Students calculate slope using the formula ΔV/ΔH, which is rise over run or the vertical change over 
horizontal change using two corresponding distances on a line’s graph. 

Algebraic Ratio  
(AA) 

Students calculate slope using the formula (y2 - y1)/(x2 - x1), which is the difference in y-values of 
two given points from a line divided by the difference in the point’s corresponding x-values. 

Functional Property  
(AF) 

Students identify slope as the coefficient of the x term in a linear function; slope is verbalized as 
“rate of change.” 

Action to Process Transition Level 

Geometric Ratio 
(TG) 

Students are starting to use ΔV/ΔH to calculate slope and recognize that all ΔV/ΔH ratios calculated 
for a particular line are equivalent using mental imagery to see calculations involve similar triangles. 

Algebraic Ratio 
(TA) 

Students are starting to use the formula (y2 - y1)/(x2 - x1) to calculate slope and to recognize that the 
difference ratios calculated using any two given points from a particular line yield the same slope. 

Functional Property (TF) Students are starting to recognize that a single linear function can be represented with equations in 
different forms (e.g., y = mx + b versus ax + by = c), are beginning to convert between those forms, 
and are equating slope as it is indicated in both formats (e.g., m = -a/b). 

Connecting Alg. & 
Geom. Ratio (TG-A) 

Students can reason at both the TA and TG levels described above and are starting to understand the 
connections between the geometric and algebraic representations (e.g., ΔV is y2 - y1) in the formulas. 

Connecting Geom. Ratio 
& Funct. Property (TG-F) 

Students can reason at both the TG and TF levels described above and are starting to make 
connections between the geometric ratio and the steepness of the line such that larger values of |m| 
yield steeper lines for y = mx + b.  

Connecting Alg. Ratio & 
Funct. Property (TA-F) 

Students can reason at both the TA and TF levels described above and are starting to understand the 
connections for slope in the algebraic ratio formula from the point-slope equation of a line. 

Connecting Geom. Ratio, 
Alg. Ratio & Funct. 
Property (TG-A-F) 

Students can reason at the TG, TA, TF, TG-A, TG-F, and TA-F levels described above and are starting to 
reason between representation pairs; they are also starting to realize that each unit increase in the 
input corresponds to a fixed change in the output, m. 

Process Stage                
(G ↔ A ↔ F) 

Students understand that slope is a constant property of a linear relationship which is independent of 
representation and move fluidly between geometric, algebraic, numeric, and verbal situations 
involving slope realizing that certain ways of thinking about slope might be more efficient.  

Object Stage                 
([G ↔ A ↔ F] = L) 

Students understand slope is a linear invariant that describes an equivalence class of ratios; they can 
extend across contexts and representations, including dealing with situations in which they have not 
previously encountered slope, such as applying slope in three dimensions to determine the slope of a 
plane in relation to a given line (or an axis). 

 

The algebraic ratio at the Action stage (AA) represents a student who is limited to using 

the formula (y2 - y1)/(x2 - x1) as a memorized fact or to using an explicitly available copy of the 

formula without any geometric inference connecting or justifying the formula. This is what 
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Reiken (2008) called a procedural understanding of slope, seeing it as a “number from a 

formula.” Since using rote procedures, students operating with AA might confuse whether the x- 

or y-values are “on the top of the fraction” in the algebraic formula for slope. A student operating 

with AA might perform multiple calculations when given more than two points on a line, not yet 

recognizing that the slope will be independent of the pair of points chosen.  

The functional property at the Action stage (AF) represents students who work with and 

are able to interpret some symbolic and verbal representations of slope that are related to linear 

functions. They may identify the coefficient of the x-term in a linear function to be the slope, but 

they may not differentiate between linear functions in different forms, even when both forms are 

equations. For example, they might identify 2 as the slope for the equation y = 2x + 7 as well as 

for 2x - 3y = 1. They are simply following the procedure of identifying the number in front of x 

in the equation and not thinking about how the 2 or any of the other coefficients interact in either 

equation. These students may parrot back the phrase “slope is the rate of change of a function” in 

an empty verbal identification without understanding what holding covariation constant means.  

While students operating with AF might memorize familiar contextual interpretations of 

slope as a rate of change (e.g., recalling that a time, in hours, versus distance, in miles, function 

has slope in terms of velocity in mph units) they would not be able to explain the rate of change 

and what it represents contextually. They would be reciting words from memory without any 

geometric imagery of what this notion means or any connection to the difference quotient that 

could be calculated for two ordered pairs that satisfy a linear equation. 

Transition from Action to Process Stage 

Students transitioning from the Action to the Process stage exhibit a deeper 

understanding of slope that extends past simply following a procedure through mindless 

plugging-and-chugging. Note that whether transitioning to TG, TA, or TF, the student is extending 

beyond a single action and starting to be able to repeat the action in order to describe linearity 

(e.g., justifying that a set of points represents a line by verifying the ratio or rate of change is 

constant). See Table 3 for reasoning that is representative of the dynamic nature of each of the 

three transitions that we now describe. 

Students transitioning from the Action to the Process stage for geometric ratio (TG) are 

beginning to realize that the slope of a line does not depend on which “rise over run triangle” is 

used to determine the vertical displacement (ΔV) and horizontal displacement (ΔH). They might 
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use mental images where they visualize a slope triangle moving up and down a line or changing 

size to understand that the ΔV/ΔH ratios for a line have equal values, since the ratios are formed 

from the corresponding sides of similar triangles. 

Table 3   

Reasoning Involved in Transitioning from the Action to Process Stage 

Student is starting to understand 

the dynamic covariation in … 
Representative Reasoning 

Slope triangles  

consistent with  

TG 

 

 

Input-output pairs  

consistent with  

TA 

     

 

Functional relationships 

consistent with  

TF 

               

 
 

Students transitioning from the Action to the Process stage for algebraic ratio (TA) are 

beginning to realize that the slope of a line does not depend on which two points are used to 

determine the difference in outputs (Δy) and the difference in inputs (Δx). They are starting to 

look at an input-output table and see patterns in the output changes for constant, incremental 

increases in the input values. They are beginning to realize that the slope formula does not need 
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two given points but may be used with any general point (x, y) and a specific, fixed point from a 

line to obtain a calculation for slope that involves symbols. They might be able to determine the 

pay rate for a part-time hourly worker given how much the worker earns when working 12 hours 

per week and when working 20 hours per week. 

Students transitioning from the Action to the Process stage for functional property (TF) 

are realizing why linear functions must be in a certain format (e.g., the slope-intercept form 

rather than the standard form) for the coefficient of the x term to act as a parameter since all 

coefficients in a function’s equation interact. Students are recognizing that x and y are variables 

and as such can take on different values, where y is a function of and dependent on x, while the 

numeric coefficients are held constant. They are seeing that m in the slope-intercept form of a 

line denoted by y = mx + b (or the -a/b ratio in the ax + by = c standard form of a line) is 

constant, acting as a parameter, and does not depend on the input and output values used in the 

function. They are also realizing that the equations ax + by = c and kax + kby = kc (for some 

nonzero constant k) have the same slope since -kb/ka = b/a, indicating either represents the same 

function when rewritten in a simplified point-slope form. This reasoning is facilitated by 

understanding how the parameter (either m or -a/b) in the function’s equation indicates the 

amount of change in y related to the change in x. In short, this reasoning is facilitated by 

understanding how covariation works in linear functions. 

Students transitioning from the Action to the Process stage are also starting to make 

connections between different ways of thinking about slope. Students transitioning from the 

Action to the Process stage, who are connecting the geometric and algebraic ratios (TG-A), are 

able to reason at both the TG and TA levels. They are connecting the geometric and algebraic 

formulas and understand that vertical displacement can be represented by (y2 - y1) while 

horizontal displacement can be denoted as (x2 - x1) for two ordered pairs (x1, y1) and (x2, y2). 

They may also be realizing that if the slope triangles for two different lines have the same run 

(i.e., horizontal displacement), then the severity of the angle of inclination between the 

horizontal and the line increases, or decreases, in a manner that corresponds to the rise or fall of 

the line (i.e., the vertical displacement). They are beginning to internalize steps so they could 

apply this same reasoning to conclude that the line through (x1, y1) and (x2, y1 + c) is steeper than 

the line through (x1, y1) and (x2, y1 + k), for constants c and k where |c| > |k|, without having to 

actually calculate the slope as either an algebraic or geometric ratio.  



                                                                                                       Moore-Russo & Nagle p.      

 
 

582  

Students transitioning from the Action to the Process stage who are connecting the 

geometric ratio and functional property (TG-F) are able to reason at both the TG and TF levels. 

They are making connections for slope between the geometric ratio and the graphical referents 

(i.e., the horizontal and vertical displacement) to the m coefficient found in the linear function 

f(x) = mx + b. They are starting to realize that larger values of |m| yield steeper lines regardless of 

the y-intercept when graphed on the same axes, and they may be beginning to justify their 

observations by connecting the magnitude of the rate of change to the rise per common run for 

the two linear relationships. They may also be noticing that the slope for one line may appear to 

be steeper than another when comparing two graphs even when this is not actually the case (i.e., 

when the scale factors for the graphs’ axes differ). This reasoning when encountering 

nonhomogeneous coordinate systems may be supported by verbal descriptions of the changes 

represented by vertical displacement and horizontal displacement that move beyond counting to 

describing those physical changes in the graph with descriptions of change in quantity and units. 

Furthermore, they recognize how the rate of change is determined by the parameter m given a 

function f(x) = mx + b, since m will determine how much the outputs change for a given change 

in inputs.  Such a student might be able to create a graph showing the height of a classroom set 

of textbooks stacked on a teacher’s desk using the linear function where the height, H, of the 

stack from the ground is given by the equation H(t) = mt + d, and interpret the slope, m, as the 

thickness of each textbook while t represents number of textbooks and d is the height of the 

teacher’s desk. 

Students transitioning from the Action to the Process stage who are connecting the 

algebraic ratio and functional property (TA-F) are able to reason at both the TA and TF levels. 

They may be realizing how to connect the algebraic formula for slope and m in the point-slope 

form of a line, moving from 𝑚 = !!"!"
#!"#"

 to y2 - y1 = m(x2 - x1) to y2 = m(x2 - x1) + y1. In the special 

case where the y-intercept (0, b) is substituted for the point (x1, y1), this then leads to the equation 

y = mx + b. These associations allow the student to understand how slope, in association with the 

y-intercept, acts as a defining parameter for linear functions. Such a student might also be able to 

interpret a given contextual scenario to interpret the constant rate of change and initial value to 

yield additional points using the algebraic ratio of slope. For instance, given a scenario where a 

16-gallon tank empties at a rate of 3 gallons per hour, the student might apply algebraic ratio 
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reasoning to determine that, if the tank was initially full, then after 3.5 hours there would be 

−3 = !!	"	%&
'.)	"	*

 or y2 = 5.5 gallons left in the tank. 

Students transitioning from the Action to the Process stage who are connecting the 

geometric ratio, algebraic ratio, and functional property (TG-A-F), can reason at the TG, TA, TF, TA-

G, TG-F, and TA-F  levels. Students are realizing the connections between the point-slope and the 

slope-intercept forms of the line for a horizontal displacement of 1. So, they are realizing that 

holding the horizontal displacement in a slope triangle to 1, relates to selecting points where x2 - 

x1 = 1. This, in turn, results in m = ΔV/ΔH = ΔV/1 = ΔV, which is equivalent to having a slope 

of m = (y2 - y1)/(x2 - x1) = (y2 - y1)/1 = (y2 - y1) or ΔV. They also see how the slope triangles and 

the difference quotient are based on inputs and outputs that relate to a more functional reasoning 

that f(x + 1) - f(x) = m. They may be extending their reasoning to understand not only how a unit 

increase in the input corresponds to a fixed change in the output, m, but also how an increase in k 

units, for any k, corresponds to a km change in the output for equations in the slope-intercept 

form. While the students can move between levels, this might take significant thought to move 

between pairs of levels rather than the fluid reasoning that easily moves to the way of thinking 

and working with slope that is most efficient for the scenario at hand that is now described for 

students at the Process stage. A student at this level might be able to find the function for Total 

Cost (C) in terms of distance (d) in miles corresponding to the scenario of a cab charging $12 for 

the first 2 miles and then 60 cents for each fifth of a mile. However, this process might not be 

very efficient. The student might first determine that slope is a rate of change that is ($0.60)/(1/5 

mile) or $3 per mile. With this information the student might then create a table of ordered pairs 

starting with (2, 12) then moving to (3, 15) then adding additional ordered pairs using only 

integer inputs. Next, the student might then verify the slope using an algebraic ratio and confirm 

the geometric ratio using a graph of the scenario on a Cartesian coordinate system. From the 

graph the student would then finally report that C(d) = 3d + 6, for d > 2 miles. 

Process Stage of Slope 

 Students at the Process stage have an understanding that is not grounded in one specific 

form of representation. Instead, students at this stage have developed the ability to attribute 

various components of a generalized meaning for slope through different representations. They 

can move fluidly and easily between geometric, algebraic, numeric, and verbal situations 

involving the slope of a linear function realizing that in certain cases one way of thinking about 
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slope might be more efficient. They have covariational reasoning (Carlson et al., 2002) abilities 

that allow the mental actions for coordinating the average rate of change of a function with 

continuous changes in its input variable. In other words, these students understand and are able 

to visualize that a horizontal displacement (or change in input values) of 4 for a line would result 

in a vertical displacement (or change in outputs) of 4 times the slope value for the line. They 

would understand how this would be reflected by corresponding points on the line. They would 

be able to mentally picture moving over 1 unit and up m units using 4 slope triangles, and they 

would be able to mentally picture this as changes in the input of a table that correspond to 

changes in the outputs of a table. The student would also have the simultaneous awareness that 

the equation could be written as y = mx + b or some other form, where b is vertical displacement 

of the function’s output for a given input of 0 (or the function’s initial height) and that mx is the 

vertical change given as the rate of change m, times the change in inputs x. (Some of the 

different possible mental images for the process stage are displayed in Table 3.) The student 

would also be able to interpret this rate of change for a given context. For instance, if x 

represents time and y represents the volume of water in an emptying tank, the student not only 

interprets m as the rate at which the volume is decreasing but can apply the above reasoning to 

think about how a horizontal displacement of 2 represents a time increment of two seconds and 

the corresponding vertical displacement represents the decrease in volume over that time. 

Students at the Process stage recognize that a function that fails to meet any of the criteria 

previously listed would not be linear.  

Students at the Process stage can view slope as a linear parameter that involves 

understanding that slope is the defining constant property that serves as a unique parameter in a 

linear equation that determines the “straightness” associated with linear graphs. Students at the 

Process stage view slope as a constant property or a constant rate of change between two 

covarying quantities. At the Process stage, students are aware of slope as a parameter that allows 

lines to be parallel. They understand that any pair of points on a single line can be used to 

determine what the defining slope parameter is. So, students at the Process stage also understand 

that this constant property is also captured by thinking of slope as a constant rate of change 

between covarying quantities that can move between representations. So, not only would 

students with a Process stage of slope be able to connect and move fluidly between all three 

representations displayed in Table 3, but they would also be able to select the representation that 
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is most efficient to the task at hand. In the previous contextual example of water emptying from a 

tank, viewing slope as a linear parameter enables a student to extend that reasoning to conclude 

that the volume decreases by the same amount between t = 1 and t = 3 hours as it does for the 

same duration of time with different starting and stopping points (e.g., t = 2 and t = 4 hours). The 

student may also reason about how the starting volume of water in the tank would impact the 

remaining volume at any given time. However, this student would note the rate at which the 

water exits the tub and could reason about how adjusting the rate of change for water to empty 

from the tank would influence the change in volume over any period of time. Furthermore, the 

student could reason that a different tub emptying at the same rate might have a different starting 

height, but the same constant rate of change, hence yielding a parallel linear relationship if 

comparing the volumes of the two tanks.  

Object Stage of Slope 

Students at the Object stage understand all the connections within the Process stage, and 

they are also able to view slope as a linear invariant. At the Object stage students are able to do 

everything in the previous paragraph; however, they are also able to do more. Viewing slope as 

an Object extends beyond seeing slope as a constant to recognizing that slope is an invariant that 

transcends contexts and representations. A student at the Object stage interprets a single slope, 

m, as a representative of the set including all equivalent ratios. As such, the student can view 

slope as a new object, an equivalence class of ratios, which can be applied in different contexts. 

For instance, provided the linear relationship y = (2/5)x, where x represents the amount of water 

and y represents the amount of concentrate in an orange juice mixture, the student would view 

slope not just as 2/5, but as the set of all ratios y/x that would preserve the strength of the orange 

juice concentrate mixture, independent of the amount of orange juice made. This understanding 

moves beyond a procedural understanding of equivalent fractions (e.g., 6/15 = 2/5) to 

understanding that the solution set of ordered pairs generate a graph that maintains a constant 

concentration ratio no matter the quantity of orange juice. The individual could also switch 

contexts to interpret 2/5 as the same equivalence class of ratios in different real-world scenarios 

or using different representations (e.g., parallel lines rather than equivalent ratios).  
Thus, the individual now sees slope as an invariant within an equivalence class of ratios 

that can be described through various forms of representation. They can extend past the Process 

stage to make applications beyond the contexts in which they have previously encountered slope. 
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They are able to apply Actions on a Process to deal with the new scenarios, even those involving 

unfamiliar units or contexts. For example, situations where students must extend their linear 

notions of slope to interpret slope fields or apply directional slope of a plane in three-

dimensional space extend into this stage since students would need to perform Actions on slope 

as a Process to work in these new scenarios.  

Methodology 

We now consider how different stages might impact students’ understanding of calculus 

and how they are able to use slope in calculus. To do this, we apply the methods adopted by 

Liljedahl and colleagues (2015) following the lead of others (Leron & Hazzan, 1997; Zazkis & 

Koichu, 2014).  

We created the amalgamations of two cases to create an account that is a “fictionalized 

aggregate” based on our decades of “collective experiences” (Liljedahl et al., 2015, p. 195) both 

as post-secondary calculus instructors and mathematics education researchers who have 

significant work in the study of slope. We report on two amalgams, each with a different 

understanding of slope. We then share experiences for each amalgam, whose initials correspond 

to a stage or level of slope understanding, using different topics that arise in an introductory 

calculus course. In this manner we explore how students who lack a deep, flexible understanding 

of slope might struggle to learn calculus. 

Amalgamated Cases 

Due to space limitations, we only present two amalgams. They are fictionalized 

aggregates based on the literature on slope reviewed at the beginning of the paper as well as on 

the researchers’ over 50 years of combined experience teaching both algebra and calculus 

courses. These cases were selected to represent students who are not yet at the Process stage 

while representing all three types of understanding (A, G, F). The first case, Albert Algar, 

demonstrates understanding of slope as an algebraic ratio at the Action stage (AA). The second 

case, Tracy Graff-Fund, demonstrates a student transitioning from the Action to the Process 

stage who is connecting the geometric ratio and functional property (TG-F) and, hence, who can 

reason at both the TG and TF levels. 

The Case of Albert Algar (AA) 

Consider a hypothetical student named Albert who entered a first-semester calculus class 

confident that he understood the topic of slope. He explained that slope was the change in y over 
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the change in x. If you gave him two points or a table of input and output values, he was able to 

quickly calculate the value of the slope of the segment connecting them using an algebraic ratio. 

His calculus instructor had spent the first few classes reviewing concepts he had seen in high 

school. Albert understood them well enough, although he did not follow when the instructor 

encouraged the class to look at graphical or functional representations of otherwise familiar 

ideas. This included understanding slope as what would be classified as AG and AF. He hoped the 

tests would only require him to apply the formula he had memorized to calculate slope using two 

points. 

In class one day, Albert watched his instructor show an animation of a secant line where 

one endpoint remained in place and the second endpoint moved ever closer to the first endpoint 

to define a derivative. He tried to follow the visual demonstration and worried less when he 

heard the instructor mention that slope would be used. When completing problems that involved 

finding the slope of secant lines, Albert was able to calculate slope values using coordinates of 

two given points. He felt this often involved some tedious calculations, such as 10.1 then 10.01 

then 10.001 for inputs, but he was able to complete the tasks using (y2 - y1)/(x2 - x1). Albert did 

relatively well on the related homework, even though he was not sure how the animation the 

professor had been so excited about tied to the limit definition of the derivative. He remembered 

that the professor implied you could find the slope at a point on a function (or as the professor 

put it, “you can find the slope of the tangent line”). However, it did not seem logical to Albert 

that slope could be calculated using just one point. He felt a person must have two sets of 

ordered pairs to plug in all the necessary information for the slope formula. Albert did not worry 

about this since he received passing grades on the homework assignments for the limit definition 

of a derivative that followed. He was able to perform the algebraic calculations to answer most 

of the problems using multiplication by the conjugate to rationalize either the numerator or the 

denominator or another “algebraic trick” that his professor had shown the class. Even though 

Albert was able to complete the algebraic simplifications and then plug in h = 0 to arrive at 

answers, he became increasingly worried that he did not understand what his final answer meant 

or how it related to slope since he was never plugging in coordinates. Without understanding the 

geometric ratio, he could tell from the instructor’s occasional inclusion of graphs that the 

derivative was supposed to represent slope, but Albert was unsure how. His confusion was even 

more pronounced when confronted with application problems that required using slope as a 
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functional property when asking for an interpretation of the derivative in the context of real-

world variables (e.g., time, distance, cost).  

Albert performed better when he was given shortcut formulas for derivatives, especially 

after a friend taught him the “low-d high” mnemonic for the quotient rule. One day, the professor 

provided a graph of two unfamiliar functions, f and g, and asked the class to find (fg)′ and (+
,
)′ 

for a particular input value, see Figure 2 for the task assigned. Albert became frustrated because 

although he knew finding the value of each derivative required him to calculate slope, he could 

not use the algebraic ratio since he was only given an x coordinate. Without being able to 

interpret slope as a geometric ratio, Albert could not calculate the values to plug into the product 

and quotient rules nor could he understand the professor’s solution and how the values of f ′ and 

g′ needed for the formulas were determined when only the graphs of f and g were provided. 

Without an understanding of the geometric ratio, Albert was not able to visualize the 

slope of a tangent line to a function. Thus, things became worse for Albert when implicit 

differentiation was introduced. The derivative was now a function of the ordered pair (x, y) and 

the first example presented by the professor required at least AG to visualize the slopes of two 

different tangent lines to an ellipse at a given x input with more than one y output.  

Figure 2 

Derivative Problem Emphasizing Visual Interpretation of Slope  

Using the graphs of f and g provided below, determine the following: 
a.  (fg)′ (-3) 
b. (+

,
)′ (2) 

 

Note: Understanding slope at the Action stage as an algebraic ratio, Albert struggles to calculate 
the derivative of fg given only graphical representations of f and g.  
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Without an understanding of slope as a functional property, Albert did not see slope as a 

rate of change constant and was completely overwhelmed when the professor discussed related 

rates. Every example involved interpreting rates of change in real-world scenarios. These 

problems required calculating and interpreting both the rate of change of y with respect to x and 

the rate of change of x with respect to t. Albert had tried his best to pay attention in lectures and 

reread his notes before class, but this did not seem to be enough; so, he dropped the course. 

The Case of Tracy Graff-Fund (TG-F) 

Consider a second hypothetical first-semester calculus student named Tracy. Like Albert, 

Tracy was confident that she understood slope. When asked about slope, she would report that 

slope was the rate of change noted as m when a linear equation is solved in terms of the y-

variable, thinking of slope as a functional property. She also thought of slope as a geometric ratio 

and might describe what can be seen on a linear graph as the ratio of the vertical change to the 

horizontal change. She could see that this ratio did not depend on which rise-over-run triangle 

was used on the line’s graph and recognized the rise-over-run ratio, which had the same value as 

m, as determining the tilt of the line’s graph and if it increased or decreased. She loved when her 

calculus professor drew on the board and gave a visual interpretation of secant lines approaching 

a tangent line to show the slope of a curve at a point as the slope, or the instantaneous rate of 

change of y with respect to x. Tracy noted that the professor was drawing a line through a point 

on the graph that just barely touched the graph and tried to follow as the limit of the secant lines 

became a tangent line. Tracy felt she understood this visual relationship. However, without 

understanding slope as an algebraic ratio, the formula that was given for the limit definition of a 

derivative with the professor’s explanation that it was “simply the limit of the difference 

quotient” seemed to come out of nowhere. 

On the assigned homework problems, she had difficulty remembering the “limit formula 

for the derivative” (as the professor called it) and occasionally used 𝑓(𝑥) + ℎ instead of 𝑓(𝑥 +

ℎ) when applying the definition to a particular function since she was not connecting slope as an 

algebraic ratio to slope as a functional property. Without the algebraic ratio, she struggled when 

given tables with points and tedious decimal numbers for inputs using only the geometric ratio. 

Tracy plotted the points on a graph to find the slope of the secant line that would be closest to the 

tangent line for the points given, which was laborious due to the very small horizontal and 

vertical changes from one point to the next. Even though Tracy could not always perform the 
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procedures, she did well on conceptual and visual questions that asked her to interpret what the 

derivative meant, even in applied situations. 

Tracy could plug into the shortcut formulas for calculating derivatives, even though she 

felt lost when the professor tried to show how the shortcuts related to the limit definition of 

derivative. She was relieved to see the limit definition used less and less frequently as shortcuts 

were learned. Since she was comfortable with the geometric ratio being used to describe 

behavior and determine relationships, Tracy particularly liked the problems that required her to 

identify where a function had a horizontal tangent line or to identify points on a function where a 

graph would have a tangent line parallel to a given line.  

With her functional property understanding of slope, Tracy did well on the chain rule 

section and felt she understood the “rate of change with respect to what” question that the 

professor would ask. She also did well on implicit differentiation, especially when problems 

provided a graph of the function and asked students to find all solutions for the slopes of the 

tangent lines for a given value of x since they required her to use slope as a geometric ratio to 

describe behavior and measure steepness.  

Tracy memorized all the derivative rules and did well on the next exam that contained 

mostly conceptual problems and related rates that required interpreting the slope as a geometric 

ratio or a functional property. Tracy followed the professor’s drawings and explanations of the 

Mean Value Theorem using parallel secant and tangent lines, since she understood how slope is 

used to determine relationships both as a geometric ratio and a functional property. However, 

without an understanding of the algebraic ratio for slope, she struggled with most of the 

problems in the section that relied heavily on what the professor called the difference quotient. 

Tracy followed most of the professor’s lecture on differentials, which included drawings 

that relied on slope as a geometric ratio, especially when the professor referenced vertical 

displacement and went between the actual function graph and the tangent line using dy and Δy 

markings on his drawing. However, she struggled to understand the problems in the assignment 

on linearization since the professor’s explanation of this only involved symbols. Without 

understanding slope as an algebraic ratio, Tracy had trouble making the leap first to Dy = y2 – y1 

(shown in the graphical explanation that Dy was approximately equivalent to dy) and then to 

using the calculation Dy = f (c + Dx) - f (c).  
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Tracy did well visualizing increasing/decreasing intervals, which corresponded to the 

first derivative test, where she often sketched a picture while solving problems that involved 

interpreting whether a critical value produced a relative maximum or minimum (or neither). 

These allowed her to leverage her understanding of slope being used to describe behavior both as 

a geometric ratio and as a functional property. She also did well when the professor provided a 

graph of a function and asked the class to determine intervals on which the function was concave 

upward or downward. She would often apply her knowledge of slope as a geometric ratio used to 

measure steepness to sketch several tangent lines and visually inspect the steepness or “tilt” as 

she thought to herself to determine whether the slope values increased (concave upward) or 

decreased (concave downward). She was able to move between her understanding of slope as 

both a functional property and a geometric ratio to describe behavior and measure steepness in 

order to sketch the graphs of f ′ based on the graphs of f.  

The course ended with antiderivatives and an introduction to integration. Tracy felt 

confident in the class discussion related to how a family of antiderivatives involved an infinite 

number of curves, each of which had the same slope at every x-value on their graphs, since the 

tangent lines at these points were all parallel. Her understanding of slope as a geometric ratio and 

as a functional property used to determine relationships allowed her to see why the solution to an 

indefinite integral was not unique. 

Tracy was concerned when the Fundamental Theorem of Calculus was introduced with a 

proof which relied heavily on the difference quotient from the Mean Value Theorem. Without a 

strong understanding of slope as an algebraic ratio, Tracy had struggled with these ideas earlier 

in the semester and was discouraged when they reemerged. She was relieved when the follow-up 

problems did not require the difference quotient and instead only involved finding an 

antiderivative F(x) or evaluating F(b) - F(a).  

At the end of the semester, Tracy was able to explain that the slope of a curve at a point is 

the slope of the tangent line to the curve at that point. As in algebra, slope could be used to 

describe the behavior or measure the steepness of a graph. What was new was extending these 

ideas to describe concavity. Tracy was also able to explain that slope could be interpreted as the 

instantaneous rate of change between the outputs and inputs of a function and could interpret this 

in real-world contexts or for families of functions that differed by a constant. However, she was 
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unaware of how the many rules and shortcuts she learned for finding derivatives were generated, 

explaining that these are “just the steps we need to memorize to get the right slope.” 

Discussion and Conclusion 

The accounts of Albert and Tracy and their experiences in introductory calculus provide 

two cases that are based on research findings which informed the APOS-Slope framework, 

including those cited in the literature review, and the authors’ teaching experiences. They 

exemplify challenges faced by calculus students who lack a robust understanding of slope. The 

stages and levels of slope understanding (in Table 1), indicate that Albert and Tracy are just two 

examples of many possible amalgams that might be used to consider the challenges for students 

encountering calculus topics that involve slope.  

The most immediate implication of this work is to bring to light the diversity of student 

background knowledge related to slope that can be expected in an introductory calculus course. 

This may present instructional challenges to a professor, especially since it has been documented 

that instructors and students often have different ways of thinking about slope (Nagle et al., 

2013). Students who are unable to make the connections between the ways of thinking about 

slope and its uses may have difficulty passing calculus or may pass with some gaps in their 

knowledge. 

Past research provides evidence that students often enter calculus with limited slope 

understanding (Arcavi, 2003; Orton, 1984; Schoenfeld et al., 1993). Precalculus curriculum and 

instruction may not provide opportunities for students to connect slope as a visual property of a 

line with the idea of a constant rate of change (Frank & Thompson, 2021). So, calculus 

instructors should consider how to help students transition from thinking of slope as a value that 

can be calculated or identified to understanding it as an inter-representational parameter that 

defines linearity. Slope merits, at minimum, a review by calculus instructors in which direct 

connections between slope as an algebraic ratio, a geometric ratio, and a functional property are 

made explicit using a contextual example, like one of the ones presented in this paper. This 

might also involve engaging students in reasoning about linear tasks using dynagraphs, which 

move students away from more familiar calculations and representations to thinking about slope 

as a constant that describes a covariational relationship (Nagle & Moore-Russo, in press). 

Building such covariational perspective is more likely to facilitate students operating at the 
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Process stage, which is necessary to fully understand certain topics that arise in introductory 

calculus.  

The cases also suggest that it may not be enough to only consider what stage or level of 

slope understanding calculus students bring from algebra. They also highlight that slope can be 

used to describe behavior, measure steepness, and determine relationships in calculus just as in 

algebra. Instructors should ensure that students can fluently apply all three uses of slope in 

constant rate of change settings before extending these uses to the variable rate of change 

settings encountered in calculus. For instance, previous research found that some university 

students were unable to use slope to measure steepness by comparing the magnitudes of tangent 

lines to a curve (Christensen & Thompson, 2012). So, students should not be expected to 

describe concavity without first addressing their ability to use slope to measure steepness in a 

linear context. Explicit review of the uses of slope prior to or during the teaching of certain 

calculus topics is suggested. For example, reviewing that slope is used to determine relationships 

should occur when teaching the Mean Value Theorem.  

From the perspective of research, the amalgams provided offer an example of how the 

APOS-Slope framework, which is built on numerous research studies as delineated by Nagle and 

colleagues (2019), can be combined with professional experience to make sense of and connect 

findings in a way that should resonate with both researchers and instructors. The APOS-Slope 

framework helps move research on slope away from a deficit-grounded model focusing solely on 

what students are unable to do or conceptualize. Future researchers can use the APOS-Slope 

framework to take an asset-based approach to describe how students think of and are able to use 

slope and how this might, in turn, impact their understanding of calculus.  
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