A Future Tale of Two Winters? Sediment-water
Interface nitrogen dynamics in Lake Vortsjarv
(Estonia) during the ice-free winter 2019/2020
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The planet has a fever

The green line represents the upper safe limit of each of the earth's
10 life-sustaining biophysical systems. Where “mercury” has risen
above that line, humanity has already transgressed the boundary,

risking potentially irreversible “tipping points.”
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The planet has a fever

The green line represents the upper safe limit of each of the earth's
10 life-sustaining biophysical systems. Where “mercury” has risen
above that line, humanity has already transgressed the boundary,
(isking potentially irreversible “tipping points.”
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Slide Courtesy Bob Howarth Rockstrom et al. 2009
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NOx emis=zion, Biological Nitrogen Fixation {in Tg N)

Total N, production, Fertilizer input,
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Nutrient Balanced Growth Isn’t Just For Bottles (or Lake 227)
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“Nutrient Balanced Growth” is the Rule, Not the Exception

(And N ‘limitation’ is just as likely as P ‘limitation’ in freshwaters)

+N +P +N P +N +P +N,P +N +P +NP
Terrestrial Freshwater Marine




N Form Matters, Too

(McCarthy et al. 2009)
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y=0.1996x + 0.2193
R® = 0.4934

NH4: NOx

Large spread at high NH4:NOx
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Winter 2018/2019

Don’t mess
with my
incubation




Objectives:

1. Determine denitrification/anammox, N fixation, DNRA, SOD, and
iInorganic N and urea fluxes across the sediment-water interface under
ice In Lake Vortsjarv (Estonia).
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Winter 2019/2020




*Collect intact sediment cores and near-bottom
water for continuous-flow incubations to
measure SWI N fluxes and transformations.
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Incubation Design

ONORO
ORONO

C = Control (no isotope addition)
A = 1°’NH,* addition (ammonium)

N = °NO;" addition (nitrate)




Methods: Intact sediment core incubations

e Sample inflow reservoirs
and core outflows daily for:

e Nutrients (filtered 0.22 um)
PO,*, NH,*, NO;, NO,, urea

 Dissolved gases
02’ 28, 29, 3ON2, NZO




Methods: Lachat Quikchem 8500

e Nutrients measured by
flow injection analysis

« PO,*, NH,*, NO;, NO,, urea
= Ambient concentrations
o Sediment core fluxes




Methods: Membrane Inlet Mass Spectrometry

e Ccores
= Net %N, flux, O,
e A cores
= BNH,* + NO, = *°N,
= Possible anammox
e N cores
15N03- 9 29,30N2
Denitrification
1SNO; =2 NH,*
DNRA (OX-MIMS)
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*Consistent decrease in SOD from fall through winter; consistently higher SOD (28-70%) near
river input (more OM/macrophyte biomass); SOD lower in LV than many other temperate,
eutrophic lakes (e.g., Lake Erie, Lake Champlain).
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*Consistent in situ denitrification rates (net 28N, flux) at LV-10, but higher potentials (DNF = potential
denitrification) in winter. However, near river input at LV-PS, higher in situ denitrification in winter, but
little or no change in potential (little or no measurable N fixation; 0 — 3% anammox contribution).
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*Opposite patterns at the two sites --- clear stimulation of N, production with NO3 addition near
inputs (LV-PS) in Sept (low in situ N), and in main basin in winter (high in situ N; 0 - 3% maybe via
anammox; little or no measurable N fixation).
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*Note slight difference in y-axis scales --- internal P loading nil or minimal during these sampling events
(no surprise, likely a different story in summer, and under ice?); possible stimulation of P release in Sept
2019 with NO3 addition near river input, perhaps worthy of additional investigation (see Smolders et al.

2010, Biogeochem. 98: 1-7). No results yet from Dec 2019.
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*Note slight difference in y-axis scale --- Lake VOrtsjarv sediments were releasing an appreciable amount
of urea (highly bioavailable organic N form) at these times. Similar rates observed in summer in Lake Erie
(see Boedecker et al. 2020, J Great Lakes Res 46: 920-932), but few, if any, other rates for comparison
(who measures SWI N fluxes, much less urea?). No results yet from Dec 2019.
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*Lake Vortsjarv sediments in the main basin, but not near the river input, were releasing an appreciable
amount of NO2 in late winter. NO3 additions to water overlying main basin sediments stimulated NO2
release, likely due to incomplete denitrification, but cannot rule out incomplete nitrification (or DNRA,

unlikely). No results yet from Sept or Dec 2019.
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*Lake Vortsjarv sediments were a consistent NO3 sink (denitrified). No robust differences between
sampling locations. Adding NO3 stimulated NO3 uptake in the main basin, and maybe near the river
input. Net NO3 flux in main basin nearly identical to estimated denitrification rate, but NO3 influx ~50% of
denitrification near river input (coupled NTR/DNF). No results yet from Sept or Dec 2019.
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"Don't just stand there, Earthling! Go boil some ammonia!"

*NH4 results not ready yet, but preliminary data indicate sediment NH4 releases ~150-300 umol N m2 h-t
near river input and ~30-60 umol N m2 h-1 in the main basin.

That’s internal N loading, and it's important, too!!! Especially if cyanos are a problem!!! Don’t forget about
legacy N loads!!! (e.g., see Van Meter et al. 2017, Global BGC Cycles 31: 2-23).



Take Home Message

Internal nutrient loads are not just a P story. Internal N cycling (fueled
by external loads!) is often the main source of NH4 for sustaining
biomass and toxin production in non-N-fixing cyanobacteria blooms.

At the same time, the N cycle provides the best defense against
excessive N loading via denitrification. BUT, denitrification is less
efficient as N loads increase (e.g., Mulholland et al. 2008; Gardner &
McCarthy 2009).
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“We can’t solve 215t century problems with 20t century
science” --- Dr. Bob Heath, IAGLR, 2014-05-28

Projected o
human input ¢
4

Range of terrestrial .
bac?,ﬁal nitrogen Total human input
fixation (exceptin
agroecosystems)

Fertilizer and
industrial uses

©
'E
@
€
o
=
>
x
o
2
o °
o
T
u
a
w
=
=
>
w

Nitrogen fixation
in agroecosystems

Fossil fuels

0
1900 1920 1940 1960 1980
Source: Millennium Ecosystem Assessment

100
TOTAL PHOSPHORUS mgm3




Modelers

Experimentalist
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