A Full-Body Biomechanical Model and Novel Forelimb Muscle Forces in Tyrannosaurus rex

Andy Danison¹, Oliver Demuth², Heinrich Mallison³, Eric Snively¹

¹Oklahoma State University, ²Royal Veterinary College, ³Palaeo3D

INTRODUCTION

- Biomechanics allows us to infer the function and behavior of extinct taxa^{1,2}
- Musculature in extinct taxa can be reconstructed through a combination of phylogenetic inference and fossil evidence^{1,2,3,4}
- Previous analyses have created muscle models to estimate physiological crosssectional area (PCSA) and calculate maximum contractile force^{1,2}

$$PCSA = \frac{V \times \cos(\theta)}{L}$$

$$F_{max} = PCSA \times ST$$

- The forelimb musculature of *Tyrannosaurus rex* has never previously been modeled³
- No previous analyses have attempted to integrate different systems of muscles to model full-body movements

OBJECTIVES

- Estimate the maximum contractile force for each humeral protractor and retractor⁴
- Make functional and behavioral inferences based on our biomechanical model
- Create an atlas of *Tyrannosaurus* musculature for future research⁷

METHODS

Digital models of a *Tyrannosaurus rex* skeleton were constructed from photos with Agisoft Metashape⁵

Muscles based on extant taxa and previous literature were modeled around the skeleton using Maya⁶

Ventral surface of the left pectoralis muscle

Muscle length data was used to estimate maximum contractile forces for three different fiber lengths

RESULTS

Novel Muscle Force Estimates – Humeral protractors⁴ in green, humeral retractors in red

Muscle Name	Volume (cm^3)	Length (cm)	Maximum Contractile Force (N)	
M. pectoralis	5,748.85	45.39	3,856-11,018	
M. coracobrachialis brevis dorsalis	4,785.88	44.21	3,296-9,418	
M. supracoracoideus brevis	1,304.19	31.54	1,259-3,597	
M. supracoracoideus intermedius	876.72	28.42	939-2,683	
M. latissimus dorsi	22,530.82	182.02	3,769-10,767	
M. subscapularis	1,881.01	78.69	728-2,079	
M. scapulohumeralis caudalis	1,102.68	40.92	820-2,344	

DISCUSSION

- Tyrannosaurus rex was capable of powerful forelimb movements³
- Powerful forelimb musculature may be indicative of forelimb use during predation
- This model provides force estimates for previously unanalyzed muscles in *T. rex*
- Incorporating musculature from different regions of the body will allow us to model movements across those different regions

FUTURE DIRECTIONS

- Pair biomechanical data with trabecular orientation⁸
- Muscle moment arms and forces will quantify torque about joints¹
- Comparisons between *Tyrannosaurus* rex and other taxa will better establish variation across Theropoda¹

REFERENCES AND ACKNOWLEDGEMENTS

- 1. Snively, E., & Russell, A. P. (2007). Craniocervical feeding dynamics of *Tyrannosaurus rex*. *Paleobiology*, *33*(4), 610-638.
- 2. Gignac, P. M., & Erickson, G. M. (2017). The biomechanics behind extreme osteophagy in *Tyrannosaurus* rex. Scientific Reports, 7(1), 1-10.
- 3. Lipkin, C., & Carpenter, K. (2008). Looking again at the forelimb of Tyrannosaurus rex. *Tyrannosaurus rex: the tyrant king*, 166-190.
- 4. Burch, S. H. (2014). Complete forelimb myology of the basal theropod dinosaur *Tawa hallae* based on a novel robust muscle reconstruction method. *Journal of Anatomy*, 225(3), 271-297.
- 5. Mallison, H. (2020, December 3). Photogrammetry Tutorial 1-13. *Palaeo3D*.
- 6. Demuth, O. E., Rayfield, E. J., & Hutchinson, J. R. (2020). 3D hindlimb joint mobility of the stem-archosaur Euparkeria capensis with implications for postural evolution within Archosauria. *Scientific reports*, 10(1), 15357.
- 7. Holliday, C. M., Tsai, H. P., Skiljan, R. J., George, I. D., & Pathan, S. (2013). A 3D interactive model and atlas of the jaw musculature of *Alligator mississippiensis*. *PLoS One*, *8*(6), e62806.
- 8. Fyhrie, D. P., & Carter, D. R. (1986). A unifying principle relating stress to trabecular bone morphology. *Journal of Orthopaedic Research*, *4*(3), 304-317.

I would like to thank my advisor, Dr. Eric Snively, for his guidance on this project and Dr. Ian Browne for helping me print the 3D models for my poster presentation.

