SCREENING FOR NEW NATURAL FOOD ADDITIVES WITH ANTIBACTERIAL PROPERTIES AGAINST PATHOGENIC BACTERIA

Karmen Kapp¹, Cristina D. Cruz¹, Helena Chic Lorente¹, Riina Laakso¹, Anita Nicoletti¹, Piret Raudsepp², Kadrin Meremäe², Mati Roasto², Päivi Tammela¹

¹ Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland

² Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia

• Due to increasing customer awareness, there is a trend to seek new natural food additives that can be used as antibacterial and/or antioxidative agents in food products [1]

Plant-based extracts consist of compounds that can possess

Conclusions

- Rhubarb root had the most broad-spectrum antimicrobial activity (Fig 1, Table 1), especially the extract prepared with 80% ethanol
- Rosemary and meadowsweet 80% ethanol extracts were the second and third most potent extracts (Table 1)
- antibacterial properties and may extend the shelf-life and enhance food safety [2]

Aim

- Find potential natural antimicrobials for food industry by testing antimicrobial properties of plant extracts against pathogenic bacteria
- Results clearly show that roots of rhubarb and extracts prepared with 80% ethanol may have the potential use in the food industry
- Other plant materials did not have antibacterial activity in the preliminary screening

 Collected from Estonia or commercial products (garlic and rosemary)

- Oven or freeze-dried
- Milled to ø 0.25-1.00 m

PLANT MATERIAL

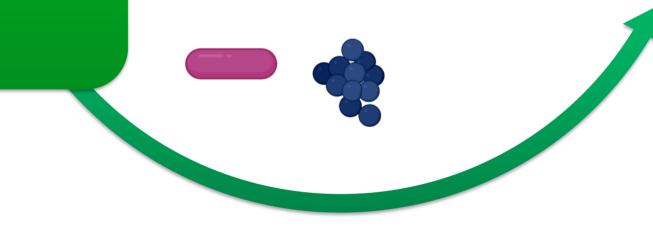
Black currant (*Ribes nigrum* L.) fruit Garlic (*Allium sativum* L.) bulb Goutweed (*Aegopodium podagraria* L.) leaves Meadowsweet (*Filipendula ulmaria* Maxim.) leaves Rosemary (*Salvia rosmarinus* Spenn.) leaves

EXTRACTION

- Overnight shaking at RT (black currant, rosemary, rhubarb, Scotch pine)
 - 45 min ultrasonification at RT (garlic, meadowsweet)
 - 30 min in water bath at 80°C (goutweed)
- Extracted with 30% and 80%

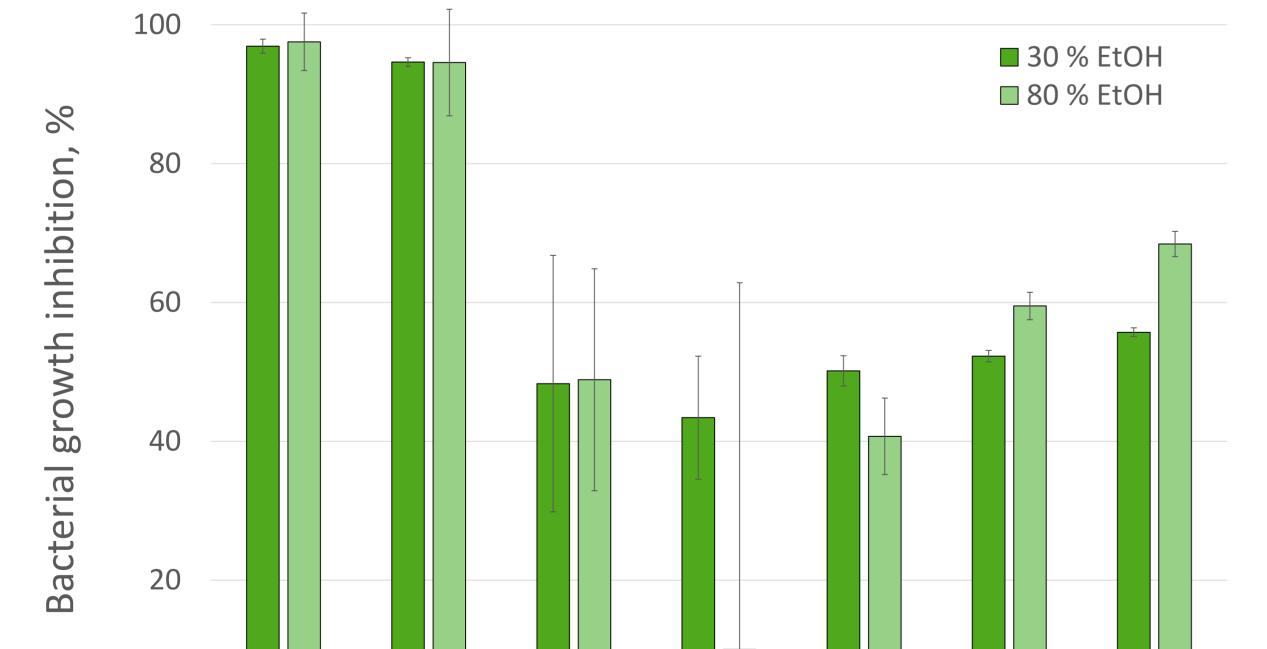
- Broth microdilution assays in 96well plates following CLSI [3]
- 24h absorbance values and visual assessment

PRELIMINARY SCREENING

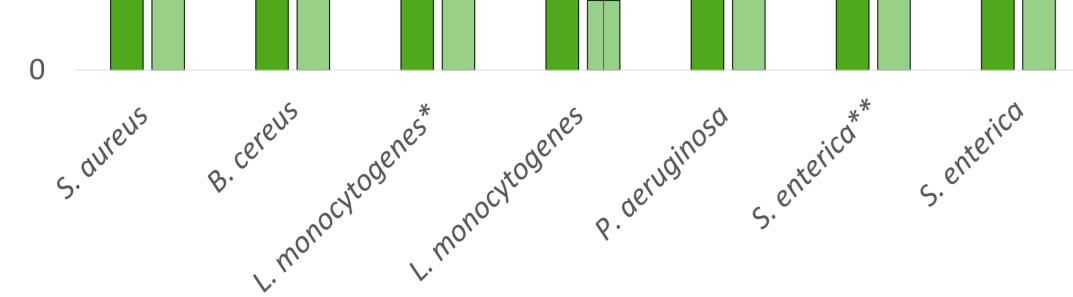

- Bacillus cereus ATCC 11778
- Campylobacter jejuni ATCC 33560
- enteropathogenic Escherichia coli CB9615
- Listeria monocytogenes DSM 112142, DSM 101804
- Pseudomonas aeruginosa ATCC 27853
- Salmonella enterica ser. Typhimurium ATCC 19585

MIC-DETERMINATION

- For extracts displaying ≥ 50% bacterial growth inhibition in the screening assay
- Determined in a 2-fold manner
- Assays performed at least twice, in triplicate


Rhubarb (*Rheum* spp.) roots and petioles Scotch pine (*Pinus sylvestris* L.) needles ethanol (v/v)

 Extracts filtered, condensed and freeze-dried *S. enterica* ser. Enteritidis ATCC 13076 *Staphylococcus aureus* ATCC 29212



rhubarb roots

Table 1. Minimum inhibitory concentration (MIC, mg/mL) determinations for plant extracts for (**A**) Gram- positive and (**B**) Gram-negative bacteria

Α	Extraction	MIC [*] (mg/mL)				
Plant material	(% EtOH)	S. aureus	B. cereus	L. monocytogenes*	L. monocytogenes	
Rhubarb roots	30	0.5	0.5	1	1	
50°C	80	0.25	0.25	1	1	
Rhubarb	30	ND	>4 ^a	ND	ND	
petioles 45 °C	80	ND	3	ND	ND	
Rhubarb petioles freeze-dried	80	4	ND	ND	ND	
Rosemary	30	1	ND	ND	ND	
commercial	80	0.5	0.02	ND	ND	
Meadowsweet	30	2	ND	ND	ND	
freeze-dried	80	1	1	ND	ND	

В	Extraction	MIC [*] (mg/mL)				
Plant material	(% EtOH)	S. enterica**	S. enterica	P. aeruginosa		
Rhubarb roots	30	ND	4	> 4 a		
50°C	80	4	3	3-4		
Meadowsweet	30	ND	ND	>4		
freeze-dried	80	ND	ND	3		

Fig 1. Antibacterial activity against clinical isolates of rhubarb root at the concentration of 1 mg/mL. The bars represent mean value of triplicate wells ± SD (n=1). * isolated from minced meat, ** serovar Typhimurium

ND: minimum threshold for inhibition not achieved in the screening assays,*isolated from minced meat, **serovar Typhimurium, aMIC not achieved at the highest concentration tested

[1] P. Raudsepp, J. Koskar, D, Anton, et al. Journal of the Science of Food and Agriculture, 99:5, 2311–2320, (2019).

[2] N.A. Santiesteban-López, J.A. Gómez-Salazar, E.M. Santos, et al. Foods 11, 2613, (2022).

[3] CLSI. CLSI standard document M07–A10. 10th ed. Wayne, PA: Clinical and Laboratory Standards Institute, 35:1–87, (2015).

This work was supported by the Estonian Research Council grant PRG 1441.