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Global trends in nitrogen use per year

(Erisman et al. 2015)



N- and Co-Limitation   

Nutrient Balanced Growth Isn’t Just For Bottles (or Lake 227)

(Paerl et al. 2016)



“Nutrient Balanced Growth” is the Rule, Not the Exception

(And N ‘limitation’ is just as likely as P ‘limitation’ in freshwaters) 

(Elser et al. 2007)
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Large spread at high NH4:NOx

(McCarthy et al. 2009)
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N Form Matters, Too
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Winter 2018/2019

Don’t mess 

with my 

incubations!



Objectives:

1. Determine denitrification/anammox, N fixation, DNRA, SOD, and 

inorganic N and urea fluxes across the sediment-water interface under 

ice in Lake Võrtsjärv (Estonia).

2. Determine ammonium (NH4
+) cycling rates, including nitrification, 

regeneration, and potential uptake, under ice in Lakes Võrtsjärv and 

Peipsi (Estonia).



LV-10

LV-PS



Winter 2019/2020



*Collect intact sediment cores and near-bottom 

water for continuous-flow incubations to 

measure SWI N fluxes and transformations.
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Incubation Design

C
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   C = Control (no isotope addition)

    A = 15NH4
+ addition (ammonium)

    N = 15NO3
- addition (nitrate)



Methods: Intact sediment core incubations

• Sample inflow reservoirs
and core outflows daily for:

• Nutrients (filtered 0.22 µm)
PO4

3-, NH4
+, NO3

-, NO2
-, urea

• Dissolved gases
O2, 28, 29, 30N2, N2O



Methods: Lachat Quikchem 8500

• Nutrients measured by 
flow injection analysis

• PO4
3-, NH4

+, NO3
-, NO2

-, urea
▫ Ambient concentrations

▫ Sediment core fluxes



Methods: Membrane Inlet Mass Spectrometry

• C cores
▫ Net 28N2 flux, O2

• A cores
▫ 15NH4

+ + 14NO2
- 
→ 29N2

▫ Possible anammox

• N cores
▫ 15NO3

- → 29,30N2

▫ Denitrification
▫ 15NO3

- → 15NH4
+

▫ DNRA (OX-MIMS)
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*Consistent decrease in SOD from fall through winter; consistently higher SOD (28-70%) near 

river input (more OM/macrophyte biomass); SOD lower in LV than many other temperate, 

eutrophic lakes (e.g., Lake Erie, Lake Champlain).
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*Consistent in situ denitrification rates (net 28N2 flux) at LV-10, but higher potentials (DNF = potential 

denitrification) in winter. However, near river input at LV-PS, higher in situ denitrification in winter, but 

little or no change in potential (little or no measurable N fixation; 0 – 3% anammox contribution).
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*Opposite patterns at the two sites --- clear stimulation of N2 production with NO3 addition near 

inputs (LV-PS) in Sept (low in situ N), and in main basin in winter (high in situ N; 0 - 3% maybe via 

anammox; little or no measurable N fixation).
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*Note slight difference in y-axis scales --- internal P loading nil or minimal during these sampling events 

(no surprise, likely a different story in summer, and under ice?); possible stimulation of P release in Sept 

2019 with NO3 addition near river input, perhaps worthy of additional investigation (see Smolders et al. 

2010, Biogeochem. 98: 1-7). No results yet from Dec 2019.
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*Note slight difference in y-axis scale --- Lake Võrtsjärv sediments were releasing an appreciable amount 

of urea (highly bioavailable organic N form) at these times. Similar rates observed in summer in Lake Erie 

(see Boedecker et al. 2020, J Great Lakes Res 46: 920-932), but few, if any, other rates for comparison 

(who measures SWI N fluxes, much less urea?). No results yet from Dec 2019.
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*Lake Võrtsjärv sediments in the main basin, but not near the river input, were releasing an appreciable 

amount of NO2 in late winter. NO3 additions to water overlying main basin sediments stimulated NO2 

release, likely due to incomplete denitrification, but cannot rule out incomplete nitrification (or DNRA, 

unlikely). No results yet from Sept or Dec 2019.
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Feb 2020

*Lake Võrtsjärv sediments were a consistent NO3 sink (denitrified). No robust differences between 

sampling locations. Adding NO3 stimulated NO3 uptake in the main basin, and maybe near the river 

input. Net NO3 flux in main basin nearly identical to estimated denitrification rate, but NO3 influx ~50% of 

denitrification near river input (coupled NTR/DNF). No results yet from Sept or Dec 2019.



*NH4 results not ready yet, but preliminary data indicate sediment NH4 releases ~150-300 mmol N m-2 h-1 

near river input and ~30-60 mmol N m-2 h-1 in the main basin. 

That’s internal N loading, and it’s important, too!!! Especially if cyanos are a problem!!! Don’t forget about 

legacy N loads!!! (e.g., see Van Meter et al. 2017, Global BGC Cycles 31: 2-23).



Take Home Message

Internal nutrient loads are not just a P story. Internal N cycling (fueled 

by external loads!) is often the main source of NH4 for sustaining 

biomass and toxin production in non-N-fixing cyanobacteria blooms.

At the same time, the N cycle provides the best defense against 

excessive N loading via denitrification. BUT, denitrification is less 

efficient as N loads increase (e.g., Mulholland et al. 2008; Gardner & 

McCarthy 2009).



Next Steps

• Finish analyzing nutrient data for SWI fluxes

• Water column NH4 cycling results (regeneration, uptake, nitrification)

• Water column O2 respiration results

• Incorporate mechanistic rate data into ongoing watershed/lake 

models (Dr. Fabien Cremona, EMU)

• Do an ice dance in Nov 2021…stay tuned!
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“We can’t solve 21st century problems with 20th century 

science” --- Dr. Bob Heath, IAGLR, 2014-05-28
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