
St. Cloud State University St. Cloud State University

The Repository at St. Cloud State The Repository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

5-2023

Software Engineering Tools For Secure Application Development Software Engineering Tools For Secure Application Development

Divya Bellamkonda

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

Recommended Citation Recommended Citation
Bellamkonda, Divya, "Software Engineering Tools For Secure Application Development" (2023).
Culminating Projects in Information Assurance. 137.
https://repository.stcloudstate.edu/msia_etds/137

This Starred Paper is brought to you for free and open access by the Department of Information Systems at The
Repository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information Assurance
by an authorized administrator of The Repository at St. Cloud State. For more information, please contact
tdsteman@stcloudstate.edu.

https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/msia_etds
https://repository.stcloudstate.edu/iais
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/137?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu

Software Engineering Tools For Secure Application Development

by

Divya Bellamkonda

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science in

Information Assurance

May 2023

Starred Paper Committee:
Jim Chen, Chairperson

Lynn Collen
Kasi Balasubramanian

2

Abstract

Software security has become a crucial part of an organization’s overall security
strategy due to increasingly sophisticated attacks at the application layer. One of the
major concerns in software engineering is the inadequate use of secure software
development methods and tools. Such deficiency is caused by a lack of knowledge and
training on available secure tools among software developers. This project conducts a
thorough investigation of the tools that can be used by developers throughout the
software development life cycle to assist in the development of secure applications,
including tools used by individuals and teams, classified by open-source or commercial,
tools based on project size, etc. This paper also includes a summary table that provides
a quick overview of all the tools listed for developers and individuals to use.

3

Acknowledgements

I would like to express my sincere gratitude to my chair, Dr. Jim Chen, Ph.D., for

his invaluable patience and feedback. I am extremely grateful for his encouragement,

prompt response, and sense of humor. I could not have embarked on this journey

without the help of my defense committee, who generously shared their knowledge and

expertise.

I am also grateful to my classmates and cohort members. Finally, I would be

remiss if I did not mention my family, especially my parents and brother. Their faith in

me has kept my spirits and motivation high throughout this process.

4

Table of Contents
Page

List of Tables ..5

List of Figures...6

Chapter

I. Introduction…………………………………………………………………………….. 8

Introduction………………………………………………………………………… 8

Problem Statement…………………………………………………………………8

Nature and Significance of the Problem…………………………………………8

Objective of the Study……………………………………………………………..9

Study Questions……………..……………………………………………………..9

Definition of Terms………………………………………………………………..10

II. Background and Review of Literature………………………………………………13

Introduction………………………………………………………………………..12

Background Related to the Problem……………………………………………12

Literature Related to the Problem ……………………………………………...14

Literature Related to the Methodology………………………………………….22

Summary………………………………………………………………………….. 32

III. Methodology………………………………………………………………………….. 33

Introduction……………………………………………………………………….. 33

Design of the Study……………………………………………………………….33

Data Collection…………………………………………………………………....33

IV. Data Presentation and Analysis ……………………………………………………35

Secure open source tools used in SDLC………………………………………35

5

Chapter Page

Secure commercial tools used in SDLC……………………………………….40

Secure tools used by individuals, teams and small businesses…………….46

Summary………………………………………………………………………….50

V. Results, Conclusion, and Recommendations …………………………………….51

Results …………………………………………………………………………...51

Conclusion………………………………………………………………………...51

Summary Table…………………………………………………………………...52

References...55

6

List of Tables

Table Page

1. Summary Table of Tools for Open Source, Commercial and for Individuals, Teams,

and Businesses………………………………………………………………………………..52

7

List of Figures

Figure Page

1. Secure Open source tools used in SDLC………………………………………………..35

2. Secure commercial tools used in SDLC…………………………………………………40

3. Secure tools used by individuals, teams, and small businesses………...……………46

8

Chapter I: Introduction

Introduction

It is important in today’s world for software developers to have a thorough

understanding of secure tools and systems available in the public domain in order to

prevent and protect systems, sensitive data, and networks from attacks. Though many

secure development tools are available, there is a lack of systematic study on the tools.

Software developers face the challenge of selecting proper tools and learning their

complex features. There is a need to build a comprehensive taxonomy to assist

software developers in selecting the most appropriate tools for their projects.

Problem Statement

Due to application security misconfigurations, flawed designs, and insecure

deployments, lack of information on existing secure tools, and a lack of security

awareness training, developers were unable to select the right tool for adding security

features to the project as they were mostly involved in delivering the tasks and could

not recall the appropriate tools used for secure software development, while attackers

attempted to identify software weaknesses and exploit the vulnerability in the system.

Nature and Significance of the Problem

LogRhythm, the company powering today’s security operations centers (SOCs),

announced the release of its report, The State of the Security Team: Are Executives the

Problem? The surprising primary findings include 93% of security professionals lack the

tools to detect known security threats, and 92% state they are still in need of the

appropriate preventative solutions to close current security gaps (LogRhythm, 2020).

9
According to a Ponemon survey (Wike, 2016), 64% of security leaders and

directors feel that they lack the tools and resources necessary to monitor external

threats. Sixty two percent report a lack of tools and resources to analyze and

understand those threats, and 68% report a lack of tools and resources to mitigate

external threats.

Objective of the Study

The goal of this study is to create a taxonomy of secure software tools which are

useful for developers in developing secure software throughout the software

development lifecycle. To achieve this goal the following methods are followed:

● Investigate comprehensive literature on the existence of any current taxonomy in

Google Scholar to see what others have done to solve the problem.

● Identify tools based on their security features.

● Classify various tools used during the secure application development based on

the number of users that the tool supports the development teams, open source

and commercial to better understand the software engineer's expectations and

needs.

Study Questions

Is there any similar taxonomy to assist developers in choosing tools to add security

features throughout the development process?

Does the developed taxonomy really help developers in identifying the appropriate tool

for their project?

10
Definition of Terms

Cybersecurity attack: Any form of malicious activities that targets IT systems and

their users, to gain unauthorized access to the systems and the data or information they

contain (What Is a Cybersecurity Attack?, 2022).

Design flaw: A design that fails to meet requirements or to serve customer needs

resulting in unstable and unusable products, services and environments (Spacey,

2017).

Dynamic code analysis: It is also known as Dynamic Application Security Testing

(DAST), and is used to test a running application for potentially exploitable flaws. DAST

tools can detect compile-time and run-time vulnerabilities, such as configuration errors

that appear only in a realistic execution environment (What Is Dynamic Code Analysis?,

n.d.).

Open source: It refers to a software programme or platform with easily

accessible source code that can be modified or enhanced by anyone.

Requirement elicitation: An activity of the Requirements Engineering process

that aims at identifying requirements through intense communication among

stakeholders and analysts for the development of projects (What Is Requirements

Elicitation, 2022).

Security: It is the process of defending critical systems and sensitive data against

cyber-attacks.

11
Security misconfiguration: Inadequate security controls, such as those used for

servers or application configurations, network devices, and so on, can lead to security

vulnerabilities (The Impact of Security Misconfiguration and Its Mitigation, 2020).

Software design: It is a mechanism that converts user requirements into a

suitable form, which helps the programmer in software coding and implementation

(Javatpoint, 2021).

Software development: Software development, also known as the Software

Development Life Cycle (SDLC), is a process that programmers use to create computer

programmes. It consists of various phases that give a mechanism for creating products

that meet technical specifications and user needs (What Is Software Development,

2021).

Software Engineering: It is a branch of engineering that deals with the

development of software products (Whitepaper, n.d.).

Static code analysis: It is a method of debugging that involves examining source

code before running a program. It is accomplished by comparing a set of code to a set

of coding rules (Bellairs, 2022).

Threat: Any circumstance or event that has the potential to harm an information

system through unauthorized access, data destruction, disclosure, data modification,

and/or denial of service. Threats arise as a result of both human actions and natural

events (Stoneburner et al., 2004).

12
Vulnerability: It refers to any weakness in an information system, system

processes, or internal controls of an organization (“What Is Vulnerability in Cyber

Security?,” 2021).

Summary

In this chapter the abstract, problem statement, nature and significance of the

problem are described well and the objective for creating a taxonomy for secure

software development tools was clearly stated. Study questions are also provided to

indicate the outcome of the research done on the secure software development tools.

The definitions of the terms were provided at the end to provide a thorough

understanding of the topic.

13
Chapter II: Background and Review of Literature

Introduction

In this chapter, the background and review of literature are clearly stated, with a

focus on software vulnerability issues, and the literature linked to the problem is

illustrated using statistics and numbers centered on the nature and significance of the

problem. Based on prior work in the topic, the literature linked to the methodology is

also described.

Background Related to the Problem

According to Stoneburner et al., (2004), a vulnerability is a weakness in an

information system, system security procedures, internal controls, or implementation

that could be exploited or triggered by a threat source. This can happen when

programmers inadvertently or purposefully leave an exploitable bug in software. End

users frequently fail to update their software, leaving it unpatched and vulnerable to

exploitation.

Examples of vulnerabilities include:

1. Hardware

Humidity, dust, soiling, natural disasters, weak encryption, or firmware

vulnerability are all factors to consider.

2. Software

These are some of the software vulnerabilities which include inadequate testing,

a lack of audit trails, design flaws, memory safety violations (buffer overflows,

over-reads, dangling pointers), input validation errors (code injection, cross-site

14
scripting (XSS), directory traversal, email injection, format string attacks, HTTP

header injection, HTTP response splitting, SQL injection).

3. Network

Man-in-the-middle attacks, unsecured network architecture, lack of

authentication or default authentication are all examples of vulnerabilities.

4. Personnel

Lack of security awareness and training, poor adherence to security training, bad

password management, or downloading malware via email attachments are all

examples of inadequate recruiting practices.

5. Physical location

Natural disaster-prone areas, uncertain power sources, or no keycard access are

also listed as vulnerabilities which may cause disruption to daily activities.

6. Security strategy

Having no audit, continuity plan, security, or incident response strategy in place

within the organization may also lead to vulnerabilities.

Literature Related to the Problem

According to LogRhythm (2020), LogRhythm's Global Study, security teams'

stress levels are rising due to a lack of appropriate tools and executive support,

impeding their ability to combat threats. Sixty-eight percent of respondents said their

company had deployed redundant security tools, with 56% admitting the overlap is

unintentional, highlighting the need for better strategic control from management once

again. When asked what more help their security programmes require, despite

15
duplicative tools, 58% of respondents answered they still require increased funding for

tools. As a result, the report emphasizes the growing need of IT consolidation. Security

professionals rate the value of solution consolidation highly, citing top benefits as less

maintenance (63%), faster issue detection (54%), identification (53%), and resolution

(49%), as well as lower costs (46%) and greater security posture (45%). Despite this,

just one out of every three businesses (32%) have a real-time security dashboard that

provides a clear, integrated view of all their security solutions (LogRhythm, 2020).

According to a recent Ponemon survey (Wike, 2016), 64% of security leaders

believe they lack the necessary tools to monitor external security threats. According to

Security Beyond the Traditional Perimeter (The PhishLabs Blog, n.d.), a report from

Brand Protect and the Ponemon Institute found security leaders have doubts about their

organizations’ ability to monitor for outside threats.

In a press release, Larry Ponemon (Ponemon Institute, 2016), head of the

Ponemon Research Institute, stated, "The majority of security leaders recognise that

these external internet dangers jeopardize business continuity. The research reveals a

gap in defenses against threats that have shown to be incredibly efficient for cyber

criminals while being extremely costly for businesses."

According to Ponemon Institute(2016), 79% of respondents believe their

defensive architecture to identify and mitigate threats is either non-existent, ad hoc, or

inconsistently deployed across the company. Furthermore, 59% of respondents believe

that protecting intellectual property from external threats is critical or extremely vital to

their company's long-term sustainability. Respondents said their companies had an

16
average of 32 material cyber-attacks every month, or little more than one per month,

costing an average of $3.5 million per year. Leaders also believe that monitoring the

internet and social media is crucial for gaining intelligence on external dangers.

(Ponemon Institute, 2016) gave the following as the most important monitoring

priorities:

● mobile app monitoring (cited by 62% of respondents)

● social engineering and organizational reconnaissance (61% of respondents)

● branded exploits (59% of respondents)

● spear-phishing infrastructure (58% of respondents)

● executive and high value threats (54% of respondents)

According to Kinzer (2021), Facebook data breach exposed over 533 million

individuals’ personal information to hackers. The user's name, date of birth, current city,

and wall posts were all exposed. A white hat security group discovered the vulnerability

in 2021, and it has existed since 2019. This incident occurred when cybercriminals

scraped data from Facebook's servers by exploiting a bug in their contact importer. As a

result, they could acquire access to millions of people's personal information. Facebook

later identified this as an external attack, however the core cause of this breach and

others like it comes from a common scenario: misconfiguration problems. What makes

these breaches so dangerous is how quickly they may proliferate. Facebook is not the

only company experiencing security difficulties as a result of misconfiguration. Many

security organizations report an alarming growth in this type of vulnerability, especially

with the rise of cloud computing.

17
According to Chickowski (2017), Fiat Chrysler Automobiles (FCA), which had to

recall 1.25 million Dodge Ram pickup trucks owing to a potentially catastrophic fault in

its onboard computer software, was one of the most prominent examples of

life-or-death software quality issues in 2017. According to Fiat Chrysler Automobiles,

the issue has resulted in at least one death and two injuries. The manufacturer also

recommended owners to keep an eye out for a warning light on the instrument panel

that indicates a possible malfunction. The recall applies to three separate light and

medium-duty variants of the full-size Ram pickup sold in North America and other parts

of the world during the 2013 and 2016 model years, according to FCA. This figure

comprises 1.02 million 2013-16 Ram 1500 and 2500 pickups, and 2014-2016 Ram

3500 trucks sold in the United States, along with 216,007 vehicles sent to Canada,

21,668 to Mexico, and another 21,530 sold outside North America (Eisenstein, 2017).

The error leads the truck to disable airbags and seatbelt pretensioners during a rollover

crash if the vehicle collides with something in its undercarriage while traveling

off-road—exactly the condition in which a driver is probably most likely to roll over

(Eisenstein, 2017). If the software problem occurs, owners will receive a warning on the

instrument panel. According to the firm, drivers can temporarily resolve the issue by

turning off and on their vehicles. If the warning light is turned off, the crash system is

back in action. Concerning the Ram recall, FCA was made aware of the issue in

December when it was mentioned in a lawsuit involving a 2014 Ram 1500 crash. When

the pickup toppled over, the side airbags failed to deploy. According to Takata Airbag

Recall (2023), Takata, a Japanese supplier, has been at the forefront of the most

18
serious airbag problem. As a result, the greatest automotive recall in history has

occurred, affecting up to 70 million airbags used in over 50 million vehicles globally. The

Takata problem has now been linked to at least a dozen deaths in the United States, as

well as several other fatalities worldwide.

Chickowski (2017) reported on Cloudflare, a content delivery network vendor,

that exposed sensitive data from some of the biggest brands on the web, including

Uber, Fitbit, and OkCupid, due to a memory leak bug introduced in its codebase. The

bug, which had been in production for more than five months, potentially exposed

consumers' passwords, cookies, and authentication tokens. The flaw was in

Cloudflare's HTML parser, which exposed 1 in every 3.3 million HTTP requests. That

amounted to up to 120,000 leaks per piece of exposed data in a single day. Tavis

Ormandy, a security engineer with Google's Project Zero, discovered the fault and

reported it to Cloudflare. The problem has been affecting Cloudflare's systems since

September 2016, although the most significant damage happened between February

13 and February 18, 2017 (Cumming, 2017). According to Cloudflare's incident report,

the initial mitigation took 47 minutes, and the problem was repaired in less than seven

hours. Cloudflare has collaborated with search engines such as Google, Yahoo, and

Bing to remove the data from their caches.

In September 2017, Equifax, one of the three main consumer credit reporting

agencies in the United States, announced that its systems had been breached,

compromising the sensitive personal information of 143 million Americans (Electronic

Privacy Information Center, 2017). The data breach included names, home addresses,

19
phone numbers, dates of birth, social security numbers, and driver’s license numbers.

The credit card numbers of approximately 209,000 consumers were also breached. The

Department of Homeland Security notified Equifax, Experian, and TransUnion of the

vulnerability that occurred.

On March 9, 2017, Equifax administrators received an internal email informing

them that the Apache fix had been applied. On March 15, 2017, Equifax's information

security staff launched scans to discover systems vulnerable to the Apache Struts

issue, however the scans failed to detect the vulnerability. The Equifax breach is

unprecedented in scope and severity. The vulnerability that caused the breach was by

not updating Apache Struts CVE-2017-5638. Apache Struts is a popular framework for

creating Java Web applications maintained by the Apache Software Foundation. The

Foundation issued a statement announcing the vulnerability and released an update

later.

According to Kinzer (2021) a ransomware attack hit the US-based Colonial

Pipeline in May. The corporation owns and maintains a huge pipeline that transports

gasoline and other petroleum products from Texas to New Jersey and throughout the

Midwest. On April 29, attackers got access to the company's network via a Virtual

Private Network (VPN) account with a single compromised password. While operational

technology systems were unaffected, the event prompted the company to halt gasoline

flow in its mainline as a precaution (and to shut down leaks). This resulted in fuel

shortages and rising fuel prices in the Southeast, Midwest, and Northeast parts of the

country, with drivers panic-buying at the pump.

20
The attackers allegedly promised more hacks unless Colonial paid them $5

million in bitcoin — an amount that at the time was more than three times their annual

income. The ease with which the hackers gained access to the system is what makes

this attack so concerning — it has subsequently been found that the organization did

not implement multi-factor authentication (Kinzer, 2021). According to the firm, after a

six-day shutdown, pipeline operations restarted on May 12, with all systems and

procedures restored by May 15. The FBI launched an investigation three days after the

first claims surfaced on social media. It’s probable that an insider was responsible for

reducing security measures by revealing VPN credentials; however, exactly how

attackers acquired access to those credentials remains unclear. This incident

exemplifies why it is critical for businesses, particularly those managing sensitive data

such as oil pipelines, to have effective cybersecurity protections in place. Multi-factor

authentication (MFA) is one such method, and it is becoming more popular among

businesses. While Colonial Pipeline chose to pay the ransom demand of around $5

million, close to 50% of the funds had been recovered by June (Perlroth, 2021).

A major vulnerability affecting the popular Java logging package Log4j was

revealed in late November (Cimpanu, 2021). It is a remote code execution vulnerability

that allows an attacker to take complete control of a system. Shortly after the

vulnerability was exposed, malicious actors from all over the world launched a large

flood of scanning and exploitation attempts across the internet. Log4Shell is a

vulnerability in Log4j (Log4j – Apache Log4j Security Vulnerabilities, n.d.), a Java

package used to add logging features to Java web and desktop applications. It is

21
controlled by the Apache Applications Foundation, which means it is included in most of

their software, and it also has a "seal of high quality code" that makes it a favorite with

most enterprise software developers . The vulnerability occurs in programs where user

input can result in a log entry, for instance, in apps with input fields or where users can

control the text submitted within the log itself. The notion is that an attacker may

generate something like this:

${jndi:ldap:/attacker.com/script}

The JNDI prefix forces the Log4j library to connect to the attacker's domain and

run a script stored there when it writes and parses this entry inside a log. Anyone who

has used Log4J between 2.10.0 and 2.14.x is vulnerable to attacks. Later, the Apache

Software Foundation released a security upgrade for Log4j 2.15.0, which fixed the

attack vector. Setting the log4j2.formatMsgNoLookups option to true in the Log4j

configuration also avoids exploitation if companies are unable to update. Companies

such as Cloudflare stated that none of their products are affected, however Red Hat

and N-able (SolarWinds) stated that they have products that are. However, even for an

agency like Cybersecurity and Infrastructure Security Agency (CISA), a comprehensive

list of what is vulnerable and what is not is not widely available. The good news for

some system administrators is that security startup Huntress Labs has produced a free

Log4Shell scanner that businesses may use to analyze their own systems.

The Marriott hotel chain was recently fined approximately $23.8 million in

penalties as a result of a 2014 data breach (Marriott Data Breach FAQ, 2020). The

financial burden is only the beginning of Marriott's problems. More than 300 million

22
guests' credit card information, passport numbers, and birthdates were compromised in

the attack on the brand's global guest reservation database. It's one of the biggest data

breaches in history. While insurance covered a large portion of Marriott's financial

losses, the company's brand reputation will suffer for a long time. The breach occurred

in 2014, but it wasn't discovered until 2018, when an internal security tool detected a

suspicious attempt to access Marriott's Starwood brands' internal guest reservation

database. Marriott acquired Starwood Hotels in 2016, adding 11 new brands to Marriott

International's original 19 assets. Marriott discovered that hackers had encrypted data

and removed it from the Starwood system during an internal investigation. That data

included information from up to 500 million guest records, some of which were

duplicates. Crowdstrike cybersecurity expert Ryan Cornateanu told Hotel Tech Report,

"The attack on Marriott was hapless, and a popular entry point for adversaries is

through email spoofing”. This tactic is used in phishing to get malware onto a target

network, where it can then spread laterally across all systems. From there, hackers can

obtain account numbers, driver's license numbers, and other sensitive information from

loyalty programs and reservation systems. The general data protection regulation has

gone a long way toward protecting consumers, but there is only so much that can be

done when a hacker is able to secure login credentials or directly access servers.

Literature Related to the Methodology

The paper published by Novak et al. (2010) describes the most widely used

static code analysis techniques which are widely used in software development life

cycle. Because there are so many different sorts of these tools for so many different

https://www.zotero.org/google-docs/?broken=MpRtLO

23
purposes and programming languages, they try to categorize them into areas such as

technology, rule availability, supported languages, extensibility, and a variety of other

categories and subcategories. Before a program is tested or sent into production, static

code analysis tools can be used to detect hidden errors in its implementation.

Correction of hidden defects during the development cycle can reduce testing effort,

reduce the number of operations required, and lower system maintenance costs. Static

code analysis tools can be used in a variety of ways, but they all result in higher

software quality. They can also help with a variety of security issues. The ability of static

code analysis tools to automatically recognize many common programming errors is

their most valuable feature. Unfortunately, implementation errors are only part of the

problem. Tools are incapable of detecting design and architectural flaws in programs.

They cannot find poorly made cryptographic libraries or inappropriately chosen

algorithms, and they cannot highlight design problems that can cause major confusion.

They also cannot find any passwords or magic numbers hidden in the code. Another

weakness of static code analysis tools is that they are prone to "manufacture" so-called

"false warnings" or found errors that are not actually errors. These discovered

"mistakes" are frequently referred to as "false positives." This article Novak et al.

(2010) provides a taxonomy of static code analysis tools, rather than to show which

static code analysis tool is better than the others. Therefore, Novak et al. (2010) looked

at some static code analyzers and tried to find common characteristics. This paper, on

the other hand, does not discuss dynamic application analysis tools, which perform

analysis while the application is running.

https://www.zotero.org/google-docs/?broken=MpRtLO
https://www.zotero.org/google-docs/?broken=MpRtLO
https://www.zotero.org/google-docs/?broken=MpRtLO

24
According to Weber et al. (2005), although recommendations for static analysis

tools to aid software security evaluations or to detect security problems were made

three decades ago, static analysis and model checking technology has only recently

advanced to the point where such tooling is feasible. Tool builders might benefit from

having a taxonomy of software security issues to organize the problem space in order

to target their technology on a sensible basis. Unfortunately, the only acceptable

taxonomies now available are out of date and do not adequately describe security

problems present in modern software. They have created a security flaw taxonomy by

combining prior efforts to categorize security flaws as well as incident reports in this

article. They compared their taxonomy to publicly available data on current high-priority

security threats and drew conclusions from the findings. To be more specific, there are

a variety of strategies that can be utilized to handle security issues, each with its own

set of benefits and drawbacks. Rather than conducting a cross-comparison analysis of

each technique against each taxonomy category, which is impractical, they attempted to

identify common characteristics that affect difficulty across sets of analyses and relate

these aspects to the taxonomy.

A paper by Hein and Saiedian (2009) highlights developments in secure software

systems engineering (SSE), on-going issues, and methods for reasoning about threats

and vulnerabilities by assessing and categorizing pertinent SSE research. Several

difficult risk assessment/mitigation questions (e.g., "what is the possibility of an attack"),

as well as practical concerns (e.g., "where do vulnerabilities arise" and "how can

vulnerabilities be averted") are addressed. When the topic of security is brought up in

25
the context of development, an almost reflexive reaction is to consider specialized

security features such as cryptography, authentication, and copy-protection, and how

the development team might add on or integrate software components providing these

security features (McGraw, 1999). The tendency to use add-on security components

results from the fact that many of these components 1) frequently implement

sophisticated and proven encryption and 2) are frequently prepackaged or provided by

the underlying operating system (OS) platform. Better vulnerability prevention and risk

assessment are dependent on fundamentally agreeing on SSE-specific classifications

and models. Efforts like the Common Weakness Enumeration (CWE) lay the

groundwork and provide a common language for sharing information and comparing

testing coverage of automated testing and static analysis tools. Although the CWE's

current focus is on supporting tools for vulnerability prevention, it can also be used to

aid in risk assessment efforts. This paper provided a high-level overview of SSE in an

attempt to answer practical questions about the field. The challenge that SSE rises to

meet is preventing the introduction of vulnerabilities prior to release, rather than

patching vulnerabilities after the fact. Outside of the context of formal methods and

automated theorem provers (which typically necessitate significant investment and

expertise), proving the security of a typical software product necessitates testing for

negative consequences (e.g., there are no vulnerabilities). Because testing for a

negative can entail indefinite testing time, it is critical to incorporate security from the

start and make cost-effective decisions about when to stop testing. Finally, because of

the financial benefits, there is a growing interest in secure software engineering. There

26
is a financial case to be made for implementing SSE processes, principles, and best

practices throughout the SDLC, particularly early on, rather than applying patches later

in maintenance. Software engineering circles have long recognized that software

development/maintenance costs rise over time and that the most effective cost savings

are realized with early corrective action; "often a hundred times more cost effective"

(Boehm & Basili, 2001, p. 3). Hoo et al., (2001) investigated the software development

and maintenance costs (e.g., patch development costs) associated with security in

particular and concluded that the return on investment (ROI) ranged from 12 to 21%,

with the highest rate of return occurring when analysis is performed during application

design.

Software requirements serve as the foundation for measuring quality (Bokhari &

Siddiqui, 2011). Measurement promotes the improvement of the software process; it

aids in the planning, tracking, and management of the software project; and it assesses

the quality of the software created. Quality issues such as correctness, security, and

performance are frequently critical to a software system's success. Quality should be

maintained from the beginning of the software development process. The management

of requirements is critical to the maintenance of software quality. With good

requirements management, a project may provide the right solution on time and within

budget. Checking quality attributes in requirements documents can help to maintain

software quality. To measure the requirements engineering phase of the software

development lifecycle, metrics such as volatility, traceability, size, and completeness are

utilized. Because manual measuring is costly, time consuming, and prone to error,

27
automated tools should be employed. Measurement of requirements metrics is aided by

automated requirements technologies.

In this paper, Bokhari & Siddiqui (2011) investigated and analyzed requirements

metrics and automated requirements tools in order to assist in selecting the appropriate

metrics to monitor software development based on the evaluation of Automated

Requirements Tools. Because manual measurement is error-prone and

time-consuming, automated measurement tools should be used. The use of automated

requirements tools makes metric collection faster and more reliable. The automated

requirements tools used for collecting, viewing, and changing requirements are

Automated Requirements Tool, Dynamic Object Oriented Requirements Systems,

Requirements Use Case Tool, and IBM Rational Rose. These tools manage changes

and provide metrics for traceability. The use of automated tools improves requirements

management; however, before employing any requirements tool, its function,

applications, and limitations must be understood. But, this paper did not focus on the

security aspect.

It is critical to have a thorough understanding of existing tools and systems

available in the public domain in order to prevent and protect networks from attacks

(Hoque et al., 2014). Attacks are classified into a variety of different kinds based on

their behavior and the potential impact or severity of damages (Hoque et al., 2014).

People use various attack tools to disrupt a network for a variety of reasons. Attackers

typically target Web sites or databases, as well as enterprise networks, by gathering

information about their vulnerabilities. In general, attackers employ tools that are

28
appropriate for the type of attack they intend to carry out. Various network security

research groups and private security professionals have also made a large number of

defense tools available. These tools serve different purposes, have different

capabilities, and use different interfaces. Existing tools are divided into two categories:

tools for attackers and tools for network defenders. Before launching an attack,

attackers should first understand the environment in which the attack will be launched.

To do so, attackers first collect network information such as machine and service port

numbers, operating systems, and so on. After gathering information, attackers use a

variety of tools to identify network flaws. Sniffing tools and network mapping/scanning

tools are subcategories of information gathering tools. In this survey, a consistent

taxonomy of attack tools were provided for the benefit of network security researchers.

This paper includes a thorough and organized review of available network tools and

systems but was not focused on the software development tools that can help

developers in developing an application without any security flaws.

Jagdale et al. (2014) described the Seven Pernicious Kingdoms taxonomy, which

simulates the details and consequences of typical mistakes that contribute to security

flaws. The taxonomy provides consistent terminology across vulnerability assessment

approaches and responsibilities ranging from security practitioners to architects and

developers, as well as up the management chain, when used to organize secure coding

guidelines. The Seven Pernicious Kingdoms taxonomy's classification technique is

based on code-level security concerns that occur in software applications. Seven of the

https://www.zotero.org/google-docs/?59ryTI

29
kingdoms are dedicated to source code errors, while the eighth kingdom is concerned

with security vulnerabilities generated by the program's configuration or environment.

According to Miele et al. (2018) software development, maintenance, and

operation, and software security are part of an ever-evolving field. Software flaws put

the software's operation at risk. Through static analysis of source code, software tools

have evolved over time to assist in the detection and identification of software

vulnerabilities. A software development team can use static analysis techniques to

quickly assess their project for vulnerabilities that they are unaware of. Miele et al.

(2018) used applications written in C language for testing in this work due to their high

vulnerability nature, as C functions have few security mechanisms. As a result, many

applications in C inherently have a high risk of vulnerability. They used open source

PuTTY 0.68, Wireshark 1.12.1, and Nmap 6.47 to test applications. These applications

are well-known in the network software community and are widely used, as evidenced

by active user feedback (including those pertaining to vulnerability). They also have a

number of stable open source versions available, making them appropriate for the

experiment. There are numerous static analysis tools available, each with its own set of

features and algorithms. They selected tools for vulnerability testing using Nagy and

Mancoridis (2009) criteria. Vulnerabilities affecting software systems are numerous in

both cause and effect. Vulnerabilities are influenced by both syntax and semantics.

They concentrated on buffer overflow, format string, random number generation, shell,

and race condition vulnerabilities in this work. They tested PuTTY, Wireshark, and

Nmap using the three tools. They compared the capability of the three tools in detecting

30
and reporting vulnerabilities for analysis. The raw results generated by each tool were

then analyzed to determine its strengths and weaknesses. In this paper, Miele et al.

(2018) provided a comparative review of three widely used static analysis tools for

software vulnerability using open source software in this work, with the goal of assisting

software developers in selecting the best tool for their needs. But this did not include a

variety of tools used throughout the software development process.

Many computer applications, both proprietary and open source, are impeded by

software vulnerabilities (McLean, 2012) . Fortunately, there are a number of static

analysis tools available to help spot potential security issues. In this paper, McLean

(2012) presented the results of utilizing a variety of static security analysis methods to

evaluate multiple subsets of open source code for typical software vulnerabilities. These

findings can help other programmers decide which tools to employ when evaluating

their own code for static security methods and not for dynamic security methods.

The requirement is the foundation of the entire software development life cycle

(Bokhari & Siddiqui, 2009). With good requirement management, a project may provide

the right solution on time and within budget. Requirement elicitation, specification, and

validation are all critical steps in ensuring the quality of requirement documentation. The

software requirement tools can provide a more thorough analysis of all three activities.

There are a lot of software requirement tools available, both commercially and freely

downloadable, that give a diversity and high quality of software requirement

documentation. Furthermore, as the vulnerabilities of software increase, the system

requires an additional requirement for security features that protect the software from

31
vulnerabilities and make the software more reliable. A Comparative Study of Software

Requirements Tools for Secure Software Development written by Bokhari & Siddiqui

(2009) provides a comparative study of requirement tools, demonstrating trends in the

usage of methodology for gathering, analyzing, specifying, and validating software

requirements, and the results will assist the developer in developing an effective

requirement tool.

Almost every software-controlled system faces potential adversaries, ranging

from Internet-aware client applications running on PCs to complex telecommunications

and power systems accessible via the Internet, to commodity software with copy

protection mechanisms (Devanbu & Stubblebine, 2000). Software engineers must be

aware of these threats and design systems that have credible defenses while still

providing value to customers. In this paper, Devanbu and Stubblebine (2000) presented

their perspectives on the research issues that arise in the interactions between software

engineering and security. Much of today's software development is based on integrating

off-the-shelf components; rarely are new systems built from the ground up.

Middleware technologies (see also the companion paper on middleware

[Wolfgang, 2000]) such as COM and CORBA have given rise to a wide range of

components, frameworks, libraries, and so on. These are referred to as commercial

off-the-shelf software (COTS). A useful summary of research issues in COTS products

is very appealing to developers confronted with ever more stringent cost, quality, and

time-to-market requirements. However, using these products, especially in

safety-critical systems, is fraught with risk. The procurement policies of the customers

32
of safety-critical systems (utilities, government, etc.) have traditionally required software

vendors to disclose sufficient details to evaluate their processes and products for safety.

These policies, however, are incompatible with current component vendors, who face

the risk of intellectual property loss (Wolfgang, 2000).

Summary

The background of the topic is thoroughly presented in this chapter, with an

emphasis on software vulnerability issues, and the literature related to the problem is

illustrated using statistics and numbers centered on the problem's nature and

significance. The literature related to the methodology is also described by critically

evaluating the previous work done in the field by giving a clear understanding to the

research problem being investigated.

33
Chapter III: Methodology

Introduction

In this chapter the design of the study is described in detail and the data

collection process for the whole project is stated. The work that has previously been

completed is listed, along with a concise timeline for what will be completed in the

future.

Design of the Study

● Researched for a similar problem using Google Scholar.

● Investigated papers published between 2010 and 2022.

● Found and analyzed papers published between those years because cloud

computing came into the picture and many programming languages have

evolved since then.

● Classified the tools according to the software development life-cycle and based

on project-size, open/commercial to better understand the software engineers’

expectations and needs.

● Created a summary table of all the tools to give a brief overview.

Data Collection

Investigation of tools:

Made a comprehensive investigation and analysis of secure application tools that are

currently available to get a clear understanding of their usage and effectiveness.

Identification of tools:

34
● Identified the tools for all six phases of the secure software application

development.

● Found various tools for the requirement phase, design phase, implementation

phase, testing phase, deployment, and maintenance phase.

● Gathered tools based on project size, open/commercial tools, etc.

● Analyzed whether each tool detects different security risks and threats in each

phase of software engineering.

Classification of tools:

● Classified the tools according to the software development lifecycle.

● Created a clear summary table of all the secure tools used during SDLC to get a

brief overview for developers and individuals to use.

35
Chapter IV: Data Presentation and Analysis

Secure Open Source tools in SDLC lifecycle

The figure 1 shows a layout of open source tools useful in secure application

development for developers and individuals to use throughout the software

development life cycle.

Figure 1

Secure Open Source tools in SDLC lifecycle

Requirement Phase

OWASP SecurityRAT

SecurityRAT (Security Requirement Automation Tool) is a tool that assists in

managing security requirements in agile development projects (OWASP SecurityRAT,

2022). The basic idea is straightforward: you specify the properties of an application (or

"artifact") that you're developing. Based on these properties, the tool generates a list of

security requirements that you must meet. For each requirement, you can decide

whether it should/will be implemented and add your own comment. When you're

36
finished, you can save the specific requirement in a JIRA ticket for future reference as a

YAML file (SecurityRAT, 2021). Following that, you can create JIRA tickets in bulk for

specific requirements and track them with SecurityRAT.

Design Phase

Microsoft Threat Modelling Tool

It enables software architects to identify and mitigate potential security issues

early, when they are relatively simple and inexpensive to fix (jegeib, 2022). The tool was

created with non-security experts in mind, with the goal of making threat modeling

easier for all developers by providing clear guidance on creating and analyzing threat

models (jegeib, 2022).

Anyone can use the tool to:

● Communicate about the security architecture of their systems

● Utilize a tested methodology to examine designs for any potential security flaws.

● Manage mitigations for security issues by making suggestions.

OWASP Threat Dragon

OWASP Threat Dragon is a modeling tool used to create threat model diagrams

as part of a secure development lifecycle (OWASP Threat Dragon, 2023). It can be

used to record potential threats and decide on mitigation strategies, as well as provide a

visual representation of the threat model components and threat surfaces. Threat

Dragon is available as a web application or a desktop application.

37
Implementation Phase

OWASP ASST

ASST is an open source code scanning tool with a command line interface

written in JavaScript. When ASST scans for a project, it examines each file line by line

for security flaws. If a vulnerability was discovered, the report will indicate which line in

which file the vulnerability was discovered, as well as a "Click Here" link to explain the

attack and how to protect against it (OWASP ASST, 2020). Currently it focuses on PHP

and MySQL programming languages, but because its core functionalities are ready and

available to everyone, programmers can contribute and add plugins or extensions to it

to add features and make it scan for other programming languages and frameworks

such as Java, C#, Python, and so on. As a result, its infrastructure is intended to be

shared with other programmers in order to improve and innovate.

Coverity Scan

Coverity Scan finds and fixes defects in Java, C/C++, C#, JavaScript, Ruby, or

Python open source project for free (Coverity Scan - Static Analysis, n.d.). Tests every

line of code and potential execution path and the root cause of each defect is clearly

explained, making it easy to fix bugs.

Testing

Vega

Vega is a free and open source web application security scanner and testing

platform. It is written in Java, has a graphical user interface, and is compatible with

Linux, OS X, and Windows. Vulnerabilities such as reflected cross-site scripting, stored

38
cross-site scripting, blind SQL injection, remote file include, shell injection, and others

can be detected using Vega. (Vega Vulnerability Scanner, 2014). It also checks for TLS

/ SSL security settings and identifies ways to improve the security of your TLS servers.

Vega includes a quick test scanner and an intercepting proxy for tactical inspection.

● Vega's automated scanner is powered by a website crawler. When given user

credentials, Vega can automatically log into websites.

● The Vega proxy can also be set up to run attack modules while the user

navigates to the target site through it. To ensure maximum code coverage,

semi-automated, user-driven security testing is possible.

Wireshark

Wireshark has a rich and powerful feature set and runs on most computing

platforms, including Windows, OS X, Linux, and UNIX (Banerjee et al., 2010). It is used

frequently by network professionals, security experts, developers, and educators all

over the world. It is open source and distributed under the GNU General Public License

version 2. It was created and is maintained by a global team of protocol experts, and it

is an example of disruptive technology. Wireshark is a free packet sniffer computer

application. It is used for network troubleshooting, analysis, software development,

communication protocol development, and education. Wireshark can capture traffic

"from the air" and decode it into a format that helps administrators track down issues

that are causing poor performance, intermittent connectivity, and other common issues

with the appropriate driver support. Wireshark enables users to capture packets

traveling across the entire network on a specific interface at a specific time.

39
Nikto

Nikto is an Open Source (GPL) web server scanner that runs comprehensive

tests against web servers for a variety of items, including over 6700 potentially

dangerous files/programs, outdated versions of over 1250 servers, and version-specific

problems on over 270 servers. It also looks for server configuration items like the

presence of multiple index files and HTTP server options, as well as attempting to

identify installed web servers and software. Scan items and plugins are frequently

updated and can be updated automatically (Nikto2 | CIRT.Net, 2023).

Deployment Phase

Trivy

Trivy is an easy-to-use, open source and versatile security scanner. Trivy has

scanners that look for security issues and targets where those issues can be found. It is

ideal for DevSecOps pipelines because it integrates with CI tools such as Travis,

CircleCI, Jenkins, and GitLab. Trivy can scan - Container Images, Filesystems, Git

Repository (remote), Virtual Machine Image, Kubernetes, and AWS. It can discover- OS

packages and software dependencies in use (SBOM), Known vulnerabilities (CVEs),

IaC issues and misconfigurations, Sensitive information and secrets, Software licenses

(Overview - Trivy, n.d.).

Maintenance Phase

Imperva RASP

RASP, which is built into the application runtime environment, can detect and

prevent attacks in real time. Because of today's security challenges, your cloud-native

40
applications require more privacy than network firewalls, which is why Imperva provides

protection from within and runs alongside your applications (RASP Market Leader,

n.d.). It can protect the application using:

● Application risk mitigation: RASP protects applications from vulnerabilities,

allowing teams to focus on business logic rather than leaving your application

vulnerable to exploitation.

● Security as business evolves: Cloud native applications require more than just

perimeter security due to fading controls and ephemeral workloads. RASP

provides internal security and follows your application wherever it goes.

Secure Commercial tools in SDLC lifecycle

The figure 4.2 below shows a layout of commercial tools useful in secure application

development for developers and individuals to use throughout the software

development life cycle.

Figure 2

Secure Commercial Tools in SDLC Lifecycle

41
Requirement Phase

Secure Tropos

Secure Tropos (Giorgini et al., 2005) is an agent-oriented software development

methodology designed to describe the organization as well as the system in terms of

functional and security requirements. Secure Tropos builds on the Tropos methodology

(Bresciani et al., 2004) by introducing the concepts of actor, service (i.e., goal, task,

resource), and social relationships to define the obligations of actors.

Design Phase

ThreatModeler

ThreatModeler is an automated threat modeling solution that strengthens an

enterprise's SDLC by detecting, predicting, and defining threats, enabling security and

DevOps teams to make proactive security decisions. ThreatModeler provides a

comprehensive view of the entire attack surface, allowing enterprises to reduce overall

risk (ThreatModeler, 2023).

SecureCAD by Forseeti

It has modeling tools which build models directly in your browser or use existing

data to generate parts or an entire model of your architecture (SecuriCAD Enterprise,

n.d.). It has features such as attack simulations, choke points, finds the most critical

paths from a potential attacker to a high-value report generation, and so on.

42
Implementation Phase

Fortify Static Code Analyzer

Fortify Static Code Analyzer (SCA) is a commercial tool that detects root-cause

vulnerabilities using the most comprehensive set of secure coding rules available and

supports the most languages, platforms, build environments (Integrated Development

Environments, or IDEs), and software component APIs

https://www.microfocus.com/media/data-sheet/fortify_static_code_analyzer_static_appli

cation_security_testing_ds.pdf. A free trial is available for 15 days (Fortify on Demand

Free Trial, 2023).

● Conduct static analysis to identify the root causes of security vulnerabilities in

source code.

● Detects more than 480 types of software security vulnerabilities across 20

development languages, the most in the industry.

● Receive prioritized results sorted by risk severity, as well as guidance on how to

fix vulnerabilities in line-of-code detail.

● Ensure that application security mandates are met.

Checkmarx

Checkmarx is a high-end static code scanner that supports all popular

languages. It seamlessly secures your entire codebase, allowing you to deliver and

deploy more secure code. It is designed for cloud development generation and

delivered from the cloud (Why Checkmarx, 2023).

43
● Scanning of Source Code: Identify and fix additional flaws before releasing your

code.

● Open Source Scanning: Identify and eliminate vulnerabilities in your open source

code.

● Scanning Interactive Codes: During functional testing, look for vulnerabilities and

runtime risks.

● Secure Code Education: Provide devs with engaging, integrated, and targeted

AppSec training.

● IaC Open Source Security: Determine and correct insecure IaC configurations

that put you at risk.

Testing Phase

Burp Suite

Burp Suite Professional is a web security tester's toolkit that is used to automate

repetitive testing tasks before going deeper with its expert-designed manual and

semi-automated security testing tools. Burp Suite Professional can assist you in testing

for the OWASP Top 10 vulnerabilities. The manual penetration testing features are as

follows: Intercept everything your browser sees, effectively break HTTPS, manually test

for out-of-band vulnerabilities, expose hidden attack surface, test for clickjacking

attacks, rapidly assess your target, and so on (Features - Burp Suite Professional,

2023). Automated scanning for vulnerability features are: Remediate bugs effectively,

conquer client-side attack surface, configure scan behavior, fuel vulnerability coverage

with research, experience browser-driven scanning, fine-tune scan control, and so on.

44
Acunetix

Acunetix quickly identifies and fixes the vulnerabilities that expose your web

applications to attack. It can detect 7,000+ vulnerabilities using a combination of DAST

and IAST scanning, including OWASP Top 10, SQL injections, XSS, misconfigurations,

exposed databases, and out-of-band vulnerabilities (Acunetix, 2023). It resolves

vulnerabilities more quickly than remediation. The following are the tool features:

● Remove false positives: Spend less time manually confirming which

vulnerabilities are real.

● Identify vulnerable points: You won't have to look for the exact lines of code that

need to be fixed.

● Obtain remediation advice: Provide developers with all of the information they

need to fix security flaws on their own.

Acunetix Web Vulnerability Scanner performs the following functions:

● Crawls thousands of pages at lightning speed and without interruption.

● In-depth SQL injection and Cross-Site Scripting (XSS) testing, the most

comprehensive scanner for these vulnerabilities.

● Acunetix AcuSensor Technology combines black box scanning techniques with

feedback from sensors embedded within the source code to provide accurate

scanning with low false positives. It does security testing of AJAX and Web 2.0

applications using automatic JavaScript analysis.

45
● A Login Sequence Recorder for quick and easy testing of password-protected

areas and the acunetix deepscan has the capability of interpreting SOAP, XML,

AJAX, and JSON.

Deployment Phase

DataDog Cloud SIEM

DataDog Cloud SIEM is a paid tool that includes a 14-day trial period. It functions

as both a vulnerability scanner and a SIEM, and it provides quick solutions to security

breaches. Continuous scans across cloud accounts, hosts, and containers track

security posture and unusual activity in full context, with alerts channeled into your

ticketing system. It allows you to analyze everything without having to index and store

all of the data. It detects security threats and misconfigurations automatically in real

time (Datadog, 2023).

Maintenance Phase

Hdiv

Hdiv Security, a pioneer in application self-protection, is the first product of its

kind to provide protection against Security Bugs and Business Logic Flaws throughout

the Software Development Lifecycle (SDLC). The unified platform of Hdiv Security

makes DevSecOps a reality. Government, banking, aerospace, and Fortune 500

companies are currently using Hdiv's solutions (Documentation | Hdiv Security, 2021). It

is more effective than any other solution currently available for combating web

application security risks. Maintains strong security without having to be aware of and

comprehend all current security threats.

46
Secure tools used by individuals, teams, and small businesses

The figure 4.3 shows a layout of tools used by individuals, teams, and small

businesses useful in secure application development.

Figure 3

Secure tools used by individuals, teams, and small businesses

Requirement Phase

SecReq

SecReq's Common Criteria-based security requirements elicitation section

refines high-level security needs through several steps to produce specific security

requirements suitable for formulating design solutions and helps to identify potentially

secure aspects of service descriptions and functional requirements. It is a combination

of three techniques: the CC, the HeRA heuristic requirements editor, and UMLsec.

SecReq employs in a systematic manner the security engineering knowledge contained

in the CC and UMLsec, as well as security-related heuristics in the HeRA tool. This tool

identifies early detection of security-related issues (HeRA), systematic refinement

47
guided by the CC, and has the ability to trace security requirements into UML design

models (Houmb et al., 2010).

SREPPLine

It addresses security requirements in the early stages of the product line lifecycle

in a systematic and intuitive manner, making it especially suited for product line-based

development. It is founded on the application of cutting-edge security requirements

techniques, as well as the incorporation of the Common Criteria (ISO/IEC 15408) into

the product line lifecycle. It also addresses the reuse of security artifacts by providing us

with a Security Resources Repository. Furthermore, it facilitates compliance with the

most relevant security standards in terms of security requirement management

(Mellado et al., 2023).

Design Phase

Threagile

Threagile enables teams to execute Agile Threat Modeling as seamlessly as

possible, even in DevSecOps environments (Threagile — Agile Threat Modeling Toolkit,

2020). Threagile is an open-source toolkit that allows you to model an architecture and

its assets as a YAML file directly inside the IDE or any YAML editor. When the Threagile

toolkit is run, a set of risk-rules perform security checks against the architecture model

and generate a report with potential risks and mitigation recommendations. In addition,

nice-looking data-flow diagrams and other output formats are generated automatically

(Excel and JSON). Risk tracking can also take place within the Threagile YAML model

48
file, so that the current state of risk mitigation is also reported. Threagile can be started

or run from the command line or started as a REST-Server.

Tutamantic

Tutamen Threat Model Automator detects and mitigates security threats early

during the software design phase. It is intended to enable security at the architectural

stage, when the cost of fixing flaws is the lowest (Home | Tutamantic, n.d.). Reduce

human error and inconsistencies with a single variable input. Create a living threat

model that changes as the design changes. For its reference frameworks, the Tutamen

Threat Model Automator employs the well-known OWASP Top 10, STRIDE, and

Common Weakness Enumeration (CWE).

Black Duck

Software composition analysis (SCA) by Black Duck assists teams in managing

the security, quality, and license compliance risks associated with the use of open

source and third-party code in applications and containers. Over 4,000 organizations

worldwide use Black Duck today. It allows developers and DevOps teams to address

open source policy concerns while maintaining innovation. This tool costs $525 per

team member and can support up to 150 team members (Black Duck Software

Composition Analysis, 2023).

● Open source is identified within compiled application libraries and executables.

● Tracks vulnerability results and remediation.

● Checks open source code for newly disclosed vulnerabilities.

49
● Open source vulnerabilities in applications and containers are discovered and

fixed.

Testing Phase

Nessus

Nessus can be used by individuals as it scans 16 IP addresses at a time. It runs

on a variety of platforms, including the Raspberry Pi. Nessus is used for penetration

testing and vulnerability assessments, including malicious attacks. It is a program that

searches computers for security flaws that hackers could exploit. Nessus is fully

portable regardless of where you are, where you need to go, or how distributed your

environment is (Nessus, 2023).

WhiteSource(Mend)

WhiteSource provides the best open source security and license compliance

management platform available, allowing users to manage and trust open source

assets easily and efficiently (WhiteSource Documentation, n.d.). Mend has SCA and

now offers a static application security testing (SAST) solution to assist your

organization in securing proprietary code as well as open source code.

Deployment Phase

Snyk

Snyk detects and fixes vulnerabilities in your code, open source dependencies,

containers, and infrastructure as code. This tool simply integrates security knowledge

into the existing IDEs, repositories, and workflows. It continuously scans using

industry-leading security intelligence to monitor for vulnerabilities while developing and

50
provides actionable fix advice in tools with a single click which can merge and move on

with auto PRs (Snyk, n.d.).

Maintenance Phase

Contrast Protect

Contrast Protect is a production application and API protection solution that

detects and prevents attacks while reducing false positives, allowing developer teams

to prioritize vulnerability backlogs (Contrast Protect, n.d.). The features of contrast

protect are as follows:

● This tool blocks attacks on vulnerabilities that have not been fixed or patched.

● In contrast to perimeter defenses, instrumentation and sensors detect, it also

prevents runtime application attacks.

● It determines whether the exploit was successful or not. Protects against a wide

range of zero-day attacks without the need for tuning or reconfiguration.

● It also includes game-changing forensics and application protection for all

organizations, large and small.

Summary

The tools are categorizing based on open source, commercial are well defined

for any developer to quickly identify and use the appropriate one for developing secure

applications.

51
Chapter V: Results and Conclusion

Results and Discussions

The provided taxonomy of tools assists developers to quickly adopt a specific

tool based on the features and type of tool required either for teams or individual use,

open source or commercial. As a result, data is secure against attackers, businesses,

end-users, and endpoint devices. As a result, it contributes to business continuity.

Cybersecurity threats evolve. Intruders adapt by developing new tools and

techniques to compromise security as new defenses emerge to stop older threats

(https://www.advantio.com/blog/secure-software-development-life-cycle-design-phase).

The incentives to compromise the security of deployed IT systems grow as information

technology becomes more pervasive in society. As new information technology

applications are developed, new venues for criminals, terrorists, and other hostile

parties emerge, as do new vulnerabilities that malevolent actors can exploit. The fact

that an increasing number of people have access to cyberspace multiplies the number

of potential victims as well as the number of potential malicious actors. The summary

table below provides all the necessary tools required to make the applications safe and

secure from malicious attacks.

Conclusion

The summary table gives a brief overview of tools in a readable format to help

find the right tool in the SDLC phases. Cybersecurity is an evolving field in which

attackers can develop new tools to attack systems. As a result, tools must be kept up to

date in order to combat threats and attacks.

52

Table 1

Summary Table of Tools for Open Source, Commercial and for Individuals, Teams, and Businesses

Requirement
Phase Design Phase Implementation

Phase Testing Phase Deployment
Phase

Maintenance
Phase

OWASP
SecurityRAT:
*Generates
security
requirements.
*Tracks specified
requirements.

Microsoft Threat
Modelling Tool:
*Enables software
architects to
identify and
mitigate potential
security issues
early.

OWASP Threat
Dragon:
*Creates visual
representation of
threat
components.
*Records
potential threats.

OWASP ASST:
*Examines files
for security flaws.
CLI application.
*Scans PHP
language.

Coverity Scan:
*SAST tool.
Finds and fixes
defects in code.
Tests every line.

Vega:
*Does automated,
manual and hybrid
security tests.
*Has an intercepting
proxy.

Wireshark:
*Packet sniffer.
*Captures packets
across the network.

Nikto:
*Web Server
scanner.
*Updates scan items
and plugins
automatically.

Trivy:
*Targets at the
security issues.
*Ideal for
DEVSECOPS
pipelines.
*Integrates with
CI tools.

ImpervaRASP:
*Detects and
prevents attacks in
real-time.
*Provides internal
security for
businesses.

53

Requirement
Phase Design Phase Implementation

Phase Testing Phase Deployment Phase Maintenance
Phase

SecTro:
*Builds on the
tropos
methodology.
*Introduces the
concepts of actor,
service and social
relationships.

Threat Modeler:
*Automates threat
modeling.
*Provides a view
of the attack
surface.

Security CAD by
forseeti:
*Builds models
directly in the
browser.
*Finds critical
paths from a
potential attacker.
*Have attack
simulations, choke
points etc.

Fortify Static
Code Analyser:
*Supports most
languages and
build
environments.
*Conducts static
analysis.
*Detects 480 types
of vulnerabilities.

Checkmarx:
*It’s a static code
scanner.
*Designed for
cloud
development
generation.

Burp Suite:
*Automates
repetitive testing
tasks.
*Assists in testing
OWASP top 10
vulnerabilities.
*Assists in testing
OWASP top 10
vulnerabilities.

Acunetix:
*Crawls thousands
of pages.
*Removes false
positives.

DataDog Cloud
SIEM:
*Detects threats
and
misconfigurations
in real-time.
*Does continuous
scans across cloud
accounts.
*Sends alerts via
ticketing system.

Hdiv:
*Maintains strong
security.
*Has a unified
platform.

54

Requirement
Phase Design Phase Implementation

Phase Testing Phase Deployment Phase Maintenance
Phase

SecReq:
*Facilitates early
detection of
security-related
issues.
*Traces security
requirements into
*UML design
models.

SREPPLine:
*Addresses
security
requirements in
early stages.
*Facilitates
compliance with
the most relevant
security standards.

Threagile:
*Enables teams to
execute agile
threat modeling.
*Generates
a report with
potential risks and
mitigation
recommendations.

Tutamantic:
*Detects and
mitigates security
threats early
during the design
phase. *Reduces
human error and
inconsistencies
with single
variable input.

Blackduck:
*Allows teams to
address open
source policy
concerns.
*Checks open
source code for
newly discovered
vulnerabilities.

Fortify Static
Code Analyser:
*Supports most
languages and
build
environments.
*Conducts static
analysis.
*Detects 480 types
of vulnerabilities.

Nessus:
*Fully portable.
*Individuals can
scan 16 IPs at a
time.

Acunetix:
*Crawls thousands
of pages.
*Removes false
positives.

White Source:
*Offers SAST to
assist
organizations in
securing
proprietary code as
well as open
source.

Synk:
*Uses
industry-leading
security
intelligence to
monitor
vulnerabilities.
*Provides
actionable fix
advice with a
single click.

Contrast Protect:
*Allows developer
teams to prioritize
vulnerability
backlogs.
*Includes game
changing forensics
and application
protection for all
organizations.

55

References

93% of Security Professionals Lack the Necessary Tools to Detect Security Threats.

(2020, July 28). LogRhythm.

https://logrhythm.com/press-releases/93-of-security-professionals-lack-the-neces

sary-tools-to-detect-security-threats-according-to-logrhythm-report/

Acunetix.Web Application Security Scanner. (2023). https://www.acunetix.com/

Banerjee, U., Vashishtha, A., & Mukul, S. (2010). Evaluation of the Capabilities of

WireShark as a tool for Intrusion Detection. International Journal of Computer

Applications, 6. https://doi.org/10.5120/1092-1427

Bellairs, R. (2022). What Is Static Analysis? Static Code Analysis Overview. Perforce

Software. https://www.perforce.com/blog/sca/what-static-analysis

Black Duck Software Composition Analysis (SCA). Synopsys. (2023).

https://www.synopsys.com/software-integrity/security-testing/software-compositio

n-analysis.html

Boehm, B., & Basili, V. (2001). Software Defect Reduction Top 10 List. Computer, 34(1).

https://doi.org/10.1109/2.962984

Bokhari, M. U., & Siddiqui, S. T. (2009). A Comparative Study of Software Requirements

Tools for Secure Software Development. Undefined.

https://www.semanticscholar.org/paper/A-Comparative-Study-of-Software-Requir

ements-Tools-Bokhari-Siddiqui/416630616a9d92ebc0fd4a944481701895743c26

Bokhari, M., & Siddiqui, S. (2011, January 1). Metrics for Requirements Engineering and

Automated Requirements Tools.

56
Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos: An

Agent-Oriented Software Development Methodology. Autonomous Agents and

Multi-Agent Systems, 8(3), 203–236.

https://doi.org/10.1023/B:AGNT.0000018806.20944.ef

Chickowski, E. (2017). The most epic developer fails of 2017: Lessons learned.

TechBeacon.

https://techbeacon.com/app-dev-testing/most-epic-developer-fails-2017-lessons-l

earned

Cimpanu, C. (2021, December 13). Log4Shell attacks began two weeks ago, Cisco and

Cloudflare say. The Record by Recorded Future.

https://therecord.media/log4shell-attacks-began-two-weeks-ago-cisco-and-cloudfl

are-say/

Contrast Protect | Application and API Protection. Contrast Security. (n.d.). Retrieved

March 13, 2023, from https://www.contrastsecurity.com/contrast-protect

Coverity Scan—Static Analysis. (n.d.). Retrieved March 14, 2023, from

https://scan.coverity.com/

Cumming, J. (2017, February 23). Incident report on memory leak caused by Cloudflare

parser bug. The Cloudflare Blog.

http://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-p

arser-bug/

Datadog. (2023). Container Security.

https://www.datadoghq.com/dg/security/runtime-security/

57
Devanbu, P. T., & Stubblebine, S. (2000). Software Engineering for Security: A

Roadmap. The Future of Software Engineering, 227–239.

Documentation. Hdiv Security. (2021). https://hdivsecurity.com/docs/

Download Nessus Vulnerability Assessment - Nessus®. (2023). Tenable®.

https://www.tenable.com/products/nessus

Eisenstein, P. (2017, May 15). If you have a Dodge Ram, get this fatal flaw fixed asap.

NBC News.

https://www.nbcnews.com/business/autos/1-25-million-dodge-ram-pickups-recall

ed-over-fatal-software-n759476

Electronic Privacy Information Center. (2017). EPIC - Equifax Data Breach.

https://archive.epic.org/privacy/data-breach/equifax/

Features—Burp Suite Professional. (2023). https://portswigger.net/burp/pro/features

Fortify on Demand Free Trial. Micro Focus. (2023). Retrieved March 13, 2023, from

https://www.microfocus.com/en-us/products/application-security-testing/free-trial?

utm_source=google&utm_medium=cpc&utm_campaign=7018e000000t6gGAAQ

&ppc_keyword=fortify%20scan&gclid=Cj0KCQjwk7ugBhDIARIsAGuvgPbiMHMA

QveJrbIT_oNwrh8YAnlskjxY4RsJf675OI1GqD8CCMGGlP0aAlA6EALw_wcB

Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2005). ST-Tool: A CASE tool

for security requirements engineering,3th IEEE International Conference on

Requirements Engineering (RE'05), 451–452, https://doi.org/10.1109/RE.2005.67

58
Hein, D., & Saiedian, H. (2009). Secure Software Engineering: Learning from the Past

to Address Future Challenges. Information Security Journal: A Global

Perspective, 18(1), 8–25. https://doi.org/10.1080/19393550802623206

Home. Tutamantic. (n.d.). Retrieved March 16, 2023, from https://www.tutamantic.com/

Hoque, N., Bhuyan, M. H., Baishya, R. C., Bhattacharyya, D. K., & Kalita, J. K. (2014).

Network attacks: Taxonomy, tools and systems. Journal of Network and

Computer Applications, 40, 307–324. https://doi.org/10.1016/j.jnca.2013.08.001

Houmb, S., Islam, S., Knauss, E., Jürjens, J., & Schneider, K. (2010). Eliciting security

requirements and tracing them to design: An integration of Common Criteria,

heuristics, and UMLsec. Requirements Engineering, 15, 63–93.

https://doi.org/10.1007/s00766-009-0093-9

https://www.advantio.com/blog/secure-software-development-life-cycle-design-ph

ase

https://www.microfocus.com/media/data-sheet/fortify_static_code_analyzer_static

_application_security_testing_ds.pdf

Jagdale, P., O’Neil, Y., Sechman, J., & West, J. (2014). The Evolution of a Taxonomy:

Ten Years of Software Security. Semantic Scholar.

https://www.semanticscholar.org/paper/The-Evolution-of-a-Taxonomy-%3A-Ten-Y

ears-of-Software-Jagdale-O%E2%80%99Neil/3f4768930ade8794eb2657354b83

0caf032132d9

jegeib. (2022, August 25). Microsoft Threat Modeling Tool overview—Azure.

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool

59
Kinzer, K. (2021, December 31). Top 5 Security Breaches of 2021. JumpCloud.

https://jumpcloud.com/blog/top-5-security-breaches-of-2021

Log4j – Apache Log4j Security Vulnerabilities. (n.d.). Logging Services.

https://logging.apache.org/log4j/2.x/security.html

Marriott Data Breach FAQ: What Really Happened? (2020, December 9). Hotel Tech

Report. https://hoteltechreport.com/news/marriott-data-breach

McGraw, G. (1999). Software assurance for security. Computer, 32(4), 103–105.

https://doi.org/10.1109/2.755011

McLean, R. K. (2012). Comparing Static Security Analysis Tools Using Open Source

Software. 2012 IEEE Sixth International Conference on Software Security and

Reliability Companion, 68–74. https://doi.org/10.1109/SERE-C.2012.16

Mellado, D., Fernández-Medina, E., & Piattini, M. (2023). SREPPLine: Towards a

Security Requirements Engineering Process for Software Product Lines.

220–232. https://www.scitepress.org/Link.aspx?doi=10.5220/0002424702200232

Miele, P., Uwaisem, M. A., & Kim, D.-K. (2018). Comparative Assessment of Static

Analysis Tools for Software Vulnerability. Journal of Computers.

https://doi.org/10.17706/jcp.13.10.1136-1144

Nagy, C., & Mancoridis, S. (2009). Static Security Analysis Based on Input-Related

Software Faults. 2009 13th European Conference on Software Maintenance and

Reengineering. https://doi.org/10.1109/CSMR.2009.51

Nikto2. CIRT.net. (2023). Retrieved March 13, 2023, from https://cirt.net/Nikto2

60
Novak, J., Krajnc, A., & Žontar, R. (2010). Taxonomy of static code analysis tools. The

33rd International Convention MIPRO, 418–422.

Overview—Trivy. (n.d.). Trivy. Retrieved March 13, 2023, from

https://aquasecurity.github.io/trivy/v0.38/

OWASP ASST. (2020). OWASP. Retrieved March 12, 2023, from

https://owasp.org/ASST/

OWASP SecurityRAT. (2022).OWASP Foundation. Retrieved March 13, 2023, from

https://owasp.org/www-project-securityrat/

OWASP Threat Dragon. (2023). OWASP Foundation. Retrieved March 12, 2023, from

https://owasp.org/www-project-threat-dragon/

Perlroth, N. (2021, May 13). Colonial Pipeline paid 75 Bitcoin, or roughly $5 million, to

hackers. The New York Times.

https://www.nytimes.com/2021/05/13/technology/colonial-pipeline-ransom.html

Ponemon Institute: External Cyber Attacks Cost Enterprises $3.5M/year, 79% of

Businesses Lack Comprehensive Strategies to Manage these Risks. (2016, July

18). Business Wire.

https://www.businesswire.com/news/home/20160718005304/en/Ponemon-Institu

te-External-Cyber-Attacks-Cost-Enterprises-3.5Myear-79-of-Businesses-Lack-Co

mprehensive-Strategies-to-Manage-these-Risks

RASP Market Leader - Secure all Applications by Default. (n.d.). Imperva. Retrieved

March 13, 2023, from

https://www.imperva.com/products/runtime-application-self-protection-rasp/

61
SecuriCAD Enterprise. (n.d.). Foreseeti. Retrieved March 14, 2023, from

https://foreseeti.com/securicad-enterprise/

SecurityRAT. (2021). Retrieved March 13, 2023, from https://securityrat.github.io/

Snyk - Developer security (n.d.). Snyk. Retrieved March 14, 2023, from https://snyk.io/

Software Engineering - Software Design. (2021). Javatpoint. Www.Javatpoint.Com.

https://www.javatpoint.com/software-engineering-software-design

Soo Hoo, K.; Sudbury, A. W.; & Jaquith, A. R. (2001). Tangible ROI through Secure

Software Engineering. Secure Business Quarterly 1, 2 (Fourth Quarter 2001).

Spacey, J. (2017). 14 Types of Design Flaw. Simplicable.

https://simplicable.com/new/design-flaw

Stoneburner, G., Hayden, C., & Feringa, A. (2004). Engineering principles for

information technology security (a baseline for achieving security), revision a

(NIST SP 800-27ra; 0 ed., p. NIST SP 800-27ra). National Institute of Standards

and Technology. https://doi.org/10.6028/NIST.SP.800-27ra

Takata Airbag Recall: Everything You Need to Know. (2023, February 3). Consumer

Reports.

https://www.consumerreports.org/cars/car-recalls-defects/takata-airbag-recall-ev

erything-you-need-to-know-a1060713669/

The Impact of Security Misconfiguration and Its Mitigation. (2020). Cypress Data

Defense. https://cypressdatadefense.com/

The PhishLabs Blog—PhishLabs. (n.d.). Retrieved March 20, 2022, from

https://www.phishlabs.com/blog/

62
Threagile—Agile Threat Modeling Toolkit. (2020). https://threagile.io/

ThreatModeler—Automated Threat Modeling Solution. (2023). ThreatModeler.

https://threatmodeler.com/

Vega Vulnerability Scanner. (2014). Subgraph Retrieved March 13, 2023, from

https://subgraph.com/vega/?r=qal-stt

Weber, S., Karger, P. A., & Paradkar, A. (2005). A software flaw taxonomy: Aiming tools

at security. ACM SIGSOFT Software Engineering Notes, 30(4), 1–7.

https://doi.org/10.1145/1082983.1083209

What is a Cybersecurity attack? (2022). Rapid 7.

https://intsights.com/glossary/what-is-a-cybersecurity-attack

What is Dynamic Code Analysis? (n.d.). Check Point Software.

https://www.checkpoint.com/cyber-hub/cloud-security/what-is-dynamic-code-anal

ysis/

What is Requirements Elicitation. (2022). IGI Global.

https://www.igi-global.com/dictionary/identifying-requirements-healthcare-informa

tion-systems/33121

What Is Software Development: Definition, Processes and Types. Indeed.com. (2021).

Indeed Career Guide.

What is Software Engineering—Definition & Introduction. (n.d.). Software Intelligence for

Digital Leaders.

https://www.castsoftware.com/glossary/what-is-software-engineering-definition-ty

pes-of-basics-introduction

63
What is Vulnerability in Cyber Security? Types and Meaning. (2021, August 25).

Intellipaat Blog. https://intellipaat.com/blog/vulnerability-in-cyber-security/

WhiteSource Documentation—Confluence. (n.d.). Retrieved March 16, 2023, from

https://whitesource.atlassian.net/wiki/spaces/WD/overview

Wike, K. (2016). 64% Of Security Leaders Lack Tools Needed To Understand

Security Threats. Health IT Outcomes.

https://www.healthitoutcomes.com/doc/of-security-leaders-lack-tools-needed-to-u

nderst and-security-threats-0001

Why Checkmarx. (2023). Checkmarx Application Security. Retrieved March 13, 2023,

from https://checkmarx.com/why-checkmarx/right-choice/

Wolfgang, E. (2000). Software engineering for middleware: A roadmap. In A. Finkelstein

(Ed.) The Future of Software Engineering. ICSE 2000.

	Software Engineering Tools For Secure Application Development
	Recommended Citation

	Starred paper Final .docx

