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Abstract

Causal artificial intelligence aims at developing bias-robust models that can be used to intervene 

on, rather than just be predictive, of risks or outcomes. However, learning interventional models 

from observational data, including electronic health records (EHR), is challenging due to 

inherent bias, e.g., protopathic, confounding, collider. When estimating the effects of treatment 

interventions, classical approaches like propensity score matching are often used, but they pose 

limitations with large feature sets, nonlinear/nonparallel treatment group assignments, and collider 

bias. In this work, we used data from a large EHR consortium –OneFlorida– and evaluated causal 

statistical/machine learning methods for determining the effect of statin treatment on the risk 

of Alzheimer’s disease, a debated clinical research question. We introduced a combination of 

directed acyclic graph (DAG) learning and comparison with expert’s design, with calculation of 

the generalized adjustment criterion (GAC), to find an optimal set of covariates for estimation of 

treatment effects –ameliorating collider bias. The DAG/CAC approach was assessed together with 

traditional propensity score matching, inverse probability weighting, virtual-twin/counterfactual 

random forests, and deep counterfactual networks. We showed large heterogeneity in effect 

estimates upon different model configurations. Our results did not exclude a protective effect 

of statins, where the DAG/GAC point estimate aligned with the maximum credibility estimate, 

although the 95% credibility interval included a null effect, warranting further studies and 

replication.
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1 INTRODUCTION

One of the desired capabilities of artificial intelligence (AI) in healthcare is to be 

‘interventional’ in addition to predictive, i.e. being able to learn data-driven models that can 

evaluate different what-if s or actionable strategies –like treatment choices or behavioural 

changes [1], [2]. The main challenge with learning interventional models from observational 

data, including real-world data—those that are routinely collected outside of research 

settings such as electronic health records (EHR), is due to inherent bias, e.g., confounding, 

selection, indication bias. For instance, confounding happens when an exposure variable is 

spuriously thought to modify the odds of an outcome, due to correlation with an unmeasured 

factor (the confounder) that is the real cause of the outcome. Collider bias, instead, happens 

when an exposure and outcome are not directly related, but they independently cause a third 

variable, which in turn induces a mistaken causal effect of the exposure on the outcome [3]. 

In model learning, such biases can affect the feature selection process and lead to inclusion 

of non-causal variables or estimation of wrong causal effects [4]. As a result, a learnt model 

can have high accuracy in prediction but low performance in evaluating interventions, or 

calculating so-called counterfactuals [5]. One of the common biases in studies that attempt 

to investigate treatment effectiveness or drug repurposing from EHR data [6], is that the 

treatments were not randomized. The population that received treatment T for a disease A 
might differ substantially from the one that did not (e.g. the treated being at risk of another 

disease B, or the untreated having different healthcare access due to socioeconomic status), 

and any evidence of effectiveness on a subsequent health outcome might be affected by the 

population dissimilarities (e.g. the other disease B entails a care pathway with additional 

interventions that in turn reduce the risk of the target disease A, or the untreated population 

has poorer outcomes due to healthcare disparities). Thus, for a newly treated individual, who 

was not at risk for the other disease B or belongs to a health disparity group, the predicted 

health outcome for disease A would be favourable, whereas no treatment effect would be 

observed in reality.

Traditional statistical methods for balancing treatment assignments include propensity score 

matching (PSM) and inverse probability weighting (IPW) [7], with versions that deal with 

large covariate sets [8], although in practice they might not be preferable to full covariate 

adjustment with/without regularization [9], [10]. In addition, PSM and IPW have been 

mostly used within linear regression settings, thus posing serious limitations to nonlinear/

nonparallel treatment assignment. Finally, in the presence of colliders (i.e. variables that 

are caused by both the treatment exposure and the target outcome), PSM could increase 

rather than reduce the bias in estimating the treatment effect [11]. To overcome the linearly-

bounded limitations of PSM, machine learning approaches have been proposed, including 

Bayesian additive regression trees [12], random forests [13] and deep learning methods 

Prosperi et al. Page 2

ICMHI 2021 (2021). Author manuscript; available in PMC 2023 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[14]. Nonetheless, these methods are not yet used widely in practice and do not explicitly 

address the problem of collider bias. An alternative approach is to assume a priori causal 

relationships among variables, draw a directed acyclic graph (DAG) as a causal diagram, 

and then apply procedures such as the front-door or back-door criterion [15] to identify 

an appropriate set of adjustment covariates. The problem with DAGs is that the a priori 
knowledge on causal relationships (including unmeasured confounders) might be poor, 

making the approach prone to errors due to model misspecification. Algorithms to discover 

DAGs causal structures from data are available [16], but they often cannot resolve causal 

arc directions and yield equivalence classes; yet, a complete generalized adjustment criterion 

(GAC) is available for graphs with partially directed arcs [17].

In this work, we combine DAGs –both pre-specified and mined from data– and GAC 

with the objective to identify bias-free covariate sets to help with estimating treatment 

effects (assuming no unmeasured confounders). As a significant use case, we investigate the 

effect of statins, a class of cholesterol-lowering drugs, in reducing the risk of developing 

Alzheimer’s disease. In 2019, an estimated 5.8 million Americans live with Alzheimer’s 

disease. By 2050, people living with Alzheimer’s disease in U.S. may grow to 13.8 million, 

fueled by the aging baby boomers [18]. Nevertheless, there are still no effective options 

for prevention and treatment of Alzheimer’s disease. Previous observational studies and 

meta-analyses often yielded a strong protective effect of statins [19], [20], [21], [22], but 

randomized clinical trials reported absence of evidence [23], [24]. Moreover, a systematic 

review showed that, in four out of ten epidemiologic studies, the apparent protective effect 

of statins on risk of Alzheimer’s disease could be, at least partially, explained by the 

confounding effect of cholesterol or hyperlipidemia [25].

Exploring whether statins truly have a protective effect over Alzheimer’s disease is 

significant and our capability to accurately estimate its effect in a real-world setting with 

minimized bias is critical. Our goal here is to compare the DAG/GAC approach with 

traditional PSM/IPW, regularized linear regression, and machine learning methods, and 

demonstrate how choices of methods and parameters can sensibly change causal effect 

estimates in the same dataset; yet, the DAG/GAC approach possibly provides more robust 

reduction in the bias and variance of effect estimation.

2 MATERIAL AND METHODS

2.1 Definition of treatment effects

Suppose that the effect of a treatment T  on a health outcome Y  is being investigated in a 

population sample of n individuals. Each subject i is defined by the tuple Xi, T i, Y i , where 

Xi = xi1…xim  is a vector of pre-treatment characteristics of the subject. Let Y i
1 and Y i

0 be 

the potential outcomes of subject i when administered treatment T i =   1, or in absence 

of treatment T i = 0, respectively. The individual treatment effect (ITE)τ(x) for individuals 

whose Xi = x is defined as the average of the difference in potential outcomes under 

both treatments given x, i.e τ(x) = E Y 1 − Y 0 ∣ X = x . This ITE formulation–counterfactual– 

is usually not directly calculable because individuals cannot be both treated and not 

treated at the same time. However, if the potential outcomes are independent of the 
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treatment conditional on background variables, i.e., Y 1, Y 0 ⊥ T ∣ Xan assumption of 

strongly ignorable treatment assignment (SITA), the ITE can then be calculated as 

τ(x) = E Y 1 ∣ T = 1, X = x − E Y 0 ∣ T = 0, X = x = E[Y ∣ T = 1, X = x] − E[Y ∣ T = 0, X = x]. 

By averaging over the distribution of X, the average treatment effect (ATE)τ01 can be 

calculated as τ01 = E[τ(X)] = E[Y ∣ T = 1] − E[Y ∣ T = 0]. When the outcome is binary, e.g. 

diagnosis of an illness, the odds ratio is also often used in place of the ATE. Under 

SITA, ITE and ATE can be calculated only when the treatment groups have the same 

X, which becomes practically unfeasible as the dimension of X increases. PSM, through 

the conditional probability π(x) = Pr(T = 1 ∣ X = x) , tries to balance the probability of 

receiving T  given X = x by pairing individuals in treatment and control groups with similar 

propensity scores calculated on the basis of their baseline covariates. The pairing can be 

done in different ways, including nearest neighbor and Caliper matching, possibly leading to 

exclusion of unmatched samples, or all cases can be considered through IPW.

2.2 Data source, study design, ethical statement

We extracted data from the OneFlorida Clinical Research Consortium, a statewide 

clinical research network and database (https://www.ctsi.ufl.edu/ctsa-consortium-projects/

oneflorida/) contributing to the national Patient-Centered Clinical Research Network 

(PCORnet). OneFlorida’s partners –hospitals, practice/clinic settings and physicians– 

provide healthcare to more than 15 million Floridians (60%+ of the state population). 

The OneFlorida data contain robust longitudinal and linked patient-level RWD, including 

data from claims, cancer registry, vital statistics, and EHRs from its clinical partners. The 

OneFlorida data is a HIPAA limited data set and follows the PCORnet Common Data 

Model (CDM) that contains detailed patient and clinical variables, including demographics, 

encounters, diagnoses, procedures, vitals, medications, and labs. Based on the PCORnet 

CDM, we used the International Classification of Diseases, 9th/10th revision, Clinical 

Modification (ICD-9/10-CM) to encode clinical conditions, RxNorm and National Drug 

Code (NDC) for medications, and Logical Observation Identifiers Names and Codes 

(LOINC) for laboratory tests. From the OneFlorida database, we included people who 

lived in Florida, had at least three prior years of medical records (with one or more 

visit per year), and who were not yet diagnosed with Alzheimer’s disease (ICD-9: 

331.0; ICD-10: G30.0, G30.1, G30.8, G30.9) as of their 65th birthday –index date. We 

extracted the most recent information associated to the index date for each subject, 

including demographics (gender, race/ethnicity, zip-code of residence), insurance type 

(private, public, or uninsured), smoking status (current, former, never smoker), body-mass 

index (BMI), Charlson’s comorbidity index (CCI)[36], vitals and laboratory findings –high-

density lipoprotein (HDL, LOINC 2085–9) and low-density lipoprotein (LDL, 2089–1), 

total cholesterol (2093–3), triglycerides (2571–8), and Glycated hemoglobin (HbA1c, 4845–

4). Other covariates included end-stage renal disease (ICD-9 585.6; ICD-10 N18.6) and 

Lou Gehrig’s disease (335.20; G12.21), both making eligibility for Medicare prior to age 

65, and relevant comorbidities associated with Alzheimer’s onset –sleep disorders (327; 

G47) anxiety (300; F41), depression (311; F32, F33), hypertension (401; I10), diabetes 

(250, E10, E11), heart disease (402, 416, 429; I11, I27: I51), alcohol use disorders 

(291, 303; F10). We recorded usage (number of prescriptions and time frame) of statins, 
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nonsteroidal anti-inflammatory drugs (NSAID) –aspirin, ibuprofen, naproxen, paracetamol– 

and anti-hypertension drugs (49 active ingredients including bumetanide, chlorthalidone, 

chlorothiazide, ethacrynate, furosemide, hydrochlorothiazide, indapamide, methyclothiazide, 

metolazone, and torsemide). The statins examined were atorvastatin, simvastatin, and 

sitagliptin. Statins, NSAID and anti-hypertension drugs needed to be administered at least 

for 6 weeks before the index date, prescribed at least twice in the patient’s EHR. The 

outcome was set as the diagnosis of Alzheimer’s after the index date, with associated time, 

and latest follow up time for those who were not diagnosed. Since the sample size of 

those who did not have a diagnosis after index date was largely surpassing the number 

of Alzheimer’s cases, we matched subjects by zip-code of residence, limiting the control-to-

case ratio to a max of 20-to-1. Missing values in the dataset were not imputed, but coded 

into an additional unknown category; laboratory variables with missing data were discretized 

using multi-valued clinical thresholds for normal, borderline, or abnormal levels.

The authors abide to the Declaration of Helsinki; the study was approved under University 

of Florida’s institutional review board (IRB), protocol no. IRB201900182.

2.3 Analysis

We estimated the crude (unadjusted) ATE of statin with respect to Alzheimer’s disease 

onset, regardless of time to diagnosis, and reported the odds ratio. Then we estimated 

adjusted odds ratios using: (a) multivariable main-effects boosted logistic regression 

(LogitBoost) [26]; (b) PSM and (c) IPW using either LogitBoost or random forests, with 

nearest-neighbor matching (distinct as well as one-to-many)[7]; (d) virtual twin [27] random 

forests, which allow for direct ITE calculation by predicting potential outcomes, flipping 

the treatment variable for each observation, upon which the odds ratio were estimated; (e) 

the counterfactual random forest [13], which also predicts potential outcomes by fitting 

two independent forests, one for the treated cases and one for the controls; (f) deep 

counterfactual network[14], a deep learning neural architecture trained in alternate batches 

with a so-called propensity dropout [27] akin to PSM.; and (g) the DAG/GAC approach.

The DAG/GAC approach was twofold. First, we draw a DAG using evidence from the 

literature on Alzheimer’s risk factors, mediators, and their relationships, using all covariates, 

without unmeasured confounding nodes. Then a DAG structure and parameters was learnt 

from the OneFlorida dataset using a hill-climbing algorithm [28]. On both DAGs, we 

derived all adjustment sets using the GAC (for total effect), and then estimated the odds ratio 

of statins for each adjustment set using multivariable logistic regression on the outcome of 

Alzheimer’s disease onset. Predictive performance was measured by means of the area under 

the receiver operating characteristics (AUROC) using bootstrapping (25 replicates) and 

out-of-bag estimates. The random forests’ number of trees were optimized by performing 

a grid search between 25–2,500 trees, choosing the value that minimized the out-of-bag 

error. The parameters of the deep counterfactual network were optimized using the Adam 

[29] method. The predicted values of the random forest and of deep counterfactual network 

models were re-calibrated using the population prevalence as target, and we also performed 

a quasibinomial regression on normalized probabilities to further address potential issues 

with calibration. Rather than pooling standard errors of odds ratios within and between 
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models, which would be biased by sample overlap from bootstrap runs [30], we estimated 

a maximum credibility range which corresponded to the model estimate closest to all other 

estimates (similar to maximum credibility clade calculation in trees) [31]. All analyses were 

carried out using R (https://www.r-project.org/) and PyTorch (https://pytorch.org/).

3 RESULTS

The study population comprised a total of 13,780 individuals seen between 2012 and 2020, 

of which 1,618 (11.7%) were exposed to statins before the index date, and 977 (7.09%) 

developed Alzheimer’s disease after the index date. The crude odds ratio of developing 

Alzheimer’s upon statin exposure was (53/1,565)/(924/11,238) = 0.41 (95% CI 0.31–0.55). 

Table 1 shows the population characteristics overall and stratified by statin exposure (note, 

some variables in the table were grouped to meet formatting/page display constraints, but 

not in the analyses).

Using the full, non-matched dataset, we estimated the predictive ability of the multivariable 

models with respect to diagnosis of Alzheimer’s disease outcome. The AUROCs of all 

models indicated mild discrimination ability (0.69–0.72), as shown in 1 (panel A), with the 

DAG yielding an AUROC ~3% less than the other methods (P=0.22).

We then performed PSM for the statin exposure using LogitBoost, random forests (optimal 

number of trees = 1,300) and obtained the propensity dropout scores from the deep 

counterfactual network. All scores were highly correlated (Pearson’s ρ =0.92 between 

LogitBoost and random forests, ρ =0.88 between LogitBoost and deep network, and ρ =0.87 

between random forest and deep network, all P<0.0001). The predictive ability of propensity 

scores to correctly identify if a subject was treated with statin was high for all models 

(AUROC 0.875 for LogitBoost, 0.870 for random forest, and 0.91 for the deep network), 

as shown in 1 (panel B). After matching, the variable distributions of the non-treated were 

–as expected– much more similar to the statin-exposed, although a perfect prevalence match 

could not be obtained for all variables (e.g., heart disease). 2 provides PSM summary for 

most of study variables.

After evaluating the predictive performance, we analyzed the adjusted odds ratio of statin 

exposure toward Alzheimer’s onset for all the models, using the (a)-(f) approaches and 

the maximum credibility range as summary estimate. All approaches yielded odds ratios 

higher than the crude estimate, mostly between 0.5 and 1.0 as shown in 2, still suggesting 

that statins had a protective effect. The LogitBoost and PSM methods yielded the largest 

confidence intervals, while IPW methods had smaller ranges but were also less concordant 

in terms of point estimates. The virtual twin / counterfactual random forest also showed 

narrow confidence intervals, but their point estimates were very different depending on 

the cutoff used. With probability normalization, though, the cutoff optimization stabilized. 

Similar instability was observed for the deep counterfactual network, where we were able to 

calculate only the quasi-binomial estimate, as all cutoff threshold examined yielded division 

by zero in at least one of the denominators used for the odds ratio. Conversely, the odds 

ratio estimates for the DAG/GAC were very similar among all adjustment sets, and even 

between the data-mined and expert-drawn DAG topologies. Their confidence intervals were 
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also smaller than the PSM and LogitBoost methods. The maximum credibility range was 

supported by two models that had the same smallest distance value from all others, namely 

the data-mined DAG/GAC and the PSM (duplicated) random forest. The final estimate of 

the adjusted odds ratio was 0.82 (95% CI 0.57–1.19), which indicated a protective effect of 

statin, yet the 95% credibility interval included also the null effect, i.e. 1.0.

In order to clarify how the DAG/GAC selects confounders and excludes colliders/irrelevant 

variables, we show in 3 the nodes of the adjustment set for both the expert-drawn (panel 

A) and the data-mined (panel B) DAGs. Of note, not all nodes are necessarily used in an 

adjustment set at the same time. For instance, the adjustment sets for the data-mined DAG 

were: {anti-hypertensive medications, year}; {anti-hypertensive medications, insurance type, 

NSAID, smoking status}; {anti-hypertensive medications, BMI, CCI, hypertension, NSAID, 

smoking status}; {anti-hypertensive medications, BMI, diabetes, NSAID, smoking status}; 

{HbA1c, anti-hypertensive medications, BMI, NSAID, smoking status}; {anti-hypertensive 

medications, BMI, HDL, NSAID, smoking status}; {anti-hypertensive medications, NSAID, 

TGL}.

4 DISCUSSION AND CONCLUSION

Our study applied causal AI methods on a real-world observational dataset to investigate 

if statin treatment reduced the risk of Alzheimer’s disease. Our findings indicate that there 

may be a moderately protective effect of statins, although the 95% credibility range did not 

exclude a null effect.

The DAG/GAC approach and the PSM yielded estimates all close to the maximum 

credibility range; however, the confidence intervals for the PSM methods were larger, likely 

due to the reduced sample size. The DAG/GAC estimates were similar among the expert-

drawn and the data-mined structures, which is interesting given that automated learning 

usually cannot resolve the direction ambiguities in the DAGs. The counterfactual forest 

(and to some extent also the deep counterfactual network) yielded very unstable estimates 

upon bootstrapping and by changing the calibration cutoff. One possible explanation is that, 

for these methods, two models were fit separately; the one fitted on the treated included 

a much smaller sample size and even smaller number of events, making approximation 

of probabilities by votes as well as calibration more difficult. However, probability 

normalization helped to stabilize the output comparisons.

All the methods that we tested here in principle were robust with respect to (measured) 

confounding and in part to treatment stratification bias, but are prone to be affected by 

collider bias, except for the DAG/GAC approach, as the DAG/GAC approach explicitly 

eliminated collider bias rooted in its principle. Another issue is calculation of direct vs. total 

effects, i.e., how to account the contribution of mediators (here, for instance, LDL) to the 

causal effect estimation. The DAG/GAC approach helps eliminating colliders and allows 

calculation of direct and total effects. Nevertheless, the DAG/GAC approach is not free from 

misspecification of the causal structure and from unmeasured confounding. In fact, the mild 

predictive ability of all the models to identify Alzheimer’s on-set suggests that we may have 

missed a part of the equation –there are other (or latent) factors that were not included in 
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our models. Although it is clear that a perfect prediction model is not achievable because of 

these missing factors, their impact on causal models and causal estimates raises curiosity. It 

is unclear whether our results that statins have moderately protective effect resemble a true 

causal effect, and whether the wide credibility range is influenced more by the small sample 

size or by the missing factors. Nevertheless, such problem is not unique to applying casual 

AI methods on observational data; for example, in RCTs, the assumption that randomization 

can automatically lead to strong ignorability also ignores the latent factors that are not 

measurable or apparent as they appear (e.g., patients who have no access to the RCTs would 

not even be able to enter the randomization process).

In regards to the clinical interpretation of the findings, the observed protective effect 

could be further reduced by identifying additional confounder and incorporating mediation. 

Hypertension, diabetes mellitus, and metabolic syndrome have been found associated 

with the development of dementia in middle-aged adults, whereas the effects of 

hypercholesterolemia, atrial fibrillation, and smoking have been less clear [32]. From 

a biological mechanism point of view, the apolipoprotein E gene, which has a role 

in transportation and modulation of cholesterol, seems involved in the development of 

Alzheimer’s disease [33]; thus a role of statins, which lower cholesterol, might be 

expected [24]. Nevertheless, these are still speculations but raise questions on how to 

generate the necessary evidence to move the hypothesis that statins can be a preventative 

strategy for Alzheimer’s disease to clinical practice. Is it time to conduct a large-scale 

RCT and wait for 10 years or is there sufficient evidence that can be generated 

from large-scale real-world observational data to convince the regulatory agencies? [34] 

The U.S. Food and Drug Administration (FDA) coined the term real-world data and 

real-world evidence recently (https://www.fda.gov/science-research/science-and-research-

special-topics/real-world-evidence) and provided guidance on “Submitting Documents 
Using Real-World Data and Real-World Evidence to FDA for Drugs and Biologics” (https://

www.fda.gov/media/124795/download) such as “observational studies that generate RWE 
[Real-World Evidence] intended to help to support an efficacy supplement.” Given the 

results from this study, we argue that further developments of statistical and machine 

learning methods are warranted, especially the causal AI approach demonstrated in this 

paper.

Our study has a number of limitations. First, we did not take into account the time to 

Alzheimer’s onset, and censoring time for those who did not (yet) develop it at the end of 

their available follow up. Indeed, the median follow-up time –not used as a covariate– was 

quite different between statin and non-statin groups; this warrants further considerations on 

the analytical design, including the usage of survival models. Second, we grouped together 

three different statin drugs, and we did not analyze the differences in dosage and time of 

exposure of statins, whereas studies have reported that potency and the cumulative duration 

may play a critical role [22]. Third, DAG learning algorithms usually do not scale well 

with the number of covariates, and presence of noise/irrelevant variables does not help with 

structure learning. We foresee further improvements of our approach: one is to incorporate 

feature selection in the DAG structure learning process, or to inform the learning using prior 

knowledge; another, which applies to all methods, is to try to reduce bias already in the 

dataset creation, for instance using a target trial design approach [35, 36].
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Unveiling the effect of statin exposure is difficult because this treatment is very common 

among middle-aged adults, and indicated for a variety of risks and comorbidities; 

therefore, confounding, mediation and collider bias are very likely to affect estimates 

from observational data, especially EHR. Causal AI methods, including the DAG/GAC 

framework presented here, can help in tackling the bias in observational studies and provide 

models for both prediction and intervention. These causal AI methods warrant further 

investigations, as real-world data and real-world evidence are playing increasingly important 

roles in the drug development process.
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Figure 1: 
Discriminative performance –upon out-of-bag predictions– of (A) fully-adjusted models for 

diagnosis of Alzheimer’s disease after index date, and of (B) propensity scores for the 

probability of being prescribed statins.
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Figure 2: 
Adjusted odds ratio estimates of the effect of statin exposure toward development of 

Alzheimer’s disease using different approaches and their maximum credibility range
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Figure 3: 
Expert-drawn (A) and data-mined (B) directed acyclic graphs for estimating the effect of 

statin exposure with respect to Alzheimer’s onset. The query treatment (statin) is indicated 

in black and the outcome (Alzheimer’s) in blue, while the nodes included in adjustment sets 

are displayed in green.
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