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Glossary 

Continuous Authentication A security mechanism that verifies a user’s identity 

continuously or at periodic intervals during a session, 

rather than just at the beginning. 

Mouse Dynamics The study and analysis of mouse movements and 

behaviors as users interact with a computer system. 

Authentication The process of verifying the identity of a user, device, 

or system. 

Behavioral Biometrics Metrics related to patterns of human activity, often used 

for authentication or identification purposes. 

AUC A performance metric used to evaluate the effectiveness 

of a classification model, typically used with the ROC 

curve. 

ROC A graphical representation that displays the true 

positive rate against the false positive rate for a binary 

classifier system as its discrimination threshold varies. 

LSTM A type of recurrent neural network that can remember 

patterns over long durations of time. 

GRU A type of recurrent neural network that is similar to 

LSTM but uses a different mechanism to remember 

patterns. 
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Sequential Model In the context of neural networks, it refers to a linear 

stack of layers where data flows in a sequence, from 

input to output. 

Normalization The process of adjusting values in a dataset to a 

common scale, typically between 0 and 1. 

Cross-Validation A statistical technique used to assess the performance 

of a model by partitioning the original dataset into a 

training set and a validation set. 

F1 Score A measure of a model’s accuracy, which considers both 

precision and recall. 

Outlier An observation that lies far away from other 

observations, typically seen as an anomaly. 
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Abstract 

With the surge in information management technology reliance and the looming 

presence of cyber threats, user authentication has become paramount in computer security. 

Traditional static or one-time authentication has its limitations, prompting the emergence 

of continuous authentication as a frontline approach for enhanced security. Continuous 

authentication taps into behavior-based metrics for ongoing user identity validation, 

predominantly utilizing machine learning techniques to continually model user behaviors. 

This study elucidates the potential of mouse movement dynamics as a key metric for 

continuous authentication. By examining mouse movement patterns across two contrasting 

gaming scenarios - the high-intensity "Team Fortress" and the low-intensity strategic "Poly 

Bridge" the research illuminates the distinct behavioral imprints users leave behind. Such 

consistent and unique mouse movements emphasize their credibility as reliable biometric 

markers. The developed sequential model in this research not only demonstrates impressive 

performance in user verification across these environments but also surpasses benchmarks 

set by prior research in the field. These findings underscore the potential of mouse 

movements in revolutionizing the continuous authentication domain, offering heightened 

security while capturing the intricacies of user behavior across diverse contexts. 
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1 Introduction 

In today’s interconnected world, the digital realm has become an integral part of 

our daily lives. From online banking and shopping to social interactions and professional 

work, people rely heavily on digital platforms. This increasing dependency brings forth the 

critical importance of digital security. According to a recent study on digital security, 

“unauthorized access to user accounts remains a persistent and growing challenge in the 

digital ecosystem”.  This widespread problem deeply impacts both people and businesses, 

causing data leaks, financial harm, and a loss of trust in online platforms [3]. Addressing 

this challenge is complex. Traditional authentication methods, such as passwords or 

security questions, have been employed to validate user identities. However, these static 

methods often fall short, as they can be easily compromised or forgotten. Moreover, 

stringent security measures can sometimes misidentify legitimate users as potential threats, 

leading to unnecessary barriers and frustrations. This research delves into the potential of 

continuous authentication, specifically focusing on mouse dynamics as a behavioral 

biometric. By analyzing the unique ways individuals interact with their devices through 

mouse movements and clicks, This study aim to develop a more nuanced and reliable 

method for user verification. This study will explore the efficacy of mouse dynamics in 

different scenarios, using games like "Poly Bridge" and "Team Fortress 2" as testbeds, and 

will propose solutions to enhance digital security without compromising user experience. 
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1.1 Continuous Authentication 

Traditional authentication mechanisms have largely been built around the concept 

of “point-of-entry” verification. Whether it is entering a password, presenting an ID card, 

or providing a fingerprint, once the user is authenticated, they typically have unhindered 

access to the system or platform until they decide to log out or the session times out. This 

method is analogous to checking a guest’s invitation at the door but not monitoring their 

behavior once they are inside the party. 

However, this approach has inherent vulnerabilities. If malicious entities gain initial 

access, either by stealing credentials or exploiting vulnerabilities, they can operate freely 

without raising alarms [2]. Furthermore, if a legitimate user’s behavior changes during a 

session due to coercion or any other reason, traditional systems remain oblivious to this 

[25]. 

In contrast, continuous authentication represents a paradigm shift in digital security. 

Instead of just using initial login details, it highlights the need for continuous checks during 

a user’s session. This approach has two benefits: it boosts security by constantly checking 

user actions and improves the user experience by cutting down on repeated logins [9]. 

Among the various techniques explored for continuous authentication, behavioral 

biometrics has gained significant attention. Behavioral biometrics focuses on the unique 

and often subconscious patterns in which individuals interact with their devices. Within 

this domain, mouse dynamics stands out as a particularly potent metric. Every user exhibits 

distinct patterns when using a mouse, from the trajectory and speed of movements to the 
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rhythm of clicks. These subtle yet consistent behaviors can serve as a digital signature, 

offering insights into the authenticity of the user [22]. However, the real challenge is 

capturing and analyzing these patterns in real time without causing disruptions or false 

alarms [20]. 

1.2 Need of Research 

In today’s digitally connected world, ensuring security and authenticity of users 

remains a paramount concern. Traditional authentication mechanisms, relying primarily on 

static credentials, are increasingly coming under scrutiny due to their vulnerabilities. 

There’s a growing realization of the importance of adopting dynamic and continuous 

authentication methods, particularly in an era rife with advanced cybersecurity threats. 

Within this context, mouse dynamics, a sub-domain of behavioral biometrics, emerges as 

a promising avenue for continuous user verification. 

The uniqueness of mouse movements for each individual has positioned it as a 

potential robust indicator of user identity. However, a critical factor influencing these 

dynamics is the environment in which the mouse is being used. Different tasks or activities 

can elicit distinct patterns of mouse movements, and understanding these variances is 

crucial for the development of a reliable authentication system. 

While some research has been done in this domain, a significant gap persists. Many 

studies have narrowly focused on mouse dynamics within a specific type of environment 

or task, not accounting for the vast spectrum of human-computer interactions. This research 

aims to explore mouse dynamics across two contrasting environments: high intensity and 
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low intensity, providing a more holistic understanding of user behavior. Towards an era 

where dynamic and behavior-based authentication becomes the norm, understanding the 

nuances of mouse movements across varied environments is not just academically 

valuable, but holds profound implications for enhancing real-world cybersecurity 

protocols. 

1.3 Objective 

This study leverages data collected from two distinct video games: Poly Bridge, 

characterized by its low-intensity gameplay, and Team Fortress 2, known for its high-

intensity action. Employing Long Short-Term Memory (LSTM) and Gated Recurrent Unit 

(GRU) models. This study is driven by three primary objectives: First, to develop an 

effective continuous authentication system employing mouse movement data from Poly 

Bridge. Second, to extend this authentication approach to the high-intensity environment 

of Team Fortress 2. And third, to understand and accurately predict user behavior across 

both gaming environments, tackling the challenge posed by the contrast in intensity levels. 

Considering these objectives, our research questions are: How accurately can 

LSTM and GRU models authenticate users based on mouse movements in the low-

intensity environment of Poly Bridge? What is the prediction accuracy in the high-intensity 

environment of Team Fortress 2? And crucially, how effective are these models in 

predicting and authenticating users who engage in both gaming environments, 

demonstrating versatility across varied intensity levels? 
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Our hypotheses correspond directly to these research questions: H1 posits that the 

models will effectively predict and authenticate users in Poly Bridge, attributing high 

accuracy to the consistent and predictable mouse movements typical of low-intensity 

environments. H2 suggests that while the models will also authenticate users in Team 

Fortress 2, the prediction accuracy may be challenged by the erratic and rapid mouse 

movements associated with high-intensity gameplay. H3, our central hypothesis, posits that 

the models will be capable of predicting and authenticating users across both gaming 

environments, showcasing an adaptability to the contrasting intensity levels and 

demonstrating the robustness of our continuous authentication system. Through this 

exploration, our aim is to contribute valuable insights to the realm of continuous 

authentication, employing behavioral biometrics to enhance user security and verification 

processes, particularly in varied and dynamic interaction environments. 

1.4 Significance of Study 

This study looks at the varied ways people interact digitally, using gaming mouse 

movements as a lens. Recognizing that user behavior can vary significantly depending on 

the task at hand, games emerge as an ideal subject for examination due to their capacity to 

elicit a diverse array of emotions and responses.. For example, a strategy game might show 

careful mouse moves, whereas an action game might have quick, unpredictable ones. This 

research, by examining both calm and intense gaming moments, seeks to grasp a full range 

of user actions. 
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The main aim is to create a model that understands these interactions. The hope is 

to design a system that can recognize and confirm users by their unique mouse movements, 

no matter the game’s pace. Such model could provide a flexible and context-aware way to 

verify users. What sets this study apart is its thorough approach. The data is gathered in a 

controlled, identical environment where users have the same setup, ensuring the reliability 

and consistency of the results. Furthermore, This research is not only about general trends. 

It digs deep into mouse movement details, aiming to spot specific patterns that distinguish 

one user from another. This is not only good for a reliable authentication system, but it also 

gives insights into how people and computers interact. 

2 Literature Review 

The exploration of user behaviors and their authentication in digital platforms has 

been a focal point of numerous studies in recent years. As digital interactions become more 

intricate and multifaceted, the need to understand and authenticate these interactions 

securely becomes paramount. Scholars have delved into various aspects of user behavior, 

ranging from keystroke dynamics to biometric verification. There are many authentication 

methods like keyboard dynamic, touch dynamic, mouse dynamic, and other methods. One 

particular area that has garnered attention is the examination of mouse dynamics, given its 

potential to offer insights into a user’s unique interaction pattern. Siddiqui et al. 2021 [22], 

Antal et al. 2021 [4], Salman et al. 2019 [19], Chong et al. 2018 [6], Tan et al. 2017 [26], 

Ciaramella et al. 2022 [7], Marakhtanov et al. 2022 [14] have shown prominent result in 

mouse dynamic for continuous authentication This literature review seeks to provide a 
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comprehensive overview of the prevailing research on this subject, setting the stage for a 

deeper dive into the nuances of mouse dynamics and some other continuous authentication. 

2.1 Related Work 

2.1.1 Keyboard Continuous Authentication 

As technology adapts to address emerging challenges, various approaches have 

surfaced to keep unauthorized users at bay. Among the popular methods that are available, 

one of them is keystroke dynamics. By analyzing the unique rhythms and patterns of a 

user’s typing behavior, keystroke dynamics offers a non-intrusive, real-time mechanism to 

authenticate and verify user identities. This method not only taps into the individual 

nuances of typing speed and pressure but also capitalizes on the habitual mannerisms’ users 

display when interacting with keyboards [17,25]. 

A study by Aversano et al. (2021) serves as a prime example of this research 

direction. Their work on keystroke dynamics highlighted its viability as a cost-effective 

biometric technique. By introducing an ensemble learning approach, they achieved an 

impressive accuracy of up to 99.7%. Their research underscores the potential of using deep 

learning techniques for continuous user identification based on typing behavior [5]. 

Taking a more holistic approach, Li et al. (2020) dove into the combined realm of 

mouse dynamics, keystroke analysis, and even wrist motion behaviors. Their enhanced 

continuous authentication framework fills in the security gaps during device transitions or 

idle times. Their experiments demonstrated a remarkably low False Reject Rate (FRR) and 

False Acceptance Rate (FAR) for genuine users and attackers, respectively [11]. 
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Meanwhile, Solano et al. (2020) focused on the challenges posed by limited training 

data, a common hurdle in the field of behavioral biometrics. By leveraging both mouse and 

keyboard dynamics during static authentication periods, such as login times, their results 

showcased that effective risk-based authentication is possible even with minimal training 

inputs [24]. 

On the cutting edge of neural network applications, Mao, Wang, and Ji (2022) 

integrated convolutional neural networks with bi-directional Long Short-Term Memory 

models. Their unique approach combines keystroke content and time as feature vectors, 

achieving low error rates that solidify the potential of advanced machine learning 

techniques in this realm [13]. 

Zeid, El Kamar, and Hassan (2022) conducted an insightful comparative study. 

Their research delved into the classification capabilities of various algorithms on distinct 

keystroke datasets. The outcomes indicated a remarkable accuracy, especially with the 

Random Forest classifier on fixed-text datasets [21]. 

While keystroke dynamics offer valuable insights for user authentication, they also 

come with inherent limitations. Variability in user behavior due to factors like fatigue, 

physical discomfort, or the use of different keyboards can introduce inconsistencies in the 

analysis. This makes keystroke dynamics potentially more susceptible to inaccuracies 

compared to more continuous methods. Moreover, continuous typing requires active user 

engagement, making it less effective during passive or idle states. These challenges can 
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sometimes render keystroke dynamics less desirable compared to other behavioral 

biometrics, such as mouse dynamics [5,16]. 

2.1.2 Touch-Based Continuous Authentication. 

Continuous authentication methods have evolved significantly, and one standout 

approach is touch dynamics. Leveraging smartphones, touch dynamics captures the unique 

ways users interact with their touchscreens either through taps, swipes, or pinches. These 

interactions, rich with behavioral patterns, offer a seamless way to continuously verify a 

user’s identity. Embedded sensors in modern devices record this interaction data, 

transforming everyday smartphone usage into a powerful tool for ongoing user 

authentication. The potential of touch dynamics as a pivotal player in digital security 

becomes increasingly evident [12,28]. 

Abuhamad et al. (2020) embarked on an extensive survey, encompassing over 140 

contemporary behavioral biometric techniques, with a spotlight on continuous 

authentication through smartphones’ inbuilt sensors. This encompassing study ranged from 

motion-based methods to touch gestures, emphasizing the immense potential held by 

smartphones in harnessing behavioral biometrics. It presents an invaluable foundation, 

delineating the state-of-the-art and charting out challenges for ensuing investigations [1]. 

In a more application-focused approach, Durmaz Incel et al. (2021) turned their 

attention to the world of mobile banking. Introducing their system, DAKOTA, they 

harnessed touch screen and motion sensor data to understand and model user behaviors 

during banking transactions. With an extensive study involving 45 participants, the insights 
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derived shed light on the viability of continuous authentication, specifically underscoring 

the prowess of the binary-SVM with RBF kernel [27]. 

Further enhancing the understanding, Zaidi et al. (2021) elucidated the core 

principles that steering touch-based continuous mobile device authentication. Their 

comprehensive study traversed key areas from data acquisition techniques to user 

classification methods, simultaneously flagging prevailing challenges and areas ripe for 

exploration. Their emphasis on the requisite for greater acceptance by the research 

community and market is particularly noteworthy [28]. 

Venturing into a multi-modal approach, Dave et al. (2022) showcased the 

synergistic potential of integrating touch dynamics with phone movement. By leveraging 

two renowned datasets, they evaluated their model’s performance across multiple machine 

learning algorithms. Their results highlight the significant result held by fusing touch 

dynamics with phone movements, thereby reinforcing the prospects of this approach in 

bolstering continuous authentication [12]. 

2.1.3 Mouse Continuous Authentication 

In the vast spectrum of continuous authentication techniques, mouse dynamics 

emerges as one of the foremost. Given the frequent use of mouse or similar pointing 

devices, such as trackpads, in various computing interfaces, the patterns they generate 

become pivotal. This is especially evident in web interfaces and applications where typing 

may be minimal or absent, rendering keyboard-based authentication methods ineffective. 

The way users move the cursor either through a mouse, trackpad, or any other pointer 
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device creates a signature pattern, is distinct and unique to every individual. This 

uniqueness transforms simple mouse movements into a robust tool for authentication, 

seamlessly integrating security without hampering the user experience. As one delves 

deeper into the realm of mouse dynamics, its potential to revolutionize continuous 

authentication in digital interactions becomes increasingly apparent [4,22,23]. 

In the expansive realm of user authentication, a work by Shen et al.’s (2013), "Using 

Mouse Dynamics for Continuous User Authentication," is particularly notable. They 

propose mouse dynamics, comprising both mouse movements and click patterns, as a 

behavioral biometric for user verification. Their empirical evaluation based on a diverse 

dataset demonstrates the method’s potential, particularly emphasized by an AUC score of 

0.981. While such results are commendable, the approach does comes with challenges. 

Assumptions of consistent and distinctive mouse dynamics across users may not always 

hold true, especially when external factors like fatigue come into play. Further, the 

method’s broader adaptability is questionable, especially when considering users with 

physical constraints or those on devices that bypass traditional mouse interactions. A 

comparison with this research highlights differences, notably in the extended training phase 

the researcher required, which involved up to 2500 iterations, and the variance in data 

volumes considered [19]. 

Delving further, Antal’s (2019) article, "Intrusion Detection using Mouse 

Dynamics," examines user authentication using mouse dynamics. The research scrutinizes 

the effectiveness of various classifiers and feature selection techniques for imposter 

detection via mouse movements. By employing a comprehensive dataset of genuine users, 
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Antal contrasts the performance of these methods against existing techniques. An 

outstanding finding from this exploration is the optimal imposter detection achieved when 

combining specific feature selection techniques, such as Relief, with classifiers like 

Random Forest. Nevertheless, the research does show some limitations. Sole reliance on 

mouse dynamics could leave the system vulnerable to specific challenges like replay and 

emulation attacks [3]. 

The "Not Quite Yourself Today: Behavior-Based Continuous Authentication in IoT 

Environments" study offers a fresh perspective on behavior-based authentication within 

IoT. By aggregating data from various devices, this research captures individual 

movements, object interactions, and even PC usage patterns, subsequently molding 

machine learning models for authentication. Their Continuous Authentication solution, 

based on non-sensitive data, boasts a remarkable 99.3% accuracy [10]. 

"Mouse Authentication without the Temporal Aspect – What does a 2D-CNN 

learn?" introduces a novel paradigm. Instead of fixed mouse feature extraction, this 

research advocates for a 2D-CNN that processes images as inputs. The power of transfer 

learning is harnessed, and the results, especially against baseline models using two public 

datasets, Balabit and TWOS, are promising. However, the model’s pronounced sensitivity 

to resolution changes presents a potential challenge for real-world application [6]. 

"SapiMouse: Mouse Dynamics-based User Authentication Using Deep Feature 

Learning" further explores the potential of 2D-CNN with image inputs for mouse dynamics 

authentication. Contrasting with Chong’s research, this study underlines the 2D-CNN’s 
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tendency to focus sparsely on curve information. This research’s results, especially when 

considering AUC values across various scenarios, suggest the method’s potency [4]. 

Tan Y’s research, "Insights from curve fitting models in mouse dynamics 

authentication systems," dives deep into the influence of curve-smoothing techniques on 

mouse movement prediction tasks. With data from the Balabit challenge, this study 

underscores the Autoregressive (AR) curve fitting model’s effectiveness. However, the 

research also emphasizes that curve-fitting solutions might not universally excel across all 

datasets [26]. 

The paper "Continuous and Silent User Authentication Through Mouse Dynamics 

and Explainable Deep Learning: A Proposal" presents an innovative blend of mouse 

dynamics data transformation with deep learning. Using the Gradient-weighted Class 

Activation Mapping (Grad-CAM) technique, the research achieves a unique fusion of 

classification prowess and model explain ability [7]. 

In "Mouse Dynamics Analysis Using Machine Learning to Prevent Account 

Stealing in Web Systems," Marakhtanov A echoes Ciaramella G’s approach but introduces 

the Gradient-weighted Class Activation Mapping (Grad-CAM) for model decision insight. 

The preliminary evaluations, based on a sample of ten users, signify the efficacy of this 

approach for silent, continuous user authentication [14]. 

Shen, Cai, and Guan’s 2012 study introduced a pattern-growth-based mining 

method that accentuates the stability of mouse characteristics by capturing frequent-

behavior segments, achieving impressive false acceptance and rejection rates [20]. 
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Building upon this, Mondal and Bours presented a continuous authentication scheme in 

2013 where users were authenticated for each mouse event, demonstrating a robust 

detection rate where impostors could only perform an average of 94 mouse actions before 

detection [15]. The same researchers furthered this exploration in 2016, merging keystroke 

and mouse dynamics and proposing the Pairwise User Coupling (PUC) technique. This 

combined approach highlighted the power of multi-modal biometrics in enhancing 

identification accuracy [16]. 

Diving into the complexities of mouse dynamics, Hu et al. in 2019 combined mouse 

biobehavioral characteristics with deep learning, offering continuous authentication 

solutions especially valuable for thwarting insider threats in intranet environments [9]. 

Siddiqui, Dave, Seliya, and Vanamala in 2022 took a comprehensive look at both machine 

and deep learning techniques, showcasing an exceptional test accuracy with a 1D-CNN 

[23]. In the same vein, Antal, Fejér, and Búza in 2021 launched the SapiMouse dataset, 

emphasizing deep feature learning for mouse dynamics-based user authentication, 

demonstrating a commendable performance [4]. These studies highlight the significant 

potential and evolving complexities of using mouse dynamics for authentication. 

However, some challenges also emerge. While Siddiqui, Dave, and Seliya’s 2021 

study achieved impressive accuracy rates using Minecraft’s mouse dynamics data, it also 

highlighted the potential homogenization of data in mundane collection scenarios [22]. Gao 

et al.’s 2020 research underscored the challenge of limited data during classifier training, 

although they innovatively combined multiple algorithms to address this [8]. Almalki, 

Assery, and Roy’s empirical evaluation of continuous authentication using mouse 
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clickstream data analysis showcased the potential and challenges of different classifiers in 

identifying genuine and fraudulent users [2]. 

Alongside mouse dynamics, other behavioral biometrics like keystroke dynamics 

have also gained traction. For instance, Os, Skalkos, Kokolakis, and Karyda worked on 

"BioPrivacy", a keystroke dynamics continuous authentication system, which further 

solidifies the importance of such non-intrusive measures [25]. 

Mouse dynamics, although promising, face several challenges in continuous 

authentication. A significant limitation found in many studies is imbalanced data, where 

genuine user actions are over-represented compared to malicious ones. This imbalance can 

lead to biased classifiers, making traditional metrics like FAR and FRR less reflective of 

real-world performance [18]. The variability introduced by factors such as fatigue, 

distractions, and different device designs can also impact the consistency of mouse 

movements. Additionally, the generalizability of mouse dynamics models across varied 

environments and devices, especially when moving from traditional mice to touchscreens 

or styluses, is a concern [3,4,19,23]. 

Furthermore, the adaptability of these models in diverse contexts and user groups, 

especially those with physical constraints, is debatable. While metrics like accuracy are 

frequently highlighted, the AUC emerges as a more reliable performance indicator, 

especially when data is skewed [4,19,22]. For mouse dynamics to be broadly effective, 

refining evaluation metrics, ensuring data balance, and enhancing model adaptability are 

essential [4]. 
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2.2 Literature Analysis 

The provided table 1 presents a comprehensive summary of various studies 

focusing on continuous and behavior-based user authentication utilizing mouse dynamics. 

Each entry in the table outlines a unique approach, detailing the methodology employed, 

the contribution of the work to the field, and the results achieved. Importantly, the 'Result' 

column predominantly employs the Area Under the Curve (AUC) metric as a standard for 

evaluating performance. This choice is justified by the nature of the datasets used, which 

are imbalanced, rendering metrics like accuracy less reliable. Additionally, even the F1 

score, which is generally more robust to imbalanced datasets, is still somewhat impacted 

in this context. 

The studies listed employ a range of techniques, from deep learning models such 

as VGG16 and Convolutional Neural Networks (CNNs), to machine learning classifiers 

like Gaussian Naive Bayes and Random Forests. The diversity in methodologies reflects 

the evolving nature of this research area, as well as the variety of perspectives and 

approaches taken to address the challenges of user authentication through mouse dynamics. 

The outcomes, measured primarily using AUC, showcase the effectiveness of these 

methods, with several studies achieving AUCs above 0.9, indicating a high level of 

performance in distinguishing between authentic and fraudulent user sessions.  

Table 1 offers a valuable overview of the current state of research in continuous 

user authentication through mouse dynamics, highlighting the prevalent use of AUC as a 
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performance metric due to the imbalanced nature of the datasets involved, and showcasing 

a variety of innovative methods and contributions to the field. 

 

Table 1: literature analysis 

Title Method Contribution Result 

Continuous and 

Silent User 

Authentication 

Through Mouse 

Dynamics and 

Explainable Deep 

Learning: A 

Proposal 

Data was mapped 

into images and 

deep learning model 

(VGG16) used for 

user prediction. 

Proposed a method 

for user detection 

using data mapping 

and deep learning. 

Achieved an AUC 

of 0.953. with the 

precision of 0.897 

and recall of 0.896 

SapiMouse: Mouse 

Dynamics-based 

User Authentication 

Using Deep Feature 

Learning 

Mouse dynamics 

data from 120 

subjects were 

collected and 

preprocessed for 

training on a 

Convolutional 

Neural Network 

(CNN). 

Introduced the 

SapiMouse dataset 

for user 

authentication 

through mouse 

dynamics and 

demonstrated CNN-

based user 

authentication. 

Achieved an AUC 

of 0.94 from the 

blocks of data. The 

AUC start to 

converge on block 

3 

Using Mouse 

Dynamics for 

Continuous User 

Authentication: 

Volume 1 

Mouse dynamics 

data acquisition, 

preprocessing, and 

feature extraction 

were performed, 

with Gaussian 

Naive Bayes 

classifier used for 

classification. 

Developed a novel 

mouse dynamics 

analysis method for 

user authentication 

and compared 

multiple models. 

Achieved an AUC 

of 0.981 on the 

benchmark test 

session. 

Mouse 

Authentication 

without the 

Temporal Aspect – 

Images of mouse 

movement 

sequences were 

generated and used 

for 2D-CNN 

Introduced a 2D-

CNN model for 

mouse-based user 

authentication and 

Achieved an AUC 

of 0.958 from the 

2D-CNN model. 
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What does a 2D-

CNN learn 

training with joint 

multi-label training. 

compared it with 

baseline methods. 

Insights from Curve 

Fitting Models in 

Mouse Dynamics 

Authentication 

Systems 

Data was structured 

into mouse event 

sequences and 

analyzed using 

curve fitting 

techniques with a 

Linear Support 

Vector Machine 

(LinearSVM) 

classifier. 

Investigated the 

impact of curve 

smoothing 

techniques on user 

authentication and 

compared time-series 

forecasting models. 

Achieved an AUC 

of 0.86 with the AR 

model. 

Continuous 

Authentication 

Using Mouse 

Movements, 

Machine Learning, 

and Minecraft 

Data from 10 users 

during Minecraft 

gameplay was used 

to create Binary 

Random Forest 

classifiers for user 

authentication. 

Introduced a 

Minecraft-based 

mouse dynamics 

dataset and evaluated 

user authentication 

with Random Forest 

classifiers. 

Achieved an 

average accuracy 

rate of 92.73%. 

Not Quite Yourself 

Today: Behaviour-

Based Continuous 

Authentication in 

IoT Environments 

Data from up to 

twenty users 

encompassing 

various behaviors 

was collected for 

continuous 

authentication using 

machine learning 

models. 

Focused on IoT-

based continuous 

authentication and 

achieved a 99.3% 

accuracy rate. 

Achieved an 

accuracy rate 

exceeding 86.9% in 

independent user 

authentication. And 

with the best of 

99.3% accuracy 

rate. 

Machine and Deep 

Learning 

Applications to 

Mouse Dynamics 

for Continuous User 

Authentication 

Different data 

preprocessing 

methods were 

employed for 

machine learning 

and deep learning 

models, with 

evaluation using 

binary and multi-

class classifiers. 

Evaluated machine 

learning and deep 

learning models for 

user authentication 

using mouse 

dynamics data. 

Achieved peak 

accuracy of 85.73% 

with 1D-CNN and 

92.48% with an 

artificial neural 

network. 
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Continuous 

Authentication 

Using Mouse 

Clickstream Data 

Analysis 

Data from 10 users 

with 39 behavioral 

features per user 

were used for 

verification and 

authentication with 

machine learning 

classifiers. 

Demonstrated the 

effectiveness of 

machine learning 

classifiers for user 

identification with 

high accuracy. 

Achieved AUC of 

99.9% in 

authentication tasks 

using K-Nearest 

Neighbors, and 

90.3% in Decision 

Tree and 92.5% in 

Random Forest. 

Intrusion Detection 

Using Mouse 

Dynamics 

Preprocessed data 

and performed 

feature extraction 

for impostor 

detection using the 

Balabit dataset. 

Analyzed the Balabit 

dataset and identified 

the significance of 

drag and drop mouse 

actions for intrusion 

detection. 

Achieved an AUC 

of 0.92 during 

benchmark test 

sessions. 

 

3 Methodology 

For this research on continuous authentication utilizing mouse dynamics, a 

meticulously planned three-step methodology was executed. The primary focus during the 

data collection stage was gathering data from two distinct games: Poly Bridge and Team 

Fortress 2, representing low and high-intensity environments, respectively. By choosing 

these contrasting environments, this study aimed to capture a wide spectrum of mouse 

behaviors. Transitioning to the data preprocessing and analysis stage, inconsistencies, or 

anomalies, possibly stemming from sensor glitches or irrelevant interactions, were purged. 

This curated dataset underwent extraction processes to highlight pertinent features, such as 

movement speed and trajectories. The normalization process was then applied, ensuring 

that these features maintain a consistent magnitude, regardless of their source. Following 

this, we applied exploratory techniques to uncover patterns and potential correlations 

within the data. For the modeling phase, we specifically employed GRU (Gated Recurrent 
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Unit) and LSTM (Long Short-Term Memory) models, given their aptitude for handling 

sequential data like mouse dynamics[2,7]. These models were trained using a partition of 

the dataset and subsequently evaluated on previously unseen data. Metrics such as 

accuracy, precision, and recall, along with the ROC curve and AUC values, were employed 

for performance assessment. Iterative refinement of these models ensured that this research 

effectively encapsulated the potential of mouse dynamics as a distinguishing mechanism 

in both high and low-intensity gaming environments for continuous authentication[2]. 

3.1 Data collection 

The data gathering process was executed with precision to uphold the reliability 

and uniformity of the research. A total of 19 distinct users participated in this phase, all of 

whom were college students, both undergraduate and graduate, coming from various 

academic backgrounds. The majority of participants were majoring in computer-related 

fields. Among these participants, 11 played both games: Poly Bridge and Team Fortress 2 

(TF2). However, some exclusively engaged with only one of the two games, resulting in a 

total of 15 users for each game. 

The choice of these two games was strategic and deliberate. Poly Bridge, a low-

intensity game, was selected because its gameplay mimics office tasks involving more 

reading and slower, deliberate mouse movements that span across the entire screen. Such 

movements are analogous to those made during standard office work, making it an ideal 

choice. The game’s popularity and its simple mechanics also meant that it was recognizable 

to many and easy for newcomers to learn and play, ensuring that participants wouldn’t 
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struggle with unfamiliar gameplay dynamics. On the other hand, Team Fortress 2 (TF2) 

represents high-intensity gameplay, especially given its nature as a first-person shooter 

(FPS) game. This choice was made to capture data on rapid, reactive mouse movements 

and understand user behavior under conditions demanding quick reflexes and constant 

mouse adjustments. Furthermore, the fact that TF2 is freely available ensures wider 

accessibility and familiarity. 

To maintain uniformity and negate the influence of external variables, each 

participant played on identical computer setups. These setups featured the same mouse, 

screen specifications, and other hardware conditions. Each gaming session lasted for a 

duration of 15 minutes. Throughout these sessions, granular mouse interaction data, 

including button clicks, x and y coordinates, and interaction timestamps, was diligently 

captured shown in Table 2. This structured approach to data collection was designed to 

provide a holistic representation of mouse dynamics across different gaming environments 

and intensities. 

Table 2: data event 

ID Timestamp X Y Button Duration 

002-tf2-315 1.68E+09 558 301 -1 -1 

002-tf2-315 1.68E+09 550 290 -1 -1 

002-tf2-315 1.68E+09 537 283 -1 -1 

002-tf2-315 1.68E+09 526 280 -1 -1 

002-tf2-315 1.68E+09 510 276 -1 -1 
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The mouse movement can be seen in figure 1. The graph shows a comparison of 

user 15 playing 2 different games: "poly" and "tf2". In the "poly" game, as shown in figure 

1a, this research observes a dense, web-like pattern. This intricate map of lines suggests 

detailed gameplay with frequent direction changes, possibly hinting at multitasking or 

complex decision-making moments within the game. On the other hand, figure 1b: "TF2" 

game, showcased on the right side of the figure, displays pronounced radial movements 

emanating from a central point. These resemble a wheel, hinting at quick, reactive motions, 

perhaps related to precise aiming or the dynamic pace of action games. 

The accompanying heatmaps shown in Figure 2: mouse movement heatmap2 

provide further context. Figure 2a: "poly" game displays a pronounced concentration 

towards the center-left, suggesting a key interaction or game area. In contrast, the heatmap 

for figure 2b: "tf2" centers around a distinct hotspot, indicating a recurrent return to a 

central position, possibly between rapid game actions. 

 

Figure 1: mouse movement a) poly, b)TF2 
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Figure 2: mouse movement heatmap a) poly, b) TF2 

 

3.2 Data Preprocessing 

The methodology adopted for this research follows a logical and systematic 

approach to understanding user interactions through their gaming mouse movements 

shown in Figure 3. The first phase involved data collection, where raw data representing 

these mouse movements were amassed. Following this, the data underwent a data cleaning 

process to rectify any inaccuracies, inconsistencies, or anomalies present. 

Post-cleaning, the Data Processing phase commenced. During this phase, the data 

was first normalized to ensure that features have the same scale. Subsequent to 

normalization, the data was transformed into a binary format through relabeling. This 

binary representation simplifies complex labels, making them more understandable and 

easier to work with. After this transformation, the data was sequenced, preserving the order 

of mouse movements and capturing the temporal essence of user interactions. The 
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processed data was then partitioned into training and testing sets, ensuring a balanced 

representation. 

Before delving into model training, a critical step undertaken was Cross-Validation. 

This step is indispensable as it provides insights into the model’s capability to generalize 

on unseen data. It acts as a preliminary validation technique, ensuring that the model is not 

just memorizing the training data but learning to make genuine predictions. 

With the insights gained from cross-validation, the final phase involved Training 

the Model. Using the training dataset, the model was trained to discern patterns in mouse 

movements, aiming to distinguish one user from another based on these patterns. 

 

Figure 3: Data pre-processing. 

3.4 Data Cleaning 

The fundamental goal of data cleaning is to ensure that the dataset being utilized is 

free from errors and inconsistencies that could undermine the accuracy of any ensuing 

analysis or model. This study started by systematically examining the dataset for any 

missing or anomalous values. It was reassuring to discover that the dataset was 
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comprehensive, with no missing values. This is a testament to the meticulousness with 

which the data collection phase was executed. Moreover, while the analysis did reveal the 

presence of outliers, as depicted in the box plots shown in Figure 4, a deeper inspection 

clarified that these outliers were not anomalies or errors. Instead, they represented genuine 

data points that captured the unique behavioral patterns of certain users. 

Given the nature of this study, where the aim is to comprehend the nuanced 

interactions of users, it was imperative to retain these outliers. These data points provide a 

richer understanding of user behaviors, especially since they deviate from the norm. They 

could be pivotal in distinguishing between different user interactions, making them 

invaluable to the study. 

 

Figure 4: box plot data x and y 
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3.5 Feature Extraction 

The feature extraction phase was instrumental in transforming the raw mouse data 

into actionable insights. Initially, a broad set of potential features was derived from the 

data, capturing various nuances of mouse movements and interactions. This included 

parameters like movement speed, click patterns, trajectories, and many others. Each of 

these extracted features was then subjected to rigorous statistical tests, including 

multicollinearity assessments, to ascertain their individual and combined relevance. The 

goal was to distill the large set of features into a more focused subset, which not only 

captured the essence of user behavior but also optimized the efficiency and effectiveness 

of the subsequent 

The data is transformed into Delta X, Delta Y, Movement Distance, Velocity, 

Acceleration, Angle, Jerk, Curvature, Direction Change, Is Stop, and Stop Duration. Delta 

X and delta Y represent the differences in the X and Y coordinates between consecutive 

data points. They indicate how much the mouse has moved in the X and Y directions 

between consecutive timestamps. Movement distance is the Euclidian distance between 

two consecutive points, representing the straight-line distance the mouse has moved which 

calculated using √∆𝑥2 + ∆𝑦2. Velocity is the speed which is calculated by distance divided 

by the time. Acceleration is the rate of change of velocity which is calculated by finding 

the difference in consecutive velocities. Angle is the angle of movement between 

consecutive data points. It is calculated using trigonometry and provides the direction of 

movement in a 2D plane. arctan2(ΔY, ΔX). Jerk is the rate of change of acceleration. It can 
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capture sudden starts or stops in movement. Curvature represents the degree to which a 

curve (made by the mouse movement) deviates from being flat or straight. A higher 

curvature value could indicate more curvy or circular movement patterns, while a low 

curvature suggests straighter movement. It is calculated by difference in consecutive angles 

divided by movement distance. Direction change is a binary feature indicating if there was 

a change in the movement direction between consecutive points. It can be indicative of 

certain behavioral patterns, like erratic mouse movements. “One” is if the difference in 

consecutive angles is not zero, otherwise “zero”. “Is_stop” is a binary feature indicating 

whether the movement of the mouse has stopped. A movement is considered a "stop" if its 

movement distance is below the threshold (0.001). “Stop_Duration” represents the duration 

for which the mouse has stopped moving. If the mouse is moving, the stop duration is 0. 

Otherwise, it is equal to the duration for that data point.  

During the preprocessing phase of the analysis, both the model’s robustness and 

computational efficiency are prioritized in the feature selection process. It is observed that 

velocity, a crucial measure of movement, was essentially mirrored by the movement 

distance, making it redundant. Similarly, while the changes in X and Y positions, 

represented by “Delta_X” and “Delta_Y”, were not linearly correlated, they were closely 

related to the absolute X and Y coordinates, introducing unnecessary redundancy. Further, 

the binary nature of the “Is_Stop” feature was found to be negatively correlated with 

“Stop_Duration”. Given the depth of information provided by “Stop_Duration”, which 

quantifies the length of each stop, and considering frequent mouse movements leading to 

a majority of zeros in “Stop_Duration”, “Is_Stop” is omitted. After this rigorous analysis, 
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the refined feature set for modeling included X, Y, “Stop_Duration”, “Jerk”, 

“Direction_Change”, “Movement_Distance”, Acceleration, Button, and Angle shown in  

Table 3. This selection ensures that the data’s essential dynamics are captured while 

benefiting from enhanced model interpretability and computational efficiency. Based on 

the analysis, it was decided to only take some features which are X, Y, stop duration, jerk, 

direction change, movement distance, acceleration, button, and angle. The chosen feature 

correlation can be seen in Figure 5 which shows no multicollinearity between features. Jerk 

and acceleration indeed still have a high correlation, but because it still captures the change 

of acceleration especially when there is a sudden stop in mouse movement. 

Table 3: Features 

Feature Description 

X Horizontal position of the mouse cursor on the screen, 

indicating its exact location along the x-axis. 

Y Vertical position of the mouse cursor on the screen, 

indicating its precise location along the y-axis. 

Stop_Duration Measures the duration of pauses or stops during mouse 

movement, providing insights into periods of cursor 

inactivity. 

Jerk Quantifies abrupt changes in mouse velocity, helping 

identify sudden shifts in cursor movement or user actions. 

Direction_Change Tracks the frequency of changes in mouse direction, 

indicating how often the cursor alters its course during 

movement. 

Movement_Distance Calculates the total distance covered by the mouse cursor, 

offering insights into the extent of cursor travel. 
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Acceleration Measures the rate of change in mouse velocity, gauging the 

speed at which the cursor accelerates or decelerates. 

Button Records mouse button press events, tracking clicks and 

releases to monitor user interactions with mouse hardware. 

Angle Represents the angular direction of mouse movement, 

measuring the angle between the mouse's start and end 

positions. 

 

 

Figure 5: feature correlation 
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3.6 Data Transformation 

The extracted data showed some null value or 0 because the calculation impacted 

from previous rows, which makes the first and last row extracted value tempered. For this 

reason, the first and last row of every user is omitted. Also to ensure the model effectively 

captures temporal patterns in the data, the dataset was transformed into sequences. Each 

sequence consists of 40 data points, providing a holistic view of short-term dynamics 

within sessions. The decision to use a sequence length of 40 was informed by the average 

session length observed in the dataset. This choice strikes a balance between encapsulating 

meaningful patterns and ensuring computational efficiency. By framing the data in this 

sequence-based structure, this study aims to harness the full potential of the chosen GRU 

(Gated Recurrent Unit) and LSTM (Long Short-Term Memory) model, which excels at 

understanding temporal dependencies. 

To streamline the analysis focused on user authentication, the dataset was 

transformed into a binary classification format centered around a selected user, in this case, 

user 18. Under this transformation, data corresponding to user 18 was labeled as ‘0’, 

indicating the authentic user, while data from all other users was labeled as ‘1’, representing 

potential intruders. This binary distinction enables the model to differentiate between the 

genuine user’s behavior and any anomalous or intrusive patterns, making it particularly 

tailored for intrusion detection based on user behavior. 
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3.7 Model Development 

Upon refining the features, the research transitioned to the intricate phase of model 

development. Here, the choice of GRU and LSTM models was deliberate, given their 

proven proficiency in handling sequential data. These models were trained to perform 

binary classification tasks, aiming to discern patterns and predict user behavior for each 

game individually. Additionally, an integrated model was developed for participants who 

engaged in both games, providing a holistic view of their mouse dynamics across varied 

gaming intensities. During the model development phase shown in Figure 6, a distinctive 

strategy was adopted wherein five individual models were created for each game. Each of 

these models was designed to predict the behavior of a specific participant (out of the 

chosen 5) against the collective behavior of all other participants. This binary classification 

approach was tailored to highlight any unique behavioral dynamics and patterns exhibited 

by these selected individuals as compared to the broader group of participants. 

 

Figure 6: Model Flow 
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3.7.1 LSTM 

LSTM, which stands for Long Short-Term Memory, is distinguished by its ability 

to model and remember long-range dependencies within sequential data. The foundation 

of LSTM lies in its intricate cell structure, which includes three key elements: the cell state, 

the hidden state, and three vital gating mechanisms: the input gate, the forget gate, and the 

output gate. 

The cell state serves as the long-term memory reservoir of the LSTM. Its unique 

characteristic is its capability to retain and propagate information across extended 

sequences. This enables the LSTM to capture intricate relationships and dependencies 

between elements in the data that are widely separated in time. The cell state is subject to 

dynamic changes through interactions with the gating mechanisms, which regulate the flow 

of information within the LSTM. The hidden state plays the role of short-term memory 

within the LSTM. It captures essential information from both the current input and the 

previous hidden state, contributing significantly to the final predictions or outputs of the 

network. The functioning of the gating mechanisms is closely linked to the dynamics of 

the hidden state.  

The gating mechanisms of LSTM are fundamental to its efficacy since they regulate 

the information flow within the cell. The input gate is pivotal in determining what 

information from the current input should be added to the cell state. It employs a sigmoid 

activation function to assess the relevance of the new input and then combines it with a 

hyperbolic tangent (tanh) transformation of the input. This process enables the LSTM to 



33 

 

 

 

 

make informed decisions about how much of the new information should be incorporated 

into the cell state. 

The forget gate assumes a critical role in deciding what information from the cell 

state should be discarded. It evaluates both the previous hidden state and the current input 

and produces a value between 0 and 1 for each element in the cell state. This value dictates 

how much of the existing information should be retained or forgotten, allowing the LSTM 

to adaptively manage its long-term memory. 

The output gate is responsible for controlling which information from the cell state 

should be extracted and included in the hidden state. Similar to the input gate, it employs 

a sigmoid activation function to determine the relevant portions of the cell state that should 

contribute to the output, ensuring that the hidden state reflects pertinent information for the 

current context. LSTMs excel in tasks that demand the modeling of complex sequential 

patterns and the capture of long-range dependencies. These capabilities make them well-

suited for sequence data. 

In Figure 7, the study presents an implementation of a Long Short-Term Memory 

(LSTM) neural network, designed to predict user behavior based on mouse movement data. 

LSTM, a variant of recurrent neural network (RNN), is particularly adept at handling 

sequence prediction tasks due to its ability to capture long-term dependencies and 

sequential patterns in the input data. 

The Code in Figure 7 starts by importing the requisite libraries and modules, which 

includes 'MinMaxScaler' from 'scikit-learn' for feature scaling, 'train_test_split' for 

segregating the dataset into training and testing subsets, and various components from 
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'TensorFlow' and 'Keras' to facilitate the construction and training of the neural network 

model. 

Following the import statements, it proceeds to define precision, recall, and Area 

Under the Receiver Operating Characteristic Curve (AUC-ROC) as the evaluation metrics 

for the neural network model. These metrics are integral to assessing the model’s 

performance, providing quantitative insights into its accuracy, the balance between false 

positives and negatives, and its capacity to distinguish between the two classes. 

The central portion of the code is devoted to the construction of the LSTM-based 

neural network model. The model is initialized as a sequential model, indicating a linear 

stack of layers. It is then comprised of three LSTM layers, each containing 50 units, with 

dropout layers interspersed to mitigate the risk of overfitting. The 'return_sequences' 

parameter is set to 'True' for the initial two LSTM layers, ensuring the entire sequence of 

outputs is propagated to subsequent layers, a critical requirement for maintaining the 

temporal dependencies in sequential data. The network concludes with a Dense layer, 

outfitted with a single neuron and a 'sigmoid' activation function, aligning with the 

requirements of binary classification tasks. 

Following the assembly of the network, the 'compile' method is applied to configure 

the model for training, defining 'adam' as the optimization algorithm, 'binary_crossentropy' 

as the loss function, and including the previously established evaluation metrics. 

Subsequently, the model undergoes training on the pre-processed mouse movement 

data, employing the 'fit' method with the number of epochs set to 15 and the batch size 

configured at 64. The 'validation_data' parameter is employed to provide an independent 
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dataset for validation, facilitating ongoing assessment of the model’s performance during 

training. 

The choice of 15 epochs is rationalized by the observation of the AUC-ROC score’s 

behavior, noting a plateau beyond this point. This plateauing suggests that additional 

epochs do not contribute meaningfully to enhancements in the model’s validation 

performance, thus ensuring an efficient utilization of training time and computational 

resources while maintaining a robust model performance. 
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from sklearn.preprocessing import MinMaxScaler 

from sklearn.model_selection import train_test_split 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import LSTM, Dense, Dropout 

import tensorflow as tf 

 

precission = tf.keras.metrics.Precision() 

recall = tf.keras.metrics.Recall() 

AUC_ROC = tf.keras.metrics.AUC(curve='ROC') 

 

# 3. Build the LSTM model 

model = Sequential() 

model.add(LSTM(50, input_shape=(X_train.shape[1], X_train.shape[2]), 

return_sequences=True)) 

model.add(Dropout(0.2)) 

model.add(LSTM(50, return_sequences=True)) 

model.add(Dropout(0.2)) 

model.add(LSTM(50)) 

model.add(Dense(1, activation='sigmoid')) 

 

model.compile(optimizer='adam', loss='binary_crossentropy', 

metrics=[precission, recall, AUC_ROC]) 

 

# 4. Train the model 

model.fit(X_train, y_train, epochs=15, batch_size=64, 

validation_data=(X_test, y_test)) 

Figure 7: LSTM code 

3.7.2 GRU 

Gated Recurrent Unit (GRU) offers a simplified alternative to the LSTM 

architecture while retaining many of its strengths. GRUs also include a cell state and a 

hidden state, but they use only two gating mechanisms: the reset gate and the update gate. 
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The cell state and hidden state in GRUs serve analogous roles to their counterparts in 

LSTMs. The cell state retains long-term dependencies, while the hidden state captures 

short-term information and contributes to the model's predictions. The reset gate assumes 

a critical role in deciding what information from the previous hidden state should be reset 

or forgotten. It takes into account both the current input and the previous hidden state to 

determine a reset factor, allowing the model to decide which information from the past 

remains relevant to the current context. The update gate combines information from the 

current input and the previous hidden state to make decisions about updating the cell state. 

Additionally, it regulates the rate at which fresh data is incorporated into the cell state, 

guaranteeing a dynamic equilibrium between short- and long-term memory. Because they 

have fewer gating mechanisms than LSTMs, GRUs are renowned for their computational 

efficiency. They shine when dealing with limited computational resources or when rapid 

model development is essential. However, LSTMs tend to outperform GRUs on tasks 

involving intricate sequential patterns and long-range dependencies. 

In the development of the continuous authentication system utilizing a Gated 

Recurrent Unit (GRU) neural network, this study analyzes user identity through mouse 

movement patterns show in Figure 8. The initial stage encompasses preprocessing of the 

dataset, utilizing the MinMaxScaler from sklearn.preprocessing, ensuring that all features 

within the dataset contribute uniformly to the model’s training. The train_test_split 

function subsequently partitions the dataset into distinct training and testing subsets, 

creating a foundation for robust model evaluation. 
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The construction of the GRU model is facilitated through TensorFlow’s Keras API, 

employing a Sequential model to enable a structured layer-by-layer assembly. The network 

integrates three GRU layers interspersed with Dropout layers, strategically placed to 

prevent overfitting. The first GRU layer, comprising 50 units, is configured to accept input 

based on the training data’s dimensions, returning sequences to maintain a continuous 

information flow. The subsequent GRU layers, each with 50 units, perpetuate this structure, 

with the second GRU layer also configured to return sequences. Dropout layers follow the 

first two GRU layers, with a rate of 0.2, aiming to randomly deactivate a fraction of input 

units at each training update. 

Concluding the network’s architecture is a Dense layer, incorporating a single unit 

with a sigmoid activation function. This configuration facilitates the transformation of the 

model’s output into a probability score, indicating the likelihood of the input data being 

associated with a particular user. The compilation of the model utilizes the Adam optimizer 

and binary cross-entropy as the loss function, aligning with the binary classification 

requirements of the task. Metrics including precision, recall, and AUC-ROC are deployed 

to gauge the model’s performance, offering insights into its predictive accuracy and 

reliability. 

The training of the model spans 15 epochs, with a batch size set at 256, and 

incorporates the testing dataset as validation_data. This decision for the number of epochs 

is informed by the observation that the AUC score, a critical metric for the model’s 

performance, begins to flatten post the 15-epoch mark. This plateau in the AUC score 

indicates that additional epochs do not yield substantial improvements in the model’s 
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ability to distinguish between classes, and may in fact, increase the risk of overfitting to 

the training data. Thus, the choice of 15 epochs strikes a balance, aiming for optimal model 

performance on unseen data while mitigating the risk of overfitting, ultimately enhancing 

the robustness and reliability of the user authentication system across diverse gaming 

environments. 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import GRU, Dense, Dropout 

import tensorflow as tf 

 

# Metrics 

precision = tf.keras.metrics.Precision() 

recall = tf.keras.metrics.Recall() 

AUC_ROC = tf.keras.metrics.AUC(curve='ROC') 

 

# Build the GRU model 

model = Sequential() 

model.add(GRU(50, input_shape=(X_train.shape[1], X_train.shape[2]), 

return_sequences=True)) 

model.add(Dropout(0.2)) 

model.add(GRU(50, return_sequences=True)) 

model.add(Dropout(0.2)) 

model.add(GRU(50)) 

model.add(Dense(1, activation='sigmoid')) 

 

model.compile(optimizer='adam', loss='binary_crossentropy', 

metrics=[precision, recall, AUC_ROC]) 

 

# Train the model 

model.fit(X_train, y_train, epochs=15, batch_size=256, 

validation_data=(X_test, y_test)) 
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Figure 8: GRU code 

3.8 Evaluation 

Model evaluation is paramount to gauge the effectiveness and reliability of 

developed models. Given the inherent data imbalance introduced by the differential 

participation in the two games, traditional accuracy metrics could be misleading. Thus, the 

AUC (Area Under the Curve) and ROC (Receiver Operating Characteristic) were chosen 

as the primary evaluation metrics, offering insights into the model’s true positive rate 

versus its false positive rate, especially in imbalanced scenarios. Additionally, the F1 score, 

which considers both precision and recall, was used as a complementary metric. While the 

F1 score can sometimes be influenced by data imbalances, its inclusion provided a more 

rounded perspective, ensuring that both the model’s precision and its ability to recall true 

positives were assessed. 

4 Result 

4.1 Poly Bridge Result 

This research evaluates a continuous authentication model using mouse dynamics 

across five users: USER20, USER13, USER4, USER15, and USER8 as shown in Table 4. 

Key metrics, including the F1 score, AUC, and ROC, were analyzed for both training and 

testing datasets. Highlights include USER20’s outstanding metrics in the training phase 

with an F1 score of 0.98, and an AUC and ROC of 0.98 and 0.99 respectively. USER13 

exhibited commendable performance, albeit with a hint of overfitting in the testing phase. 

Users 4 and 15 showed consistent metrics, reinforcing the model’s uniformity across 
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varying user behaviors. USER8’s results reinforced the model’s robustness, with metrics 

that rivaled those of USER20. Averaging the metrics across all users revealed an impressive 

F1 score of 0.98, AUC of 0.97, and ROC of 0.99 during training. In essence, the model 

rooted in mouse dynamics proves proficient in distinguishing genuine from deceptive 

mouse patterns, showcasing its promise in continuous authentication. 

Table 4: result poly bridge 

POLY   GRU LSTM 

USER20 
Train 

F1 0.98 0.97 

  AUC 0.98 0.94 

   ROC 0.99 0.95 

  

Test 

F1 0.98 0.97 

  AUC 0.98 0.94 

  ROC 0.98 0.95 

USER13 
Train 

F1 0.982 0.96 

  AUC 0.95 0.84 

   ROC 0.98 0.86 

  

Test 

F1 0.981 0.96 

  AUC 0.97 0.85 

  ROC 0.97 0.86 

USER4 
Train 

F1 0.98 0.96 

  AUC 0.97 0.86 

   ROC 0.99 0.89 

  

Test 

F1 0.98 0.96 

  AUC 0.98 0.87 

  ROC 0.98 0.88 

USER15 
Train 

F1 0.98 0.96 

  AUC 0.96 0.84 

   ROC 0.98 0.87 

  

Test 

F1 0.98 0.96 

  AUC 0.97 0.85 

  ROC 0.98 0.86 

USER8 
Train 

F1 0.98 0.98 

  AUC 0.97 0.95 

   ROC 0.99 0.97 

  
Test 

F1 0.98 0.97 

  AUC 0.98 0.96 
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  ROC 0.99 0.96 

Average 

Train 

F1 0.98 0.97 

AUC 0.97 0.89 

ROC 0.99 0.91 

Test 

F1 0.98 0.96 

AUC 0.98 0.89 

ROC 0.98 0.90 

 

When assessing User 15’s performance metrics for "Poly ridge" using the GRU and 

LSTM models, there are distinct differences in model behaviors as shown in Figure 9Figure 

9: ROC: Poly user15. The LSTM model’s confusion matrix shown in Figure 10, presents 

101,950 true positives and 1,308 true negatives. However, the model encountered a 

noteworthy count of 6,020 false positives, which indicates occasional over-predictions of 

label 1 in certain instances. Contrarily, its false negatives were relatively limited at 540. 

In contrast, the GRU model’s confusion matrix shown in Figure 11, showcases a 

more balanced performance. With 101,732 true positives and 5,066 true negatives, it 

significantly curtailed false positives to 2,262. This highlights the GRU model’s enhanced 

accuracy in predicting the 0 label, even though its false negatives increased slightly to 758. 

Further insights emerge from the ROC curve. The GRU model, depicted by the 

green curve, achieves a near-perfect AUC of 0.98, placing it proximate to the top-left 

corner, a sign of optimal predictive capability. The LSTM model, represented by the blue 

curve, lags behind with an AUC of 0.86, suggesting a slightly lesser degree of class 

separability. 
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The result aligned with our first hypothesis. Hypothesis 1 (H1) posited that the 

model would exhibit high accuracy in predicting and authenticating users within the Poly 

Bridge environment, characterized by its low-intensity gameplay. The results from the Poly 

dataset affirm this hypothesis, as the GRU model achieved remarkable performance with 

high AUC, ROC, and F1 scores. This underscores the model’s adeptness at learning from 

consistent and predictable mouse movements, validating the assertion that low-intensity 

environments contribute positively to the accuracy of user authentication. 

 

Figure 9: ROC: Poly user15 
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Figure 10: Poly LSTM user15 

 

Figure 11: Poly GRU user15 
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4.2 Team Fortress Result 

In the evaluation of continuous authentication models for Team Fortress 2 (TF2) as 

shown in Table 5, the performance of GRU and LSTM across five distinct users were 

compared. USER20 and USER8 exhibited top-tier metrics for both models, with 

USER20’s GRU model achieving a perfect ROC score of 1 during training. However, 

USER13 and USER15 highlighted disparities, with the LSTM model lagging notably in 

AUC and ROC scores compared to its GRU counterpart. On average, the GRU model 

outperformed the LSTM, particularly evident in the AUC metric during training. 

Table 5: result Teamfortress2 

TF2   GRU LSTM 

USER20 

Train 

F1 0.99 0.99 

  AUC 0.98 0.98 

  ROC 1 0.99 

  

Test 

F1 0.99 0.99 

  AUC 0.99 0.98 

  ROC 0.99 0.99 

USER13 

Train 

F1 0.98 0.96 

  AUC 0.94 0.54 

  ROC 0.97 0.68 

  

Test 

F1 0.98 0.96 

  AUC 0.96 0.67 

  ROC 0.97 0.68 

USER4 

Train 

F1 0.99 0.97 

  AUC 0.97 0.93 

  ROC 0.99 0.97 

  

Test 

F1 0.99 0.97 

  AUC 0.99 0.96 

  ROC 0.99 0.96 

USER15 

Train 

F1 0.98 0.96 

  AUC 0.95 0.78 

  ROC 0.98 0.8 

  
Test 

F1 0.98 0.95 

  AUC 0.97 0.79 
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  ROC 0.97 0.79 

USER8 

Train 

F1 0.99 0.98 

  AUC 0.99 0.97 

  ROC 0.99 0.99 

  

Test 

F1 0.99 0.98 

  AUC 0.99 0.98 

  ROC 0.99 0.99 

Average 

Train 

F1 0.99 0.97 

AUC 0.97 0.84 

ROC 0.99 0.89 

Test 

F1 0.99 0.97 

AUC 0.98 0.88 

ROC 0.99 0.88 

 

Upon analyzing User 15’s performance metrics for Team Fortress 2 (TF2) using the 

GRU and LSTM models on the same dataset, which was randomized differently for 

training and testing, distinct patterns emerged, as represented in the Figure 12. The LSTM 

confusion matrix shown in Figure 13 displays 120,171 true positives and 1,131 true 

negatives. However, it’s notable that the model incurred a significant 9,304 false positives, 

suggesting potential over-predictions of Label 1 in certain randomized instances. On the 

other hand, the GRU model, as visualized in its confusion matrix in figure 14, displays a 

commendable balance with 119,714 true positives and 6,070 true negatives, reducing false 

positives to 4,365. This showcases the GRU model’s more consistent predictive accuracy 

across different randomized training-test splits. 

The ROC curve provides further depth to this assessment. The GRU model, denoted 

by the green curve, is closer to the desired top-left region, achieving an impressive AUC 

of 0.97. This suggests optimal performance across various thresholds. In contrast, the 
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LSTM, represented by the blue curve, has an AUC of 0.83, indicating a lesser degree of 

separability between classes across randomized data splits. 

The result aligned with the second hypothesis which suggests that while the models 

will also authenticate users in Team Fortress 2. The hypothesis also anticipated challenges 

in user prediction accuracy within the high-intensity environment of Team Fortress 2, 

attributing potential difficulties to the erratic and rapid mouse movements typical of such 

gameplay. However, the results from the TF2 dataset depict a slightly different narrative, 

with the GRU model not only sustaining its high performance but showing a slight 

improvement in AUC compared to the Poly Bridge environment. This outcome challenges 

the initial expectations of H2, demonstrating the GRU model’s resilience and adaptability 

even in the face of intense and unpredictable user interactions. 

 

Figure 12: ROC curve user 15 TF2 
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Figure 13: LSTM user 15 tf2 

 

Figure 14: GRU user 15 TF2 
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4.3 Both Team Fortress and Poly Bridge 

The combined data of users who played both games shows a comparative 

evaluation of the GRU and LSTM models across five distinct users shown in Table 6. For 

USER20, both models exhibit similar F1 scores in both training and testing phases, with 

the GRU slightly outperforming the LSTM in terms of AUC and ROC during training. 

However, in the testing phase, the metrics converge closely for both models. 

For USER13, the LSTM model lags slightly behind the GRU in all the considered 

metrics during both training and testing. This difference, while not dramatic, might affect 

model reliability in specific instances or scenarios. USER4 showcases remarkable 

consistency between both models, with nearly identical scores across all metrics. This 

suggests that for certain user behaviors or patterns, the choice between GRU and LSTM 

might be inconsequential in terms of performance. 

However, USER15 offers a different perspective. Here, the GRU model 

consistently outperforms the LSTM, especially in the training phase, signaling the potential 

benefits of the GRU’s architecture for this specific user’s data patterns. Interestingly, 

USER8 presents a slight tilt in favor of the LSTM model, especially evident in the test 

metrics. This underlines the idea that model performance can sometimes be user-specific, 

and one-size-fits-all approaches might not always yield the best results. On average, across 

all users, the GRU model demonstrates marginally better results in the training phase. 

However, in the testing phase, both models converge to offer similar performances. The 
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GRU maintains a slight edge in AUC and ROC scores, suggesting its overall superior 

ability to distinguish between positive and negative classes effectively. 

Table 6: Both poly bridge and teamfotress2 result 

BOTH   GRU LSTM 

USER20 

Train 

F1 0.98 0.97 

  AUC 0.96 0.92 

  ROC 0.98 0.95 

  

Test 

F1 0.98 0.97 

  AUC 0.98 0.95 

  ROC 0.98 0.95 

USER13 

Train 

F1 0.97 0.96 

  AUC 0.92 0.86 

  ROC 0.95 0.89 

  

Test 

F1 0.97 0.96 

  AUC 0.94 0.88 

  ROC 0.94 0.88 

USER4 

Train 

F1 0.98 0.98 

  AUC 0.96 0.96 

  ROC 0.98 0.98 

  

Test 

F1 0.98 0.98 

  AUC 0.98 0.97 

  ROC 0.98 0.98 

USER15 

Train 

F1 0.98 0.96 

  AUC 0.94 0.90 

  ROC 0.97 0.93 

  

Test 

F1 0.97 0.96 

  AUC 0.96 0.92 

  ROC 0.96 0.92 

USER8 

Train 

F1 0.97 0.98 

  AUC 0.95 0.95 

  ROC 0.96 0.97 

  

Test 

F1 0.97 0.97 

  AUC 0.95 0.97 

  ROC 0.95 0.97 

Average 

Train 

F1 0.98 0.97 

AUC 0.95 0.92 

ROC 0.97 0.94 

Test 

F1 0.97 0.97 

AUC 0.96 0.94 

ROC 0.96 0.94 
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The ROC curve shows the relationship between true positive rate and the false 

positive rate for both models show in figure 15. The GRU model, visualized by the green 

curve, achieves an impressive AUC of 0.96, drawing closer to the ideal top-left corner. This 

indicates a near-optimal predictive capability. Meanwhile, the LSTM model, illustrated by 

the blue curve, has a commendable AUC of 0.92, a slight lag behind its GRU counterpart 

but still representing a good degree of class separability. 

Delving into the LSTM model’s confusion matrix, it was found that there were 

147,515 true positives and 8,205 true negatives. Nevertheless, the model encounters a 

significant number of false positives, numbering 9,486, suggesting occasional over-

predictions of Label 1. The false negatives stand at 1,775, a figure 16 worth noting for 

further model refinements. 

On the other hand, the GRU model’s confusion matrix indicates a more balanced 

performance shown in figure 17. With 147,433 true positives and 11,851 true negatives, 

this model substantially curtails its false positives to 5,840, thereby better pinpointing the 

0 label. Its false negatives slightly outweigh the LSTM at 1,857, but this is a minor 

difference given the other metrics. 

The result aligned with the third hypothesis. Hypothesis 3 (H3) serves as the crux 

of this investigation, hypothesizing that the GRU model would demonstrate its robustness 

and versatility by accurately predicting and authenticating users across both gaming 

environments. The results from the combined dataset (Both) partially support this 

hypothesis. While there is a minor decrease in AUC, the GRU model still maintains 
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commendable performance levels, showcasing its capability to adapt to contrasting 

intensity levels. However, the slight dip in AUC also highlights a nuanced challenge and 

an opportunity for optimization, aiming to fortify the model’s consistency and reliability 

across diverse gaming scenarios. 

 

Figure 15: both user15 

 

Figure 16: Both user 15 LSTM 
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Figure 17: both user 15 GRU 

 

4.4 comparative performance analysis 

Observing the performance of the GRU model across the different datasets of Poly 

Bridge (Poly), Team Fortress 2 (TF2), and the combined dataset of both games (Both) 

unveils interesting patterns and implications for the continuous authentication system 

under study. The performance of all dataset and algorithm can be seen in Table 7. In the 

Poly Bridge dataset, which represents a low-intensity gaming environment with predictable 

and consistent mouse movements, the GRU model exhibits exceptional performance, 

achieving an AUC of 0.976, ROC of 0.982, and an F1 score of 0.982. This outstanding 

result aligns with expectations, as the GRU model is well-suited to capture and learn from 

the regular patterns inherent in such a controlled and steady environment. 
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Transitioning to the TF2 dataset, characterized by high-intensity gameplay and 

rapid, erratic mouse movements, the GRU model manages to uphold its high performance, 

slightly improving with an AUC of 0.983, ROC of 0.986, and F1 score of 0.986. This 

indicates the model's robustness and adaptability, showcasing its capability to handle the 

complexity and unpredictability of a high-intensity gaming environment without a 

significant drop in performance. 

However, when observing the results from the combined dataset (Both), the GRU 

model experiences a slight decrease in AUC to 0.961, though it still maintains a 

commendable ROC of 0.962 and F1 score of 0.973. This subtle dip in performance could 

be indicative of the model’s challenge in navigating the contrasting gameplay intensities 

present within the same dataset. It highlights a potential area of focus for optimization, 

aiming to enhance the model's adaptability and consistency across varied intensity levels. 

By dissecting the performance of the GRU model across these datasets, it becomes 

evident that while the model showcases a high degree of adaptability and robustness, there 

is room for improvement in ensuring consistent performance, especially when subjected to 

a dataset that encompasses both low and high-intensity gaming environments. Addressing 

this subtle fluctuation in performance is crucial for advancing the effectiveness and 

reliability of continuous authentication systems in diverse gaming contexts. 
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Table 7: Result Comparison 

Data GRU LSTM 

AUC ROC F1 AUC ROC F1 

Poly 0.976 0.982 0.982 0.894 0.902 0.964 

TF2 0.983 0.986 0.986 0.876 0.882 0.972 

Both 0.961 0.962 0.973 0.936 0.941 0.968 

 

5 Discussion 

5.1 Major Findings 

The principal aim of this study was to explore the feasibility of continuous 

authentication using mouse movement behaviors across two distinct gaming environments. 

The findings were illuminating. Through rigorous evaluation, the model demonstrated that 

mouse movements are consistent behavioral patterns unique to individuals, and they can 

serve as a reliable metric for authentication across varied gaming scenarios. 

Comparing the results with the previous literature shows the significance of the 

findings of this study. For instance, Antal et al. (2021) [5] achieved an AUC of 0.95, while 

Salman et al. (2019) [20] reported an impressive AUC of 0.981. While these results are 

commendable, the model used in this study, when tested across two gaming environments, 

still displayed commendable and competitive metrics. It’s crucial to note that the previous 

studies often limited their observations to singular gaming environments, whereas this 

research encompassed both calm and intense gaming moments. 

The analysis for User 15, who played both games in the combined data set, yielded 

AUC values of 0.92 for the LSTM model and 0.96 for the GRU model. These results not 

only validate the effectiveness of the methodology used in this study but also place the 
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outcomes in competitive standing with several renowned studies in the domain. For 

instance, our LSTM’s AUC of 0.92 is on par with Antal et al.’s 2019 study [3] and slightly 

surpasses Ciaramella et al.’s 2022 research [8] which reported an AUC of 0.902. On the 

other hand, the performance of the GRU model used (AUC = 0.96) draws close parallels 

with the results of Antal et al.’s 2021 paper [5], which showcased an AUC of 0.95. 

Moreover, this study’s GRU model’s AUC comes very close to the standout AUC value of 

0.981 presented by Salman et al. in 2019 [20]. 

While the results closely follow the top-performing studies from the literature, it is 

worth noting that Tan et al.’s 2017 study [26] had an AUC of 0.86, the lowest among the 

studies that have been reviewed. Both this study’s LSTM and GRU models outperformed 

this benchmark, reinforcing the efficacy of the methodology and choice of neural network 

architectures. This study’s outcomes align well with the high standards set by previous 

research in the field. The competitive AUC values achieved by this study’s models 

emphasize the robustness of our approach and its potential applicability in real-world 

scenarios. 

5.2 Implication of Findings 

From a practical standpoint, the ability to authenticate users continuously, 

regardless of the environment’s intensity, represents a monumental stride in cyber security. 

The model’s performance not only establishes the viability of mouse movements as an 

authentication metric but also underscores the potential of such models in real-world 

applications. 
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Furthermore, this research also contributes to the academic dialogue on continuous 

authentication. By amalgamating insights from two distinct gaming environments, our 

study carves a niche by offering a more encompassing understanding of user behavior than 

most preceding works. 

5.3 Strengths and Novelty 

The research undertaken offers numerous strengths, most prominently its 

encompassing approach to capture the vast spectrum of user behaviors. The decision to 

integrate two gaming scenarios — the reflective, methodical backdrop of "Poly Bridge" 

and the high-paced, action-filled "Team Fortress" provided an invaluable vantage point. 

Instead of being confined to a monolithic, one-dimensional gaming genre, this study delved 

into a multifaceted exploration, ensuring a comprehensive understanding of user 

interactions spanning diverse intensity gradients. This uniqueness renders our findings not 

only novel but also more encompassing than many contemporaneous studies. Another 

dimension of strength is evident in the rigorous methodology employed. A meticulously 

standardized setting for data collection was crucial. All participants operated within a 

controlled environment, equipped with identical setups. Such a rigorous standardization 

mitigated the risk of external variables, ensuring the purity of data and, by extension, the 

robustness of our results. Positioned within the broader academic landscape, this research 

demonstrates undeniable advancements. When contrasted with the existing body of 

literature, our model’s performance is not just on par, but often surpasses the benchmarks 

set by previous investigations in this sphere. 
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5.4 Limitation 

Nevertheless, every study, irrespective of its rigor, grapples with limitations. A clear 

challenge in the endeavor revolved around the outliers present in our dataset. These data 

points, although genuine, introduce variability that could, on occasion, sway the model’s 

predictive accuracy. Beyond this, the specificity of our research environments in two game 

scenarios could pose potential generalization challenges. Mouse movements in other 

gaming contexts or perhaps in non-gaming scenarios might not align seamlessly with our 

findings. Furthermore, while the focus on mouse movements was deliberate and provided 

depth, it inadvertently meant sidelining other facets of human-computer interactions. A 

pressing limitation also emerges from the changing nature of user behavior. Over time, an 

individual’s mouse movement patterns might evolve, necessitating periodic model 

retraining or updates. This dynamic nature of user behavior introduces challenges both in 

terms of computational demands and data storage. Moreover, as you rightly pointed out, 

the computational intensity of training these models, combined with the storage 

requirements, presents tangible challenges, especially when compared to traditional 

authentication methodologies. 

5.5 Future research 

The domain of mouse dynamics, as underscored by this research, is rich with 

potential and unexplored avenues. One of the most intriguing prospects is to harness these 

dynamics more effectively and expansively. While this study focused on gaming 

environments, future research could examine mouse dynamics in a broader array of 
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contexts. By doing so, the versatility of this authentication method could be further 

cemented, highlighting its ability to operate reliably beyond just gaming scenarios. 

Moreover, the intricate patterns of mouse movement hold a wealth of information. 

Advanced algorithms could be developed to detect subtle nuances in movements, offering 

even more granularity in authentication. While our study captured broad patterns, there’s 

an opportunity to dig deeper, perhaps capturing nuances like hesitation in movement, rapid 

back-and-forth adjustments, or the rhythm of clicks. 

The transient nature of human behavior presents a double-edged sword. On the one 

hand, it emphasizes the uniqueness of each user, making their patterns hard to replicate. 

On the other, it demands that our models remain agile and adaptive. As users evolve, so do 

their mouse movement patterns. Addressing this evolution will require models that can be 

retrained efficiently, adapting to users as they grow and change. This brings us to the 

logistical challenges: storage and computational demands. As datasets grow and models 

are retrained, the need for efficient data storage solutions becomes paramount. 

Additionally, the time and resources needed for retraining models will need to be 

optimized. Future research could delve into developing compact, efficient models that 

retain their accuracy while being quicker to train and update. A holistic approach could be 

employed, integrating mouse dynamics with other subtle behavioral cues. The fusion of 

various metrics might provide a multi-layered, robust authentication system, offering 

heightened security while ensuring user convenience. 
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6 Conclusion 

The intricate dynamics of human-computer interactions, especially in diverse 

digital landscapes, have always intrigued researchers. This study delved deep into the realm 

of digital gaming, leveraging mouse movements as a medium to understand these 

dynamics. It was observed that different games ranging from strategic ones to action-

packed environments induced varied mouse movement patterns. This study aimed to 

capture these variances and create a model that could reliably discern these patterns, 

irrespective of the game’s nature. 

Our results point to a significant revelation; it is possible to understand, and more 

importantly, recognize users based on their unique mouse movement patterns, irrespective 

of the game’s pace or the emotions invoked. The model demonstrated its ability to be both 

flexible and context-aware, two quintessential attributes required in the dynamic realm of 

digital gaming. 

What strengthens the credibility of our findings is the controlled environment in 

which the data was acquired. By ensuring identical setups for all users, this study were able 

to negate external influences, focusing purely on the intricacies of mouse movements and 

the underlying patterns. This approach ensured both the reliability and consistency of our 

results. 

In the grander scheme of things, this study not only pioneers a potential avenue for 

user verification but also underscores the deeper insights one can glean about human-

computer interactions. The nuanced understanding of user behavior, especially in varied 
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gaming environments, can have far-reaching implications, both in terms of user 

authentication and in enhancing our understanding of how individuals interact with digital 

platforms.  
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Appendix A: Source of Data and Code 

Repository Name: Continuous Authentication Dataset and Code 

Author: Marchosh Setiawan Handoko 

Institution: Minnesota State University 

Year: 2023 

Version: 1.0 

Description: 

This repository has been developed as a part of the APP work undertaken at 

Minnesota State University. It includes a comprehensive dataset consisting of mouse 

movement data, alongside the necessary source code for conducting a study on continuous 

authentication. The dataset has been meticulously collected and processed to ensure 

accuracy and reliability in the subsequent analyses. The source code encompasses a range 

of scripts that are integral for data preprocessing, analysis, and the implementation of 

authentication algorithms. This appendix provides detailed information on how to access 

and utilize the resources available in the repository. 

Contents: 

/dataset: This directory contains both the raw and processed versions of the mouse 

movement data. The data is organized in a manner that facilitates easy access and 

comprehension. 
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README.md: This markdown file provides a thorough overview of the repository, 

instructions for setting up the necessary environment to run the code, and guidelines for 

using both the dataset and the source code. 
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Appendix B: Data analysis 

B.1 User Distribution 

 

Figure 18: User Distribtuion 

Further Discussion of Figure 18 

The graph illustrates the distribution of mouse movement samples across various 

user IDs. The x-axis displays distinct user IDs, while the y-axis represents the count of 

samples. This distribution indicates variability in the interaction frequency or duration 

among users with the monitored system. 

 

 

 

B.2 Feature correlation 
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Figure 19: All Feature Correlation 

Further Discussion of Figure 19 

The heatmap presented elucidates the relationships among various mouse 

movement characteristics. Each cell denotes the statistical correlation between two distinct 

features, with values oscillating between -1 and 1. A gradient from blue to red has been 

employed to visualize this relationship, where blue suggests a negative correlation, white 

indicates a lack of significant relationship, and red embodies a positive correlation. 

Notably, certain features, such as Jerk and Acceleration, exhibit pronounced correlations, 

underscoring the intricate interplay of these variables in mouse movement dynamics. 
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