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Abstract: Connecting algebraic and graphical representations encompasses a large portion of 
mathematical activity for students in grades 8-14. In Calculus, the ability to represent distances 
on graphs using algebraic expressions is foundational for a wide range of results. However, 
research has shown that students may struggle to make such connections. In this article, we seek 
to answer the following questions: (1) What are the underlying conceptions critical to expressing 
distances on graphs of functions algebraically? and (2) What types of tasks may support students 
in developing this skill? We first offer a conceptual analysis of the connections between 
algebraic expressions and distances in graphs of functions. Next, we describe a hypothetical 
learning trajectory of tasks and associated learning goals we developed to support students in 
expressing distances. We then report the outcome of implementing the tasks with groups of 
Calculus students. While the results include some success in supporting students to express 
distances, they also pointed to some persistent obstacles as well as limitations of the tasks. We 
focus on two such obstacles that emerged: the role of conceptualizing symbols as variables in the 
algebraic register and the role of conceptualizing distances within the graphical register. We 
discuss directions for future research and ways to support students in connecting algebraic 
expressions and graphs. 

Keywords: distances in graphs, difference expressions, Calculus students, conceptual analysis, 
hypothetical learning trajectory 
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Introduction 

Connecting mathematical representations, especially algebraic and graphical ones, 

encompasses a large portion of mathematical activity for students in grades 8-14 (NGA & 

CCSSO, 2010; NCTM, 1989). These activities may include sketching a graph to display a 

functional relationship between variables or expressions, interpreting a graph as displaying a 

functional relationship to describe how the values of two quantities vary together, or classifying 

graphs based on certain characteristics. The ability to make connections across algebraic and 

graphical representations becomes increasingly important as students prepare for the study of 

Calculus. Visual representations of significant results in Calculus rely on a particular connection 

between algebraic expressions and graphs: distances on graphs may be represented with 

algebraic expressions (e.g., the horizontal distance shown in Figure 1 may be represented as 2–

x). Indeed, the notion of distance underlies the foundation of the Cartesian coordinate system as a 

way of representing values. In Calculus, conceptualizing and expressing distances are key to 

graphically representing expressions such as the difference quotient, or for understanding why 

integrals afford calculating areas and volumes of irregular regions. The applications of this use of 

Integral Calculus extend broadly into later mathematics and the natural sciences. Although 

connections between algebraic expressions and graphs are fundamental to the study of 

mathematics, especially at the early undergraduate level, research has shown that students may 

struggle to make such connections (e.g., Glen & Zazkis, 2021; Knuth, 2000; Moon et al., 2013). 

For instance, one Calculus III student who was interpreting a statement with a difference 

quotient was unable to describe relevant distances within a graph. Instead, the student counted 

along axes and the graph to explain what various difference expressions (such as a change in x) 

represented (Parr, 2021).  

Our recent research has been motivated by this documented need to support students in 

expressing distances within graphs algebraically, as a fundamental component to conceptualizing 

central ideas of secondary and tertiary mathematics. In order to better understand why students 

may struggle with this and offer support accordingly, we seek to explore the following questions: 

(1) What are the underlying conceptions critical to expressing distances on graphs of functions 

algebraically? and (2) What types of tasks may support students in developing this skill? 

Prior research has looked at how students move between representations in mathematics, 

in terms of representational fluency (e.g., Fonger, 2019), to develop coherent mathematical ideas 
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for students beginning in the early years (e.g., Fennell & Rowan, 2001). Increasing attention has 

been paid to students of Calculus, as the content is rich with connections, especially among 

representations in the algebraic and graphical register (Duval, 1999). These studies include 

reports on students’ fluency among representations in finding volumes of solids of revolution 

(Gulkilik, 2022) and the Fundamental Theorem of Calculus (García-García & Dolores-Flores, 

2018). To support students in developing strong connections between representations in the 

algebraic and graphical register, researchers have begun developing tasks with this aim. For 

instance, Moon (2020) developed tasks to support students in conceptualizing solutions to 

algebraic inequalities within graphs in the Cartesian plane via the Cartesian connection. Still, 

research that describes how students may learn to develop rich connections among 

representations in different registers is limited, especially in later years. This study seeks to help 

fill this gap. 

In this article, we first offer a conceptual analysis (Thompson, 2008) of the connections 

between algebraic expressions and distances in graphs of functions along with empirical findings 

of obstacles that exist for students in making these connections. Next, we describe a hypothetical 

learning trajectory (Simon & Tzur, 2004) we developed to support students, rooted in our 

conceptual analysis and prior research. We then report the outcomes of two iterations of 

implementing the tasks with groups of Calculus students. These findings include some success in 

using these tasks as an intervention to support students in expressing distances from graphs. The 

results also revealed some persistent obstacles in students’ developing conceptions of distances. 

We focus on two such obstacles that emerged: the role of conceptualizing symbols as variables 

in the algebraic register and the role of conceptualizing distances within the graphical register. 

We close with directions for future research and recommendations for supporting students in 

building connections between algebraic expressions and graphs of functions that can be used at 

the secondary level, prior to the study of Calculus.  

Conceptual Analysis & Related Literature 

The central goal of this article focuses on the particular connection of representing distances 

between functions graphed in the Cartesian plane using algebraic expressions. In this section, we 

will share our conceptual analysis (Thompson, 2008) of the underlying conceptions critical to 

expressing distances on graphs of functions algebraically. We frame our discussion around the 

following task and ask: what are the conceptions involved in algebraically expressing the 
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horizontal distance between any point on 𝒚 = √𝒙 − 𝟏 and a point on 𝒙 = 𝟐 (for all x such that 

𝟏 < 𝒙 < 𝟐) in terms of x and in terms of y? (See Figure 1). We note that the length of this 

segment may be expressed as 2–x or equivalently as 𝟐 − (𝐲𝟐 + 𝟏). 

We engage in the process of conceptual analysis consistent with Thompson (2008) as 

describing “what students might understand when they know a particular idea in various ways” 

(p. 42) to detail the mental steps involved for students to conceptualize an algebraic difference 

expression as representing a horizontal (or vertical) distance within a graph in the Cartesian 

plane. Based on previous research and work with students on such tasks (e.g., Parr et al., 2021), 

we theorize that there are three main connections between the graphical register and algebraic 

register that underly this conception: (1) differences express distances between two positions, (2) 

points are ordered pairs of distances from the axes in the Cartesian plane and (3) equations give 

the relation between x and y for every ordered pair represented at a point on a graph. These three 

connections build upon each other to comprise the connection among distances between 

functions in graphs and (algebraic) difference expressions. We describe each of these 

connections between the graphical and algebraic register, as well as the underlying mechanism 

for how the connection is forged. We see potential obstacles for students within each component 

of the graphical register, algebraic register, and the mechanism of the connection. We will 

describe each of the three steps and previous research highlighting potential obstacles for 

students within each.  

Figure 1 

Graph with a Horizontal Segment from a Point (x, y) on 𝒚 = √𝒙 − 𝟏 to 𝒙 = 𝟐.  
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Connection 1: A Difference Represents a Distance Between Two Positions 

From our perspective, the first main cognitive step to expressing distances on graphs of 

functions involves using a difference expression to represent a distance between two positions in 

a single dimension. Within the graphical register, this connection involves conceptualizing 

distance as a quantity, that is, a measurable attribute (Thompson, 1990, 2011) of the spatial 

arrangement of two positions within a number line or graph. Within the algebraic register, this 

connection involves operating from a “determine the difference,” (van den Heuvel-Panhuizen & 

Treffers, 2009; Selter et al., 2012) also referred to as a “comparison” (Usiskin, 2008) model of 

subtraction, rather than a takeaway model. Connecting these conceptualized distances with 

difference operations relies on a magnitude interpretation of symbols (Parr, 2021). We 

summarize these components that result in this connection between differences and distances 

between two positions in Figure 2.  

Figure 2 

The Components of Connection 1: Connecting Distances in Graphs with Difference Expressions 

  
Previous research suggests that students may not use these ways of reasoning underlying 

the connection involved in representing distances with differences. Within the graphical register, 

conceptualizing a distance as a quantity in space is a non-trivial component of this connection. 

The Cartesian coordinate system relies on distances to relate points, yet students may not 

conceive of distance between points as relevant when viewing positions on a number line or 

graph. Alternatively, they may conceive of positions as labeled at arbitrary locations, or use 
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some other comparison, such as relative location, without explicitly attending to or 

conceptualizing measurable distance between positions (Parr, 2021). At the elementary level, 

students may not necessarily place non-consecutive numerical values at appropriate distances 

apart from one another on a linear-scaled number line (Saxe et al., 2013). Instead of using a 

number line as a measurement model, some students may use it as a counting model (Diezmann 

& Lowrie, 2006), counting the number of tick marks or intervals (Mitchell & Horne, 2008).  

Within the algebraic register, conceiving of subtraction as an operation that determines the 

difference between two amounts that are compared is not a given for students. Previous research 

has found that the comparison operations are those that pose the most difficulty for students 

among types of subtraction problems in early grades (Stern, 1993). When asked to interpret an 

expression involving a difference, students may think exclusively of a counting down or 

takeaway model, rather than a comparison one (Figure 3). 

Figure 3 

A Determine the Difference (Comparison) Model (left) vs. A Takeaway Model of 5–3 (right) 

 
Students may also default to using the takeaway model for subtraction on a number line 

and may not as readily use a determine the difference model, perhaps because the former is more 

commonly encountered in school mathematics and everyday situations (e.g., Selter et al., 2012). 

Even at the undergraduate level, students may default to using a takeaway model of subtraction. 

This was the case with a student, Peter who was at first unable to reconcile a difference 

expression in |x–1| < 𝛿 with a graph of a function showing a shaded vertical strip centered at x = 

1 to represent all values of x within a given distance (𝛿) of 1. (David, 2018).  

We view the magnitude interpretation (Parr, 2021) of a symbol (either a number or variable) 

or expression as the foundation of the connection between the graphical representation of 

distance and the algebraic operation of subtraction to determine the difference. A magnitude 

interpretation of a symbol recognizes that a symbol refers to both a position as well as a measure 

of a distance from 0 (Parr, 2021). To represent the “determining the difference” model of 

subtraction on a number line, one employs what Parr et al. (2021) refer to as a composed 
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magnitude interpretation. For example, to understand conceptually why the difference expression 

x2 – x1 yields the distance between two positions, x1 and x2, in one-dimensional Cartesian space, 

one must first understand the positions x1 and x2 as distances from the origin themselves. Then, 

one can apply the operation of subtraction to find the difference between the length of x2 and the 

length of x1 to express the distance between position x1 and x2 as x2 – x1, as shown in Figure 4.  

Figure 4 

Composed Magnitude Interpretation of the Expression x2 – x1  

 

 
Students may not readily use a composed magnitude interpretation of difference expressions, 

even in situations where it would support further mathematical activity. At the undergraduate 

level, students may still use a cardinal interpretation, counting tick marks or spaces to interpret a 

difference expression on an axis, rather than as a distance between two points, as in the case of 

Annie and Kate reported in Parr (2021).   

Connection 2: A Point (x, y) Represents an Ordered Pair of Distances from Axes in the 

Cartesian Plane 

The next connection involved in expressing distances in the Cartesian plane is the 

connection that an ordered pair of values, (x, y), that locate a point in the Cartesian plane 

represents an ordered pair of distances measured from the point to each axis. This connection 

builds on the prior one, such that x is a magnitude from the origin horizontally and y is a 

magnitude from the origin vertically. What is new in this step is the combination of the two 

magnitudes into two-dimensional space, so that a single entity given by an ordered pair is 

connected to the pair of distances. The foundation of this connection is value-thinking (David et 

al., 2019), in which one envisions a point as a multiplicative object (Saldanha & Thompson, 

1998); that is, a point is a single entity that is comprised of two components conceived of 

simultaneously. When combined with a magnitude interpretation from the previous connection, 

one envisions a point as a multiplicative object of a pair of distances to the axes (see Figure 5). 
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Figure 5 

The Components of Connection 2: Connecting Points on Graphs with Ordered Pairs of 

Variables 

  
Prior research suggests that students, both at the secondary and undergraduate level, may 

not connect a point on a graph of a function with an ordered pair of input and output values of 

the function via value-thinking. Students may instead associate a point solely with a single value- 

often the output of a function, rather than a pair of values, as in the case of location-thinking 

(David et al., 2019). When students do connect a point with an ordered pair, they may conceive 

of the ordered pair purely as a directive for how to locate a point (Thompson et al., 2017)- right 

(or left) some amount x and then up (or down) some other amount y. Students who view ordered 

pairs this way may not be able to unite pairs of magnitudes represented on axes in a single point, 

even after appropriately plotting points themselves using the over and up technique (Frank, 2016; 

Goldenberg, 1988). Thus, we view building the connection between ordered pairs and pairs of 

distances from axes as an essential part of supporting students in expressing distances between 

points on functions of graphs. 

Connection 3: An Algebraic Relationship of x and y Can Be Used to Find Equivalent 

Expressions of Distances  

The third connection between the algebraic and graphical register that we view as 

essential to expressing distances is the Cartesian connection (Moschkovich et al., 1993). The 
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Cartesian connection states that the set of all ordered pairs of points on a graph of an equation 

correspond to the complete set of pairs of values satisfying the equation. Using this connection 

with the prior two, in which ordered pairs for points give pairs of distances to the axes, allows 

one to conceive of the algebraic equation relating x and y as a way to express distances in the 

graph flexibly in terms of x or y as needed (see Figure 6). 

Figure 6 

The Components of Connection 3: Connecting Distances on Graphs with Equations of x and y 

 
Previous studies have shown that students may not recognize the Cartesian connection 

when working with graphs of functions and their algebraic relationships (Dufour-Janvier et al., 

1987; Glen & Zazkis, 2021; Knuth, 2000; Moon, et al., 2013; Moon, 2020). Instead of viewing 

an equation for a linear function as comprising the set of all ordered pairs of values satisfying the 

equation, which can be plotted as points comprising the graph of the line, students may see a 

linear equation as a directive for how to draw a graph of a line using slope and intercept 

information (Parr et al., 2021). In the words of Todd, a Calculus student, “y =2x+1… tells you 

how it's [the graph is] going to look, so the slope would be 2, the y-intercept would be 1” (Parr et 

al., 2021, p. 219).  

Representing distances on two-dimensional graphs of functions using algebraic 

expressions is a complex cognitive activity. In order to conceptualize why expressions such as 2–

x and 2–(y2+1) in Figure 1 represent the distance depicted, students must connect the graphical 

and algebraic register in the three ways described in this section: 1) a distance between can be 
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modeled using a difference, 2) an ordered pair of values gives the distances the associated point 

is located from the axes in the Cartesian plane, and 3) an algebraic relationship between x and y 

can be used to flexibly express distances within the graph of the relationship in terms of x or y.  

In Figure 7, we show how these connections combine to connect difference expressions 

with distances between two points on functions in the Cartesian plane. Connection 1 supports 

students in expressing a straight-line distance between two positions x1 and x2 as x2–x1. 

Connection 2 supports students in expressing a straight-line distance from an axis in the 

Cartesian plane using the coordinates of the point, in this case, the horizontal distances as x1. 

Combining these two connections supports students in describing the horizontal distance 

between two points in the Cartesian plane as x2–x1. Assuming the two points shown are located 

on functions f and g, respectively, Connection 3, the Cartesian connection, would support a 

student in expressing this same horizontal distance in terms of y, as g-1(y2) – f-1(y1). 

Figure 7 

The Combination of Connections 1–3 to Express Horizontal Distance Between Two Points in the 

Cartesian Plane  
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Based on prior research, we anticipate potential issues in students’ reasoning to make 

these connections in each of the three steps. These issues may arise in either conceptualizing the 

objects in the graphical register, the objects in the algebraic register, or the way in which these 

objects are connected. The tasks that follow are designed to support each of these connections, 

which we describe in their associated learning goals. When we implemented these tasks in a 

Calculus class, we found that the tasks showed some moderate success in supporting students in 

expressing distances algebraically (see Table 2). Our results also indicated that students faced 

some persistent obstacles in coming to make these connections, which underscore the complex 

nature of the cognitive steps involved in these connections. 

Description of Tasks & Learning Goals 

In this section, we describe a series of tasks, which we refer to as the Interpreting Graphs 

for Calculus Activity, and their associated learning goals that comprise a hypothetical learning 

trajectory (Simon & Tzur, 2004) for algebraically expressing distances within graphs of 

functions. The first author developed a first iteration of these tasks in collaboration with other 

researchers based on experience in previous research and practice, as briefly described in Parr et 

al. (2021). The tasks shared in this article are a second iteration with minor revisions made for 

clarity as well as an additional task added to the beginning of the activity. The tasks that 

comprise this activity correspond with the three main connections described earlier: First, Tasks 

1–4 are intended to support students with Connection 1 by evoking students’ conception of 

distance within a number line (either a horizontal or vertical axis) and supporting them in using a 

difference expression to represent a distance between two points on an axis. Second, Task 5 is 

designed to support students with Connection 2, in conceiving of a point in the two-dimensional 

Cartesian plane as an ordered pair of distances from the axes. Third, Tasks 6–7 are intended to 

support students in making and using the combination of Connection 1 and 2 to express distances 

on points of functions to axes and to make Connection 3 to flexibly movie between expressing 

these distances in terms of x or y. Finally, Task 8 asks students to combine all three connections 

to express a horizontal distance between two relations in terms of x and in terms of y. We 

provide an overview of these tasks, the corresponding connections used in each, and associated 

learning goals in Table 1. 

Table 1 

Tasks and Learning Goals in Interpreting Graphs for Calculus Activity 
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Task   Learning Goals 
1 

Conn. 1 

 • Conceptualize distance as a measurable attribute of positions within a horizontal 
number line 
• Represent the distance between two horizontal positions using a difference 
expression 

2 • Represent a difference expression as a distance between two positions on a 
horizontal axis. 

3 • Represent a difference expression as a distance between two positions on a vertical 
axis. 

4 • Represent a distance between two points on a horizontal or vertical axis with a 
difference expression 

5 Conn. 2 • Conceptualize a point in the two-dimensional Cartesian plane as an ordered pair of 
distances from the axes 

6 

Conn. 2 
&  

Conn. 3 

• Represent horizontal and vertical distances on points of functions to axes 
• Express these distances both in terms of x or in terms of y on the graph of a linear 
function 

7 • Represent horizontal and vertical distances on points of functions to axes  
• Express these distances both in terms of x or in terms of y on the graph of a non-
linear relationship 

8 Conn.  
1-3 

• Represent a horizontal distance between two relations in terms of x and in terms of 
y 

 
In the remainder of this section, we describe the tasks and their intended learning goals 

and provide portions of the tasks as examples to the reader. For the full Interpreting Graphs for 

Calculus Activity as given to the students, see the Appendix.  

Task 1: Distances as Measurable Quantities & Distances Between as Differences 

As part of supporting Connection 1, Task 1 is designed to engage students in 

conceptualizing distance as a measurable attribute of positions within a number line (one-

dimensional Cartesian space), and to represent the distance between two positions using a 

difference expression. The task provides students with a number line that has 0 labeled at its 

center. Students are instructed to use rulers to measure and label an exact distance either to the 

left or to the right of 0. Then, students are asked to draw a segment between pairs of points they 

had previously marked and to measure the distance between these pairs of points. Through the 

experience of physically measuring distances, students are encouraged to conceptualize distance 

as a measurable attribute of the “space” between two numbers within a number line, which is the 

graphical register component of Connection 1. Further, this measuring and labeling activity 

encourages the use of a magnitude interpretation of these numbers on the number line, the 

foundation for Connection 1. The goal of visually comparing segments of total distances from 

zero and distances between positions is to promote the use of the difference model of subtraction 
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(rather than a takeaway model) to represent the distance between two positions, the algebraic 

component of Connection 1. A portion of this task is shown in Figure 8. 

Figure 8 

Portion of Task 1 to Measure and Label Distances from 0 and Between Positions 

 
 
Tasks 2 & 3: Differences Give Distances between Two Points on an Axis 

Continuing to support Connection 1, the goal of Task 2 is to orient students to the idea of 

representing difference expressions of the form b–a as a distance from a to b on a number line 

(i.e., using the difference model of subtraction). Task 2 provides students with horizontal number 

lines (a single-dimensional Cartesian system of representation) labeled with 0 and two other 

values, which are either numbers or the variable x. Students are given a difference expression 

involving the two values and asked to draw a segment on the number line to represent the 

expression. After students draw a segment for the first difference, they are asked “what is the 

length of the segment you drew?”  The purpose in asking this question is two-fold: (1) for 

students to reflect on the quantity of distance as the quantity used to represent an expression and 

(2) to orient students to representing a difference expression of the form b–a as a distance from a 

to b, rather than using a takeaway model to represent the result of b–a as a singular point on the 

number line.  

The five differences presented to students are sequenced to build from natural numbers to 

integers, and finally to involve the variable x. The last difference of this task, which asks students 

to find distance between the variable x and an integer, is followed with a prompt asking students 

to draw another segment representing the difference between x and the same integer. This is done 

so that students are encouraged to think of variables as representing varying rather than fixed 

values. Again, the goal is to build toward generalizing the idea that the expression b–a can be 

represented in a Cartesian system as a one-dimensional distance between any value a and any 
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other value b, the outcome of Connection 1. Task 3 is similar to Task 2, but instead asks students 

to represent differences on vertical number lines, referred to as y-axes. A portion of Task 2 is 

shown in Figure 9. 

Figure 9 

Portion of Task 2 to Draw Segments whose Lengths Represent Given Differences 

 
Task 4: Distances Can Be Represented by Differences (variables used) 

 Task 4 is the final task provided for students to practice making Connection 1 on its own. 

In Task 4, students are asked to reverse the process of Tasks 2–3 by representing distances 

between positions with differences. Task 4 provides students with segments highlighted on 

horizontal and vertical number lines, with values labeled at the end points. For each segment, one 

value is numerical and the other is a variable. The goal of this task is for students to write 

difference expressions to represent the lengths of the segments shown. This will prepare them for 

moving to the two-dimensional Cartesian coordinate system in the subsequent tasks. Task 4 is 

shown in Figure 10. 

Figure 10 

Task 4 to Express Given Segment Lengths between Two Positions using Differences 
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Task 5: A Coordinate Pair in the Cartesian Plane Gives Two Distances 

The goal of Task 5 is to support Connection 2 by focusing students’ attention to the two 

distances that a point in the Cartesian plane, as represented by an ordered pair, provides: the 

horizontal distance between the point and the y-axis and the vertical distance between the point 

and the x-axis. Task 5 shows a point plotted and labeled generically as “(x, y)” in the first 

quadrant of a Cartesian plane. This task asks students to represent and label the horizontal 

distance between the point and the y-axis and the vertical distance between the point and the x-

axis. Task 5 is shown in Figure 11. 

Figure 11 

Task 5 to Express Distance from a Point in the Cartesian Plane to the Axes 

 
Task 6 & 7: Distances from Points on Graphs of Functions to Axes in Terms of x and in 

Terms of y 

 The purpose of Task 6 is to further support students in using Connection 2 and to 

introduce Connection 3, which allows students to give the same distance in terms of either x or y 

using the algebraic relationship of the function depicted in the graph. Task 6 provides a linear 

function and its graph and asks students to represent lengths of segments between a linear 

function and each of the axes in terms of both x and y. Further, 6c and 6f ask students to check 

their expressions to confirm that they represent the same distance at a fixed point, which is 

intended to support students in reflecting on Connection 3, the Cartesian connection. The goal of 

these questions is to bring to students’ awareness the idea that two distinct expressions (one 

involving x and one involving y) can be used to represent the same distance within the graph. 
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Task 7 is similar to Task 6 but contains a graph of a function that is not linear. We provide Task 

6 in Figure 12. 

Figure 12 

Task 6 to Represent Horiztonal and Vertical Distances from a Point on a Linear Function to the 

Axes 

 
Task 8: Distances between Two Relations Represented as Differences in Terms of x and in 

Terms of y 

Task 8 brings together Connections 1-3 together, combining the ideas that were promoted 

in the preceding tasks. The goal of Task 8 is to support students in expressing the distance 

between two relations, similar to those needed to define an integral to find the area between two 

curves or the volume of a solid of revolution. Task 8 asks students to represent a horizontal 

segment’s length between two relations. Students will use the idea of expressing distance 

between two points as a difference (Connection 1) that they developed and practiced in Tasks 1–

4. Parts 8a and 8b support students in recalling the magnitude interpretation which will allow 

them to conceive of distance between using a difference. Then, students will use the notion of 

representing distances with variables related to the coordinates of an ordered pair from Tasks 5–7 

(Connections 2 & 3). We also note that Task 8c-f served as a pre-test item for our data collection. 

Figure 13 shows Task 8. 
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Figure 13 

Task 8 to Express a Distance between Two Relations in Terms of x and in Terms of y 

 
Implementation of Tasks 

This activity was first piloted with a small group of students in a Calculus course at a 

public university in 2020 (Parr et al., 2021). The current version of the tasks was implemented in 

2022 at a small, private college in two sections of a Calculus course taught by the first author. 

Students first completed a pre-test item (Task 8c-f, see Figure 13) individually the class period 

before the activity was administered. The following class period, students worked through the 

activity in groups of two or three, with the instructor-researcher circulating and offering 

clarification as needed. Students recorded video and audio of their conversations as they worked 

through the activity in class and submitted their individual work on the activity. Additionally, 

follow-up items related to the tasks were given on the subsequent midterm exam (Exam 3) and 

final exam in the course. In the next section, we will share some of the initial results of 

implementing the activity. 

Results 

We found evidence that the activity, in some instances, seemed to support students in 

their ability to express distances in graphs of functions. Table 2 compares the number of correct 

responses on the pre-test (completed individually) and the number of correct responses at the end 

of the activity (completed in groups of 2-3). 
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Table 2 

Number of Correct Responses on the Pre-Test and Post-Test Item 

Represent segment’s length Pre-Test 
(individual) 

End of Activity 
(group) 
 

in terms of x: 2–x 12/31 (38.7%) 24/31 (77.4%) 
in terms of y: 2–(y2+1) 10/31 (32.3%) 20/31 (64.5%) 
Both x and y correct 7/31 (22.5%) 20/31 (64.5%) 

 
We first find that the majority of the 31 students in this Calculus course were not able to 

correctly express this distance in the graph algebraically.  Of the 31, 12 correctly expressed the 

distance in terms of x as 2–x, and only seven of these students also correctly expressed this 

distance in terms of y. These findings alone suggest that students need support with building this 

connection. Comparing the number of correct responses on the pre-test item and the same item at 

the end of the activity (Task 8c & 8e) indicates some improvement in students’ ability to 

appropriately express distances algebraically. We note that students completed the activity in 

groups of two to three, so that these results on the final task do not necessarily reflect individual 

student’s responses. However, some obstacles still appeared to persist for students in their 

process of learning to express these distances, especially related to Connection 1. When we 

looked more closely at the conversations students were having in groups, these obstacles became 

more evident. Even when students could provide correct responses to the tasks, the reasoning to 

support these responses did not always include the rich connections we were targeting, such as a 

magnitude interpretation of symbols and expressions as a foundation for Connection 1. Here, we 

describe two broad themes in the results of implementing the activity with two groups of 

Calculus students especially related to Connection 1: 1) issues within the algebraic register – 

ambiguity around symbols intended to represent varying quantities and 2) issues within the 

graphical register- a lack of necessity to conceptualize distances. We frame these issues as 

shortcomings of the tasks in their current design, as well as potential sources of challenge in the 

teaching and learning of expressing distances on graphs. 

In the remainder of this section, we draw on data from two pairs of students, Pair 1: 

Kevin & Amir and Pair 2: Tom & Alan. We first provide their pre-test responses and responses 

to the end of the activity in Table 3. We chose to look at these pairs because all four students 

initially provided incorrect responses to the pre-test items and ended the activity with responses 

we considered appropriate. For these two pairs of students, then, the activity appeared to support 
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their ability to express distances with difference expressions. However, for both pairs, we found 

certain aspects of their reasoning did not reflect the ways of reasoning we were intending to 

promote in the tasks, especially related to Connection 1. 

Table 3 

Two Pairs of Students Pre-Test and End of Activity responses to Task 8c and 8d 
 

  Pre-Test Response (Individual) End of Activity Response (Pair) 

Amir 
2	–√𝑥 − 1 𝑧 = 2 − 𝑥 

I identified the end points of the segment and 
subtracted their respective x-coordinates. 

We defined the endpoints of the horizontal segment 
and subtract the values. 

Kevin 

𝐿 = 2 − √𝑥 − 1 𝑧 = 2 − 𝑥 
The height of the segments is just f(x) at the x 
location of (x, y). That is the starting point of 
the horizontal segment & the final point is 
x=2. Evaluating the distance between these 
points gives you the length. 

We defined the endpoints of the segment as a value and 
then subtracted the values. 

Tom 

𝑥 = 1.65 𝑏 − 𝑥 
The length of the segment starts at 2 and goes 
to the 1.65 mark. 2 is 0 in this case so it is 1.65 
units long. 

b is the total distance between x=2 and the y-axis. The 
horizontal segment is the difference between b and the 
distance from (x, y) to y-axis. 

Alan 
= 2 − √𝑥 − 1 𝑏 − 𝑥 

Not sure about the reason. b is the total distance between x =2 and the y-axis. The 
horizontal segment is the difference between x,y to the 
y-axis. 

We note that Tom and Alan represented the horizontal distance at the end of the activity 

as b–x. They had labeled the segment of length 2, from x=2 to the y-axis as b, because the item 

letter that asked them to label the segment was item b within Task 8. We coded this as an 

equivalent response to 2–x since they demonstrated the appropriate reasoning and were perhaps 

misguided by the directions to label the segment. 

Ambiguity of Symbols in the Algebraic Register 

We found that the way in which students interpreted and used symbols in the algebraic 

register emerged as a salient feature of their reasoning related to Connection 1. At times, 

students’ interpretations of symbols as indicating fixed, rather than varying values, contributed to 

issues with connecting difference expressions with distances. We describe two such instances 

and discuss how the ambiguous nature of the symbols used in the tasks may have contributed to 

issues in making Connection 1.  

Kevin & Amir – Interpreted Symbols as Labels and Parameters 

Both sets of responses from Kevin and Amir indicate that they tended to use symbols 

(such as x, y, and z) as either labels or parameters, rather than as variables to represent varying 
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values. We found evidence of this tendency beginning with Amir’s work on Task 1 in which he 

labeled segments with symbols x, y, and z that he introduced himself.  

Figure 14 

Amir’s Work on Task 1 of the Activity including Segments Labeled x, y, and z 

 

 
On Task 1, Amir measured and drew the indicated segments on the given number line. To 

label these segments, Amir introduced three symbols, x, y, and z. He wrote that “x = 1.5 in” and 

then labeled the corresponding segment x, and continued in this way with y and z (see Figure 13). 

Amir’s use of the symbols x, y, and z which he set equal to the lengths he measured, and to label 

the segments, first indicated to us that he may be treating these symbols as labels to refer to 

distinct segment lengths. 

We found other evidence of Amir’s tendency to use symbols as labels for fixed segments or 

values when it created some hesitation for him on Task 2i. The discussion between Kevin and 

Amir around this task reveals some limitations of Amir’s interpretation and use of x.  

Amir: (reading 2i) Oh, so like place a value for x and just draw it, x equals 2… 

Kevin: What is it asking, again? 

Amir: Place another value of x, like 1, 2, 0, why did I put 0?... It doesn’t make sense to place 

another value of x. I mean even if you put x over here, so x0 equals x1, it’s the same thing. 

Kevin: Ah (leaning back) 

Amir: I mean, I like the zero thing. 

Kevin: So, wait, what are you doing? (looking at Amir’s work) 

Amir: I’m saying x equals 0, I’m setting  

Kevin: Okay 

Amir: the segment from 0  

Kevin: Yeah 

Amir: I don’t know. 
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Figure 15 

Amir’s Work on Task 2h and 2i 

 
When Amir read the directions to 2i to “place a value,” he remarked that “x equals 2” and 

labeled 2 near the x labeled on the number line. We note that in the task, x was placed between 1 

and 2, closer to 2, but purposely not exactly on the tick mark at 2. When Kevin asked Amir what 

the task is asking, Amir gave some examples of other values of x, like 1, 2, 0, but then added that 

“it doesn’t make sense to place another value of x.” He then distinguished other values of x 

saying “x0” and “x1” but claimed, “it’s the same thing.” Amir decided to set x equal to 0, and 

wrote “x=0” over the “x=2” he had previously written below 2i. Amir labeled “the segment from 

0” with the expressions, “0–(–3)” but indicated his uncertainty with “I don’t know” before 

moving on to the next task.  

We infer from these comments that Amir may have interpreted x as a parameter, in which x 

may take only take on different values in different contexts, rather than as a variable taking on 

varying values in the same context (Thompson & Carlson, 2017). Amir appeared comfortable 

using x to label a different distance in Task 1. Within the context of Task 2h and 2i, however, 

Amir did not think it made “sense” to have x take on another value. Amir’s interpretation of x as 

a parameter is also supported by his written work on this task, in which he sets x to 0, but then he 

labels the new segment as “0–(–3)” rather than “x–(–3)” as directed. We take his choice to use 0 

rather than label another x on the number line as evidence that Amir was not comfortable with 

using x to take on two different values within the same number line.  

Amir’s claim that “it doesn’t make sense to place another value of x” is a valid deduction in 

the task as designed. In Task 2, x is introduced without a domain and in the number line for Task 

2h and 2i, x is placed statically at a single value on the number line. Further, the tasks up to this 

point do not indicate that x is intended as a variable. We take Amir’s hesitancy to label a 

different segment length with the same expression x–(–3) (which was our intended response to 

the task) to be in part a result of the ambiguity of the use of x in the task design. Amir’s response 
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highlights the nuance in the use of symbols as variables to represent varying positions within 

Connection 1, which was not an emphasis in our task design. When students interpret symbols 

and the positions and lengths they represent as fixed in contexts in which we intended for them 

to vary, it may contribute to issues with Connection 1. We present such a case next, from Tom 

and Alan.  

Tom & Alan – Interpreted an Expression to Represent a Fixed Length 

 We found related reasoning from Tom and Alan on this task. We note that their reasoning 

led to what we would consider an incorrect response on this item. When working on Task 2i, 

Tom asks Alan a question about where to place x and Alan responds as follows: 

Tom: “We can put our x anywhere?” 

Alan: “Yeah, but we want it to be the same length as the other segment” 

 
Figure 16 
 
Tom’s Work on Task 2h and 2i 

 
Following Alan’s response, Tom did not question Alan’s statement that the new segment 

needed to have the “same length as the other segment.” Instead, both drew another point on the 

number line, just to the left of the sixth tick mark to the right of 0, and drew a segment of the 

same length as the first segment they had labeled as “x– (–3).” They both labeled this segment 

with the same expression, and use a “~” symbol, which we infer that they intended that this new 

segment have approximately the same length as the previous one. 

Tom and Alan’s brief conversation and response to Task 2i indicate that they viewed the 

expression “x–(–3)” as a fixed amount of a length on a number line. Alan claimed that he wanted 

the new segment to “be the same length as the other segment” and both students drew segments 

and labeled them accordingly. Notably, their new segment did not include –3 at either endpoint. 

This did not appear to bother either student as they then proceeded to the next task. 
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Tom and Alan’s response indicates an issue in making Connection 1 between the expression 

x– (–3) and the distance between –3 and x, as the new segment they drew did not extend to –3.  

Although Tom and Alan did not appear to make Connection 1 in their response, the ambiguity of 

the use of symbols in the instructions again may have contributed to not making this connection. 

Tom and Alan may have interpreted the instructions to draw another segment representing x– (–

3) to refer to a similar segment to the previous segment drawn representing x– (–3). They 

indicated that they were comfortable with x varying, and represented x in a new position, but 

they did not connect the distance between the new position of x and the position of –3 to the 

expression x– (–3).  

From the examples above from both Kevin and Amir and from Alan and Tom, we conjecture 

that interpreting and conceptualizing symbols as taking on varying values, and how these varying 

values are represented in the graphical register to be a significant component to Connection 1. 

Had Kevin and Amir been instructed to consider x as a variable and been shown dynamic 

imagery, they may have been comfortable with labeling x at a new position on the horizontal 

axis. In the case of Tom and Alan, had they been instructed that x– (–3) could represent varying 

distances, they may have had the opportunity to confront Connection 1 more directly in the task.  

Motivating a Magnitude Interpretation in the Graphical Register 

Related to Connection 1, we also noticed a theme emerge of students using a pattern or 

formula they found to work in order to express distances using difference expressions. In using 

such a formula, they circumvented using a composed magnitude interpretation, in which the 

distance between two positions they were expressing can be thought of as composed of two other 

distances. The students who correctly completed Task 8 after the activity may have used a 

magnitude interpretation to connect difference expressions with distances between positions on 

graphs of functions. However, we found evidence that students may have correctly connected 

expressions with distances without this foundation of a magnitude interpretation, instead using a 

pattern or formula for their expressions. We found the formulas or patterns that students used to 

have one of two common bases: a numerical comparison or a spatial comparison. We describe 

two such instances of “formulas” and evidence that indicated that the students were using 

interpretations other than a composed magnitude interpretation. 
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Tom & Alan – Larger Minus Smaller (Numeric) 

Although Tom and Alan gave correct responses to the final tasks of the activity, we found 

evidence that they may have followed a pattern in order to express the indicated distances. Tom 

and Alan briefly described their solutions to task 4d. Tom asked Alan about his expression in the 

following exchange:  

Tom: I had 4 – (–y), should I change it? 

Alan: I don’t know this always has the bigger number, or the number closer… first (Alan had this 

segment labeled y–(–4)) 

Tom: I believe you (changes segment label to y–(–4)) 

When Tom asked Alan if he should change his expression, Alan appealed to a pattern of 

“always… bigger number… first.” Tom accepted this justification based on a pattern, rather than 

one rooted in how to measure distances on the number line. Further, he verbalized his 

satisfaction with Alan’s reasoning when he responded “I believe you.” Interestingly, this pattern 

of larger number minus smaller number persisted in Tom’s reasoning later in the semester. On 

the item on the third exam in the course, Tom writes that “x–2” gives the distance between x and 

2 (see Figure 12). However, when asked to explain why the distance is given by the expression, 

Tom writes “you have to subtract the larger value (x) from [the] lower (2) to find the distance 

between.” For Tom, this response was sufficient to justify why the expression represented the 

distance between x and 2, as he did not describe a composed magnitude interpretation. 

Regardless of whether Tom is able to conceptualize distances in the graphs, he appears to be able 

to successfully use this pattern to correctly represent distances.  

Figure 17 

Tom’s Explanation of x–2 as a Distance on Exam 3  
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Kevin & Amir – Higher Minus Lower (Spatial) 

Although Kevin and Amir gave correct responses to the final tasks of the activity, we 

found evidence that Kevin and Amir were also following a pattern in order to express the 

indicated distances. Their reliance on this pattern, rather than a magnitude interpretation, became 

most apparent when Amir and Kevin were working through task 4c and 4d together and Kevin 

proposed an alternate expression to describe the length. Their conversation was as follows: 

Amir: See directions matter. So now like, this above, 5 minus y and this is y minus 

Kevin: Yeah. (pause) I guess you could say that it’s also y plus 5.  

Amir: y plus 5 (slowly, thinking). Well, yeah, you can say that, too. But because it’s differences. 

Here it doesn’t say differences (the instructions for Task 4), here it does (the instructions for task 

3 on the same page of the activity).  

Kevin: I’m just going to use minus for consistency.  

Amir: Yeah 

Figure 18 

Kevin’s Work on Task 4c and 4d 

 
 

We infer from Amir’s comment that “directions matter” that he was referring to the 

positions on the number line corresponding with the order of the terms in the expression. 

Following this comment, he contrasts the two examples where 5 is “above” and where y is, and 

notes the difference in the order of the terms. At first, it is unclear whether Amir was 

conceptualizing distances when thinking of the position of 5 and y on the vertical number lines.  

However, when Kevin proposed that the length could also be described with the expression “y 

plus 5,” and Amir accepted it, it becomes clearer that the order of these expressions was a pattern 

to follow, rather than rooted in a meaning for distance for Amir. Had Amir been thinking of 

distances, he would consider the length of the segment y from 0 to y, 5 to give the length from 0 
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to 5, and rejected y+5 to describe the length of the given segment. Amir’s acceptance of Kevin’s 

proposal indicates that Amir was following a pattern without a conceptual basis in a magnitude 

interpretation. Both Amir and Kevin displayed evidence that they followed a pattern when they 

discussed whether to use “differences” by referring to the directions and in their ultimate 

decision to use a “minus for consistency.” 

From the examples above, we conjecture that conceptualizing distances as quantities in 

graphs is a significant step in learning to describe distances in Connection 1. Further, the tasks 

did not necessitate that students conceive of distances throughout the activity. In fact, the tasks 

may have supported students in learning to follow a pattern to correctly represent the distances. 

We discuss this issue as another limitation of the tasks and area for future improvement and 

research. 

Discussion 

In this article, we describe a conceptual analysis (Thompson, 2008) of the connection 

between the algebraic and graphical registers in order to express distances within graphs of 

functions. We also describe a series of tasks and associated learning goals comprising a 

hypothetical learning trajectory (Simon & Tzur, 2004) based on these components as an attempt 

to support students in developing this skill. We illustrated through the implementation of these 

tasks some outstanding obstacles in the process of building the connections necessary to express 

distances with strong conceptual underpinnings, namely the conception of variable and the 

motivation of conceptualizing distance in a graphical representation. Our findings underscore the 

need for developing robust conceptions of these fundamental mathematical objects within each 

register as a prerequisite for meaningful connections among these representations.  

The conceptual analysis we present offers a detailed account of the three cognitive 

connections we theorize that students need to meaningfully use an algebraic difference 

expression to represent distances between functions in graphs. These connections are: 1) 

differences express distances between positions, which relies on a magnitude interpretation 2) 

the coordinates of a point in the Cartesian plane are an ordered pair of distances to the axes, 

which relies on value-thinking and 3) algebraic relationships of x and y can find equivalent 

distance expressions in terms of either x or y, which uses the Cartesian connection. Making each 

of these connections includes conceptualizing objects within each respective register, as well as 

using the interpretation necessary to connect the relevant components. The three connections we 
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detail between the algebraic and graphical register uncover the complex nature of the cognitive 

steps involved in expressing distances algebraically.  

More broadly, the structure of the conceptual analysis we offer here may serve as a model 

for others related to connections among registers. Many prior examples of conceptual analysis in 

the literature attend to students’ understanding of mathematical ideas, but may not explicitly 

attend to representational structures involved in conceiving of or communicating these ideas. We 

add to the example of Lee et al.’s (2018) conceptual analysis of coordinate systems by attending 

to the representational structures involved in connecting graphical distances with algebraic 

expressions. We decompose the larger connection in question into sub-connections, which each 

include components in the algebraic register, graphical register, and an underlying interpretation. 

This structure may serve as a model for future conceptual analyses on other connections between 

the graphical and algebraic registers, or any other combinations among mathematical registers. 

The tasks and learning goals that we present, which are rooted in our conceptual analysis, 

are an example of a hypothetical learning trajectory to support students in connecting algebraic 

expressions and distances in graphs using the three connections we described. The first four tasks 

focus on connecting difference expressions with distances between two positions horizontally 

and vertically. The fifth task emphasizes the second connection, combining the use of value-

thinking and a magnitude interpretation to interpret the coordinates of a point as an ordered pair 

of distances from the axes. The final three tasks add in the Cartesian connection to use an 

algebraic relationship between x and y to describe the same distances in the graphs both in terms 

of x and in terms of y.  

The initial results of implementing the tasks show some promise, in that many students who 

were previously unable to correctly represent distances algebraically were able to do so after 

working through the tasks. However, the results also revealed that students did not always show 

evidence of using the meanings we aimed to support, including a composed magnitude 

interpretation. These findings indicate that the tasks may be improved and also point to some 

persistent obstacles students may face in connecting graphical and algebraic representations. The 

two issues we observed were related to interpreting symbols as representing varying values 

within a graph and motivating a conception of distance within a graph. In our next stage of 

research, we plan to revise the tasks to better accommodate these issues.  
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In completing the tasks, some students indicated that they interpreted symbols such as x and y 

as representing fixed, rather than varying values. This may have in part been due to some 

ambiguity of the tasks. In the next iteration of the tasks, we plan to frame x and y as variables 

more clearly, to support students in interpreting x and y as taking on varying values within a 

context. We will do this in the directions when introducing these symbols. The ambiguity in 

representing a varying or “generic” value x by placing it at one position on an axis is also a 

limitation of static representations on paper. Accordingly, we plan to provide some tasks in an 

interactive graphical software with sliders for students to be able to vary the value of a variable 

themselves and see the corresponding adjustments in the graph. The use of a slider may also 

support students in conceiving of varying distances, and that the same algebraic expression may 

represent varying distances between two relations.  In general, the divergence in the student 

responses around symbols from what we anticipated points to a broader issue of implied meaning 

for variables which may be an obstacle to making Connection 1 for students. 

Additionally, we recognize that the tendency for students to use a “formula” to express 

distances, rather than conceptualizing distances within the graphs, may have been a result of the 

task design. In fact, the tasks may have supported students in developing these formulas to 

express distances, and reinforced the use of formulas, rather than reflecting on a magnitude 

interpretation of symbols, as students progressed through the tasks. To support students in 

conceptualizing distances rather than relying on a pattern, we may consider introducing tasks 

with a physical context that may be familiar to students and use distance units. Further, we may 

consider the types of reasoning the tasks promoted for the students who completed them, and 

reframe our task revision in terms of the intellectual needs that were (or were not) created for 

students (Harel, 2013; Weinberg et al., 2023). Again, conceptualizing distance (and necessitating 

it) may be a broader obstacle to consider in teaching students to make Connection 1. 

Further research is needed to understand how a student develops the components for 

making the connections between the graphical and algebraic register specified here. For instance, 

teaching experiments may be designed and conducted to uncover how students develop value-

thinking or a magnitude interpretation in order to connect a symbol to a component of a point in 

the graph or to a distance within the graph. The insights from such studies may offer clearer 

direction for subsequent task design and curricular materials. 
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 We close with several recommendations for mathematics instructors and curriculum 

designers across mathematics. At the elementary level, we recommend that students are given 

many opportunities to use a determine the difference model for subtraction in various contexts, 

rather than solely focus on a takeaway model, and to use number lines as measurement models in 

addition to counting models. When the Cartesian plane is introduced, students should be given 

repeated opportunities to decompose points as magnitudes on the axes, and plotting points should 

be introduced as uniting two magnitudes on the axes, rather the over and up formula to locate a 

point that does not attend to distances. In algebra, students need to develop a robust meaning for 

variables as taking on the set of all varying values in a given domain, beyond an unknown, a 

label, or parameter. We also recommend the use of tasks that necessitate the use of the Cartesian 

connection early and often, so that students develop a conception of an equation beyond a cue for 

how to draw the graph of a function. Finally, in later grades, we recommend continuing to return 

to these ideas and a general attitude of not assuming fluency among representations. Attention to 

students’ thinking, especially around conceptions of variable and distance, and use of tasks that 

evoke such thinking, are likely to promote strong connections among algebraic and graphical 

representations that will lay a solid foundation for students’ future mathematical studies in 

Calculus and beyond. 
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Appendix- Interpreting Graphs for Calculus Activity 
 

1. Use the number line below and your ruler to answer the following questions: 
 

 
 
 
a. On the number line above, mark and label a distance of 2 inches to the right of 0. 

 
b. On the number line above, mark and label a distance of 0.5 inches to the right of 0. 

 
c. On the number line above, mark and label a distance of 1 inch to the left of 0. 

 
d. On the number line above, mark and label a distance of 1.2 inches to the right of 0. 

 
 

e. Draw a segment to show the distance between 2 and 0.5. Measure this distance. What is it? Label 
this segment. 
 
 
 

f. What expression (not a single number) can you write to represent this distance? 
 
 
 

g. Draw a segment to show the distance between 1.2 and 0.5. Measure this distance. What is it? 
Label this segment. 
 
 
 

h. What expression (not a single number) can you write to represent this distance? 
 
 
 

i. Draw a segment to show the distance between 2 and 1 (to the left of 0). Measure this distance. 
What is it? Label this segment. 
 
 
 

j. What expression (not a single number) can you write to represent this distance? 
 
 
 
 
 

 
2. Draw the segments described using the x-axes provided. 
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a. Draw a segment with a length of 5 on the x-axis below, beginning at 0. 
 
 
b. Draw a segment with a length of 3 on the x-axis below, beginning at 0. 
 
 
c. Draw a segment to represent the difference 5 – 3 on the x-axis below and label it “5 – 3.” 
 
 

 
d. What is the length of the segment you drew in part c.? 
 
 
 
e. Draw a segment to represent 4 – (–1) on the x-axis below. 
 
 

 
 
f.  Draw a segment to represent –1 – (–5) on the x-axis below. 
 
 

 
 
g. Draw a segment to represent x – 2 on the x-axis below. 
 
 

 
 
h. Draw a segment to represent x– (–3) on the x-axis below. 
 
 

 
 
 
i. Place another value of x on the number line above, and draw another segment representing x– (–3). 
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3. Draw a segment to represent the differences on the y-axes below 
 
a. Represent 3.5 – 2:        b. Represent 6– (–2): c. Represent y –1.4: d. Represent 1 – y:       
 

                                                                       
 
 
4. Write an expression to represent the lengths of the segments shown on the axes below for the value of x 
or y shown: 
 
a.         c.           d. 
 

  
 
 
 
b.  
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5. Consider a point in the coordinate plane (x, y). 
 

  
 
 
a. Use a segment to show the distance between the point and the x-axis.  
 
 
 
b. Label this distance that you represented in part a. with a variable given. 
 
 
 
c. Use a segment to show the distance between the point and the y-axis.   
 
 
 
d. Label this distance that you represented in part c. with a variable given. 
 

 
 
 
 

(x, y) 



                                                                                                                                    Parr & Lippe p.  

 
 

538  

6. The graph of 𝑦 = 2𝑥 + 1 is shown to the right. Let (x, y) represent a generic point on this function. 
  
a. Represent the length of the horizontal segment (green) in terms 
of x. (Your expression should have “x” in it).  
 
 
 
b. Represent the length of the horizontal segment (green) in terms 
of y. (Your expression should have “y” in it).  
 
 
c. Evaluate your expressions at the point where x equals 1, and 
confirm that you get the same result from a. and b. 
 
 
d. Represent the length of the vertical segment (blue) in terms of y. 
 
 
e. Represent the length of the vertical segment (blue) in terms of x. 
  
 
 
f. Evaluate your expressions at the point where y equals 3, and 
confirm that you get the same result from d. and e. 
 
 
 
7. The graph of 𝑦 = 𝑥! is shown below. Let (x, y) represent a generic point on this function. 
 

a. Represent the length of the horizontal segment (green) in 
terms of x. 
  
 
 
 
b. Represent the length of the horizontal segment (green) in 
terms of y. 
 
 
 
 
c. Represent the length of the vertical segment (blue) in 
terms of y. 
 
 
 
  
d. Represent the length of the vertical segment (blue) in     
terms of x. 

 
 

(x, y) 

(x, y) 
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8. 

 
 
a. Use a segment to show the distance between the point (x, y) and the y-axis. Label this segment. 
 
 
 
b. Use a segment to show the distance between the line x = 2 and the y-axis. Label this segment. 
 
 
 
 
c. Represent the horizontal segment’s length in terms of x (Your expression should have “x” in it). 
 
 
 
 
d. In a sentence or two, explain how you came up with your expression. 
 
 
 
 
e. Represent the horizontal segment’s length in terms of y (Your expression should have “y” in it).  
 
 
 
 
f. In a sentence or two, explain how you came up with your expression. 
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