
St. Cloud State University St. Cloud State University

The Repository at St. Cloud State The Repository at St. Cloud State

Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and
Information Technology

5-2023

Chaos Engineering for Microservices Chaos Engineering for Microservices

Arunkumar Akuthota

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Akuthota, Arunkumar, "Chaos Engineering for Microservices" (2023). Culminating Projects in Computer
Science and Information Technology. 42.
https://repository.stcloudstate.edu/csit_etds/42

This Starred Paper is brought to you for free and open access by the Department of Computer Science and
Information Technology at The Repository at St. Cloud State. It has been accepted for inclusion in Culminating
Projects in Computer Science and Information Technology by an authorized administrator of The Repository at St.
Cloud State. For more information, please contact tdsteman@stcloudstate.edu.

https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/csit_etds
https://repository.stcloudstate.edu/csit_etds
https://repository.stcloudstate.edu/csit
https://repository.stcloudstate.edu/csit
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/42?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu

Chaos Engineering for Microservices

by

Arunkumar Akuthota

A Starred Paper

 Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science in

Computer Science

May 2023

Starred Paper Committee:

Akalanka B. Mailewa, Chairperson

Aleksandar Tomovic

Mark B Schmidt

Sam E Espana Lopez

2

Abstract

Chaos engineering is a relatively new concept that is growing in popularity as it helps companies

to be more resilient in the face of unexpected networking or software failure. The idea behind

chaos engineering is that if you can create controlled failures, you can discover where your system

is weak and then fix those weaknesses before something happens to your production environment.

This research has been done on microservices, which are small pieces of code that perform specific

tasks on behalf of a larger application. Microservices are often hosted on different servers and run

by different teams, so they are much more fragile than monolithic applications. Microservices also

tend to be written in different languages, which makes them more difficult to understand and test

for bugs. The goal of this study was to determine whether microservices can be made more resilient

through chaos engineering or not; specifically, if it is possible to find out what kinds of failures

occur most often and how long they take to resolve.

3

Table of Contents

Page

List of Figures ... 4

Chapter

I. Chapter I: Chaos Engineering for Microservices.. 5

II. Chapter II: Background... 6

III. Chapter III: Aim and objectives. ... 7

Aim .. 7

Objectives .. 7

IV. Chapter IV: Research Questions ... 8

V. Chapter V: Research methodology ... 9

VI. Chapter VI: Literature Review.. 10

What is the impact of implementing chaos engineering on resiliency of

microservice architecture systems? .. 12

What are the benefits and drawbacks of applying chaos engineering on

microservices architecture-based systems?.. 19

What are the best tools for implementing chaos engineering in micro services?

.. 27

VII. Chapter VII: Chaos in Practice ... 36

Chaos Experiment using Simmy .NET: ... 37

VIII. Chapter VIII: Conclusion .. 45

IX. Works Cited .. 46

4

List of Figures

Figure Page

1. Chaos Engineering. ... 13

2. Chaos Experiment Settings Configuration.. 37

3. Simmy and Polly Packages for Experiment.. 38

4. Context Creation using the settings. ... 38

5. Status. .. 39

6. Response Time. ... 39

7. Swagger for API. .. 40

8. Sample API Response. .. 41

9. Experiment API. ... 41

10. Status call API Response. ... 42

11. Response Time API Response. ... 43

12. Solution Structure. .. 44

5

Chapter I: Chaos Engineering for Microservices

Chaos engineering is a discipline that aims to make software more resilient by testing

systems in production. It is used to identify weaknesses and vulnerabilities in technology

infrastructure, so that they can be fixed before they cause problems (Kutlu). The microservice

system is a small independent system that is based on the organizational and architectural approach

to the development of software and that will communicate well with defined APIs. The use of

microservices helps developers to become technological and language-agnostic. There are

different programming languages used by different team members for coding and debugging.

Microservices monitor help in architecture check for performance and service for identifying the

problems in future debugging. There are some problems faced while using microservices as these

are too certain in degradations of the environment and failure of services. Some failure testing

scenarios occurred while working with microservices such as errors in communication like time-

outs. Microservices also face challenges while working with distributed applications, the only

solution to provide the resilience of microservices is making distributed applications with the use

of chaos engineering (Naqvi et al.). The research has been made to analyze the implementation of

chaos engineering microservices and how they can be improved.

6

Chapter II: Background

Microservices are a popular development pattern, which has been adopted by many

companies. The primary benefit of adopting microservices is that it allows companies to break

down their software into smaller components, each of which can be developed and deployed

independently. However, there are also several drawbacks to adopting microservices. One such

drawback is that it becomes difficult for developers to maintain an overview over the entire

software application due to its large size and complexity (De 289-294). This leads to errors in the

software code and thus increases the risk of bugs and unexpected behavior. Another drawback is

that microservices are often deployed on different servers, which makes it difficult for developers

to test them together as part of a single system. In order to address these problems, chaos

engineering was introduced as a way of monitoring how well applications can withstand

unexpected failures or changes in their environment without breaking down entirely. Chaos

engineering provides a framework for testing how resilient an application is by simulating failures

like network outages or server crashes within the environment where they occur most often (e.g.,

production) (Björnberg).

7

Chapter III: Aim and objectives.

Aim

The aim of this research is to explore the effectiveness of chaos engineering in microservice

architecture.

Objectives

• To understand the importance of chaos engineering for microservices.

• To describe the types and categories of applications which can be used to implement chaos

engineering for microservices.

• To understand the chaos engineering with cloud traffic control.

• To understand the benefits and drawbacks of implementation of chaos engineering for

microservices.

• To learn about the different chaos engineering applications executed by the organizations.

8

Chapter IV: Research Questions

1. What is the impact of implementing Chaos engineering on resiliency of Microservice

Architecture systems?

2. What are the Benefits and Drawbacks of applying Chaos engineering on Microservices

architecture-based systems?

3. What are the best tools for implementing chaos engineering in microservices?

9

Chapter V: Research methodology

In this research, qualitative research method and systematic literature review was applied

for the research Chaos engineering for microservices. The aim of this study is to improve the

understanding of chaos engineering for microservices in order to determine its usefulness and to

provide recommendations for future research. The qualitative research method was used because

it allows the researcher to gain a deeper understanding of the phenomenon under investigation,

while systematic literature review was used because it provides a broad overview of related work

in the field. The research results show that chaos engineering is an effective tool that can be used

to improve an organization's readiness when it comes to managing incidents and mitigating risks.

However, further studies need to be conducted before chaos engineering can be widely adopted by

organizations.

10

Chapter VI: Literature Review

Chaos engineering is a method for testing software systems and their infrastructure. It

involves injecting failure into the system to see how it responds, and then using that information

to improve it. Chaos engineering is a new practice in the field of software engineering. It was

created as an alternative to traditional testing methods and aims to help companies create more

resilient systems by using controlled failure (Wang 63-66). Chaos engineers aim to break down

complex systems into smaller parts, which makes them easier to understand and predict. They also

try to find areas where they can predict failure before it happens, so they can work on preventative

measures. The term "microservices" refers to a software architecture style that divides large

programs into small, independent services. The most important benefit of this approach is that it

allows individual services to be developed, deployed, and scaled independently. Other benefits

include increased scalability, reliability and flexibility (Kesim).

Chaos engineering is important for microservices because it helps to ensure that the

services that comprise a microservices architecture can withstand failure, and therefore, adapt to

change. Microservices are made up of a number of components that each have their own

functionality. They often have to communicate with one another in order to function properly,

which means that if one of these components becomes unavailable or malfunctions, it can cause

other components to fail as well (Yin et al. 147-171). This is why chaos engineering is so key: it

allows us to identify problems with our systems before they become issues, so that we can fix them

before they become disasters. Chaos engineering helps organizations to understand how their

system will behave under stressors like increased load or faulty hardware; this lets us make sure

that our systems can continue functioning even when faced with these kinds of issues.

Microservices are a popular solution to the problem of scalability and consistency in an

enterprise setting. They allow organizations to scale each part of their application independently,

11

which makes it easier to keep up with customer demand. However, microservices architecture can

lead to problems when the pieces don't work together well (Jones et al.). Chaos engineering is a

technique for testing the resiliency of their application against unpredictable failures. It involves

intentionally introducing random failures into their system in order to see how it reacts. It helps

organizations to identify weaknesses in such a system before they cause problems for customers.

Microservices are a great way to keep the application from becoming too monolithic, but they can

pose challenges in terms of debugging and deployment. When organizations have many small

pieces, it is easier for each one to go wrong and harder to find the problem when it does. This is

where chaos engineering comes in: it helps organizations to test microservices so that when

something breaks, they can actually find out what went wrong. Chaos engineering involves

injecting failures into their system, then seeing how that affects other parts of an organization’s

infrastructure. Organizations can do this by simulating a failure or failure mode in one component

(e.g., a database), then observing how other components respond to that failure. For example, if

the database fails because someone deleted some data, but their application is still running

smoothly, then it means that the database failure was isolated enough not to impact anything else—

which means that for now, it can be ignored until further notice (Jamshidi et al. 24-35). Chaos

engineering can also help organizations to prevent future outages by showing what happens when

certain parts of their infrastructure fail. So, if a database fails because someone deleted some data,

and it causes an error in their application’s API layer, then someone know that this is something

to fix before it becomes a problem.

Chaos engineering is a new approach to system design and testing that involves creating

controlled failures in a production environment, with the goal of discovering unexpected behaviors

and improving resiliency. The idea of chaos engineering is to introduce failure into a system and

12

observe how it behaves in order to gain insights about what could go wrong. This allows

organizations to identify any potential issues before they happen and make changes to organization

infrastructure or codebase so that they do not cause problems in their production environment.

Chaos engineering has been used in companies like Netflix, Google, Facebook, and Amazon for

years now, but it is only recently gained traction among smaller companies—and even then, only

as an option for those who want it (Wang 63-66). A big reason for this is cost: implementing chaos

engineering is not cheap. It requires hiring people who are knowledgeable about how to implement

it properly (which is not always easy), as well as spending time developing test cases and running

them against their infrastructure.

What is the impact of implementing chaos engineering on resiliency of microservice

architecture systems?

Software systems may be tested using chaos engineering by deliberately triggering

undesirable outcomes, including service interruptions or API limits. Here, we intentionally

subject the system to a variety of failure circumstances in order to evaluate how well it copes

with chaos. It also aids teams in simulating real-world situations, which are essential for

discovering the hidden problems, monitoring blind spots, and performance bottlenecks that are

otherwise hard to locate in distributed systems. The strategy is very useful for avoiding

production delays or interruptions before they happen. Chaos engineering was pioneered by

Netflix, and it involves simulating service outages by unexpectedly terminating instances of

various systems. Live production systems were used for these so-called chaos experiments since

only their actual traffic existed and real-world conditions offered accurate data on the

architecture's robustness. The field of Chaos Engineering is growing in both popularity and

sophistication. Although Chaos Engineering's originators, like Netflix and Amazon, are

13

forward-thinking behemoths, the practice has now found favour with more traditional

businesses and smaller teams.

It is necessary to know how the program is supposed to act before beginning chaos

engineering.

Fig. 1. Chaos Engineering.

Hypothesis: In engineering, one often asks oneself "what if?" while attempting to predict the

results of a change. If they cut off service intermittently, they expect it to keep working. The

hypothesis may be broken down into two parts: the query and the assumption.

Testing: Chaos engineers create situations of simulated uncertainty and load test the system,

looking for disruptions in the application's supporting services, infrastructure, networks, and

endpoint devices to verify their hypotheses. The hypothesis is invalidated by the occurrence of any

failures in the stack.

Blast radius: As a result of isolating and analyzing errors, engineers may learn what goes wrong

in unsteady cloud environments. The blast radius refers to the area around the test site that was

14

affected by the explosion. Engineers specializing in chaos may regulate the range of explosions by

conducting the experiments themselves.

Insights: New software and microservices will be more resilient to unforeseen circumstances

because of the findings, which will be included into the software development and delivery

process.

One sluggish service may easily drive-up latency for a whole microservices architecture. In

reality, in today's world of microservice design and ecosystems, we have gone from a monolithic

system's single point of failure to a distributed system's many points of failure. We need alternative

approaches to testing in order to develop systems that are scalable, highly available, and

dependable (Jamshidi et al. 24-35).

A. By using Chaos Engineering, a system becomes more robust.

B. By planning and carrying out Chaos Engineering experiments, we learn where our system

has vulnerabilities that might lead to disruptions and, ultimately, a loss of consumers. This

aids in the enhancement of incident response.

C. By revealing potential risks, it aids in better appreciating the system's overall

precariousness.

The engineering time and resources needed to execute chaos engineering and reduce the

damage produced by both deliberate and inadvertent actions are additional costs associated with

adopting this approach. Because of this, many IT organizations, when initially presented with the

concept, focus only on the dangers of chaos engineering rather than considering its possible

advantages. Because of this, it is crucial to carefully consider the potential costs and benefits of

chaotic engineering before deciding to use it. However, there are several upsides to using chaotic

engineering. From the perspective of the consumers, the service's availability and dependability

15

will increase, and the frequency of service disruptions will reduce. Engineers can cut down on

avoidable disturbances to the system with the help of chaos testing, and the development team can

focus more on creating backup and recovery logics. In general, this strategy has several beneficial

benefits on ROI for businesses.

Resilience:

It's simpler than ever to create widespread apps using distributed components. There are

many open source and cloud-hosted components and services to use as a foundation for your

projects, and a wide variety of programming languages are supported. System dependability is not

guaranteed, and neither are the underlying components and dependencies. In the event of an outage

or interruption in service, or if infrastructure goes down, this might happen at any moment. It's

uncommon for even seemingly little changes to one part of the system to have far-reaching

consequences in another.

Applications and services must anticipate and account for system-wide failures,

interruptions in known and unknown dependencies, abrupt, unexpected demand, and latencies. It

is essential that applications and services be built to recover from and resist outages and

interruptions. Resilient applications and services may smoothly recover from failures and continue

functioning. While the dependability of its parts is important, the system as a whole must also be

able to withstand shocks and recover quickly. Resilience testing must be performed in a fully

integrated, production-like environment simulating the actual circumstances and load the system

would experience (Heorhiadi et al. 57-66).

Since Netflix started migrating away from on-premises data centers and into the cloud in

2008, we have routinely performed some type of resilience testing in live environments. The term

"Chaos Engineering" didn't even exist when we first started using it. The ball was set in motion by

16

Chaos Monkey, which became notorious for disrupting manufacturing services. Those advantages,

previously only applicable on a microscale, were amplified by Chaos Kong and made available to

those operating on a global scale. Failure Injection Testing (FIT) established a methodology for

addressing the in-between. Our Chaotic Automation Platform takes the discipline one step further

by allowing for continuous chaos experimentation throughout the whole microservice architecture,

a goal originally envisioned by the Principles of Chaos. It was only when we gained knowledge

and practice with these tools that we understood that Chaos Engineering isn't about intentionally

breaking a service. Though breaking things is simple, it's not necessarily useful. When working on

complicated systems, "Chaos Engineers" seek to bring to the surface the underlying chaos that

exists inside them. Engineering in distributed systems may be improved via a deeper understanding

of systemic impacts.

Microservice Architectures:

Microservice architectures have been gaining traction, with adopters like Amazon and

Netflix, as a means to circumvent the difficulties associated with using monolithic programs in the

context of cloud computing. Microservice architecture is an alternative to the traditional

monolithic method to software development in which a single service is responsible for providing

all of an application's functionality. Then, messages are sent between the different services.

Independent teams of developers may utilize the technologies and programming languages that

are most suited to the needs of a given use case while working on microservices. Furthermore, the

microservice's deployment, scaling, and operation are all handled independently from other

microservices, allowing for the optimal use of server types (high CPU, high memory, etc.) and

scaling rules (Th¨ones 116-116). The design also facilitates the adoption of continuous delivery

methodologies, since new deployments do not interfere with the functioning of other

17

microservices, and their operation may continue without interruption. Microservice architectures

are widely used by service delivery teams nowadays. Developers benefit from using microservices

because it allows them to work with a smaller, more focused codebase and have more control over

when and how their service is deployed. If you're considering switching from a monolith, there are

some significant benefits to consider.

In conclusion, businesses may gain agility, decrease complexity, and scale their

applications effectively in the cloud by adopting a microservice architectural style. Although the

microservice architectural style eliminates the hazard of a single point of failure, it introduces

others. Because each microservice is independent and uses the network to communicate, calls

between them are vulnerable to disruption at any moment. As such, it is crucial to anticipate and

gracefully deal with service failures by adhering to the design for failure concept.

Strategies for Building Resilient Microservices:

Many companies are switching from monolithic to microservices architecture to keep up

with the rapid pace of technological change. This is due to the fact that an individual mistake will

not result in the whole failure of the application. But does it mean your Microservices Architecture

can withstand failures? It's not unusual for applications to have problems and glitches when they're

being created. Failure is inevitable in a microservice ecosystem, thus it's better to accept it now

than later. Microservices should be built with the possibility of failure in mind. This means your

microservices architecture must be robust. Resilience is the capacity of an application to bounce

back after malfunctions. It is important to consider the number of distributed services and how to

make microservices robust while designing and building them.

Resilient Designs for Microservices:

18

There are three widely used methods of increasing fault tolerance and making applications

more resilient to disruptions. Tolerating the failure of individual parts while maintaining overall

system functionality is what we call fault tolerance (Zhou et al. 243–260).

Retry Pattern:

Microservices often rely on external resources like databases, modules, back-end services,

and APIs. Service calls may fail if any of these components ever stop working. Retrying may fix

these temporary failures. For both regular and unexpected breakdowns, the retry pattern

implements a mechanism that tries to run the failed operation again and again until it succeeds.

The retry count and timeouts are both at the control of IT administrators. Instead of immediately

shutting down, failing services may now try to contact healthy ones many times until they get the

expected answer.

Circuit Breaker Pattern:

The retry approach works well for short-term issues, but teams still need a reliable

microservices resilience strategy for handling more severe, persistent problems. For example, if a

retry mechanism repeatedly calls a badly damaged service until it gets the desired result, it might

produce cascading service failures that are harder to detect and fix. The component created from

the circuit breaker pattern resembles a standard electrical switch. This section is located between

the services' terminals and the requests for such services.

If regular communication is maintained between these services, the circuit breaker will

transmit information between them in a secure manner. After a certain number of unsuccessful

retries, the breaker opens the message circuit, putting an end to service operations. If the circuit is

open, the service is halted, and error prompts are sent to the client service for each unsuccessful

transaction. After a certain length of time, the circuit breaker switches to a semi-open position

19

(known as the circuit reset timeout). To test whether connections have been restored between the

two services, the breaker calls will close the loop during this period. After sensing a single failure,

the breaker will reset to the open position. As soon as the issue is fixed, the loop re-closes as usual.

Timeout Design Pattern

You've certainly heard of a timeout in football, but in Microservices it means waiting for a

certain length of time before moving on to the next step. A complete transaction, from initial

connection through receiving the last response byte, may be timed out. The SO TIMEOUT

function won't work with this, unfortunately. When we use the OkHttp or JDK11 clients, we may

avoid this problem.

What are the benefits and drawbacks of applying chaos engineering on microservices

architecture-based systems?

The complexity of a microservice design exceeds that of a traditional system. Due to the

increased number of components in a microservice context, management and upkeep become more

labor intensive. Putting your apps and distributed systems through stress tests may provide a wealth

of useful data for your development teams and business. Some of the advantages of using chaos

testing tools in Chaos Engineering projects are listed below.

Benefits:

Increases Reliability and Resiliency: using a Chaotic Engineering tool to do controlled chaos

experiments strengthens the system by putting its capabilities to the test. It's important to carefully

choose measures and make educated guesses about the steady state before beginning these kinds

of chaotic investigations. It is recommended that the first Chaos Engineering tests be conducted in

staging or another pre-production phase when the explosion radius will be modest. This safeguards

users from any potential adverse effects.

20

Increases End User and Stakeholder Satisfaction: You may execute tests close to production once

you and your team build trust in Chaos Engineering, which increases the satisfaction of both end

users and stakeholders. In a perfect system, all trials would be run using the same data that would

be used in the production setting. The production environment simulates the live system, so any

testing done there will give you a good understanding of how your final consumers will interact

with the product. Reduced network outages and service interruptions mean a better overall system

for end users (Naqvi et al.).

Advances Team Collaboration and Confidence: The insights gained from these chaotic trials

strengthen the engineering team's expertise, which in turn boosts collaboration and confidence.

This leads to quicker reactions, better teamwork, and higher levels of self-assurance. These

learnings may then be utilized to train junior staff.

Improves Incident Response Time: Quicker troubleshooting, repairs, and reactions to incidents are

possible as a result of the technical team's increased awareness and familiarity gained from prior

chaotic experiments, which improves incident response time. Therefore, the knowledge gained

through chaotic testing might lessen the occurrence of events in production. Response times may

be sped up with the help of game days. The goal is to build time into your process for the team to

go through potential emergency scenarios.

Enhances Performance Status Reporting for Applications: Chaos testing is widely regarded as one

of the most all-encompassing methods to performance engineering and testing procedures.

Conducting chaotic experiments on a regular basis helps build trust in distributed systems and

ensures that programs continue to function properly in the event of catastrophic failure.

21

Business Benefits: Using chaos engineering, businesses may avoid costly disruptions that might

otherwise result in significant revenue losses. This method also allows businesses to expand

rapidly without compromising the quality of their offerings.

Technical Benefits: While the incident rate may be lowered thanks to the results of chaotic

experiments, that's not the end of the technological advantages. Having a deeper understanding of

system modes and dependencies helps the team create a more reliable system. The engineering

staff may benefit greatly from the on-call preparation provided by a chaotic test.

Customer Benefits: Less downtime means less hassle for your customers. Customers gain most

from Chaos Engineering’s increased service reliability and availability.

A. Lessons learned through chaotic testing may help you prevent future problems in

production.

B. Chaos Engineering allows the team to test how the system responds to failures,

allowing them to adjust their strategy as needed.

C. As an aid to testing the team's reaction to the crisis, Chaos Engineering is a useful tool.

This is useful for verifying that the appropriate group was alerted once an alarm has

been raised.

D. At the most fundamental level, Chaos Engineering gives us an edge via increased

system uptime. The system's ability to recover from errors is improved via chaos

experiments.

E. Companies might lose a lot of money due to production outages depending on how

they use the system, but chaos engineering can help them avoid that fate by bolstering

employee trust in disaster recovery plans and increasing their investment in the success

of such plans.

22

F. Accelerate innovation is the results of chaos testing are sent back to the development

team so that they may make modifications to the software's architecture to make it more

robust and increase the quality of their output.

One typical response to a paper on Chaos Engineering goes something like this: "Gee, that

sounds very fascinating, but our software and our organization are both entirely different from

Netflix, so this stuff simply wouldn't apply to us." While we use Netflix as a case study, the ideas

discussed here are applicable to any company, and our approach to experiment design does not

presuppose any specific technology stack or collection of tools. Whether you want to know if, why,

when, and how you should implement Chaos Engineering methods, you'll find all that and more in

Chaos Maturity Model, where we explore and go deeply into the Chaos Maturity Model.

Google, Amazon, Microsoft, Dropbox, Yahoo!, Uber, cars.com, Gremlin Inc., University

of California, Santa Cruz, SendGrid, North Carolina State University, Sendence, Visa, New Relic,

Jet.com, Pivotal, ScyllaDB, GitHub, DevJam, HERE, Cake Solutions, Sandia National Labs,

Cognitect, Thoughtworks, and O'Reilly were just some of the companies represented at the most

recent Chaos Community Day. This book is filled with real-world applications of Chaos

Engineering from a wide variety of fields, including but not limited to the financial sector, the

internet commerce sector, the aviation industry, and more.

Large financial organizations, manufacturers, and healthcare providers are just a few

examples of non-digital native businesses that make considerable use of Chaos Engineering. Are

financial dealings dependent on your elaborate system? Chaos Engineering is used by major

financial institutions to ensure that their transactional systems are redundant. Is there a risk to human

life? Clinical trials are the tried-and-true method for verifying the efficacy of new medical

treatments in the United States, and Chaos Engineering takes many cues from this approach.

23

Financial, medical, and insurance organizations, as well as manufacturers of rockets, agricultural

equipment, and tools, IT behemoths, and fledgling businesses all see the value in Chaos

Engineering.

Characteristics of a Chaos Test:

While some may believe that releasing code into production and watching what occurs is chaos

engineering, this is not the case. You need an advanced level of maturity in your infrastructure to

get started. There are universal qualities shared by all chaos tests; your infrastructure needs to be

sufficiently developed to support them to conduct chaos testing.

A. Confidence: You should never try out a feature in production if there's even a little chance

it may fail. First, the chaotic test is tried out in a staging environment. If the problem arises

there, you must address it. You should only launch it into production if you have complete

faith that it will function as intended.

B. Risk is contained: It is common practice to split your traffic sample into a test group, which

will have the problem introduced, and a control group, whose monitors will be compared to

those of the test group. Perhaps 1% of your traffic is assigned to the test group, 1% to the

control monitoring group, and the other 99% to the status quo. This dispels the common

misconception that a chaos test just involves temporarily making a node unavailable.

Instead, it is going dark for a small percentage (say, 0.5%) of its user base.

C. Hypothesis: Using KPIs, your tests should always contain a hypothesis. In the case of an

online store, for instance, the theory may be that if the product recommendation service

takes longer than 200 milliseconds to react, the system would simply stop suggesting things

while leaving all other functionality untouched.

24

D. Failure criteria: Set an early cutoff point for the exam and stick to it. If the experimental

group's average reaction time is more than 10% longer than the control groups, for instance,

or if the experimental group records 1% more mistakes than the control group, the

experiment will be terminated (Poltronieri et al.).

E. Monitoring: To promptly cancel the test, you need a well-developed monitoring

infrastructure to keep an eye on the system's condition throughout the experiment. The

importance of dispersed tracing has been hammered home by Netflix in particular. That's

connected to the earlier idea about keeping things in. The experimental group should ideally

include no more than 0.5 percent of all site visitors. Assigning half of your customers to the

test group (and the other half to the control group) and then tracking each customer's calls

throughout the system to ensure that all calls spawned by that customer remain in the

appropriate group is necessary if you want to test with only 5% of your customers

(Simonsson et al. 117-129).

F. Automation: Using continuous integration/continuous deployment scripts, the test may be

run automatically. Automation also allows for instantaneous test termination in the event of

an error. At the highest level of development, you never bother the personnel on call to run

anything except well approved chaos tests in production. When these tests discover the

failure conditions, they immediately terminate and send out a warning. Containers or a

public cloud are often required to automate such infrastructure migrations. It might be

difficult, if not impossible, to automate chaos testing on non-cloud virtual machines or bare

metal.

It's challenging to get to that point of maturity, which is perhaps why many businesses haven't

completely embraced it just yet. You can see from the above that it demands a level of public cloud

25

or container, CI/CD, and end-to-end monitoring maturity that many firms wish to have for many

reasons besides chaotic engineering but do not currently have.

However, like with any IT investment, even the most advanced degree of maturity may not be

worth it in your specific case. Similar to how many organizations are deconstructing their

monoliths without fully adopting microservices, many organizations see benefit in using a hybrid

approach. For instance, one organization I spoke with conducted much more chaotic testing in a

production-like acceptance environment than in actual production. They were satisfied with the

results and decided there was no need to further develop their production chaos testing

infrastructure.

Drawbacks:

A. The implementation of Chaos Monkey on a big scale, together with the associated testing,

may result in additional expenses.

B. The application might be negatively affected by carelessness or incorrect actions in its

creation and execution, which would have a negative effect on the consumer.

C. Unfortunately, there is no Interface provided to keep tabs on the project while it is being

implemented. Scripts and settings files are processed.

D. Not all deployment types are supported.

Challenges of Microservices Architecture:

The complexity of a microservice design exceeds that of a traditional system. Due to the

increased number of components in a microservice context, management and upkeep become more

labor intensive. The following are some of the most significant obstacles that businesses encounter

while adopting microservices:

A. Bounded Context

26

B. Dynamic Scale up and Scale Down

C. Monitoring

D. Fault Tolerance

E. Cyclic dependencies

F. DevOps Culture

Bounded context: The idea of a bounded context was developed in the framework of Domain-

Driven Design (DDD). It advocates the Object model first strategy, which establishes a data model

for which service is accountable and has a contractual obligation. A bounded context outlines the

scope of the model's obligation and helps to ensure that it is met. It makes sure that outside

influences won't disrupt the domain. Every model operates in a certain sub-domain, which entails

an implicitly determined context. To rephrase, the service is the only custodian of the data and has

the exclusive authority to make changes or delete it. The most crucial aspect of microservices is

supported, making this a great tool (Escobar).

Dynamic scale up and scale down: Microservices may be running at a different instance of the

type depending on the demand. Your microservice needs to automatically scale up as well as down.

The price of the microservices is lowered as a result. The burden may be actively shared among

us.

Monitoring: Because we now have numerous services making up the same functionality formerly

supplied by a single application, the conventional approach to monitoring will not work well with

microservices. Finding the reason for an application issue is often difficult.

Fault Tolerance: When one component of a system fails, it does not bring down the rest of the

system. When the failure happens, the application may still function to some extent. A complete

system failure may occur if the system does not have fault tolerance. With this circuit breaker, it

27

is possible to build in fault tolerance. The circuit breaker design encapsulates calls to external

services and flags problems when they occur. Microservices must be able to recover from failures

both inside and outside of their own infrastructure.

Cyclic Dependency: The management of inter-service dependencies and their functioning is

crucial. In the absence of timely attention, cyclic dependence might become an issue.

DevOps Culture: DevOps is a natural home for microservices. It allows for quicker service

delivery, more data visibility, and lower data costs. It allows them to migrate from SOA to

Microservice Architecture while retaining the benefits of containerization (MSA).

A. We need to ensure that all our microservices can grow in tandem as we add more of them.

Granularity increases complexity because it introduces additional variables.

B. Because microservices are stateless, distributed, and self-sufficient, conventional logging

approaches are useless. Events on different systems must be correlated in the logging.

C. Failure rates tend to rise in tandem with the number of interdependent services.

What are the best tools for implementing chaos engineering in micro services?

For several reasons, including the need to speed up deployments, businesses are favoring

cloud-native deployments (i.e., those based on Kubernetes) over more conventional approaches.

Since there are more potential points of failure in cloud-native systems than in conventional

deployments, site reliability engineers (SREs) and development teams must now adapt to this new

reality. Downtime that isn't anticipated may have serious consequences for a company's bottom

line, reputation, and brand. The rising costs of unscheduled downtime and this rise in system-level

complexity have pushed the testing of cloud-native systems into the spotlight. To assist teams,

provide more dependable systems, chaos engineering offers the method through which system-

level software testing naturally reveals weak areas. Modern software systems are very complex,

28

thus it's important to test them thoroughly for bugs. As the name suggests, chaos engineering is

the practice of evaluating a system's resilience to random, unpredictable interruptions of normal

operation. Development teams may prevent bugs and improve software reliability by doing

resilience testing. The infrastructure of a piece of software may be subjected to chaos testing to

execute proactive experiments. Creating artificial failures may boost morale in a company if it

shows that its systems can weather storms and recover quickly.

Chaotic Monkey, developed by Netflix, was the first widely used tool for chaos

engineering. Although the resilience tool was somewhat basic, it did include the essentials for

doing effective chaotic experiments. IT departments in some companies still use it. There are now

a number of commercial and open-source alternatives, such as tools with more sophisticated

controls, the ability to integrate with cutting-edge platforms, and more accurate components with

which to conduct chaotic experiments (Heorhiadi et al. 57-66).

According to Ryan Petrich, CTO of Capsule, a Linux security provider that has tried

several chaos engineering tools, errors are found with them before they become major concerns.

Issues with Capsule8's transport layer security monitoring, such as certificate expiry, were

uncovered during chaotic testing. Petrich and his colleagues found the problem and fixed it by

upgrading the monitoring infrastructure to warn the team a week before certificates were set to

expire.

Chaos testing also revealed that not all systems would trigger a failover to another area

when they were brought down, which was an unpleasant surprise for Capsule8. Petrich warned

that tools aren't everything, and that good chaotic engineering still demands discipline and

generally clean operational methods. When "availability" and "resilience" are prioritized at work

29

and precautions are taken to guarantee they are always up and running, "chaos engineering" is "an

important discipline to question and verify assumptions," as he put it.

Why Use Tools for Chaos Engineering?

To build trust in complex systems, standard testing approaches have always been utilized.

However, recently, chaos engineering tools have emerged as an alternative. The failure of a

software platform is inevitable; thus, it is essential to identify vulnerabilities and address them

before they disrupt company operations. Chaos engineering is used by major digital companies

like Amazon, Netflix, and Microsoft to better understand their own systematic behavior and

problems. This method bases itself on the concept of hypothesis testing and performance

measurements to evaluate potential system designs. By using assumptions and well-executed

chaotic experiments, chaos engineering tools may reveal hidden infrastructure flaws or

unresponsive systems (Basiri et al. 1-1).

Chaos engineering entails the following procedures:

Creating a steady-state hypothesis: you should consider all the possible problems that may arise

in the system. Create processes for chaotic testing using failure injection and anticipate a range of

outcomes.

Simulate real-world scenarios: Real-world circumstances should be simulated. Design a battery

of experiments to find out how the system responds to various inputs. Test out a few hypotheses

using a small sample size and an experimental group.

Review system metrics: Investigate the results of the system in terms of its performance and the

metrics by which it was measured. Learn how often your theories fail and what you can do about

it.

30

Implement changes as needed: Adjust as necessary; after chaotic experiments are complete, you

should know what to do. Fix any problems you see and keep going until you've eliminated almost

all of them.

Automate chaos experiments: As soon as your system's resilience to the failure mode has been

confirmed, you should conduct chaos experiments and automate them in your software delivery

pipeline to provide continual validation regardless of any changes to the system's configuration

that may occur in the environment. As soon as the experiment fails, you may be alerted and given

the option to manually undo the modification that caused the failure or have it undone

automatically. You are safe against a certain kind of failure that may bring down your system.

Your company may put its resilience to the test and its tolerance for error to the test with the use

of a well-designed and comprehensive practice. Let's check over a few of the most widely used

chaos engineering methods for making your systems better.

Examples of common chaos testing instruments include:

Chaos Monkey:

To test how well cloud systems can recover from errors, experts utilize a program called

Chaos Monkey. Netflix developed this to check the stability and recovery capabilities of the AWS

platform on which it relies. Because it causes chaos and damage like a crazed, armed monkey,

Chaos Monkey was given its moniker. In addition, the concept of Chaos Engineering may trace its

roots back to Chaos Monkey. It was designed with the idea that constant little failures are

preferable than one catastrophic one. One of the first open-source Chaos Engineering tools, it is

often credited with having sped up the spread of Chaos Engineering outside major corporations.

Netflix used it as a foundation to develop their suite of failure injection tools, the Simian Army,

albeit many of those tools have since been deprecated or merged into others, such as Swabbie.

31

There is just one kind of assault against this system, and that is to kill off running instances of

virtual machines. You may schedule it to run for a certain amount of time, after which it will shut

down one instance at random. Attempting to simulate unanticipated problems in production with

unprepared personnel might backfire (Torkura et al. 1-1).

Key Features:

Among the first open-source technologies, Chaotic Monkey was a pioneering tool for chaos

engineering. The Simian Army is a collection of fault injection tools created by Netflix after the

company's creation. Some of Chaos Monkey's most notable traits are:

A. Identifies bottlenecks in the system to reduce downtime in production settings.

B. The capacity to conduct infra-level application availability and resilience testing.

C. Tests may be scheduled at certain times of the day.

D. Makes tracking simple.

Chaos Blade:

Alibaba developed it for use in testing various types of failure. It's compatible with a broad

variety of environments, from Kubernetes to the cloud to bare metal, and offers a wide variety of

attacks, such as packet loss, process termination, and excessive resource use.

For businesses looking to enhance their fault tolerance of distributed systems and guarantee

business continuity as they migrate to the cloud or adopt cloud-native architectures, Alibaba's

open-source experimental injection tool ChaosBlade may assist.

Chaosblade was developed at MonkeyKing as an internal open-source project. It incorporates

the most successful aspects of the several companies that make up the Alibaba Group and is

founded on over a decade of trial and error. In addition to being a breeze to use, ChaosBlade also

allows for a wide variety of experimentation. Possible cases are:

32

A. Hardware components such as central processing units, random access memories,

networks, disks, processes, and experimental settings;

B. Java applications: Databases, caches, messaging, the Java Virtual Machine (JVM),

microservices, etc. are all examples of Java applications. Complex experimental situations

may be injected using any class method you like;

C. Applications written in C++ may be exploited in several ways, including the manipulation

of variables and return values, the wait before injecting new code, and the specification of

arbitrary functions.

D. Container: including cases when the container, its CPU, memory, network, disk, and

processes are terminated.

E. Cloud-native platforms: Pod network and Pod itself experimental situations, such as

destroying Pods, and container experimental scenarios, such as the aforementioned Docker

container experimental scenario, on cloud-native platforms; 5. CPU, memory, network,

disk, and process experimental scenarios on Kubernetes platform nodes.

Chaos Mesh:

Seventeen different types of assaults are supported by Chaos Mesh. These include resource

exhaustion, network delay, packet loss, bandwidth limitation, disk I/O latency, system time

manipulation, and kernel panics. There aren't many open-source programs with a fully-featured

online user interface, but Chaos Mesh is one of them (UI). You can witness the immediate effect

of the executions in Chaos Mesh by viewing them alongside the metrics for the cluster, which is

provided by the integration with Grafana. Failures may be introduced into any part of a Kubernetes

infrastructure with the help of Chaos Mesh, a management solution for chaos engineering. All of

the kernel, network, I/O, and pod systems fall under this category. With Chaos Mesh, you can

33

simulate latency and have Kubernetes pods automatically terminate. Pod-to-pod communication

may be disrupted, and fake read/write failures can be simulated. Rules for when and how an

experiment is conducted may be defined. A YAML file is used to define these tests. A dashboard

is included in Chaos Mesh for analyzing experimental data. It's built on top of Kubernetes and

works with most cloud providers. It's free and open source, and it was just approved as a sandbox

project at the CNCF. Incorporating Chaos Mesh into your DevOps process is a great way to include

chaos engineering techniques into your application development (Basiri et al. 1-1).

Key Features:

A. When testing high-profile distribution systems like Apache APISIX and RabbitMQ, Chaos

Mesh relies on a Kubernetes-based interface that comes with complete automation and

graphical features.

B. The Chaos Mesh framework allows for event-driven fault simulations to be used for

scenario testing.

C. Chaos Mesh enables experimentation on the platform with a wide range of controllable

variables and built-in status monitoring.

Simmy:

Simmy is an open-source chaos-injecting program that works in tandem with the Polly.NET

resilience project. Polly is the platform on which your scripts will be executed, and it lets you

design chaos-injection rules. The system's rules include an exceptions policy, a behavior policy,

and a general policy that allows for the introduction of any new behavior. The behavior is

introduced at random by these regulations. Any time Polly is used to run code, Simmy may be

used to add a chaos-injection policy (Monkey Policy) or policies. As a result, Simmy now proposes

three forms of chaos management:

34

A. To simulate system failure, you may use the Fault feature, which injects exceptions or

replacement results.

B. Latency: Introduces a delay into call executions.

C. Behavior: Inject any additional behavior prior to making a call.

All chaos policies (Monkey policies) aim to inject behavior at random, whether it errors, delay,

or bespoke behavior; a Monkey policy lets you set an injection rate anywhere from 0% to 100%.

the greater the pace of injection, the greater the likelihood of injecting them. The policy also lets

you choose whether or not random injection is enabled, allowing you to release/hold (turn on/off)

the monkeys independently of the injection rate you choose. For example, setting an injection rate

of 100% will have no effect if you instruct the policy to ignore random injection.

Litmus:

Litmus, like Chaos Mesh, is a tool built specifically for Kubernetes and is hosted in the

CNCF sandbox. It was first built for evaluating OpenEBS, a free and open-source data storage

option for Kubernetes. During, after, and even before an experiment, you may verify the status of

your application with the help of Litmus's built-in health monitoring function, Litmus Probes.

Litmus has a considerably more complicated onboarding process compared to other platforms.

Each experimental app and namespace in Litmus needs its own service account and annotations.

Azure:

In order to assess and enhance the robustness of your cloud-based applications and services,

you may leverage the principles of chaos engineering with Azure Chaos Studio, a fully managed

solution. It does tests that may mimic problems or occurrences, such as the failure of a region or an

application that causes a virtual machine to occupy all of its CPU.

35

The capacity of a system to resist and recover from stressors is referred to as its resilience. Errors

and failures caused by an interrupted application may have a significant impact on your operations

and goals. It is critical to test and enhance your application's resilience whether you are designing,

moving, or managing Azure apps (Torkura et al. 1-1).

You may set up your Azure Chaos Studio experiments in one of three ways:

A. With service-direct fault, you may execute code directly against an Azure resource without

the requirement for instrumentation.

B. The agent-based fault method necessitates the installation of the chaos agent.

C. Injecting faults into an AKS cluster with the help of Chaos Mesh, a free, open-source chaos

engineering tool for Kubernetes. Service-direct problems caused by Chaos Mesh need the

addition of Chaos Mesh to the AKS cluster.

36

Chapter VII: Chaos in Practice

Microsoft provides three different tutorials on how to begin using Azure Chaos Studio on

its documentation page: one for service-direct errors, another for agent-based faults, and a third for

AKS Chaos Mesh issues. The following examples make use of agent-based and service-direct

faults. Two virtual computers running Linux (Ubuntu 20.04) and the Apache web server are

employed in this lab setting, with the whole thing buffered by a load balancer. They are set up on a

virtual LAN with their own subnet and security group.

Testing complex systems by making them fail:

We may run into trouble testing what occurs if a service breaks under load, since more

complicated systems need more testing. When a shopping cart's backend is forced to switch

databases in the midst of a purchase, how exactly do transactions fail? Is there a plan in place for

a restaurant delivery tracking app to handle a major messaging platform failure?

We need a model of testing that takes into account live systems and gradually fails off

components in order to monitor system behavior. The goal is to see how well a system can handle

a controlled dose of failure while under load. The chaos monkey tool developed at Netflix was the

first of its kind, and it helped pave the way for a new approach to software testing called chaos

engineering.

Although learning about system failures is a useful byproduct of chaotic engineering, the

primary goal is to demonstrate the robustness of the system under stress. Regardless of what was

going on in the world, Netflix had to provide its consumers with a consistently excellent viewing

experience.

It's hardly unexpected that other platforms, notably hyperscale cloud providers like

Microsoft Azure, have adopted such methods. You need to know that your Azure-hosted apps will

keep functioning if a Microsoft server goes down. The Microsoft team known as chaos engineering

37

routinely investigates the platform's vulnerability to failures in order to make sure that the services

your apps rely on can absorb them without causing any harm.

Chaos Experiment using Simmy .NET:

As part of the experiment, Fault service response and Latency will be injected. The Simmy

package from the Polly is used for the experiment. It has the inject rate to determine how many

requests should be affected with the faults and we will also mention the exception return types in

case of failures. The configuration consists of Operation key, Enabled, Injection rate, Latency in

milliseconds, Status Code and Exception. It also has experiment endpoints which endpoints are

being invoked as part of the experiment. It should be as below figure.

Fig. 2. Chaos Experiment Settings Configuration.

Below packages are used for the experiment and these packages will be available in NuGet

library.

38

Fig. 3. Simmy and Polly Packages for Experiment.

ResilientHttpClient is created to make rest API calls to the microservices, and the API calls

will this client object where the faults will be injected into. To inject this, Polly Context will be

used, and this context is initialized using the chaos settings given in the configuration as mentioned

in Fig. 2. Below code will give insights on the Context creation. As part of this experiment, we

implemented two endpoints. One is to fetch the status of the request, and another is to inject the

latency as mentioned above in the chaos settings.

Fig. 4. Context Creation using the settings.

The context created will be used in the mentioned two methods Status and ResponseTime.

For Status call, we will return the status code 503 as mentioned in the configuration and for

39

response time, we will inject the latency and we will return the time elapsed for the call in

milliseconds. Below code illustrates the same.

Fig. 5. Status.

Fig. 6. Response Time.

The results of the experiment can be seen in any API testing tools like Postman, Browsers and

Swagger. The experiment endpoints are microservices and they are hosted on Azure App service

and Azure Function app. Below URL can used for the testing of the APIs.

A. https://scsu-699-chaosengineering-research-web-

api.azurewebsites.net/swagger/index.html

https://scsu-699-chaosengineering-research-web-api.azurewebsites.net/swagger/index.html
https://scsu-699-chaosengineering-research-web-api.azurewebsites.net/swagger/index.html

40

B. https://scsu-699-chaosengineering-research-http-

function.azurewebsites.net/api/ChaosExperiment?name=professor

The experiment application is also an API hosted on Azure. It is deployed to Azure app service.

Below URL can be used for testing.

A. https://scsu-699-chaosengineering-research-api-experiment.azurewebsites.net/index.html

Swagger can be used for testing APIs and Below figure illustrates on the API which has two

endpoints Greeting and Weather Forecast. Greeting endpoint will send a good morning, Good

Afternoon, Good Evening and Good night based on the server’s current time. A name parameter

can be passed to display the name as well in the response. Weather Forecast is to send the weather

information based on the random values in the backend.

Fig. 7. Swagger for API.

Sample responses can be displayed as below:

https://scsu-699-chaosengineering-research-http-function.azurewebsites.net/api/ChaosExperiment?name=professor
https://scsu-699-chaosengineering-research-http-function.azurewebsites.net/api/ChaosExperiment?name=professor
https://scsu-699-chaosengineering-research-api-experiment.azurewebsites.net/index.html

41

Fig. 8. Sample API Response.

Experiment API has two endpoints as below and the swagger API would like as below.

Fig. 9. Experiment API.

42

Sample response for the experiment API.

Status Call:

Fig. 10. Status call API Response.

Response Time Call:

43

Fig. 11. Response Time API Response.

This entire application is developed using C#, Dotnet 6 and Azure. It is implemented using

Visual studio and the code structure is defined as below.

44

Fig. 12. Solution Structure.

45

Chapter VIII: Conclusion

Chaos engineering is a powerful approach to improving the resiliency and reliability of

microservices architecture-based systems. Through deliberate and controlled experimentation,

chaos engineering can identify weaknesses and vulnerabilities in a system before they cause

catastrophic failures in production. While there are certainly some drawbacks to implementing

chaos engineering, such as the cost and complexity of setting up and running experiments, the

benefits far outweigh these drawbacks. Some of the key benefits of chaos engineering include

increased confidence in the system's ability to handle unexpected failures, improved understanding

of the system's behavior under stress, and reduced downtime and associated costs. The research

also showed that there are several tools available for implementing chaos engineering in

microservices. Some of the most popular tools include Chaos Monkey, Chaos Monkey, Chaos

Blade, Chaos Mesh, Simmy, Litmus and Azure Chaos Studio. These tools provide a variety of

features and capabilities, including fault injection, latency injection, and network partitioning,

which can help teams to better understand how their microservices will behave in various failure

scenarios. Overall, the research suggests that chaos engineering is a valuable approach for

improving the resiliency and reliability of microservices architecture-based systems. By

identifying and addressing weaknesses in the system before they cause problems in production,

chaos engineering can help teams to deliver more reliable and resilient services to their customers.

While there are certainly challenges associated with implementing chaos engineering, the benefits

of doing so make it a worthwhile investment for organizations looking to improve the quality of

their microservices-based systems.

46

Works Cited

Basiri, Ali, et al. "Chaos Engineering." IEEE, vol. 33, 2016: 1-1.

Björnberg, Adam. "Cloud native chaos engineering for IoT systems." 2021.

De, Suman. "A Study on Chaos Engineering for improving Cloud Software Quality and

Reliability. In 2021 International Conference on Disruptive Technologies for Multi-

Disciplinary Research and Applications (CENTCON)." IEEE vol. 1 (2021, November),

pp. 289-294.

Escobar, Daniel. "Towards the understanding and evolution of monolithic applications as

microservices." 2016.

Heorhiadi, et al. "Gremlin: Systematic Resilience Testing of Microservices." 2016, pp. 57-66.

Jamshidi, Pooyan, et al. "Microservices: The journey so far and challenges ahead." IEEE vol. 35,

no. 3, 2018, pp. 24-35.

Jones, Nora, et al. Chaos Engineering. 2018.

Kesim, Dominik. "Assessing resilience of software systems by the application of chaos

engineering: a case study ." Bachelor's thesis (2019).

Kutlu, Kübra. "Machine Learning based Chaos Engineering for Cloud-Native Microservice

Architectures." 2021.

Naqvi, Moeen Ali, et al. "On Evaluating Self-Adaptive and Self-Healing Systems using Chaos

Engineering. arXiv preprint arXiv:2208.13227." 2022.

Poltronieri, Filippo, et al. "A Chaos Engineering Approach for Improving the Resiliency of IT

Services Configurations." 2022.

Simonsson, Jesper, et al. "Observability and chaos engineering on system calls for containerized

applications in Docker. Future Generation Computer Systems." vol. 122, 2021, pp. 117-

129.

Th¨ones, Johannes. "Microservices architecture style." IEEE Software vol. 32, 2019, pp. 116-116.

47

Torkura, Kennedy, et al. "CloudStrike: Chaos Engineering for Security and Resiliency in Cloud

Infrastructure." IEEE, 2020, pp. 1-1.

Wang, Yuwei. "Towards service discovery and autonomic version management in self-healing

microservices architecture." In Proceedings of the 13th European Conference on Software

Architecture 2, 2019, September, pp. 63-66.

Yin, Kanglin, et al. "Analyse resilience risks in microservice architecture systems with causality

search and inference algorithms." International Journal of Web and Grid Services, vol. 16,

no. 2, 2020, pp. 147-171.

Zhou, Xiang, et al. "Fault analysis and debugging of microservice systems: Industrial survey,

benchmark system, and empirical study." IEEE vol. 47, no. 2, 2021, pp. 243–260.

	Chaos Engineering for Microservices
	Recommended Citation

	tmp.1683072712.pdf.r58ez

