
Citation: Szkaliczki, T. Discrete Data

Rate Adaptation for Wireless Body

Area Networks. Appl. Sci. 2023, 13,

8529. https://doi.org/10.3390/

app13148529

Academic Editor: Alessandro Lo

Schiavo

Received: 10 June 2023

Revised: 18 July 2023

Accepted: 19 July 2023

Published: 24 July 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Discrete Data Rate Adaptation for Wireless Body Area Networks
Tibor Szkaliczki

Institute for Computer Science and Control, 1111 Budapest, Hungary; szkaliczki.tibor@sztaki.hu;
Tel.: +36-1-279-6185

Abstract: eHealth services require continuous data streaming and a stable level of quality of service.
However, wireless network connections can be characterized by variable bandwidths. This requires
continuous adaptation of systems, including adapting the bit rates of data streamed by sensors.
Assigning appropriate rates to the data represents a main task in congestion control. Most of the
current methods look for proper sensor data rates within continuous domains. We examine the
case when sensors can generate data streams with several different qualities (e.g., sampling rates,
sampling accuracies, etc.). For this reason, the domain of the data rate values can be restricted
to the discrete values representing the data rates of the possible quality variations. This paper
examines the optimization of the utility of the delivered data under resource constraints by selecting
an appropriate variation of the provided data from a discrete set. We provide a formal model for
delivering data streams in WBANs and recommend an optimization algorithm to solve the problem.
Our recommended solutions are related to the multiple-choice multidimensional knapsack problem.
By comparing the proposed algorithms, we found that the greedy method closely approximates the
optimum in a short running time.

Keywords: WBAN; quality of service; adaptation; multiple-choice multidimensional knapsack problem

1. Introduction

Nowadays, the quick spread and evolution of wireless body area networks (WBANs)
can be seen in the healthcare industry [1,2]. WBANs can monitor the health data of patients
in real time at low cost. They can be considered as a special type of wireless sensor network
(WSN) where the connected sensor devices (e.g., blood pressure sensor, temperature sensor,
motion sensor, ECG, EEG, etc.) can be implanted under the skin, fixed on the body, or
carried as portable devices. The sensor data are transferred to the WBAN coordinator (also
called the sink) through wireless links. The sink transmits the collected sensor data from
the WBAN for evaluation and further processing on a local terminal or a distant server.

Limited computation power, power supply, and communication bandwidth make
the data transfer challenging in wireless sensor networks. The data should arrive with a
short delay and high reliability in eHealth services to provide real-time observation and
urgent response in case of emergencies. Monitoring human physiological activities requires
continuous data streaming and a stable level of quality of service (QoS) [3,4]. However,
wireless networks can be characterized by frequent packet loss and variable delays and
capacities. For this reason, continuous adaptation of systems is required. In the case of a
shortage of network resources, the quality of the data stream may be reduced. In this case,
how to optimize the utility of the delivered data under the current resource constraints is a
key question.

Figure 1 presents an example of WBAN. The various sensor data in WBANS have
different QoS requirements (e.g., delay, reliability, energy efficiency, bandwidth utilization,
and throughput). The data streams require different data rates depending on the type
of measured data [5]. For example, data generated by medical sensors typically have a
lower rate than audio and video streams. The importance of the data streams may also

Appl. Sci. 2023, 13, 8529. https://doi.org/10.3390/app13148529 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13148529
https://doi.org/10.3390/app13148529
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13148529
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13148529?type=check_update&version=2

Appl. Sci. 2023, 13, 8529 2 of 16

vary, and they can be prioritized accordingly [6], e.g., heart rate has a higher priority than
temperature.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 17

Figure 1 presents an example of WBAN. The various sensor data in WBANS have

different QoS requirements (e.g., delay, reliability, energy efficiency, bandwidth utiliza-

tion, and throughput). The data streams require different data rates depending on the type

of measured data [5]. For example, data generated by medical sensors typically have a

lower rate than audio and video streams. The importance of the data streams may also

vary, and they can be prioritized accordingly [6], e.g., heart rate has a higher priority than

temperature.

Figure 1. An example of a WBAN.

Our model exploits the fact that the sensors can be configured from software to pro-

vide a data stream in a few variations with different qualities. This is typical in the case of

multimedia streams, e.g., a video stream can be generated with various spatial resolutions,

frame rates, and quantization parameters. Commercial biosensors can be also pro-

grammed for different sampling frequencies or accuracy levels [7–9]. For example, an ECG

(electrocardiogram) or EMG (electromyography) sensor node may produce data with a

base rate and the rate of each subsequent variation is doubled (e.g., 125, 250, 500, 1000, …,

8000 SPSs). Furthermore, the number of bits in a sample can also be configured, e.g., an

EEG (electroencephalography) sensor can be configured to sample signals with an accu-

racy of 24 or 32 bits. The programmable sensors enable the dynamic adaptation of the

sampling rate in response to the changes in the system including the network, the sensor

state, the monitored phenomenon, or the requirements.

Rate adaptation methods in the literature usually consider the data rate domain to be

continuous. However, the sensors can generate data streams with a limited number of

quality variants. Furthermore, the sensor transmitters can often send data with rates from

a discrete set. For example, in IEEE 802.15.6-based WBANs, at most, eight different data

rates can be defined in a frequency band [10]. For this reason, discrete rate adaptation

models have high practical significance where the data rates are selected from a pre-de-

termined, discrete set of rates coming from hardware and software constraints in WSNs

[11,12].

Figure 1. An example of a WBAN.

Our model exploits the fact that the sensors can be configured from software to
provide a data stream in a few variations with different qualities. This is typical in the
case of multimedia streams, e.g., a video stream can be generated with various spatial
resolutions, frame rates, and quantization parameters. Commercial biosensors can be also
programmed for different sampling frequencies or accuracy levels [7–9]. For example, an
ECG (electrocardiogram) or EMG (electromyography) sensor node may produce data with
a base rate and the rate of each subsequent variation is doubled (e.g., 125, 250, 500, 1000,
. . ., 8000 SPSs). Furthermore, the number of bits in a sample can also be configured, e.g., an
EEG (electroencephalography) sensor can be configured to sample signals with an accuracy
of 24 or 32 bits. The programmable sensors enable the dynamic adaptation of the sampling
rate in response to the changes in the system including the network, the sensor state, the
monitored phenomenon, or the requirements.

Rate adaptation methods in the literature usually consider the data rate domain to
be continuous. However, the sensors can generate data streams with a limited number of
quality variants. Furthermore, the sensor transmitters can often send data with rates from a
discrete set. For example, in IEEE 802.15.6-based WBANs, at most, eight different data rates
can be defined in a frequency band [10]. For this reason, discrete rate adaptation models
have high practical significance where the data rates are selected from a pre-determined,
discrete set of rates coming from hardware and software constraints in WSNs [11,12].

We aim to optimize the delivered data under the current resource constraints by
selecting an appropriate variation of the transferred data. The sensor data of the best
quality should be transferred if there are enough resources in the network. However, if this
is not possible because of the lack of network and node resources (e.g., throughput, energy,
etc.) the data can still be useful in reduced quality for monitoring and evaluation purposes.

Data rate adaptation can be considered a complex multicriteria optimization problem
where the aim is to maximize the overall utility of the delivered data streams. The utility

Appl. Sci. 2023, 13, 8529 3 of 16

is defined as a metric expressing the overall satisfaction of the user consuming the data,
who is typically a member of the medical staff in the case of a WBAN. The utility function
defines the relationship between the usefulness of the delivered data and their parameters
(e.g., data rate). The main reason for optimizing utility instead of throughput is that the
same amount of data may have different contributions to the correct evaluation of the
streamed information. The utility is typically a monotone concave function of the data rate,
i.e., increasing the data rate results in a smaller or equal utility increase if the data rate is
larger. For example, if the sampling rate of an ECG sensor is doubled, the utility of the
stream increases by less than double.

Various utility models have been developed, especially in multimedia [13–15]. The
utility functions are used for rate control and resource allocation in communication net-
works [16]. Network utility maximization (NUM) deals with allocating traffic rates to
maximize the users’ total utility subject to network resource constraints [17–19]. Utility
models can be used to combine multiple optimization targets into one metric by applying
weights. They are widely used in resource allocation in WSNs to ensure the effectiveness
and fairness of the system [20]. The utility function can model the trade-off between QoS
and energy efficiency [21]. Game theoretic approaches use the concept of utility to quantify
the degree of a player’s preference across a set of available alternatives [22].

The rate adaptation can be performed in a distributed or centralized manner. In the
distributed case, each node locally determines a proper transmission rate to avoid network
congestion. In the centralized case, the rate adjustment algorithm running on the sink
node tries to optimize the data rate assignment using global network information and the
sink node sends the calculated data rates to all sensor nodes. The main advantages of
the centralized approach include that it can find near-optimal rate assignments and the
complexity of software on sensor nodes except the sink node can be reduced.

The principal contributions of our work are defined as follows:

• A utility-based formal optimization model for discrete data rate adaptation in WBANs
with a tree topology.

• Optimization algorithms to solve the discrete data rate adaptation based on the
multiple-choice multidimensional knapsack problem.

• Evaluation of the proposed algorithms, where the greedy method closely approximated
the optimum in a short running time and proved to be suitable for real-time usage.

• Further results of the evaluation show that solving the proposed model has much
higher accuracy than adapting the solutions of more common models.

The remainder of this paper is organized as follows. In Section 2, related work is
discussed. Section 3 introduces the proposed content adaptation module. Section 4 provides
a formal model for delivering data streams in WBANs. In Section 4, a detailed description
of the proposed algorithms is provided. In Section 5, the presented algorithms are evaluated
and compared to each other, while Section 6 concludes the paper.

2. Related Work

This section provides an overview of rate adaptation methods applied in WBANs. Rate
adaptation is widely used in resource allocation and congestion control in WBANs [23,24].
We selected some papers to compare with our proposed model and to show the special
features of our model.

Ababneh et al. [25] presented an adaptive routing and bandwidth allocation protocol
for traffic streaming in WBAN that selects routes based on the residual energy first and then
provides adaptive bandwidth allocation for data streams. The sources can continuously
adjust the rates of the provided data streams. The rate assignment optimizes the utility of
the data streams under resource constraints on the amount of traffic that could pass through
the links and nodes. The utility of a stream is considered proportional to its priority, the
selected data rate, and the available energy level. Mixed integer linear programming is
applied to solve the optimization problem, which can provide an accurate optimum but
requires a long running time.

Appl. Sci. 2023, 13, 8529 4 of 16

Baek et al. [26] proposed an adaptive rate control method for congestion avoidance in
WBANs. The network model applies tree topology. The adaptive rate control mechanism
calculates the risk degree of congestion occurrence in each node using the queue occupancy
of the node, the number of upstream nodes on a path toward the sink, and the count
of the child nodes. A valuation function is introduced to express the average effects of
the difference in the transmission rates between the node and its parent. The optimal
transmission rate is calculated by using the exponential weighted moving average formula,
which depends on the risk degree at the node and the valuation function.

Ghanavati et al. [27] proposed an algorithm to detect and control congestion in a
WBAN with a tree topology. The proposed congestion control scheme applies the Type-2
Fuzzy Logic Controller (T2-FLC) to estimate the severity of the congestion. If congestion
is detected in a node, a rate adjustment unit (RAU) is called to allocate the sharing rate
to each child node based on their priorities by using formulas, and the new transmission
rate is calculated. The congestion notification spreads in the network hop by hop and the
changes in transmission rates are sent to the child nodes. When a node receives a new rate
assignment message, it adjusts its traffic rate accordingly.

Anwar et al. [28] proposed a protocol to avoid and mitigate congestion in WBANs.
First, it identifies the congestion level of a node by using the current queue occupancy.
Sensor data are transmitted in a way depending on the calculated congestion level. If the
congestion level is low, the data are forwarded normally. If the congestion level is between
two predefined thresholds, the protocol redirects data packets from congested nodes to
their neighbors to avoid congestion. In the case of a high congestion level, the packet
sending rate is reduced to control the congestion. The reduced packet sending rate of a
node is computed by the available free queue size of the next upstream node in WBAN.

Manfredi [29] proposed a method to avoid congestion by distributing the available
bandwidth among the individual data streams in a healthcare system. A rate control
law is applied to calculate the amounts of bandwidth allocated to sensors depending on
their priorities. The proposed formula maximizes the sum of a parametric concave utility
function for all nodes. It can be tuned by a parameter to follow various fairness criteria,
including the proportional fairness allocation in a special case, and it can converge to the
max–min fairness as well. The proposed mechanism can deal with differentiated and
dynamic healthcare scenarios by changing the priorities of the nodes and the parameter of
the formula.

Liu et al. [30] formulated another QoS optimization problem for the allocation of the
transmission power and time slots for each sensor in a WBAN using a common wireless
channel to minimize energy consumption subject to the QoS constraints. A transmission
rate adaption policy (TRAP) was proposed to adjust the transmission rate at each sensor
when the link quality is poor to assist the QoS optimization problem. Rate adaptation can
be tuned for a trade-off between energy consumption and the packet loss rate requirements.

Liu et al. [31] proposed a resource allocation scheme to optimize the allocation of the
transmission power, the source rate, and the time slots to improve the QoS performances
of a WBAN with a single wireless channel for all sensors. They formulated a through-
put maximization problem whose optimal numerical solution was found efficiently by
applying geometric programming. The source rates are allocated based on the optimal
throughput results.

Goyal et al. [32] proposed the GABAT-TRAP algorithm to achieve QoS metrics in a
WBAN with a star topology, which applies an optimized hybrid technique of the genetic
algorithm (GA) with the nature-inspired metaheuristic optimization algorithm, called the
bat algorithm (BAT). The transmission rates are initially optimized in TRAP, proposed
in [30]. Then, the transmission rates of the sensors are further optimized using GABAT to
optimize the energy efficiency of the network.

Kiran and Nithya [33] proposed the network status aware congestion control (NSACC)
algorithm to predict the congestion level and regulate the packet sending rate. A fuzzy
controller estimates the severity of the congestion. The rate regulation (RR) module applies

Appl. Sci. 2023, 13, 8529 5 of 16

rules for each congestion level to change packet sending rates. It controls the congestion by
adopting the logarithmic growth for the transmission rate to better utilize the bandwidth
available, enhances the throughput, and reduces the number of retransmissions.

Kathuria and Sapna [34] proposed the following two approaches to improve QoS
in WBANs: the reliable packet transmission with dynamic QoS (RPT-DQ) and the lion
cooperative hunt optimization (LCHO) techniques for the optimization of multi-objective
QoS. RPT-DQ consists of a series of steps from the priority assignment to the smart delay
mitigation. The intelligent rate assignment step applies fast start and stabilized rate adjust-
ment strategies. The fast start strategy initializes the packet transmission with a high data
rate to utilize maximum bandwidth. The stabilized rate adjustment strategy increases or
decreases the transmission rate of a sensor node by a stable amount when congestion occurs
in the system to increase the packet transmission rate and throughput while reducing loss
and delays.

Table 1 compares the problem models applied in the above papers with our proposed
model. Our model is most similar to the model in [25]. Like in our proposed model,
the multi-hop network and utility optimization are used in a centralized manner, but the
optimum data rate is searched for in a continuous domain. The models in [26–28] also use
multi-hop network topology but throughput is maximized instead of utility. Furthermore,
they follow a distributed approach in rate adaptation. The method in [29] maximizes the
utility similarly to our model, but it applies the simple star topology. Like in our proposed
model [30–32], search for the data rate in the discrete domain. However, all nodes are
directly connected to the sink in a star topology in these models. The methods in [23,33,34]
adapt the data rate in the continuous domain in a WBAN with a star topology, which differs
from our approach.

Table 1. Comparison of rate adaptation techniques.

Paper Data Rate Domain Optimization
Goal Constraints Network

Topology Method for Rate Adaptation

Ababneh et al. [25] continuous utility link and relay node
capacity

multi-hop
network

energy-balanced rate assignment
and routing protocol, integer

linear programming

Baek et al. [26] continuous throughput buffer capacity multi-hop
network, tree

exponential weighted moving
average using congestion risk
degree and valuation function

Ghanavati et al. [27] continuous throughput buffer capacity multi-hop
network, tree

fuzzy logic and formula for
sharing data rate, hop-by-hop
propagation of the congestion

information

Anwar et al. [28] continuous throughput buffer capacity multi-hop
network

formula using the queue
occupancy of the upstream node

Manfredi [29] continuous utility sink bandwidth star rate control law for bandwidth
allocation

Liu et al. [30] discrete energy, packet
loss rate

packet loss rate,
throughput star transmission rate adaption policy

(TRAP), heuristics

Liu et al. [31] discrete throughput

delay, packet loss
rate, energy

harvesting rate,
transmission power

star joint power-rate control scheme,
geometric programming

Goyal et al. [32] discrete energy packet loss rate,
throughput, delay star

GABAT TRAP, TRAP followed by
genetic algorithm (GA) with BAT

algorithm

Kiran and Nithya [33] continuous

throughput,
packet

transmission
rate

buffer occupancy
level, BSN priority,
packet arrival rate

star fuzzy logic and logarithmic
growth for the rate

Kathuria and Sapna [34] continuous
packet

transmission
rate

queue size star fast start and stabilized rate
adjustment strategies

current paper discrete utility bandwidth multi-hop
network, tree

knapsack problem-based
algorithms

Appl. Sci. 2023, 13, 8529 6 of 16

3. Optimization Problem Model

This section develops the optimization problem model for deciding on content adap-
tation. The network structure of WBANs can be described as a graph G(V, E), where V
denotes the nodes within the network and the edges E represent the wireless connection
between two nodes. The number of nodes and edges are denoted by n and e, respectively
(n = |V|, e = |E|). The network may consist of nodes of various types. Most of them
are sensor nodes that generate and forward data streams. Let S denote the subset of the
vertices consisting of sensor nodes. The number of sensor nodes is denoted by ns (ns = |S|).
The sink nodes represent the target nodes of streaming, which may also belong to the
sensor nodes. The network may include relay nodes as well, which only forward the data.
Two nodes are connected by an edge if they are within each other’s communication range.
Each edge eij and node vi may have a capacity Cij and Ci, respectively, which represent
the maximum amount of traffic that could pass through them. The capacity at the sink is
denoted by Cs, which can be considered as an upper bound for all capacities in the network.

The data rate adaptation follows the routing phase. Let the set of the edges of the
routing tree be denoted by Er, which is a subset of E. The routing tree consists of edges
used for data transmission; therefore, it is enough to check capacity constraints only on the
edges in Er. The routing tree consists of the same nodes as the network graph. Therefore,
the routing tree can be denoted by Gr(V, Er). Let Pi and Qij denote the set of nodes whose
routing path to the sink passes through node ni and edge eij, respectively. These sets can be
easily determined based on the routing tree Gr. Let Ri denote the unique route from node
vi to the sink in the routing tree, which can be determined in linear time in the length of the
route from routing tree Gr. Let ltree denote the maximum of the route lengths.

The total number of variants is denoted by nv. Let Di represent the set of the variations
of specific data generated in the network node vi ε S with respect to the sensor capabilities
(see Figure 2). li denotes the number of possible data variations at node vi (li = |Di|).
Let maxv denote the maximum number of variants for the nodes, i.e., the maximum of
li. Let r(dik) denote the required data rate of a data variation (dik ε Di, vi ε S, 1 ≤ k ≤ li).
Furthermore, we suppose that the utilities of the data variations are given. The utility is
denoted by u(dik) for the data variation dik. The data variations with zero utility and the
ones which do not provide a further increase in the utility can be omitted. We introduce di0
for each vi ε S to denote the case when the data stream is stopped. This special variation
neither requires resources nor has utility (u(di0) = 0, r(di0) = 0).

We aim to select a data variation (di) for each sensor to maximize the total utility
(∑
viεS

u(di)) under the constraints. The data variation is selected from the ones the sensor

can generate. In addition, di can be 0 as well if streaming from the sensor should stall. The
capacity constraints must be fulfilled both on the network edges and the nodes.

Input:

• The routing tree: Gr(V, Er);
• The set of possible data variations for each sensor node: Di for vi ε S;
• Utility for each data variation: u(dik) for vi ε S, 1 ≤ k ≤ li;
• Bit rate for each data variation: r(dik) for vi ε S, 1 ≤ k ≤ li;
• Bandwidth of each edge: Cij for eij ε Er;
• Limit on the bit rate for each node: Ci for vi ε V.

Output:

• Selected data variation for each sensor: di ε Di ∪{∅} for vi ε S;

Maximize

• the total utility of the selected data variations:

∑
viεS

u(di)

Subject to

Appl. Sci. 2023, 13, 8529 7 of 16

• The capacity constraint for each network node vj ε V:

∑
vkεPj

r(dk) ≤ Cj

• The capacity constraint for each network edge used for routing ejj ε Er:

∑
vkεQij

r(dk) ≤ Cij

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 17

• The set of possible data variations for each sensor node: Di for vi ϵ S;

• Utility for each data variation: u(dik) for vi ϵ S, 1 ≤ k ≤ li;

• Bit rate for each data variation: r(dik) for vi ϵ S, 1 ≤ k ≤ li;

• Bandwidth of each edge: Cij for eij ϵ Er;

• Limit on the bit rate for each node: Ci for vi ϵ V.

Output:

• Selected data variation for each sensor: di ϵ Di ∪ {∅} for vi ϵ S;

Maximize

• the total utility of the selected data variations:

∑ u(𝑑𝑖)

𝑣𝑖𝜖𝑆

Subject to

• The capacity constraint for each network node vj ϵ V:

∑ r(𝑑𝑘) ≤ 𝐶𝑗

𝑣𝑘𝜖𝑃𝑗

• The capacity constraint for each network edge used for routing ejj ϵ Er:

 ∑ r(𝑑𝑘) ≤ 𝐶𝑖𝑗

𝑣𝑘𝜖𝑄𝑖𝑗

Figure 2. A sensor (vi) with its neighbors in the proposed model. vj represents its outgoing neighbor

and vk, vl … vx represent its incoming neighbors in the routing tree. dik represents the data variations

that can be generated by sensor vi. Only one of the data variations is transferred. Ci and Cij denote

the capacities of nodes and edges, respectively.

4. Optimization Algorithms

4.1. Algorithmic Background

The above problem can be considered as a generalization of the knapsack problem

(KP), namely, the multiple-choice multidimensional knapsack problem (MMKP). In our

problem, variations of data streams are selected whose utilities and data rates correspond

Figure 2. A sensor (vi) with its neighbors in the proposed model. vj represents its outgoing neighbor
and vk, vl . . . vx represent its incoming neighbors in the routing tree. dik represents the data variations
that can be generated by sensor vi. Only one of the data variations is transferred. Ci and Cij denote
the capacities of nodes and edges, respectively.

4. Optimization Algorithms
4.1. Algorithmic Background

The above problem can be considered as a generalization of the knapsack problem
(KP), namely, the multiple-choice multidimensional knapsack problem (MMKP). In our
problem, variations of data streams are selected whose utilities and data rates correspond
to the values and sizes of items, respectively. In the multiple-choice knapsack problem,
there are several classes of items, and it is enough to choose only one item from each
class. In our case, one variant can be selected for each of the sensor data. The problem is
multidimensional as well, because instead of a single knapsack capacity, a series of capacity
constraints along the routing path should be satisfied, which form a vector. In our case, the
available capacity for a data stream is equal to the minimum capacity of resources along
the routing path to the sink, which may be different for different streams. After selecting an
item, the available capacity of node and edge resources should be updated along the route.

Several algorithms have been proposed in the literature [35–37] to solve the MMKP.
They include heuristic methods and an exact branch-and-bound method that is useful for
checking the validity of the solutions. Khan et al. [38] applied the MMKP to congestion
control, but sensors do not provide data streams in different variants in their model. Multi-
ple choice refers to the selection from several possible streaming routes. Khan et al. [39]

Appl. Sci. 2023, 13, 8529 8 of 16

applied the MMKP for adaptive multimedia systems. This approach proved to be an effi-
cient method to solve problems like quality adaptation, admission control, and integrated
resource management. We have selected some solution methods for the knapsack problem
to perform data rate adaptation in WBANs. The algorithms run in a centralized manner on
the sink node.

Several algorithms are available to solve knapsack problems, e.g., based on greedy
and dynamic programming approaches. The greedy solution of the knapsack problem
offers a fast solution approach for data rate adaptation, although it usually fails to find the
optimum. The greedy solution algorithm of the KP iteratively selects the item for which the
ratio of the value and the size is the highest among the items whose size does not exceed
the available space in the knapsack.

Dynamic programming, introduced by Bellman [40], is another widely used solution
method for the knapsack problem. This method can be adapted to the multiple-choice
knapsack problem (MCKP) as well (see, e.g., [41–43]). Let U(i,k) denote the maximum
value that can be attained with a weight less than or equal to k by selecting one item from
each class Sl, S2, . . ., Si. The dynamic programming algorithm can be formulated by the
following equations:

U(1, k) = maxjεS1:r1j≤k u1j (1)

U(i, k) = maxjεSi:rij≤k
(
uij + U

(
i− 1, k− rij

))
(2)

For the processing the first class, the achievable value is the largest value of the item in
the class with weight below the capacity limit (Equation (1)). In the general case described
in Equation (2), the partial solutions belonging to Sl, S2, . . ., Si can be regarded as extensions
of partial solutions belonging to Sl, S2, . . ., Si−1. Each U(i,k) can be calculated by using the
recursive formula. After completing the calculations, U(n,C) contains the optimal value
for the problem instance, where n is the number of classes and C is the capacity of the
knapsack.

4.2. Greedy Algorithm

We adapted the greedy method to the rate assignment problem in the following
way. The proposed method starts from the initial solution when no item is selected and
incrementally improves the solution (see Algorithm 1 and Figure 3). It iteratively selects
the node for which the ratio of the utility and the data rate is the highest among the nodes
whose data rate is not larger than the available bandwidth on any of the links along the
routing path, even after increase. The capacity constraints are determined in each iteration
for each node. The data variations are sorted in decreasing order of the ratio of the utility
and the data rate for each sensor.

The data rate adaptation method is called periodically, and the above method can be
adapted accordingly. After the first run, the method can be started from the solution of the
last run, which corresponds to the data rates currently streamed in the real system. The
network bandwidth can be continuously monitored in WBAN, and the data rate adaptation
algorithm can run periodically with updated network bandwidths.

At most, the while loop of the algorithm may run as many times as the number of
variants: O(nv) = O(ns·maxv). Sorting requires O(ns·maxv·log maxv). The iteration through
L2 runs O(ns) times in each iteration of the while loop. The capacity calculation through
the route takes O(ltree) steps in each iteration. For this reason, the time complexity of the
algorithm is O(nv·ns·ltree + ns·maxv·log maxv) = O(ns·maxv·(ns·ltree + log maxv)).

Appl. Sci. 2023, 13, 8529 9 of 16

Algorithm 1: Greedy method

1 initialization:
2 Let the index of the current data variation for each sensor be zero: ki: = 0,
3 and the current data variation for each sensor be empty: di: = di0 for vi ε S
4 Create a list L2 from all sensors vi ε S
5 for each sensor vi ε S
6 Sort the data variations in decreasing order of ratio u(dik)/r(dik)
7 while L2 is not empty
8 Let max denote the highest ratio of utility and data rate found in the iteration so far.

Let its initial value be 0: max: = 0
9 Let m denote the sensor node where the highest ratio was found. Let it be null

initially: m: = null
10 Iterate through L2
11 Take the next item (vi) from L2
12 Calculate the minimum available capacity (Ci) along the route Ri from node

vi to the sink in the routing tree Gr(V, Er)
13 Let k: = ki, di: = dik
14 while r(di) > Ci and k ≤ li
15 k: = k + 1, di: = dik
16 if k ≤ li
17 if u(di)/r(di) > max
18 max: = u(di)/r(di)
19 m: = vi
20 else
21 Remove vi from L2
22 if m! = null
23 Move the current data variation dm for sensor m to its next data variation: km:

= km + 1, dm: = dm(km)
24 Decrease the available capacities along the route Rm with ∆r(dm)

4.3. Dynamic Programming

We could not directly apply the dynamic programming solution for the multiple-
choice knapsack problem to the sensor data rate adaptation. The problem of rate adaptation
is more complex than the MCKP because it contains not a single capacity but multiple
capacities. We applied the dynamic programming method to our problem in the following
way. We defined an MCKP instance for each node of the routing tree, where the problem
inputs include the possible variations of the data streams coming to the node. The possible
variations of the data stream can be determined from the output of the problem instance at
the source node of the incoming edge. For this reason, the optimal data rate adaptation can
be found by solving a series of MCKP instances while traversing the routing tree.

The output of the MCKP is usually one solution with the highest value under the
given capacity constraint (U(n,C)). We extend the output at the nodes to a list of the highest
values for all capacity values in the array at class Sn (U(n,k), 0 ≤ k ≤ C). At the leaves of
the tree, the problem is simplified to the special case when there is only one class. This
case can be solved by simply omitting the items with larger weights than the current
capacity of the leaf. For the other nodes, the streams through the incoming edges should be
optimized by considering the capacity of the node. This can also be considered an MCKP
instance in the following way. Each incoming stream can be considered as a class, where
the items are the optimal solution belonging to the different resource constraints. These
items are stored in the output of the MCKP solved at the source node of the incoming
edge of the stream. For this reason, the sensor data rate values can be found by recursively
solving MCKP instances starting from the sink of the WBAN. After solving the knapsack
problem for all vertices, the utility of the proposed solution can be found in Us(ms,Cs) of
the dynamic programming solution at the sink, where Cs denotes the available capacity
at the sink and ms is the number of incoming edges at the sink. Algorithm 2 provides the
pseudocode for the dynamic programming on the routing tree. See Figure 4 for the flow
chart of the algorithm.

Appl. Sci. 2023, 13, 8529 10 of 16Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 17

Figure 3. Flowchart of the greedy method. Figure 3. Flowchart of the greedy method.

Appl. Sci. 2023, 13, 8529 11 of 16

The algorithm calls the DP() function in Line 13, which is a dynamic programming
method to solve the MCKP. See [43] for an example of the implementation of the algorithm.
The input parameters of DP() include the list of classes Sl, S2, . . . , Sn, where each class
contains items with weights and values and the size of the knapsack C. The algorithm
adapted to our problem returns a list of value and weight pairs.

Algorithm 2: Dynamic programming on the routing tree (Traverse)

1 input: node n
2 output: L: list of the possible data variations that can be transmitted by node n if n is not the sink
3 max: the maximum utility if n is the sink
4 if n is a leaf of the routing tree Gr(V, Er)
5 Create an empty list L
6 Calculate the minimum available capacity (Ci) along the route Ri from node vi to the sink in the

routing tree Gr(V, Er)
7 for each variant dni in the set of possible data variations Dn
8 if r(dni) ≤ Ci
9 add dni to L
10 return L
11 else
12 for each node j where enj ε Er
13 Lj: = call Traverse (j)
14 L = call DP({Lj: enj ε Er}, Ci)
15 if n is not the sink
16 return L
17 else
18 max: = 0
19 for each variant dl in list L
20 if r(dl) ≤ Ci
21 if u(dl) > max
22 max = u(dl)
23 return max

The method runs a dynamic programming solution algorithm of the MCKP for
each node of the routing tree. The time complexity of the algorithm for the MCKP is
O(ni·Ci·maxv), where ni and Ci denote the number of incoming edges and the capacity at
node vi. O(ni·Ci) is the size of the dynamic programming table and an element is calculated
in the O(maxv) step in the worst case due to Equation (2). The time complexity of the
algorithm for the whole network is ∑viεV O(ni·Ci·maxv) = O(n·Cs·maxv). Although the
algorithm finds the exact optimum, its running time is because the value of the maximal
capacity can be a large number. The value of the maximal capacity is exponential in its
input length. The running time can be reduced if the capacity requirements of the sensor
streams have a large common divisor. Otherwise, the capacities can be rounded to reduce
the number of steps in the dynamic programming, but in this case, the solution usually
differs from the exact optimum.

Appl. Sci. 2023, 13, 8529 12 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 17

18 max: = 0

19 for each variant dl in list L

20 if r(dl) ≤ Ci

21 if u(dl) > max

22 max = u(dl)

23 return max

Figure 4. Flowchart of the dynamic-programming-based method.

The method runs a dynamic programming solution algorithm of the MCKP for each

node of the routing tree. The time complexity of the algorithm for the MCKP is

O(ni·Ci·maxv), where ni and Ci denote the number of incoming edges and the capacity at

node vi. O(ni·Ci) is the size of the dynamic programming table and an element is calculated

in the O(maxv) step in the worst case due to Equation (2). The time complexity of the algo-

rithm for the whole network is ∑ 𝑂(𝑛𝑖 · 𝐶𝑖 · 𝑚𝑎𝑥𝑣)𝑣𝑖𝜖𝑉 = O(n·Cs·maxv). Although the algo-

rithm finds the exact optimum, its running time is because the value of the maximal ca-

pacity can be a large number. The value of the maximal capacity is exponential in its input

length. The running time can be reduced if the capacity requirements of the sensor streams

have a large common divisor. Otherwise, the capacities can be rounded to reduce the

number of steps in the dynamic programming, but in this case, the solution usually differs

from the exact optimum.

5. Evaluation

Figure 4. Flowchart of the dynamic-programming-based method.

5. Evaluation

This section presents an evaluation of the algorithms presented in the previous section.
We implemented the proposed algorithms in C++ in Visual Studio Community Edition and
tested them on simulated environments. We created an integer linear program (ILP) based
on the formal model to find the exact optimum. ILP is a general method to solve hard
combinatorial problems, and it is used for rate adaptation as well in the literature [25]. We
solved it by using CPLEX. The implemented algorithms were compared with each other.

We also examined the accuracy of adapting solutions of common models to our case,
namely the model with continuous data rate and the model maximizing throughput. The
continuous data rate adaptation can be applied to the discrete case by rounding the results
to the feasible discrete data rates. Furthermore, since the utility is typically a monotone
increasing function of the data rate, increasing throughput usually increases the utility as
well. For this reason, throughput maximization is often used to maximize the utility. We
compared the optimal utility of the solution to our proposed model with the utility achieved
by rounding down the optimal solutions of the continuous model and the utility of the
solution with maximum throughput. In the continuous model, a piecewise linear utility
function was maximized, which connects the discrete utility values. The exact optimum
of the utility was found through linear programming in the continuous case. A discrete
data rate model was applied in the case of throughput maximization, and the solution with
maximum throughput was found by applying ILP.

Appl. Sci. 2023, 13, 8529 13 of 16

5.1. Multiple Runs

The proposed algorithms were tested on generated networks. Five test series were
generated; each of them consisted of ten cases. The number of nodes varied in the different
series; there were 5, 10, 15, 20, and 25 nodes in the different series. We examined the utilities
of the solutions as a function of the number of nodes. Figure 5 shows the average utilities
of each test series. The figures compare the results of the proposed algorithms, namely the
greedy algorithm and the dynamic programming on the routing tree. Dynamic program-
ming and integer linear programming methods always find the exact optimum. According
to the chart, the greedy algorithm produces similar results to dynamic programming. The
accuracy of the approach rounding the solution of the continuous model is low even if the
continuous model is solved optimally. We obtained similar results for applying the solution
with maximum throughput.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 17

This section presents an evaluation of the algorithms presented in the previous sec-

tion. We implemented the proposed algorithms in C++ in Visual Studio Community Edi-

tion and tested them on simulated environments. We created an integer linear program

(ILP) based on the formal model to find the exact optimum. ILP is a general method to

solve hard combinatorial problems, and it is used for rate adaptation as well in the litera-

ture [25]. We solved it by using CPLEX. The implemented algorithms were compared with

each other.

We also examined the accuracy of adapting solutions of common models to our case,

namely the model with continuous data rate and the model maximizing throughput. The

continuous data rate adaptation can be applied to the discrete case by rounding the results

to the feasible discrete data rates. Furthermore, since the utility is typically a monotone

increasing function of the data rate, increasing throughput usually increases the utility as

well. For this reason, throughput maximization is often used to maximize the utility. We

compared the optimal utility of the solution to our proposed model with the utility

achieved by rounding down the optimal solutions of the continuous model and the utility

of the solution with maximum throughput. In the continuous model, a piecewise linear

utility function was maximized, which connects the discrete utility values. The exact op-

timum of the utility was found through linear programming in the continuous case. A

discrete data rate model was applied in the case of throughput maximization, and the

solution with maximum throughput was found by applying ILP.

5.1. Multiple Runs

The proposed algorithms were tested on generated networks. Five test series were

generated; each of them consisted of ten cases. The number of nodes varied in the different

series; there were 5, 10, 15, 20, and 25 nodes in the different series. We examined the utili-

ties of the solutions as a function of the number of nodes. Figure 5 shows the average

utilities of each test series. The figures compare the results of the proposed algorithms,

namely the greedy algorithm and the dynamic programming on the routing tree. Dynamic

programming and integer linear programming methods always find the exact optimum.

According to the chart, the greedy algorithm produces similar results to dynamic pro-

gramming. The accuracy of the approach rounding the solution of the continuous model

is low even if the continuous model is solved optimally. We obtained similar results for

applying the solution with maximum throughput.

Figure 5. Utility values of the proposed data rate adaptation algorithms.

Table 2 shows the accuracy of the proposed algorithms. The accuracy of a method in

a test series is defined as the ratio of the measured and optimal overall utilities. Although

0

50

100

150

200

250

5 10 15 20 25

U
ti

lit
y

Number of nodes

greedy DP ILP cont. + rounding throughput

Figure 5. Utility values of the proposed data rate adaptation algorithms.

Table 2 shows the accuracy of the proposed algorithms. The accuracy of a method in a
test series is defined as the ratio of the measured and optimal overall utilities. Although the
greedy method does not guarantee the optimum, it approximates well it in the test series.

Table 2. Accuracy (in %) of the proposed data rate adaptation algorithms.

Number of Nodes 5 10 15 20 25

greedy 96.8 100 96.7 100 100
DP 100 100 100 100 100
ILP 100 100 100 100 100

cont. + rounding 65.5 100 73.5 84.8 97.6
throughput 100 88.7 89.6 81.3 91.7

Figure 6 shows the ratio of the solutions with the exact optimum to all test cases.
It shows that the proposed greedy method finds the exact solutions in most cases. Although
rounding the optimal continuous solution and the throughput optimization often find the
exact optimum, they fail to find the optimum in many cases.

Appl. Sci. 2023, 13, 8529 14 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 17

the greedy method does not guarantee the optimum, it approximates well it in the test

series.

Table 2. Accuracy (in %) of the proposed data rate adaptation algorithms.

Number of Nodes 5 10 15 20 25

greedy 96.8 100 96.7 100 100

DP 100 100 100 100 100

ILP 100 100 100 100 100

cont. + rounding 65.5 100 73.5 84.8 97.6

throughput 100 88.7 89.6 81.3 91.7

Figure 6 shows the ratio of the solutions with the exact optimum to all test cases. It

shows that the proposed greedy method finds the exact solutions in most cases. Although

rounding the optimal continuous solution and the throughput optimization often find the

exact optimum, they fail to find the optimum in many cases.

Figure 6. The ratio of test cases with the exact optimum.

5.2. Running Times

We also examined the running time of the proposed algorithms. The algorithms were

implemented in C++. The tests were run on a 2.4 GHz processor with 8 GB memory. Table

3 shows the average running times in microseconds for different test series. As shown in

the table, the greedy algorithm can produce results much faster than the dynamic pro-

gramming approach. The dynamic programming algorithm required 50–150 times more

time than the greedy method. The ILP-based method was clearly the slowest.

Our dynamic programming-based approach has a rather high complexity because it

traverses the routing tree and runs dynamic programming for each node. The greedy al-

gorithm has a faster running time than the dynamic programming algorithms and can

provide similar results.

Table 3. Running times (in µs) of the proposed data rate adaptation algorithms.

Number of Nodes 5 10 15 20 25

1 8 14 26 32 30

DP 485 1893 2395 2870 3198

ILP 28,206 14,709 14,877 14,201 44,595

100

0

20

40

60

80

100

120

Ex
ac

t
o

p
ti

m
u

m
s

(%
)

greedy DP ILP cont. + rounding throughput

Figure 6. The ratio of test cases with the exact optimum.

5.2. Running Times

We also examined the running time of the proposed algorithms. The algorithms were
implemented in C++. The tests were run on a 2.4 GHz processor with 8 GB memory. Table 3
shows the average running times in microseconds for different test series. As shown in the
table, the greedy algorithm can produce results much faster than the dynamic programming
approach. The dynamic programming algorithm required 50–150 times more time than the
greedy method. The ILP-based method was clearly the slowest.

Table 3. Running times (in µs) of the proposed data rate adaptation algorithms.

Number of Nodes 5 10 15 20 25

1 8 14 26 32 30
DP 485 1893 2395 2870 3198
ILP 28,206 14,709 14,877 14,201 44,595

Our dynamic programming-based approach has a rather high complexity because
it traverses the routing tree and runs dynamic programming for each node. The greedy
algorithm has a faster running time than the dynamic programming algorithms and can
provide similar results.

6. Conclusions

We proposed a model assigning discrete data rate values of the possible quality
variations to multi-hop WBAN sensors. The discrete data rates can be dynamically adapted
to changing network conditions to maximize the total utility of the data streams. The
proposed approach can continuously stream data even in a shortage of resources, and it
can also exploit the full capabilities of the devices if there are enough resources. We defined
the formal model of the problem. We introduced two knapsack-problem-based algorithms
to solve the problem of the sensor data rate adaptation. Our test results show that although
the dynamic programming method can provide the best utility, the greedy method can
also approximate the optimum well: it achieved at least 96% of the optimum. The running
time of the greedy method was much shorter (1–2% of the running time of DP), which
may represent a significant advantage in WSNs with limited computing capacity. The
results show the importance of applying the discrete model. Although the solution of the
continuous model can be adapted to the discrete case by rounding, the accuracy of this
approach is low, even if the continuous model is solved optimally. The error of rounding
the optimal continuous solution was, at most, 35%.

Appl. Sci. 2023, 13, 8529 15 of 16

The proposed model has some limitations. For example, the utility function is hard to
define exactly. An extensive analysis would be required to better understand the utility
of the data streams. In the future, the model could be extended with energy constraints,
which may represent a crucial limitation in WSNs.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Yaghoubi, M.; Ahmed, K.; Miao, Y. Wireless Body Area Network (WBAN): A Survey on Architecture, Technologies, Energy

Consumption, and Security Challenges. J. Sens. Actuator Netw. 2022, 11, 67. [CrossRef]
2. Taleb, H.; Nasser, A.; Andrieux, G.; Charara, N.; Motta Cruz, E. Wireless technologies, medical applications and future challenges

in WBAN: A survey. Wirel. Netw. 2021, 27, 5271–5295. [CrossRef]
3. Kathuria, M.; Gambhir, S. Quality of service provisioning transport layer protocol for WBAN system. In Proceedings of the 2014

International Conference on Reliability Optimization and Information Technology (ICROIT), Faridabad, India, 6–8 February 2014;
IEEE: Piscataway, PJ, USA, 2014; pp. 222–228.

4. Rodrigues, V.F.; Righi, R.D.; da Costa, C.A.; Antunes, R.S. Smart Hospitals and IoT Sensors: Why Is QoS Essential Here? J. Sens.
Actuator Netw. 2022, 11, 33. [CrossRef]

5. Alam, M.M.; Hamida, E. Ben Surveying wearable human assistive technology for life and safety critical applications: Standards,
challenges and opportunities. Sensors 2014, 14, 9153–9209. [CrossRef]

6. Ben Elhadj, H.; Elias, J.; Chaari, L.; Kamoun, L. A Priority based Cross Layer Routing Protocol for healthcare applications. Ad Hoc
Netw. 2016, 42, 1–18. [CrossRef]

7. Liu, B.; Yan, Z.; Chen, C.W. Medium Access Control for Wireless Body Area Networks with QoS Provisioning and Energy Efficient
Design. IEEE Trans. Mob. Comput. 2017, 16, 422–434. [CrossRef]

8. Algabroun, H. Dynamic sampling rate algorithm (DSRA) implemented in self-adaptive software architecture: A way to reduce
the energy consumption of wireless sensors through event-based sampling. Microsyst. Technol. 2020, 26, 1067–1074. [CrossRef]

9. Bregar, K.; Krištofelc, T.; Depolli, M.; Avbelj, V.; Rashkovska, A. Power Autonomy Estimation of Low-Power Sensor for Long-Term
ECG Monitoring. Sensors 2022, 22, 5070. [CrossRef]

10. IEEE. IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks. IEEE Stand. 2014,
2014, 74.

11. Shan, F.; Luo, J.; Wu, W.; Li, M.; Shen, X. Discrete Rate Scheduling for Packets with Individual Deadlines in Energy Harvesting
Systems. IEEE J. Sel. Areas Commun. 2015, 33, 438–451. [CrossRef]

12. Khairnar, P.S.; Mehta, N.B. Discrete-Rate Adaptation and Selection in Energy Harvesting Wireless Systems. IEEE Trans. Wirel.
Commun. 2015, 14, 219–229. [CrossRef]

13. Skorin-Kapov, L.; Ivesic, K.; Aristomenopoulos, G.; Papavassiliou, S. Approaches for Utility-Based QoE-Driven Optimization of
Network Resource Allocation for Multimedia Services. In Lecture Notes in Computer Science (including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2013; Volume 7754, pp. 337–358.
ISBN 9783642367830.

14. Gomes, R.L.; Bittencourt, L.; Madeira, E.; Cerqueira, E.; Gerla, M. Management of virtual network resources for multimedia
applications. Multimed. Syst. 2017, 23, 405–419. [CrossRef]

15. Gómez, G.; de Torres, E.; Lorca, J.; García, R.; Pérez, Q.; Arias, E. Assessment of Multimedia Services QoS/QoE over LTE
Networks. In Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 455,
pp. 257–272.

16. La, R.J.; Anantharam, V. Utility-based rate control in the Internet for elastic traffic. IEEE/ACM Trans. Netw. 2002, 10, 272–286.
[CrossRef]

17. Fu, X.; Modiano, E. Learning-NUM: Network Utility Maximization with Unknown Utility Functions and Queueing Delay.
IEEE/ACM Trans. Netw. 2022, 30, 2788–2803. [CrossRef]

18. Cao, Y.; Sun, B.; Tsang, D.H.K. Online Network Utility Maximization: Algorithm, Competitive Analysis, and Applications. IEEE
Trans. Control Netw. Syst. 2022, 10, 274–284. [CrossRef]

19. Li, L.; Long, J.; Zhou, W.; Jolfaei, A.; Haghighi, M.S. Joint Optimization of Energy Consumption and Data Transmission in Smart
Body Area Networks. Sensors 2022, 22, 9023. [CrossRef]

20. Song, G.; Li, Y. Cross-layer optimization for OFDM wireless networks-part I: Theoretical framework. IEEE Trans. Wirel. Commun.
2005, 4, 614–624. [CrossRef]

https://doi.org/10.3390/jsan11040067
https://doi.org/10.1007/s11276-021-02780-2
https://doi.org/10.3390/jsan11030033
https://doi.org/10.3390/s140509153
https://doi.org/10.1016/j.adhoc.2015.10.007
https://doi.org/10.1109/TMC.2016.2549008
https://doi.org/10.1007/s00542-019-04631-9
https://doi.org/10.3390/s22145070
https://doi.org/10.1109/JSAC.2015.2391491
https://doi.org/10.1109/TWC.2014.2337296
https://doi.org/10.1007/s00530-015-0501-6
https://doi.org/10.1109/90.993307
https://doi.org/10.1109/TNET.2022.3182890
https://doi.org/10.1109/TCNS.2022.3199221
https://doi.org/10.3390/s22229023
https://doi.org/10.1109/TWC.2004.843065

Appl. Sci. 2023, 13, 8529 16 of 16

21. Wang, C.; Guo, K.; Hu, X. The QoS and Energy Consumption Efficiency Trade-off Model Based on Utility Function in WBAN.
In Proceedings of the 2021 5th International Conference on Electronic Information Technology and Computer Engineering,
Xiamen, China, 22–24 October 2021; ACM: New York, NY, USA; pp. 1356–1360.

22. Misra, S.; Moulik, S.; Chao, H.C. A cooperative Bargaining solution for priority-based data-rate tuning in a Wireless Body Area
Network. IEEE Trans. Wirel. Commun. 2015, 14, 2769–2777. [CrossRef]

23. Mekathoti, V.; Nithya, B. A Survey on Congestion Control Algorithms of Wireless Body Area Network. In Lecture Notes in
Electrical Engineering; Springer: Singapore, 2021; Volume 735, pp. 373–387. ISBN 9789813369764.

24. Kim, B.-S.; Shah, B.; He, T.; Kim, K.-I. A survey on analytical models for dynamic resource management in wireless body area
networks. Ad Hoc Netw. 2022, 135, 102936. [CrossRef]

25. Ababneh, N.; Timmons, N.; Morrison, J.; Tracey, D. Energy-balanced rate assignment and routing protocol for body area networks.
In Proceedings of the 2012 26th International Conference on Advanced Information Networking and Applications Workshops,
Fukuoka, Japan, 26–29 March 2012; pp. 466–467. [CrossRef]

26. Baek, Y.; Lee, B.; Li, J.; Shu, Q.; Han, J.; Han, K. An adaptive rate control for congestion avoidance in wireless body area networks.
In Proceedings of the 2009 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery,
Zhangjiajie, China, 10–11 October 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–4.

27. Ghanavati, S.; Abawaji, J.; Izadi, D. A Congestion Control Scheme Based on Fuzzy Logic in Wireless Body Area Networks.
In Proceedings of the 2015 IEEE 14th International Symposium on Network Computing and Applications, Cambridge, MA, USA,
28–30 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 235–242.

28. Anwar, M.; Abdullah, A.H.; Saedudin, R.R.; Masud, F.; Ullah, F. CAMP: Congestion Avoidance and Mitigation Protocol for
Wireless Body Area Networks. Int. J. Integr. Eng. 2018, 10, 59–65. [CrossRef]

29. Manfredi, S. Congestion control for differentiated healthcare service delivery in emerging heterogeneous wireless body area
networks. IEEE Trans. Wirel. Commun. 2014, 21, 80–90. [CrossRef]

30. Liu, Z.; Liu, B.; Chen, C.W. Transmission-Rate-Adaption Assisted Energy-efficient Resource Allocation with QoS Support in
WBANs. IEEE Sens. J. 2017, 17, 5767–5780. [CrossRef]

31. Liu, Z.; Liu, B.; Chen, C.W. Joint Power-Rate-Slot Resource Allocation in Energy Harvesting-Powered Wireless Body Area
Networks. IEEE Trans. Veh. Technol. 2018, 67, 12152–12164. [CrossRef]

32. Goyal, R.; Patel, R.B.; Bhaduria, H.S.; Prasad, D. An Energy Efficient QoS Supported Optimized Transmission Rate Technique in
WBANs. Wirel. Pers. Commun. 2021, 117, 235–260. [CrossRef]

33. Kiran, M.V.; Nithya, B. Network Status Aware Congestion Control (NSACC) Algorithm for Wireless Body Area Network. Procedia
Comput. Sci. 2020, 171, 42–51. [CrossRef]

34. Kathuria, M.; Gambhir, S. Reliable packet transmission in WBAN with dynamic and optimized QoS using multi-objective lion
cooperative hunt optimizer. Multimed. Tools Appl. 2021, 80, 10533–10576. [CrossRef]

35. Han, B.; Leblet, J.; Simon, G. Hard multidimensional multiple choice knapsack problems, an empirical study. Comput. Oper. Res.
2010, 37, 172–181. [CrossRef]

36. Yang, J.; Kim, Y.H.; Yoon, Y. A Memetic Algorithm with a Novel Repair Heuristic for the Multiple-Choice Multidimensional
Knapsack Problem. Mathematics 2022, 10, 602. [CrossRef]

37. Mansini, R.; Zanotti, R. A core-based exact algorithm for the multidimensional multiple choice knapsack problem. INFORMS J.
Comput. 2020, 32, 1061–1079. [CrossRef]

38. Khan, S.; Li, K.F.; Manning, E.G.; Watson, R.; Shoja, G.C. Optimal Quality of Service routing and admission control using the
Utility Model. Futur. Gener. Comput. Syst. 2003, 19, 1063–1073. [CrossRef]

39. Khan, S.; Li, K.F.; Manning, E.G.; Akbar, M.M. Solving the Knapsack Problem for Adaptive Multimedia Systems. Stud. Inform.
Universalis 2002, 2, 157–178.

40. Bellman, R. Dynamic Programming; Press Princeton: Princeton, NJ, USA, 1957.
41. Dudziński, K.; Walukiewicz, S. Exact methods for the knapsack problem and its generalizations. Eur. J. Oper. Res. 1987, 28, 3–21.

[CrossRef]
42. Szkaliczki, T.; Eberhard, M.; Hellwagner, H.; Szobonya, L. Piece selection algorithms for layered video streaming in P2P networks.

Discret. Appl. Math. 2014, 167, 269–279. [CrossRef]
43. Gavalas, N. Solving the Multiple Choice Knapsack Problem. 2019. Available online: https://nickgavalas.com/solving-the-

multiple-choice-knapsack-problem/ (accessed on 15 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TWC.2015.2393303
https://doi.org/10.1016/j.adhoc.2022.102936
https://doi.org/10.1109/WAINA.2012.34
https://doi.org/10.30880/ijie.2018.10.06.008
https://doi.org/10.1109/MWC.2014.6812295
https://doi.org/10.1109/JSEN.2017.2725906
https://doi.org/10.1109/TVT.2018.2872960
https://doi.org/10.1007/s11277-020-07281-7
https://doi.org/10.1016/j.procs.2020.04.005
https://doi.org/10.1007/s11042-020-10144-9
https://doi.org/10.1016/j.cor.2009.04.006
https://doi.org/10.3390/math10040602
https://doi.org/10.1287/ijoc.2019.0909
https://doi.org/10.1016/S0167-739X(03)00110-9
https://doi.org/10.1016/0377-2217(87)90165-2
https://doi.org/10.1016/j.dam.2013.11.007
https://nickgavalas.com/solving-the-multiple-choice-knapsack-problem/
https://nickgavalas.com/solving-the-multiple-choice-knapsack-problem/

	Introduction
	Related Work
	Optimization Problem Model
	Optimization Algorithms
	Algorithmic Background
	Greedy Algorithm
	Dynamic Programming

	Evaluation
	Multiple Runs
	Running Times

	Conclusions
	References

