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Abstract

Syndromic surveillance detects and monitors individual and population health indicators through 

sources such as emergency department records. Automated classification of these records can 

improve outbreak detection speed and diagnosis accuracy. Current syndromic systems rely on 

hand-coded keyword-based methods to parse written fields and may benefit from the use of 

modern supervised-learning classifier models. In this paper, we implement two recurrent neural 

network models based on long short-term memory (LSTM) and gated recurrent unit (GRU) 

cells and compare them to two traditional bag-of-words classifiers: multinomial naïve Bayes 

(MNB) and a support vector machine (SVM). The MNB classifier is one of only two machine 

learning algorithms currently being used for syndromic surveillance. All four models are trained 

to predict diagnostic code groups as defined by Clinical Classification Software, first to predict 

from discharge diagnosis, and then from chief complaint fields. The classifiers are trained on 3.6 

million de-identified emergency department records from a single United States jurisdiction. We 

compare performance of these models primarily using the F1 score, and we measure absolute 

model performance to determine which conditions are the most amenable to surveillance based 

on chief complaint alone. Using discharge diagnoses, the LSTM classifier performs best, though 

all models exhibit an F1 score above 96.00. Using chief complaints, the GRU performs best (F1 = 

47.38), and MNB with bigrams performs worst (F1 = 39.40). We also note that certain syndrome 

types are easier to detect than others. For example, chief complaints using the GRU model predicts 

alcohol-related disorders well (F1 = 78.91) but predicts influenza poorly (F1 = 14.80). In all 

instances, the RNN models outperformed the bag-of-words classifiers suggesting deep learning 

models could substantially improve the automatic classification of unstructured text for syndromic 

surveillance.
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1. Introduction

Syndromic surveillance—detection and monitoring individual and population health 

indicators that are discernible before confirmed diagnoses are made [24]—can draw 

from many data sources. Electronic health records of emergency department encounters, 

especially the free-text chief complaint and discharge diagnosis fields, are a common 

focus for syndromic surveillance [34]. The text in these fields often contains a blend of 

medical terms, medical codes, slang terms, misspellings, and abbreviations, making them 

difficult to classify automatically. In practice, a computer algorithm associates the text of 

the chief complaint field with predefined syndromes, often by picking out keywords or 

parts of keywords or by applying a machine learning algorithm based on mathematical 

representation of the chief complaint text. In other cases, surveillance practitioners handcraft 

case definitions for monitoring rare, emerging, or otherwise difficulty-to-classify syndromes 

in their particular jurisdictions. In this paper, we explore recurrent neural networks (RNNs) 

as an alternative to existing automated methods for associating chief complaint text with 

syndromes.

1.1. Overview of chief complaint classifiers

In a recent overview of chief complaint classifiers [13], the authors divide chief complaint 

classifiers into 3 categories: keyword-based classifiers, linguistic classifiers, and statistical 

classifiers.

Keywords based classifiers associate a chief complaint text with a specific syndrome 

according to the presence of specific words parts of words or other character strings. 

Similarly linguistic classifiers use a complex hierarchy of predefined rules to bin chief 

complaint records into syndrome categories. In contrast to keyword-based classifiers 

linguistic classifiers try to exploit additional information about the lexicon and variations 

in word formation to accomplish their task. Algorithms that explicitly account for negation 

like NegEx [5] may serve as components in linguistic systems as may algorithms that use 

contextual information to determine whether mentions of a condition like fever or vomiting 

indicate its actual presence [6]. Statistical chief complaint classifiers predict syndromes 

based on models learned from examples that have been previously labeled.

Modern statistical classifiers can capture the decision rules employed by many keyword-

based classifiers. For example, the classifier deployed in the Electronic Surveillance System 

for the Early Notification of Community-Based Epidemics (ESSENCE) is keyword-based 

[13]. Under this method, the record and the syndrome are represented as an unordered set 

of words or tokens, with a numeric value or weight assigned to each token. When the sum 

of weights exceeds a predetermined threshold, the record is flagged as an example of the 

syndrome. This method effectively constructs a linear classifier, but it is one where both 

the weights (i.e., the syndrome vector) and the decision boundary (i.e., the threshold) are 

manually determined rather than learned [28]. A machine-learned linear classifier like a 

support vector machine (SVM) could capture this rule precisely, but it could also capture 

the expert judgement that informed the rule in the first place. Thus, many keyword-based 

classifiers may be considered a special, hand-tuned kind of statistical classifier.
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Furthermore, statistical classifiers can often mimic the performance of linguistic classifiers. 

For example, deep recurrent neural networks (RNNs) are capable of learning rich 

representations of words, sentences, and even entire documents from sequences of text. 

Machine translation, which for decades was dominated by rule-based, hand-engineered 

systems, has been largely replaced by RNNs; these models are trained with only natural 

language as input, and they have achieved remarkable results on difficult tasks, including 

zero-shot translation, i.e. translating between language pairs not explicitly seen during 

training [20]. Going beyond RNNs, even models invented primarily for non-linguistic 

tasks, like image classification, have been used to solve complex problems with text, like 

understanding the sentiment behind user-generated restaurant ratings and product reviews 

[22,3,35].

Since chief complaint classification is a kind of text categorization, methods good for the 

latter serve the former as well. Thus, we compare several popular, open-source, supervised 

learning algorithms for classifying chief complaints, in contrast to proprietary systems that 

have been developed specifically for syndromic surveillance.

1.2. Overview of current methods for text categorization

Current methods for text categorization are generally non-sequential models, like naïve 

Bayes and SVMs, or sequential models, like one-dimensional convolutional neural networks 

(CNNs) and RNNs. Non-sequential models and CNNs have achieved state-of-the-art results 

on many benchmark datasets, including movie reviews [31], product reviews [35], and news 

articles [21]. Likewise, RNN models, especially long short-term memory (LSTM) neural 

networks [18] and their variants, have been used to great success on language modeling 

[29], natural language understanding [4], and machine translation tasks [2,32], in addition to 

sentiment analysis and other kinds of text categorization [25].

RNNs have only recently come into widespread use, where the structural characteristics of 

the LSTM and its variants, like the gated recurrent unit (GRU) [7], have allowed them to 

handle long-range dependencies in sequential data without suffering from the problem of 

vanishing or exploding gradients. Several studies have compared the performance of LSTM 

and GRU architectures [12]. Each has at times outperformed the other and can be considered 

comparable [15]. When nested hierarchically, these models are also capable of classifying 

longer sequences of text [30,33]. Jagannatha et al. [19] showed that LSTMs substantially 

outperform conditional random fields (CRFs) for medical event detection in electronic 

health records, and [17] showed they could automatically label discharge diagnosis notes 

with Clinical Classification Software (CCS) [16] categories with high accuracy. Their best-

performing model achieved micro-averaged F1 scores of well over 0.85 for the raw text and 

0.95 for text that had been mapped to categories in a preexisting medical ontology.

1.3. Goals of the current study

In the current study, we examine four machine learning models applied to chief complaint 

text: multinomial naive Bayes (MNB) and support vector machines (SVM), as well as 

LSTM and GRU RNNs. The MNB classifier is one of only two machine learning algorithms 

currently being used for syndromic surveillance [13], the other being a maximum entropy 
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classifier [26]. Like [17], we use the CCS codes as our classification targets. These codes bin 

ICD 9/10 diagnosis codes into broad categories like “Influenza” and “Viral Infection” that 

have similarities to syndromes common monitored for public health purposes. This binning 

also greatly reduces the output space for our classifiers, making it easier for them to learn 

from the text. We note here that this approach may not be appropriate for all public health 

applications, but we believe it is a good starting point for exploring the characteristics of our 

algorithms.

Our first goal is to predict CCS codes from discharge diagnosis, as in Helwe et al 

[17]. Medical coding is time-consuming, and accurate automatic classification could be 

useful. When applied to syndromic surveillance systems, improved coding speed could 

increase the speed of response to outbreaks, emerging infections, and other public health 

emergencies. Our second goal is to predict CCS codes from chief complaint, as the chief 

complaint is generally less informative than discharge diagnosis with respect to clinical 

outcomes but more useful for real-time surveillance since chief complaints are available 

much sooner, typically immediately after emergency department triage. We are interested 

in the performance of these models as compared to each other, as well as their absolute 

performance in predicting specific CCS codes, which could help practitioners determine 

which conditions are the most amenable to surveillance based on chief complaint alone. 

Following our comparison of these models, we briefly discuss the need for labeled data to 

train machine learning models.

2. Methods

2.1. Corpus and data structure

Our original dataset comprised 3.6 million de-identified, patient-level ED visit records 

collected by the New York City Department of Health and Mental Hygiene in 2016. The 

data included several demographic variables, like sex and age group, as well as date and 

time of admission and a hospital code. Our focus for this analysis was exclusively on three 

text fields: chief complaint (CC), discharge diagnosis (DD), and ICD-9/10 diagnosis code. 

The analysis includes only the 2.1 million emergency department records that contain a 

nonempty CC or DD field and a nonempty ICD field. The remaining 1.5 million records 

in the original data were missing at least one of these and were thus omitted from further 

analysis.

Although the content varies from hospital to hospital, a typical record will have a short 

CC, like “fever and cough”; a longer, more technical DD, like “suppurative otitis media in 

diseases classified elsewhere”; and at least one ICD diagnosis code, like 382.02. As with 

this example, many of the DD descriptions in our dataset were automatically generated 

during the coding process, lowering the variability in their mapping to the CCS codes, and 

making them much easier to classify with a learned model. Some of the descriptions were 

not drawn directly from the ICD dictionary, however, like “polysubstance dependence” 

for the ICD-10 code F19.20, which is fully defined as “other psychoactive substance 

dependence, unspecified”, and the descriptions often overlap in terms of their vocabulary, so 

the classification task is not entirely trivial.
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We preprocessed the CC and DD text fields by removing special characters, converting 

digits to their written forms (e.g., ‘4’ to ‘four’), and then lowercasing the remaining 

text. For this study, we omitted additional steps, like expanding abbreviations, correcting 

misspellings, or mapping words to concepts in a medical ontology like the Unified Medical 

Language System (UMLS). We also preprocessed the ICD codes, which were stored as 

pipe-delimited text strings in the original dataset. First, we removed special characters from 

the codes, including the pipe delimiters and punctuation, and then we converted them to 

lowercase. All ICD-9 and ICD-10 codes were replaced by their corresponding CCS codes. 

Duplicate CCS codes in a single record were removed. Records with more than one unique 

CCS code were omitted from this analysis.

In our corpus, the CC records had more unique tokens and greater average length than the 

DD records (Table 1), in part because the CC text often includes abbreviations, acronyms, 

misspellings, and (expanded) diagnosis codes.

For our MNB and SVM classifiers, we represent each record as a single document in a 

bag-of-words (BoW) model. Under this model, each document d is represented as a row 

vector of word counts, where each entry in the row corresponds to the number of times 

a particular word w appears in the document. The entire corpus is represented as a D × 

V document-term matrix, where D is the number of records in the corpus, and V is the 

number of unique tokens in the corpus, or vocabulary. Each row, then, is the BoW vector 

for a particular CC or DD record. To make our classifiers more effective, we count both 

single words, or unigrams, and pairs of adjacent words, or bigrams. We did not use term 

frequency inverse document frequency (TF-IDF) transformations to remain consistent with 

known syndromic surveillance implementations.

For our LSTM and GRU RNN models, we represent each word as a one-hot column 

vector, where each entry is 0 except for the one corresponding to the word’s index in 

the vocabulary; this index is set to 1. We represent a single record as a sequence of such 

vectors, padding the sequence with column vectors of zeros so that the number of columns 

in the resulting matrix matches the number of words in the longest record in the corpus. 

The full collection of records, then, is represented as a V × Lmax × D tensor, where Lmax 

is length in words of the longest record, and V and D are the same as above. This data 

structure preserves the sequential information in the records, and it allows the first layer of 

the network to function as a lookup matrix for the word embeddings, which are learned with 

the rest of the model weights during training. To use CCS codes as targets for the RNNs, we 

converted the codes from strings to integers and then encoded them as one-hot row vectors.

Because de-identified data do not constitute human subjects, this analysis did not require 

review by an institutional review board.

2.2. Model structure and implementation

We implemented our MNB classifier with uniform priors and the Laplace/Lidstone 

smoothing parameter set to 1.0; these are the default parameters in scikit-learn, and adjusting 

them did not yield substantial increases in performance. Similarly, we implemented our 

SVM using the library’s default parameters, including a linear kernel, L2 penalty, square 
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hinge loss, and a one-vs-rest classification scheme to handle our multiclass outputs. Both 

models took the bag-of-bigrams document-term matrix as their input and the column vector 

of single CCS codes as their output.

We implemented both our LSTM and GRU as bidirectional RNNs [14] with a 200-

dimensional embedding layer and a 100-dimensional hidden layer. Unidirectional versions 

of both models performed worse. To reduce overfitting, we applied dropout with a 

probability of 0.5 to the concatenated outputs of the forward and backward cells, and we 

used a dense layer to obtain predicted class probabilities via softmax. We measured the fit 

of the model with categorical cross-entropy loss, and we used the Adam algorithm with a 

learning rate of 0.001 [23] for optimization.

We limited our analysis to models that predict only one classification at a time to facilitate 

direct comparisons among our 4 models. Although an RNN model can predict multiple 

labels through a change to the loss function, this extension exceeds the scope of the current 

analysis.

The MNB classifier and SVM were built using the scikit-learn 0.19.1 Python library [27], 

and the LSTM and GRU were built using Keras 2.3.1 [12] with the TensorFlow [1] backend. 

We used a 20-core Dell scientific workstation to train our bag-of-words models, and we used 

a single NVIDIA Titan X GPU to train our RNNs. Training time for the former was under a 

minute per model, and training time for the latter was about 1.5 h per model.

2.3. Experimental setup

We assessed the performance of all models using a single random training-validation-test 

split, using 60% of the records for training, 20% for model tuning, and the final 20% for 

testing. We trained the LSTM and GRU in batches of 256 records for a maximum of 10 

epochs, stopping after 2 epochs if the validation loss did not decline and saving the model 

with the lowest validation loss for testing.

To evaluate the models, we calculated their sensitivity (also known as recall), positive 

predictive value (PPV, also known as precision), and F1 score (the harmonic average of 

precision and recall) in predicting each of the unique CCS codes in the test data. To adjust 

for class imbalance, we used a weighted macro-average of these individual scores to serve 

as measures of overall classification performance, and we used statistical methods for paired 

data to compare models based on their code-specific classification results. For these results, 

we also present the predicted prevalence per 1000 ED visit records of each condition in 

the test set. In clinical settings, scores like PPV and F1 are important, since models are 

responsible for making accurate individual-level predictions. In surveillance settings, the 

predicted proportion with the conditions is also important, since the number of positive calls 

a model makes is used to detect outbreaks and forecast disease trends. Models with low 

classification accuracy do not necessarily produce poor prevalence estimates.
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3. Results

3.1. Predicting CCS code from discharge diagnosis

All 4 models were able to predict CCS codes from the DD text with high accuracy (Table 

2). The worst-performing model, the MNB classifier, still achieved an F1 score of over 96.0. 

The GRU posted the best performance, with all scores over 99.60, and the LSTM was very 

close behind.

Given the similarity between LSTM and GRU scores, we expect that they perform close to 

the Bayes error rate (BER) for the test data. The GRU’s performance on specific codes was 

also strong, reaching a perfect F 1 of 1.0 on 48 of the 282 CCS codes, and predicting equal 

prevalences for 86 codes. By contrast, the MNB classifier achieved an F1 of 1.0 on only 1 

code and predicted equal prevalences for only 7 codes; the SVM fared better with perfect 

scores on 21 codes and equal prevalences for 33 codes.

3.2. Predicting CCS code from chief complaint

The scores for the chief complaint classification task are much lower than those for DD 

classification (Table 3). RNNs still had the best performance, with the GRU achieving a 

weighted F1 score of 47.38, and the LSTM at 47.30. The MNB classifier fared worse 

overall with bigram features than with unigram features, with F1 scores of 39.4 and 40.53, 

respectively. The SVM did not show this pattern, with the bigram model scoring about a 

percentage point higher on F1 than the unigram model.

Table 4 shows F1 scores for each classifier on a selection conditions commonly tracked by 

syndromic surveillance system. As indicated by the macro scores in Table 3, the LSTM and 

GRU generally outperform the other models, although the SVM posts the best score for 

influenza. This trend holds for the full range of codes, as well, with the RNNs achieving the 

highest scores for 190 of the 282 conditions in the test data. By contrast, the SVMs achieve 

the highest score on only 21 conditions, and the MNB on only 9 (see the supplemental 

materials for the full table of results). Although the difference in accuracy between the 

GRU and the best-performing MNB classifier is only about 5% (95% CI 4.94–5.17), the 

GRU achieves a higher F1 on the majority of conditions. Finally, we note that despite the 

similarity of their macro scores, the GRU performs significantly better by this measure than 

the LSTM (Wilcoxon signed-rank test; p = 0.001).

Because it is our best-performing model, we further explore the performance of GRU 

models for CC classification in Table 5 (following). Classification accuracy was the highest 

for codes corresponding to conditions that are easier for clinicians to identify during the 

triage process, like burns (F1 = 83.86), epilepsy and convulsions (F1 = 80.82), disorders 

of the teeth and jaw (F1 = 81.96), and cardiac arrest (F1 = 72.94). GRU performed well 

with some syndromic conditions, such as alcohol-related disorders (F1 = 78.91), while viral 

infection (F1 = 25.68) and influenza (F1 = 14.80) were much more difficult to classify 

from chief complaint. Generally, conditions with high F1 scores also had a low difference 

between true and predicted prevalence, but so did a number of conditions with low F1 

scores, like other lower respiratory disease (F1 = 35.57; rel.diff. = 8.87%). Although the 

4 model structures exhibit variation in predictive accuracy, they tend to produce a similar 
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rank-order of the 144 CCS codes that appear in all of their predictions on the test data, with 

Spearman rank correlation of 0.9111 and Kendall’s tau of 0.7701. Thus, the CCS codes for 

which the GRU tends to perform best are codes for which the other models also tend to 

perform best.

4. Discussion

Among the models that we evaluated, the MNB classifier had the poorest performance, yet 

its design is the most similar to one of the chief complaint classifiers currently used in 

practice. The RNN models—the LSTM and GRU—performed substantially better than the 

BoW models. This difference was especially apparent on the discharge diagnosis task, where 

the MNB classifier achieved an F1 score of only 97.55 despite the majority of the input 

text being drawn verbatim from the ICD-9 and ICD-10 dictionaries. Although this result has 

little practical importance, it demonstrates the empirical benefits of modeling both semantic 

and sequential information in the text, which the RNNs do explicitly but the BoW models 

only can only approximate.

Even with the increased representational capacity afforded by the RNNs, chief complaint 

classification was still a difficult task. This might depend in part on the dimensionality 

of our output space; our set of approximately 280 target CCS codes is much larger 

than that of a typical syndrome categorization scheme, which may only include 10 or 

20 codes. In addition, the chief complaint itself is preliminary, as it tries to assess a 

patient’s condition before full clinical examination. Some conditions, like generic viral 

infection, were particularly difficult for our models to classify as evidence by the best F1 

score of 27.06 by the GRU. This might be explained by symptoms, like fever and cough, 

also appearing as symptoms of many other conditions reported in the ED. On the other 

hand, conditions with overt, non-overlapping symptoms, like burns, were relatively easy to 

classify, demonstrating that chief complaint is more useful for monitoring some conditions 

than others. Triage notes, which typically contain more information than chief complaint, 

could help close this gap, but they are often omitted from the hospital data feeds provided to 

health jurisdictions for monitoring.

This analysis assumed that the ICD diagnosis codes in the ED record, and in turn 

the corresponding unique CCS codes, could effectively serve as target proxies for true 

underlying conditions or syndromes. Our analysis could be extended in at least 2 ways. 

First, if we were able to use ED records that were labeled by experts and used to develop 

supervised machine learning models that predict those expert targets, then our methods 

could influence the practice of syndromic surveillance more directly. The main limitation 

here is labeling data, which is time-consuming and difficult to accomplish at scale because 

the sensitive nature of ED visit records prevents them from being easily shared outside 

of the jurisdictions where they are collected. However, once acquired, the data themselves 

would be relatively easy to categorize. Consider broad and intuitive examples, such as 

those where the North Carolina Disease Event Tracking and Epidemiologic Tracking Tool 

(NC DETECT) monitors syndromes categorized as “drowning”, “trauma”, “animal”, and 

“assault”. It could be feasible to obtain independently assessed labels for such syndromes 

and to create a large-scale labeled dataset to support research and to benchmark definitions 
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against a reference standard. Modeling individual labelers [15] could also improve the 

overall accuracy of chief complaint classification algorithms, and resulting trained models 

could be shared with the data-providing jurisdictions to enhance their own surveillance 

systems. Unsupervised methods, like the representation learning algorithms presented in 

Choi [11] and [8–10], can capture some information in syndromic records, but supervised 

methods are likely the key to improving the robustness and scalability of our existing 

surveillance systems, and so we believe labeling to be a worthwhile pursuit.

Second, our analysis might be extended by including records that map to more than one CCS 

code. We simplified our approach by focusing on records that map to a unique CCS code. 

Our methods, however, could extend to classifying multiple syndromes associated with a 

single chief complaint text. All 4 models could be trained on multiple labels (that is, CCS 

codes) as a set of separate models 1 discrete, binary label per model. In contrast, a single 

RNN model can be trained to predict multiple labels simultaneously, for example by using 

binary instead of categorical cross-entropy loss to train our RNNs. The latter approach, 

although elegant, has the disadvantage of needing to retrain the whole model as new targets 

are considered, while the former approach can be implemented in a modular, more flexible 

way.

5. Conclusion

The RNNs outperformed the MNB classifier and SVM on all classification tasks. We 

conclude that deep learning models could substantially improve the automatic classification 

of unstructured text for syndromic surveillance.
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Refer to Web version on PubMed Central for supplementary material.
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Table 2

Weighted sensitivity (Sens), positive predictive value (PPV), and F1 scores for each of our models on the 

discharge diagnosis (DD) classification task. Subscript “uni” indicates models with unigrams only; subscript 

“bi” indicates models with both unigrams and bigrams. The best result for each metric is shown in boldface.

Model Sens PPV F1

MNBuni 96.45 96.31 96.20

MNBbi 97.50 97.46 97.32

SVMuni 97.80 97.82 97.76

SVMbi 98.88 98.88 98.86

LSTM 99.56 99.56 99.57

GRU 99.65 99.65 99.65

J Biomed Inform. Author manuscript; available in PMC 2023 October 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee et al. Page 14

Table 3

Weighted macro sensitivity (Sens), positive predictive value (PPV), and F1 scores for each of our models on 

the chief complaint (CC) classification task. Subscript “uni” indicates models with unigrams only; subscript 

“bi” indicates models with both unigrams and bigrams. The best result for each metric is shown in boldface.

Model Sens PPV F1

MNBuni 44.72 47.99 40.53

MNBbi 43.90 51.30 39.40

SVMuni 42.33 42.08 39.84

SVMbi 45.75 45.40 42.82

LSTM 49.83 50.23 47.30

GRU 49.77 50.77 47.38
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Table 4

F1 scores of each model for select conditions, with the highest score in bold.

CCS Description GRU LSTM MNBbi MNBuni SVMbi SVMuni

660 Alcohol-related disorders 78.91 79.10 69.58 72.68 74.41 65.45

128 Asthma 68.39 68.49 65.61 64.05 64.54 63.15

251 Abdominal pain 53.64 53.98 44.39 48.72 51.70 42.01

134 Other upper respiratory disease 51.72 51.99 42.50 45.73 45.44 45.22

250 Nausea and vomiting 41.81 41.76 19.31 33.74 36.39 26.71

133 Other lower respiratory disease 35.57 37.38 29.71 29.27 22.53 26.17

7 Viral infection 25.68 33.30 21.41 23.53 22.67 11.48

242 Poisoning by other medications and drugs 22.18 25.50 15.76 16.00 22.82 19.78

123 Influenza 14.80 13.41 13.11 13.27 15.37 15.18
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