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Sommaire 

L'Internet des objets (IdO) (Internet of Things en anglais), peut être défini comme une combinaison 

d’interactions entre les Humains et le monde technologique de l’Internet. De cet effet résulte une 

interconnexion entre les objets physiques et les appareils technologiques dans leur environnement 

proche. [1]. Ces dernières années le domaine de l'IdO s’est beaucoup développé, entrainant ainsi 

une augmentation du risque de défaillances en temps réel. Les défaillances sont souvent détectées 

par certains points de vulnérabilité dans le système. En se concentrant sur les causes profondes, le 

point de défaillance peut être détecter, ce qui conduit aux mesures à mettre en place pour surmonter 

les défaillances. Les systèmes IdO ont donc besoin d'avoir une architecture de Qualité de Service 

(QdS) adéquate. Ainsi, la QdS devient un enjeu crucial avec la démocratisation de l'IdO. La QdS 

est la description ou la mesure de la performance globale d'un service, tel qu'un réseau de 

téléphonie ou informatique, ou un service de cloud computing, en particulier la performance 

perçue par les utilisateurs du réseau. Dans cette étude, nous proposons les méthodes de mise en 

œuvre de la QdS dans les plateformes IdO. Nous mettrons en lumière les défis et les problèmes 

récurrents rencontrés par toutes les plateformes IdO, qui nous ont inspirés à construire un outil 

générique pour surmonter ces défis en imposant la QdS dans toutes les plateformes IdO avec une 

configuration facile à utiliser. L'objectif principal de cette étude est de permettre les fonctionnalités 

de QdS dans la couche Fog de l'architecture IdO. Les plateformes et systèmes existants permettant 

les fonctionnalités de QdS dans la couche Fog sont également mis en évidence. Enfin, nous 

soulignons la validation de notre modèle en le mettant en œuvre sur notre plateforme AMI-LAB. 
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Summary  

The Internet of Things (IoT) can be defined as a combination of push and pull from the 

technological side and human side respectively. This push and pull effect results in more 

connectivity among objects and humans in the near surrounding environments [1]. With the growth 

in the field of IoT, in recent times, the risk of real time failures has increased as well. The failures 

are often detected by certain points of vulnerability in the system. Narrowing down to the root 

causes we get the point of failures and that leads to the required measures to overcome them. This 

creates the need for IoT systems to have a proper Quality of Service (QoS) architecture. Thus, QoS 

is becoming a crucial issue with the democratization of IoT. QoS is the description or measurement 

of the overall performance of a service, such as a telephony or computer network or a cloud 

computing service, particularly the performance seen by the users of the network.  

In this study, we propose the methods of enforcement of QoS in IoT platforms. We will highlight 

the challenges and recurrent issues faced by all IoT platforms which in turn inspired us to build a 

generic tool to overcome these challenges by enforcing the QoS in all the IoT platforms with an 

easy to use set up. The main focus of this study is to enable QoS features in the Fog layer of the 

IoT architecture. Existing platforms and systems enabling QoS features in the Fog layer are also 

highlighted. Finally, we validate our proposed model by implementing it on our AMI-LAB 

platform. 
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Introduction  

The key component today in every technological research domain is data. Without data all machine 

learning concepts and AI’s will be rendered useless. This requirement of a huge amount of data is 

one of the factors which lead to the growth of IoT. To ensure IoT success, quality of service (QoS) 

is needed, QoS assurance is used to mitigate limitations from equipments and network 

infrastructures to achieve proper functioning of all services.  

Following we will introduce the context of IoT, the addressed problem, and the goal of this study. 

A. Context of the Work 

The emergence of the Internet of Things (IoT), which refers to the interconnected network of 

objects, is poised to match the historical achievements of notable technological advancements like 

the printing press, the steam engine, and electricity [2]. The concept of IoT is not limited to a fixed 

stream of industries, unlike most revolutionary changes. We already have IoT implementations in 

agriculture, medicine, military, engineering to even in our daily livelihoods [3]. The important 

factor in these implementations today is to have stable and trustworthy IoT platforms, which is 

ensured by a concept called “Quality of Service” (QoS). QoS guarantees the stability of the 

platforms and the services [4]. To understand the implementation of QoS in IoT systems, first we 

need to discuss the IoT architecture.  
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IoT architecture  
A typical IoT architecture consists of four main layers (Figure 1) [5]. The lowest level of the 

architecture is the edge layer. After the edge level and moving up the architecture, we have the 

Fog Layer. The next one up the chain is the network layer and finally comes the cloud or data 

center layer. An older version of the IoT architecture only involves the edge layer followed by 

the network layer and the cloud layer and finally the application layer on top of the cloud layer for 

the proper visualization of the data [6] [7] [8]. The fog layer has been included in the newer 

architectures of IoT due to several challenges faced by cloud layers in delivering services with a 

higher efficiency.  

 

Figure 1. Basic Architecture of IoT[5] 
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i) Edge Layer 

The edge computing includes a wide range of sensors, actuators, and devices [9]. These are the 

devices or sensors that we encounter in our day-to-day lives, devices like door sensors, smart 

watches, motion sensors, smart security locks, leak sensors, thermostats, etc.  

In Figure 2 we can see the various key elements of an edge device layer. The “Things” layer is 

comprised of two parts- the sensors and the actuators.  

• Sensors 

The sensors are considered as the system’s eyes and ears in the real world. They monitor 

environmental elements like ambient light, moisture, temperature, water, and gas leaks. 

The sensors although most often are considered as physical objects, they can very well be 

defined as anything that can be read, from files to any product-specific data. Sensors are 

mainly hardwired into products or devices that communicate via a short-haul 

communication protocol like Bluetooth Low Energy (BLE) or ZigBee. 

• Actuators 

The actuators in the real world are considered as the system’s hands and feet. It affects 

the logical state of a product. It might include some light that can be turned off or on or 

some water valves that can be opened or closed. Actuations can also extend to system 

configurations or commands (system commands like reboot, configuration updates, etc.) 

that are sent remotely to a faraway place. 

• Controller 

The next layer in the defined architecture is the controller. It functions as a hardware or 

software component that is embedded electrically with the sensors or have some logical 

implementation with the sensors and actuators. A controller can be as simple as 

converting the analog signals from a switch to digital signals which will show us the status 

of the bulb at any point of time. The controllers can even have some local communications 

in between sensors via simple serial connections or low energy wireless communications. 
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Figure 2. Architecture of edge layer 

• Agent 

An agent can be defined as an embedded program that has been implemented on the IoT 

devices or is in a device close to the IoT devices. This agent reports the status of the 

services and the environment. It acts as a bridge between the controller and the Fog level 

regulating the amount of data to be sent and the time to send the data. Even this agent acts 

as a mediator to all commands and requests that come from the cloud or Fog layer as it 

processes all the commands before the actuation. 

• Long-haul Communication 

The final component of the architecture is the long-haul communication. All IoT 

solutions require the data collected from the environment to be transmitted to the cloud, 

now there comes the challenge as this involves a lot of small components like security, 

footprint, and reliability. We have a wide variety of options for long-haul communications 

like cellular, Wi-Fi and wired internet along with some sub gigahertz options like LoRa 

and Sigfox. Most of these options use the common networking protocols like TCP 

(Transmission Control Protocol), UDP (User Datagram Protocol) for the transport layer 

and HTTP (Hypertext Transfer Protocol) and CoAP (Constrained Application Protocol) 

for the application layer. 
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ii) Fog Layer 

The fog computing was first proposed by Cisco [10] to solve the applicability issue of Paas 

(Platform as a service). Fog computing addresses the limitations of cloud computing. Initially the 

data after being collected from the environment was directly transmitted to the cloud but as the 

cloud transmissions consumes a huge amount of network bandwidth it became very difficult to 

process all data and provide faster responses on a low budget. The fog layer is comprised of fog 

nodes, essentially functioning as industrial controllers, gateway computers, switches, and I/O 

devices that offer computing, storage, and connectivity services. The fog computing model 

expands the cloud's reach to the network's edge, where devices are located, and promotes edge 

intelligence. The fog computing environment is different based on the use case. The fog can be 

held tightly coupled with the edge using only a few industrial controllers or on the other side can 

be closer to the cloud having data centers acting as fog. In our study we focus on the fog layer 

closer to the edge consisting essentially of industrial controllers and other gateway computers with 

limited computational resources. 

In Figure 3 we see the functioning of a typical fog layer: the sensors send the raw data to sink 

nodes and the sink nodes creates tasks which are pushed into the task queue of the fog layer. Then 

comes the service manager in the fog layer which has the logic to schedule the tasks and put them 

into the fog nodes to get executed [11]. 
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Figure 3. Architecture of fog computing model 

iii) Network Layer  

The network layer acts as the bridge between the fog layer and the application layer. The data from 

the fog layer is transported to the application layer via several protocols. Based on the protocols 

defined in the IoT sensors or devices, the communications can be both wireless and wired. The 

network layer has the following main functionalities- Routing and Addressing, Network 

Capabilities, Transport Capabilities, Error detection and Correction and data packet routing. To 

serve different IoT services, different networks are required with different protocols. These 

networks can be private, public, or hybrid models to assist with the latency, bandwidth, or security 

requirements. The choice of the network protocols depends on the power consumption of each 

node, the transmission speed needed for particular applications. In the table below (Table 1), we 

see the most used protocols for communication [12]. 

Table 1. Main IoT Protocols 
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iv) Application Layer  

Based on the information provided by the middleware layer the application layer is required to 

manage all application services and processes. The application layer does not have any particular 

standard of implementation, but it is able to offer a variety of services in different fields of society. 

Like we have IoT services in industries, healthcare, military, smart grids, agriculture, and many 

others. The security requirements in this layer are dependent on the environment and the type of 

industrial applications.  

 

Figure 4. Application layer components of IoT 

 

We see the components of the application layer in Figure 4. The data or information collected from 

the middleware is transported to the application layer (e.g., through REST APIs). The data format 

is usually in binary or JSON encrypted or in bytes. In the application layer, we decode the 

encrypted data which is to be used for several IoT applications as discussed earlier, apart from 

providing services to the outside world the information collected can also be used to check on 

devices and nodes to ensure their proper functionality. Some services are backwards compatible, 

like based on the user’s requirement the application layer can send data back to the edge layer to 

perform certain actions, like turning the lights in a room on or off or changing the temperature of 

a room and similar tasks.  
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Following the discussion of the IoT architecture and IoT platforms, we can define the concept of 

QoS as the ability of IoT systems and its different layers to sustain a reliable flow of the needs or 

services corresponding to the requirements of the business applications. 

With this context in mind the AMI-Lab team from the University of Sherbrooke, with its expertise, 

developed an IoT platform, known as AMI-Platform, which promotes better delivery of services 

in Smart Cities [13]. It targets helping older adults to lead an independent and purposeful life, 

through ambient assistive technologies. AMI-lab has developed a reliable, secured, and scalable 

IoT system with Plug and Play architecture. Through the deployment and the use of the AMI-Lab 

platform, several problems related to IoT QoS were raised. 

B. Problem Statement 

The IoT architecture portrays the link between each layer and the data flow pipeline in between 

these layers. During the process of data transfer across these layers, numerous problems (such as 

loss of packets, fake packet transformation, changes in packets) may be encountered (as also 

experienced in the previous version of AMI-Platform) which are a result of lack of QoS 

implementation. Several articles in the literature highlighted these problems. Following, we will 

be discussing the most discussed problems at each layer of the IoT architecture as well as the 

metrices to create a Quality of Service (QoS) based system. 

• Edge Layer:  

The edge layer comprises devices and sensors which comes with limited resources. 

Hence, one of the biggest challenges faced today is with the resource optimization (for 

example battery, CPU and RAM usages) at the edge layer. The resource management 

comes hand in hand with the cost effectiveness of the edge system. The next set of 

challenges comes with the compatibility of the different types of edge sensors and devices 

with one another. IoT sensors are built with different types of communication protocols 

and these heterogeneous nature raises a challenge for the intercommunication in 

between sensors with two different types of communication protocol.  
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• Fog Layer: 

The fog layer comprises the computing nodes. The first set of challenges that we come 

across is the compatibility of the sensors and the fog nodes. The fog node being able to 

handle all the different types of communication protocols is a huge requirement. After 

which comes the resource management issue followed by data security and 

transmission issues in the network layer. 

• Network Layer: 

The network layer mainly deals with data security and integrity aspect. Along with that 

it also deals with the issue of network bandwidth and packet losses. The bandwidth 

requirement brings the cost factor as with the increase in network bandwidth, the price of 

the IoT system will increase as well. The challenge in this layer is to have a proper balance 

of cost and effectiveness of the system. 

• Application layer: 

This layer is the user perspective layer, the data after being processed is being provided 

in the form of specific user needs. It could be displaying the data in dashboards to raising 

alarms for specific situations and other types of user-specific services. The challenge here 

is to be able to cater to all the user needs in a real time and reliable format. 

Discussion  

Among all the issues discussed, the issue of QoS has been widely addressed specifically in the 

network layer. However, it needs to be reconsidered for the all the layers of IoT, especially on the 

ground level, the edge layers and fog layers. Hence, an IoT platform needs to have a well-defined 

QoS implementation targeting all the metrices and challenges and providing an overall reliable 

system at all layers. Nevertheless, QoS in fog layer, where the QoS constraints are mainly related 

to resources and data security, is less addressed in the literature. The solutions provided in the 

literature for the fog layer has restrictions in terms of scalability as the majority of the issues are 

related to resource constraints.  

One of the solutions to handle the resource constraint QoS metric in the fog layer is to have a 

distributed fog system. The emergence of distributed frameworks and computation offloading 

architectures is on the rise to counter the singular node fog layer QoS constraints [10]. However, 
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the limitation of resources at the fog layer limits the use of existing frameworks and architectures 

for cloud layers (where any resources can be scaled dynamically on demands). The cost of such 

scalability(due to extensive addition of resources in the fog devices) becomes significantly high 

when it comes to fog layer [10].  

With this context, we focus in our work on two problem statement issues : 1) QoS constraints in 

fog layer and 2) the enabling of distributed QoS computing in fog layer.  

C.  Study Aim 

The aim of the study is to propose a stable and optimized IoT architecture with a special focus on 

distributed fog system. The underlying goal is to build a QoS based fog system that enables an IoT 

platform to have a reliable and scalable service flow, and this functionality is then extended to a 

distributed framework. The idea is to provide generic and scalable tools to implement QoS features 

at the different layers of IoT. Our main targeted layer is the Fog layer in IoT platforms. We attempt 

on creating multiple components that are generic and dynamic, at the fog layer. The goal is further 

divided into 1) enabling QoS in a single component Fog system and 2) enabling QoS in a 

distributed Fog system.  

1) Enabling QoS in a single-layered fog system: we propose several small QoS enabling 

components in the single-layered Fog system which can be used in any IoT platform at any 

granular level to target a specific QoS feature and support it. For example, a component 

specific for monitoring of running services. 

2) Enabling QoS in a distributed fog system: we propose a dynamic distribution model along 

with an engine supporting the model to provide an easy-to-use tool for large-scale QoS 

implementation. 

We have analyzed in our literature review the various QoS metrics that are required at each of the 

IoT layers. Then we have designed our approach in building stable QoS oriented IoT platforms. 

Based on our design we have divided our approach in the first stabilizing single layered fog system 

and then QoS based distributed fog layer. 
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D. Results  

The end point of this research work is a QoS based fog system which showcases the proper 

implementation of QoS metrices in the fog layer of any IoT platform and the scalability aspect of 

this architecture. The implementation of the QoS metrices has been extended to include the 

distributed nature of the fog layer, which enables the system to address the QoS constraints in a 

much larger scale along with a proper QoS based management system. The developed distributed 

model is not attached to any particular IoT platform implementation and is capable of adapting 

itself to different IoT systems like IoT system for agriculture, IoT systems for industries or medical 

IoT systems, etc.  

The proposed QoS based fog system with its QoS metrices has been implemented in the  

AMI-Lab platform, which has been used as a testbed for our validation. 

E. Presentation of the Document  

 The document is organized as follows:  

In Chapter 1, we discuss the literature review of QoS in IoT. We examine the concept of QoS in 

depth and then move on to the representation of the problems associated with QoS, the QoS 

metrices that are key aspects to all IoT platforms. After that, the existing QoS approaches in IoT 

are discussed.  

In Chapter 2, we present our design approach for QoS in fog layer. This chapter begins with 

detailed discussions on the internal components of the fog layer, followed by a section of lessons 

learned from a real-world AMI-Lab deployment. Continuing on that, we highlight the major point 

of failures in the fog layer providing us the pathway to discuss about our approach in overcoming 

the point of failures. Next, we portray our approach which includes the sub-topics of autonomic 

computing and the concepts of agents. Lastly, we discuss the support for QoS in a distributed fog 

layer environment by presenting our distributed model. 

In Chapter 3, we present the technical evaluation of our approaches. We start by discussing the set 

of principles used for QoS evaluations in distributed models. Following that, we describe tests and 

results for QoS agents in fog nodes and also for services provided by distributed model.  
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Finally, we have the conclusion and a section for future works. 
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Chapter 1 Literature Review 

The work presented in this document is related to the implementation of QoS concept in IoT 

platforms in a generic and dynamic way, with a focus on the Fog layer.  

Therefore, this chapter of literature review addresses the two aspects: 1) the QoS definitions and 

metrics that are needed to be targeted at each level of an IoT platform; and 2) the different 

approaches proposed to address the issues regarding QoS in IoT.  

The QoS metrices were developed as a result of failures in real time IoT platforms which were 

caused by vulnerable points in the system. The vulnerable points are used to specify the exact point 

of failures. This point of failures gave rise to requirements for the IoT systems and these 

requirements either individually or collectively are defined as QoS metrices (Figure 5). 

 

Figure 5 Origin of QoS metrics for IoT platforms 
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1.1 Quality of Service (QoS) 

Quality is the expected product/service being realized. However, quality is a function of how the 

customer views the product or service that he or she receives [15]. In IoT platforms or services we 

use this same concept to meet the specific requirements of the customers and the service providers. 

QoS in IoT can be divided into mainly three components based on the layers of architecture as 

shown in Fig.1. QoS is needed to manage and help maintain the system functionalities and to have 

proper resource regulation to provide the optimized services. It paints a clear picture of how the 

services will function, their performance and the usability of the services to the consumers. The 

major challenge faced by us today is in maintaining the QoS in the Networking layer of IoT. 

However, to have an efficient system we need to have a QoS in each layer complementing the 

other layer QoS. In this thesis we will discuss the various QoS metrics in each layer of the IoT 

platforms. In addition to the QoS metrices we will discuss another Multidimensional QoS [16] 

where QoS of an application can be thought of as a space of n dimensions. Every kind of QoS 

parameter is one dimension which makes up the space. Most contemporary QoS prediction 

methods make use of the QoS characteristics for one specific dimension, e.g., time or location and 

does not take into account the other structural relationships among the various QoS data. 

Next, we will discuss the QoS metrics in IoT layers and provide detailed descriptions and 

measurement criteria.  

1.2 QoS Metrics in IoT  

The following metrics are considered vital for the measurement of performance of smart IoT 

platforms: As mentioned above for an effective IoT system, it is important to have QoS in each 

layer to support the QoS in the other layers, so we will discuss the metrics in each layer of an IoT 

system with proper descriptions and measurement criteria.  
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1.2.1 Network Layer  

The network layer is one of the most important layers in IoT in which researches have brought 

forward a number of QoS metrics that is defined in the table below with measuring criteria for 

each metric.  

Table 2. QoS metrics in the network layer 

Metrics Description Measurement Criteria 

Jitter  Jitter metric is a quantifier of the 

changeability over time of the packet 

latency across a network and can be a 

measurement for the quality of a 

communication (like a voice or video call): 

a zero jitter shows a communication without 

any variation in latency.[17] 

It is measured by the average of the 

deviation from the network mean 

delay. This is often caused by network 

congestion, and sometimes route 

changes. 

Bandwidth The maximum amount of data transmitted 

over an Internet connection in a given 

amount of time [4][6]. 

bits per second (bps) 

Throughput  Throughput or network throughput is the 

rate of successful message delivery over a 

communication channel [18] [19]. 

bits per second (bit/s or bps) or data 

packets per time slot. 

Packet Loss The loss in data while transmission [4], [6]. Amount of data lost while data 

transmission over a network can be 

caused by various reasons like - 

congestion, traffic, etc. 

Packet Delay It is a complex metric as it includes all the 

delays at different stages of packet 

transmission [19].  

Total delay includes delay caused on 

the hardware level, delay on the 

computation or software level and the 

delay in network transmission level. 
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Metrics Description Measurement Criteria 

Efficiency The channel efficiency is used to represent 

the utilization ratio of the channel and the 

normalized throughput in a given 

duration.[20] 

percentage (%) 

Network 

Connection 

Time 

The time taken by devices (things) to 

connect to the network.[6], [21] 

seconds(s) 

Monetary cost Cost of the communication network is an 

important aspect which needs to be taken 

into consideration while planning for an IoT 

project [6]. 

Money 

Availability The network active time denotes the 

availability of all IoT devices.[21] 

Alive time of the network(s) 

Security and 

Privacy 

The security and privacy of data are 

probably the most important QoS metric 

that needs to be addressed for any IoT-

related development [22][21]. 

How much less prone the network is to 

the outside environment. 

Interoperability  "The ability of two or more networks, 

systems, devices, applications or 

components to exchange information 

between them and to use the information so 

exchanged" [23], [24] 

Flexibility of the network with other 

IoT platforms or services. 

Service Level 

Agreement 

(SLA)  

SLA is an agreement between a customer 

and the service provider which defines the 

basic performance levels or how reliable the 

platform will be up to a certain level. This 

agreement has to be maintained by the 

service providers at all costs. [25] 

SLAs guarantees help desk problems, 

resolution time, or guarantees on 

service outages.  

 

 

 

 

Table 2. QoS metrics in the network layer 
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Metrics Description Measurement Criteria 

  Monitoring  A proper and regular monitoring of 

networks and devices must be maintained 

[21]. 

Frequent updates and proper regulation 

of the network. 

Reliability  Network reliability is an important aspect in 

IoT which should always be guaranteed 

[26]. 

Provides proper network connection 

for a long period of time. 

 

1.2.2 Fog Layer  

The Fog layer challenges led to the development of QoS metrices that needs to be addressed in 

any IoT platforms or systems to be developed. These metrics are described below.  

Table 3. QoS metrics in fog layer 

Metrics Description Measurement Criteria 

Latency 

The delay in time taken for the data to 

reach the destination across the fog 

network [5]. 

Measured in milliseconds (ms) 

Bandwidth 

In a fixed period of time the amount of data 

or information that can be transmitted 

[5][10]. 

Measured in bits per second (bps). 

Scalability 

 

 

 

 
 

The property of systems to be 

economically deployable at any range of 

sizes and configurations [19], [27]. 

 

 

 
 

Measured by the effectiveness of the 

system in variable size of deployments. 

The effectiveness can be measured by 

the systems in general quality of service 

and its throughput. 

 

 

 

 
 

Table 2. QoS metrics in the network layer 
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Metrics Description Measurement Criteria 

Offline 

capability 

The ability of the system to perform when 

it is disconnected from the Internet 

network [29]. 

Measured by the uptime of services 

which are initially provided by the 

system. The amount of data loss is also 

a measure of this metric. 

Security 

Security of data and information is a vital 

metric in the fog layer similar to the 

network layer [19]. 

Measured by the ease of a data breach 

in the systems. 

Reliability 
The probability of a system to perform 

accurately during a given period of time 

The system is able to perform without 

any change or modifications. 

Availability 

The system’s ability to be accessible at any 

time whenever required and is not in a 

failed state or undergoing maintenance. 

The uptime of the system in the course 

of a deployment. 

Stability 
The system’s ability to have a consistent 

performance over time period. 

Measured by system’s overall usability 

and consistency. 

 

1.2.3 Edge Layer  

The edge layer deals mainly with sensors and devices. The challenges thus faced are different from 

the other layers, it mainly involves hardware-related issues which brings forth the following QoS 

metrics as described in the table below. 

Table 4. QoS metrics in the edge layer 

Metrics Description Measurement Criteria 

Weight  Weight of sensors and devices are an 

important factor 

Weight = kgs (general unit) 

Less the weight the better the solution. 

 

 

 
 

Table 3. QoS metrics in fog layer 
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Metrics Description Measurement Criteria 

Interoperability It is an open standard for all the devices and 

sensors which enables the following 

properties in between the sensors to networks 

and other applications: interconnection, 

discovery, access, integration, and usage. [24] 

How efficient the sensors are to 

communicate with other types of 

sensors. 

Flexibility Devices should be flexible to adjust to needs 

at times. 

Device flexibility is measured by its 

performance in different environments.  

Availability  Devices should have energy and resources 

to always incorporate data [21]. 

Most sensors run on batteries and other 

sources of electrical energy; this metric 

is the measure of how long the devices 

can work without intervention. 

Reliability Devices should be able to self-configure in 

a changing environment to send correct data 

[26]. 

Reliability of sensors in different 

circumstances should be tested and 

checked before use. 

Overall 

Accuracy 

Sensor's accuracy can be defined as the 

maximum uncertainty between the actual 

value measured and the standard value set at 

output parameters [4]. 

The data coming from sensors should 

be accurate as it might have severe 

repercussions. 

Long-Term 

Stability 

Stability can be defined as the consistency 

in output produced by sensors over time-

period [30]. 

Consistency in output provided by the 

sensors. 

Response Time Time taken by devices to respond to a call 

or a service requirement [19]. 

Sensors with low response time are best 

suited for any application. 

Range Range of sensors should be high enough to 

maintain proper connectivity[31] 

Range of communication of sensors 

and devices should be high enough. 

 

Table 4 QoS metrics in the edge layer 
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1.2.4  Application Layer  

The application layer is the layer that provides the user with the desired results after the 

computation of all the information gathered from different IoT devices. The challenges faced in 

this layer mostly focuses on the computation methods and the performance of the algorithms used.  

Table 5. QoS metrics in the application layer 

Metrics Description Measurement Criteria 

Scalability Computing applications defines scalability 

as producing maximum throughput in 

minimum response time[6], [27] 

Measure as a property of a system to 

handle a growing amount of work by 

adding resources to the system. 

Dynamic 

Availability 

 It is a quality parameter which tells 

whether the system is accessible or not 

when required for use, under normal 

operating conditions [32]. 

All services should run seamlessly to 

provide output whenever required. 

Reliability The system probability of producing 

correct outputs for a particular period of 

time. [31] 

Measured by the consistency of system 

performance. 

Response Time Response Time is the time interval 

between request submitted and the service 

responded [19]. 

Lower the response time of the services 

the better the computing solution. 

Capacity Capacity is the measure of the maximum 

amount of computing resources provided 

by the computing service provider that can 

be processed and analyzed by the 

computing software [32]. 

Capacity of resources. 

Security and 

Privacy 

Ensuring security in computing involves 

the confidentiality and the integrity of the 

data being guaranteed at the computing 

node [33]. 

Maintaining a high level of security at 

the computing level is needed to 

guarantee personal privacy. 
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Metrics Description Measurement Criteria 

Customer 

Support Facility 

Customer Support is the services provided 

by the vendors in case of any fault or 

discrepancies in the system [4]. 

Time taken to detect a failure and 

respond to bring the service back 

online. 
 

User Feedback 

& Reviews 

An individual’s experience and review 

play an important role in the selection of 

computing services[34] 

Feedback forms and surveys. 

Age of 

Information 

In today’s world, we need real time data in 

almost every field: medical, military, 

vehicular and others where data is 

supposed to be very time sensitive. It is for 

this reason that the age or the timestamp of 

the data is so crucial [35].  

Timestamp of each data is very crucial 

to maintain its accuracy. 

Reputation It is the customer or user-level satisfaction 

on using the particular services. 

User level of satisfaction. 

 

1.3 QoS Approaches in IoT 

An IoT platform needs to have a well-defined QoS implementation targeting all the metrices and 

challenges and providing an overall reliable system at all layers. In this field, there are only a few 

articles in the literature targeting approaches taken in the field of IoT to establish a well-defined 

IoT platform with the satisfaction of QoS metrices. These architectures have their own advantages 

and disadvantages at managing a QoS enabled IoT system.  

1.3.1 QoS Broker and Feedback approach  

The broker and feedback approach is a very simplistic way of sharing the information amongst 

each layer. There is a QoS broker in each layer which enables smooth transaction of data in 

between them [34]. The brokers have a direct link to the QoS management facility which oversees 

the overall communications. 

Table 5. QoS metrics in the application 
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Figure 6. QoS Architecture using a broker and feedback approach.[29] 

 
This architecture has three main components- QoS of each layer, QoS brokers and QoS 

Management Facility. QoS of each layer denotes their respective QoS metrics that need to be 

resolved to have a high performance. QoS brokers in the Network layer and Perception layer are 

responsible for resolving the QoS requirements from the upper layers. QoS management was 

designed as a common cross-layer facility for supporting QoS operations in all three layers. 

Table 6. Application types and applying QoS Level. [29] 
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Control Mechanism 
The upper layers call the brokers in the lower layer with four following arguments-   

L – Least time delay accepted.  

P – Parameters to send to lower layers.  

R – Service priority  

T – Application Type (this type denotes whether the service is real time or not whether the QoS 

needs to be guaranteed or not) (Table 6).  

The application layer queries initiates a communication with the network layer with a set of 

arguments and the network layer redirects the requirements to the perception layer. So, the lower 

layer broker on receiving the arguments translates them to QoS requests which are then fulfilled 

by that current layer. If the QoS requirement cannot be satisfied, then the broker is used to negotiate 

with the upper layer. Finally, the QoS feedback is sent to the upper layer. In this way, the QoS is 

guaranteed in each layer.  

Discussion 
This approach focuses on the simple feedback technique where in each layer of the IoT gets 

feedback from the other layer on the validity and the scope of the QoS metrices and the QoS 

management system is then used to manage the negotiation process. So, in the end it is able to 

implement the QoS metrices in all the layers.  

As a drawback of this architecture, we can see four different types of QoS levels which regulates 

the services functionality. The QoS negotiations are done in between the different layers so it 

targets the metrices that are dependent on the layers for example, bandwidth requirements, latency 

factors, packet loss ratios, etc. However, as we have seen in the above section (chapter 1.2) each 

layer has its own separate sets of QoS requirements which need to be satisfied irrespective of the 

requirements of the other layers of IoT. This model does not incorporate this aspect. There is no 

mention of any of the self-learning model which can help the system to not compute the same 

types of QoS scenarios in different IoT systems. So, scalability is not taken into consideration. 
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1.3.2 IoTQoSystem with QoS Client and Server approach. 

The IoTQoSystem approach is based on the negotiation process between the client and the server. 

The basic requirement of such negotiation models are high success rate and fast negotiation 

outcomes, dynamic support for changes in parameters. This architecture is incorporating a similar 

negotiation model with three elements- the QoS parameters, the negotiation protocol, and the 

strategy [36]. The QoS parameters include the technical and non-technical attributes, for example, 

response time, availability, throughput is included as technical parameters while price penalty and 

reputation are included in the non-technical section. In the negotiation protocol, we have a set of 

rules that is defined to facilitate the negotiation process between the client and the server. If after 

a series of offers and counteroffers between the client and server a favorable outcome is reached, 

then it’s a success else a failure. The strategy includes the creation of the decision rules, the rules 

which are set to accept offers or decline the offers are made in the strategy phase. Thus, this 

approach incorporates these implementations to provide a QoS based system.  

The two main components of this architecture are the IoTQoSystem Client and the IoTQoSystem 

Service (Figure 7).  

    

Figure 7. QoS Architecture using client and server approach. 
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 A) IoTQoSystem client 
This client is essentially responsible for providing the most appropriate QoS profile to initiate a 

negotiation process. The client on the service provider monitors the device resources. It has two 

components of its own:  

 a) Resource monitor:  

Every device or sensor in the real world is dependent on some external resource such as battery or 

internet connectivity. So, the resource monitor is used for monitoring of such external resources 

which are critical for the service provider point of view.  

 b) QoS Manager:  

The QoS Manager oversees providing the Service component the accurate QoS profile (Figure 8). 

The service consumer selects one profile, and the service provider updates that profile. The QoS 

Manager then sends them both to the service side.  
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Figure 8. QoS Profile. 

 B) IoTQoSystem Service 
IoTQoSystem Service manages the negotiation process. It generates the QoS agreement and 

monitors the QoS as the service starts running. It is also responsible for the coordination of the 

negotiation agents and provides an interface through which IoT devices can submit their QoS 

profile for negotiation. The subcomponents are as follows:  

 a) Service Interface:  

In this module the QoS profiles from the client component are received which are then 

authenticated and validated. The validation is done to see if there is some discrepancy in the two 

profiles and if so then the client side is informed to take necessary actions.  
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 b) Agent Manager:  

Based on the received QoS profiles the agent manager is responsible for generating negotiating 

agents. The agents are used to define IoT device preferences to drive the negotiations. The work 

of [19] is adapted to develop the agent manager for the IoTQoSystem service.   

 c) Strategy Manager:  

The strategy manager is used to bind each agent with the correct strategy initial parameters and 

implementing the decision models.   

 d) Negotiation Engine:  

The negotiation engine is in charge of providing a negotiation solution using the Stacked 

Alternating Offer Protocol (SAOP) [37]. It simulates the negotiating agent’s behavior based on 

their specified MDS[38] parameters. After a negotiation session, all the data, such as the total 

number of offers, the strategy parameters involved and the completion time of negotiation, are 

stored in the negotiation knowledge database. This data will assist the strategy manager in making 

informed decisions when defining the initial optimum MDS parameters for subsequent 

negotiations. If a negotiation process fails, it requests the agent to remodel their negotiation 

strategy; otherwise, it sends the negotiation outcome to the contract generator.   

 e) Contract Generator:  

This generator comes in place when a potential negotiation solution is identified, then it translates 

the resulting solution into a binding agreement that gives the contract between the service 

consumer and service providers.   

 f) QoS Monitor:  

The QoS monitor oversees constant monitoring of all negotiation services. In case of any failures 

a renegotiation service is called.  
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Discussion 
For the IoTQoSystem approach, the advantage is that it has a good defined semantics for the QoS 

profile. We can define a huge range of metrices with the preferred value along with the weight of 

that metric and the reserved weight. This allows for good negotiation process along with the 

enhanced scalability of the architecture compared to the QoS Broker.  

The major drawback of this approach is again the lack of any self-learning component and thus 

every time the systems encounter an issue, they require the user’s intervention to validate. Certain 

metrics for a specified system design will have the same values which the system itself can learn 

from past negotiations and update itself without having to go through the negotiation process. 

Apart from the self-learning aspect, we see that this method would require a lot of computation 

power to implement. As we know, the fog layer of any IoT platform has very limited resources so 

in order to implement such complex modules it would bring forward a significant amount of 

overhead to the system overall. This approach does not provide any management system for the 

deployed services after negotiations, no fault tolerance mechanisms to proactively restart 

negotiations in case of some run time changes to the system. 

1.3.3 QoS estimate approach based on multidimensional QoS.  

QoS of an IoT platform can be thought of as a space of n dimensions. Every kind of QoS parameter 

is one dimension which makes up the space. Most contemporary QoS prediction methods exploit 

the QoS characteristics for one specific dimension, e.g., time or location and do not exploit the 

structural relationships among the multidimensional QoS data. This approach enables the 

implementation of QoS in a multi-dimensional aspect [30]. The dimensions and the targeted QoS 

parameters are described in the table below.  

 
Table 7. multi-dimensions and parameters. 

Dimension  QoS Parameters  

Sensing Dimension  Accuracy Availability Stability 

Transmission Dimension  Transmission Time Storage Capacity Reliability 

Application Dimension  Functionality Normative Robustness 
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There is a division in the type of QoS parameters, the positive attributes, and the negative attribute. 

The parameters such as accuracy and availability are considered to be positive attributes as the 

bigger the QoS attributes the better QoS it has. On the other hand, we have transmission time or 

storage capacities which have better QoS if its QoS attributes are smaller. The flow architecture of 

this approach includes the following steps acquiring QoS parameters, normalizing the parameters, 

mapping the QoS in the three-dimensional space, calculating the Euclidian distance and estimating 

the QoS of the IoT application (Figure 9).  

 

Figure 9. Flow architecture of QoS estimate approach on multidimensional QoS 



Literature Review  

30 
 

The normalizing of the QoS parameters is done to map QoS attributes of every dimension into a 

defined range of 0 and 1, this enables them to have a similar growth direction. After the parameters 

are mapped into the different dimensional layers based on Table 6, the Euclidian distance is 

calculated with an improvement on the initial formula. The Euclidian distance is capable of 

calculating distance between points in a multidimensional space but does not consider the weight 

of each dimension, so an additional weightage is added to the formula. Let, T (t1, t2, t3) be a point 

in space of three dimensional QoS and their weightage could be represented as k1, k2, k3 where 

in the summation of k1, k2 and k3 is 1. So, the improved formula is-  𝑳𝑳 =

 �𝒌𝒌𝟏𝟏∗𝒕𝒕𝟏𝟏𝟐𝟐 + 𝒌𝒌𝟐𝟐 ∗ 𝒕𝒕𝟐𝟐𝟐𝟐 + 𝒌𝒌𝟑𝟑 ∗ 𝒕𝒕𝟑𝟑𝟐𝟐   . With this estimation approach each of the attributes would have 

equal weight in the selection of services and applications which needs to be met under specified 

constraints. 

Discussion 
The QoS estimation approach discussed here is quite advantageous and yielded highly accurate 

outputs with the selected range of attributes used in the defined model. However, the major 

drawback of this approach in the current field of IoT is that the dimensions are more than the 

mentioned three and the number of targeted parameters are more than what has been taken into 

consideration. The lack of dynamicity to include more attributes makes it specific for a particular 

application and cannot be used for scalable projects. The approach can be modified with proper 

testing on multi attribute systems to generalize a formula which can then be used as a general QoS 

estimation model.  

1.3.4 QoS aware scheduling of services in IoT  

The three layered IoT architecture is addressed in this approach [39]. In the application layer the 

QoS optimization is done by modeling the problem into a Markov decision process. The network 

layer optimization is done by minimizing the connection cost and other network layer metrices. In 

the edge layer, the objective is to obtain the resource usages by the edge nodes and to optimize the 

cost of the resource usage.   
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Figure 10. Decision-making architecture for QoS in IoT 

The automatic monitoring of QoS metrics is a necessity and the QoS monitoring module (Figure 

10) ensures that aspect. The QoS monitoring module is tasked to perform the following tasks- 

segregating the QoS requirements from the incoming applications into specific internal services of 

a macro service, generating the QoS attribute descriptions in all the three layers, and compiling 

the descriptions into subtasks that are to be executed. 

The other QoS component is the decision-making engine. The decision-making in the application 

layer includes proper QoS scheduling of resources to incoming services. In the network layer, the 

decision-making includes non-technical metrics such as users, delay and the technical metrics 

which includes reliability and scalability. At the sensing or edge layer the decision-making 

involves accuracy of data, energy, and resource consumption of networks, it also includes the 

number of users and area coverage as QoS metrics in this layer.  

Discussion 
The scheduling approach is very well designed and implemented. It has generalized concepts 

which can be used at all the IoT layers with different parameters. There is an implementation of 

the knowledge base which has all the specific requirements and rules to help make proper decisions 

dynamically to produce the suitable outcomes. The knowledge base can be updated dynamically 

with newer deployments, so it is not restricted to a particular project implementation. The 
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drawback of this method is the fixed domain, the QoS metrices targeted in this method is the 

resource utilization by the running processes and the QoS monitoring of network attributes. Also, 

the possibility of adding a self-learning component as a module can help further optimize the 

decision-making for the scalability of the system.  

1.3.5 QoS based task distribution in edge computing networks 

In this approach the researchers have tackled the issue of resource constraints in the edge layer 

along with the limitations of network bandwidth. The idea is to develop an algorithm which 

schedules and creates a task generation module to distribute the tasks to the appropriate edge 

devices [40].   

The first step of the process is to get the tasks from varied IoT devices as inputs and the first 

module (problem formulation) consists of the available resources which acts as constraints in the 

task distribution step. The constraints that this model took into consideration are – each task can 

be assigned to at most one edge nodes and it should be successfully executed in them, the execution 

of the tasks would require storage in the designated node, so the storage capacities are checked 

with respect to the task storage requirements before they are being assigned to the following nodes, 

the virtual machines on each node should be sufficiently secured to be able to receive tasks for 

execution, each edge node has a defined VM which caps the number of tasks it can be assigned to,  

each task is accompanied with a time duration in which the tasks must complete its execution, and 

the last constraint is the bandwidth is shared by multiple edge nodes, this particular constraint is 

further divided into two parts. First sub constraint is the difference in incoming and outgoing link 

bandwidth and secondly is the bandwidth capacity of all the links in the edge network. 

 

Figure 11 The task distribution process 
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Based on these constraint parameters the linearization module is developed as it was noticed the 

last two constraints is nonlinear in nature. Here, there is an assumption that all tasks are to be 

successfully executed exactly at their targeted destinations. This module is used to produce a 

mixed-integer linear problem which is then resolved by the third section, the generation of the task 

distribution module, to have a final output as the tasks to be distributed. 

Discussion 
This approach helps to increase the number of tasks that the edge computations can handle given 

a fixed number of resources. The key advantage of this approach was reflected in its performance 

compared to local execution of tasks or random distribution of tasks. The drawback, on the other 

hand, is due to the assumption that no task has priorities over other tasks. In real-time IoT systems, 

there are situations which requires certain tasks to be carried out before any other tasks. Also, the 

assumption regarding the VMs with one particular operating system downgrades the scalability 

factor of this approach. 

1.3.6 QoS management for distributed IoT systems 

This paper proposes a distributed QoS management framework for IoT that operates under 

resource constraints [28]. The authors argue that existing centralized QoS management solutions 

are not well suited for IoT environments due to the large number of devices and the limited 

resources available.  

To optimize resource usage, the authors introduce a new algorithm based on dynamic 

programming approach. This algorithm is a decision-theoretic model that determines the optimal 

allocation of resources to meet QoS requirements while minimizing resource consumption. The 

algorithm works as follows: The QoS manager receives a QoS request from an IoT device, which 

includes the QoS requirements and the available resources. The QoS manager analyzes the QoS 

request and determines the optimal resource allocation based on the current state of the system, 

including the available resources and the performance of other IoT devices. The QoS manager 

sends the resource allocation plan to the QoS broker, which communicates the plan to the IoT 

device. The IoT device performs the requested operation using the allocated resources. The QoS 

monitor continuously measures the performance of the IoT devices and updates the QoS manager 
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with the current performance metrics. The QoS manager uses the updated performance metrics to 

adjust the resource allocation plan and optimize resource usage based on the current state of the 

system.  

This approach is based on a decision-theoretic model that considers the QoS requirements, the 

available resources, and the performance of other IoT devices. The model uses a utility function 

to measure the satisfaction of QoS requirements and a cost function to measure the resource 

consumption. The dynamic approach optimizes the resource allocation by finding the trade-off 

between utility and cost. The authors evaluate the algorithm using simulation and show that the 

proposed algorithm can effectively manage QoS in a distributed manner while effectively utilizing 

available resources.  

Discussion 
In this approach we see a promising solution to QoS management in IoT environments, which can 

help address the challenges posed by resource constrained IoT devices. The proposed framework 

and algorithm can provide a more efficient and scalable solution to QoS management in IoT 

environments compared to traditional centralized solutions. The limitation of the proposed 

framework is the overhead of the QoS monitor and the need for a reliable and efficient 

communication channel between the broker and IoT devices. The future research directions could 

be integrating machine learning techniques to improve the decision-making process of the dynamic 

problem architecture. 

1.4 Conclusion 

We discussed in this section of literature review on QoS metrices and the methods of enforcement 

of the QoS defined metrices. A special attention was given to QoS metrices that need to be satisfied 

in the fog layer of an IoT platform. We also investigated the current implementations and 

architectures that try to achieve an ideal QoS established IoT system. Following are the key 

drawbacks that we come across in the review:  



Literature Review  

35 
 

 a) LsM: Limited set of QoS Metrices  

The architectures discussed in our literature review is found to be targeting a specific set of QoS 

metrices. As the concept of IoT is still comparatively new in the today’s scenario, it is to be noted 

that most of the QoS related research has been done on the cloud and network layers. However, in 

order to build a stable IoT system it is no longer the only requirement, the QoS metrices must be 

satisfied in all layers starting especially from the edge layer and fog layers. 

 b) ASL: Absence of Self-Learning Ability  

Most of the research lack the idea of introducing the self-learning component in their architectures. 

As we struggle to build a QoS established IoT system, we come across several real-time issues due 

to varied points of failure which requires a specific but redundant fix. So, having a self-learning 

model in place helps abstract the regular need of catering to similar types of issues or failures. This 

can reduce the user intervention at each point of failure significantly.    

 c) AFT: Absence of Fault-Tolerance Mechanisms 

Another drawback that we get to see is the lack of system ability to cope with faults in real time. 

Any IoT system is prone to face unaccountable scenarios and in order for a reliable delivery of 

services the system should have default mechanisms to fall back to known stable versions 

irrespective of any unseen circumstances.  

 d) HCR: Higher Computation Requirements  

Few of the QoS architectures have a very detailed and higher resource requirements for their 

implementation. The fog layer being short-handed in the resources section will have difficulties in 

accommodating any complex computations along with its defined services. We need to make sure 

the overhead for maintaining QoS in any IoT system should not be hindering the actual 

functionalities of the platform.  

After exploring the literature of QoS in IoT, in the next chapter we present our designed approach.  
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Chapter 2  

Design Approach for supporting QoS 

in Fog layer 

The proposed solution we present in this chapter is an attempt to overcome the major drawbacks 

of addressing QoS in IoT platforms, which were faced during the real-life deployment of our AMI-

Lab IoT platform and properly identified in the literature review. These drawbacks and the faced 

issues are the basic stone in the process of defining the requirements to provide a stable QoS 

implementation in IoT architecture. One of the key drawbacks is the limited focus on QoS for fog 

layer, with the major issues of self-learning ability (ASL) and resource constraints (HCR) in this 

layer. These identified issues in the review and confirmed through our real-life deployment, helped 

us define the vulnerable points, the list of requirements, and the associated QoS metrices for fog 

layer.  

In our analysis of the literature review, we noticed that most of the existing QoS solutions are 

regarding network layer or cloud layer, with few records on fog layer. However, according to the 

challenges faced in our real-life deployment of AMI-Lab IoT platform, the fog layer is linked to a 

large number of QoS related issues. Therefore, we will present in this chapter our effort to stabilize 

the fog layer.  
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Following, we will quickly present the fog layer in order to highlight the internal components 

which are the source of the vulnerable issues in the fog system. After that we will discuss the 

lessons learned from our real-world deployments. Based on our analysis of the literature review 

and lessons learned we will depict the point of failures in fog layer. Finally, we will propose our 

approach in tackling the distinct point of failures.    

2.1 Internal Components of Fog Layer 

The fog layer is represented as the physical gateway that acts as a hub for multiple devices with 

different communication protocols. It is tasked with preprocessing the acquired data before 

sending it to the cloud layer via the network layer. The fog layer consists of components which are 

responsible for carrying out these functionalities.  The major QoS metrics that has to be targeted 

on addressing through the fog layer components are: (i) latency in the fog network, (ii) scalability 

of the fog layer, (iii) resource constraints management in the fog layer, and (iv) the offline 

capability of the fog system (see section 1.2.2 ).    

Following, we will discuss the internal components of a fog node and discuss the points of 

vulnerability in them. 

 A) Fog layer: Single Node 
A fog node typically consists of a data acquisition model, a data pre-processing model, and a data 

communication model. The common areas of vulnerability in such systems are insufficient 

resources, reliability of the running services in the node, availability, security, offline capability of 

the node (Table 3, section 1.2.2, page 17). To monitor these points of failures we need to 

understand the exact internal components of the fog nodes. Following, these components are 

presented at an abstracted sub-layer.  

 B) Abstract sub-layers of Fog nodes 
The internal functionalities of the fog nodes are divided into three abstract layers (Figure 12).  
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Figure 12. Abstract layers in Fog node 

The first layer is the data acquisition layer which is responsible for collecting data from different 

edge devices and is capable of supporting more than one communication protocol. Next, comes 

the data pre-processing layer, the raw data obtained from heterogeneous sensors are pre-

processed in this layer. The third layer is the data transfer layer, after the data has been 

preprocessed it is sent to the cloud layer via different protocols in the network layer. So, the data 

transfer layer provides the end point for these network layer communication protocols. Following, 

we have an overview of the vulnerabilities in the three internal components of the fog layer. 

 C) Vulnerable Points  
The vulnerable points for the data acquisition layer are mostly related to the support mechanism 

for numerous communication protocols. The edge devices are a point of vulnerability in this 

sublayer as the acquiring of data from the edge devices is a key functionality and in scenarios 

where the edge devices malfunction the data acquisition layer is held responsible.  
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For the data pre-processing layer, the vulnerable points are the services running to pre-process the 

data. Any failures in the running services can cause the layer to malfunction and raise issues.  

As for the data transfer layer, the communication protocols are again the major points of 

vulnerability. This layer is the key between the fog layer and the cloud layer and hence and issues 

caused in this layer will cause the data to stop flowing altogether. This layer also has a higher risk 

of security.  

The vulnerable points were also discovered during the real-world deployment of our IoT platform. 

In the next section, we will discuss the lessons learned through this real-world deployment. 

2.2 Lessons learned from the AMI-Lab deployment.  

Our AMI-Lab has been involved in developing and deploying an IoT platform (AMI-Platform) to 

promote better delivery of services in smart cities. It targets helping older adults to lead an 

independent and purposeful life through ambient assistive technologies [13].  Our team came 

across several challenges along the deployment of this AMI-Platform in real setting, which in turn 

motivated us to come up with the approach of establishing a fog layer with QoS metrices. 

Following, we discuss the hurdles faced in the fog layer. 

 A) Missing Data Issue 
In our deployment, we have encountered situations when the data was not observed in our 

dashboards and on further investigations it was found out that the vulnerable points were lack of 

resources in the fog nodes or the lack of stable Internet connectivity. Another point of failure for 

the missing data issue is the edge device failures. The batteries of the wireless edge devices have 

a limited time range of availability and thus causing the devices to stop sending data after a fixed 

time period. 

 B) Offline Capability Issue 
The AMI platform did not support offline capabilities which is an essential QoS fog layer 

requirement in any IoT platform. In one scenario we discovered that there was no communication 
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from the fog nodes due to the lack of Internet connection. This resulted in loss of data in that period 

of time as there were no mechanisms to handle the offline capability.  

 C) Data Interoperability Issue 
The AMI platform supported numerous edge devices with heterogeneous mode of communication. 

The heterogeneous nature in turn led to extensive pre-processing in the data pre-processing layer 

consuming more resources which slowed down the delivery of services. 

 D) Resource Constraint Issues 
The platform supported devices which have high flow of data frequency and due to the resource 

constraints in fog layer there was a significant amount of delay added to the data before 

transmission to the cloud layer. On one occasion due to memory leak in services, where  a log 

statement was logging continuously and in a matter of less than 20 hours the physical memory of 

the fog node was overloaded causing the node to shut down all its services. 

We have discussed in this section the issues faced in the fog layer and the vulnerable points in the 

fog system through our real-life deployment. In the next section, we will discuss the most common 

point of failures that are the possible reasons for the vulnerabilities in the fog layer. 

2.3 Most common point of failures in fog layer 

We detail in this subsection the most common issues and their point of failures, according to our 

lessons learned from our deployment: 

 A) Missing data issue 
The most common issue in any fog node is the missing data issue, in which the cloud layer 

suddenly stops receiving data from the fog nodes. There can be several points of failures for this 

issue. 
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• In the data acquisition layer, the hardware connected to the fog node might malfunction 

because of which there are missing data [41]. The missing data issue can be caused by 

several service failures in the data pre-processing layer as well. 

• Similarly, in the data transfer layer we have our network protocol implementations which 

can be erroneous leading to data even after being pre-processed not being able to reach the 

cloud layer. It could be due to erroneous configurations between fog layer and the cloud 

layer, mismatch of certificates, etc. [22].  

• The other causes for this issue are external causes for example, loss of the Internet 

connection which leads to no data transfer to the cloud or power outage resulting in the 

complete shutdown of the node itself. 

 B) Data interoperability 
The other type of failures that are encountered in the data pre-processing layer is the issue of data 

interoperability. The lack of data interoperability means that data can't be effectively exchanged 

across different edge devices and IoT systems. The main point of failure is in the data acquisition 

sub-layer. 

• In the data acquisition layer, the raw data acquired from the different sensors which have 

different data formats and does not support interoperability with other data formats. The 

readability and the processing of such data become extensively difficult across the entire 

IoT platform and is not suitable for cross-platform usage [24]. 

 C) Computation Issues due to Resource Constraints 
Resource constraints are another set of point of failures that adds to major issues faced in this layer. 

The computation issues are mainly found in the data-preprocessing layer. 

• In the data-preprocessing layer the services implemented for pre-processing of data 

sometimes require a lot of CPU and memory resources which might not be available in the 

fog nodes. This issue causes the node to hang up or stop working in cases of resource 

overloading which in turn blocks other services [42]. 
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 D) Offline Capability Issue 
The offline capability of a fog node is to provide knowledge of the system’s uptime and downtime 

along with fallback mechanisms to recover loss of data. The point of failure for this issue is mainly 

external –  

• Power outages causing complete device shutdown.  

• Internet failure that disrupts the communication between the fog layer and the cloud layer.  

• Unavailability of the server in the cloud layer. 

 

The next section comprises our proposed approach to the presented points of failures and  issues 

discovered during our literature review and real-world deployment. 

2.4 Proposed Approach  

The section starts with the overview of our approach to counter the issues of fog layer and then we 

discuss the implementation ideas with real-time examples.  

2.4.1 Overview of the Approach  

The fog layer can consist of a single node acting as the physical gateway to the cloud layer or it 

can have multiple nodes in a distributed manner. Therefore, our proposed approach is a two-step 

solution. The first step targets issues for a IoT fog layer with a single physical node where we 

introduce agents in each sub-layer of the fog to manage all points of failure. The second step is to 

extend the idea to a distributed environment in the fog layer.  

Another major part of our solution is the agents / small components and tools implementation 

approach that are not built for any specific QoS metric but as a method to enforce one or a number 

of QoS metrics in any platform. Our approach thus provides the properties of scalability and 

maintainability to the fog layer. For the implementation of smaller agents and components, we 

refer to the concept of autonomic computing which promotes the agent-based approach in our fog 
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layer. Then we will present the roles and functionalities of a typical agent for QoS. Continuing, 

we will provide examples of the QoS agents built into the real-world deployment of AMI platform. 

2.4.2 Autonomic Computing and Agent-Based for QoS  

The agent-based approach is derived from the concept of autonomic computing. The concept of 

autonomic computing was first defined by IBM. The term “autonomic” comes from biology like 

the autonomic nervous system, which is capable of handling most of the involuntary body 

movements and to maintain the coordination among them. The ideal goal of systems is to have 

computing environments that evolves without the need for human intervention (addressing the 

issues of ASL and AFT) [43]. Through autonomic computing the system is able to realize four 

major types of self-management attributes- self-configuration, self-optimization, self-healing, and 

self-protection. The table below shows how the four self-management systems help achieve 

automaticity [33]. 

These properties of the autonomic computing are the key features that were used in our approach 

to counter the major drawbacks encountered in our real-life deployment. The property of self-

configuration helps us to deploy multiple fog nodes at the same time, the property of self-healing 

helps us to monitor and diagnose services running in the fog nodes with very less user interaction. 

Security threats are dealt by the self-protection property of the autonomic computing. 

Table 8. Four aspects of self-management systems. 

Property System Definition 

Self-configuration The systems, capable of handling self-install and can set to default configurations 

to fulfill the required needs, are said to have the self-configuration property. 

Self-optimization The systems that can make proactive changes resulting in increasing performance 

of the system are said to have the self-optimization property. 

Self-healing The systems having this property can detect and diagnose problems with a certain 

level of fault tolerance. 

Self-protection The systems that can protect itself from malicious attacks and offer security, privacy 

and data protection is said to have the self-protecting property. 

 



Design Approach for supporting QoS in Fog layer 

44 
 

Next, we will depict how we can integrate this concept of autonomic computing to build 

autonomous agents to help implement our solution for QoS. 

 A) Agent Approach 
The concept of autonomic computing promotes the idea of reducing user interventions in an 

anomaly situation by developing small agents to perform the tasks usually carried by the user. The 

usual steps that are carried by the agents are inspection of the issue, notification process and 

resolving process of the issue if known. 

The two main types of agents used to create several autonomic systems are Reactive agent and 

Deliberative agent. When the system constantly senses the environment and takes reaction, we use 

the reactive agent in such cases while, on the other hand, to create an autonomic system with 

predefined goals we use the deliberative agent [33].  

In our approach we use a hybrid agent model where agents are reactive to account for any real 

time failures and also has a predefined set of rules to maintain the stability and reliability of the 

system. We discuss about our hybrid agent-based approach to stabilize the fog layer with QoS in 

the next section. 

 B) Agent for QoS  
We propose a model following the parasitic approach as a solution to overcome the failures 

discussed in the section 2.2 (failures pertaining to resource constraints, network failures, etc.). The 

parasitic approach is based on the analogy of a parasite, an organism living on another organism 

and deriving nutrients from it. Similarly in our approach we attach a QoS agent to each of the 

services in all the abstract layers of the fog nodes (Figure 12). 
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Figure 13. Abstract layers in Fog nodes with QoS agents 

Each QoS agent consists of four main components (and their associated roles):  

1) monitoring components, in charge of monitoring all points of failures in the system,  

2) diagnostic component, runs an analysis on the failure caused and checks for possible solutions,  

3) mitigation or reacting component, which is used for taking action to overcome the failure 

autonomously and  

4) the knowledge base, this component is used for keeping records of all failures and solutions 

that were taken by the system to help build a better diagnostic module in the long run.  

The internal structure of the QoS agent (Figure 13) is based on a self-healing model as described 

in our paper  [13]. These QoS agents are coupled with each of the services present in the abstract 

layers of the fog system. This approach leads us to pinpoint our point of failure whenever the IoT 

platform encounters an anomaly. The QoS agent corresponding to the failed service raises an alarm 

and performs the necessary steps to overcome the issue. From the user point of view, we can 

navigate to the source directly instead of spending days trying to detect the exact point of failure 

(ASL, AFT). 

Following we present the example of missing data QoS agents in order to illustrate the above 

presented roles.  
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 C) Example of QoS Agent roles for the missing data issue  
In the context of the missing data issue, the QoS agents in the data acquisition layer monitors 

(monitoring role) the acquisition of the raw data from the heterogeneous communication adapters. 

With the knowledge of the average amount of data that is supposed to be received for a particular 

period of time from a specific adapter, the QoS agents notify (mitigation role) the admin in case 

of abrupt changes in the amount of data acquired. For example, a sensor is supposed to be sending 

the temperature and humidity of a room at an interval of twenty minutes. Now, it was observed 

that the sensor is not sending any data for a period of more than an hour which is definitely an 

anomaly and thus needs to be investigated. There are some involuntary actions (AFT) that the QoS 

agents can take in such scenarios, such as restarting (mitigation role) the data acquisition service 

or the service operating the device adapter which is supposed to be receiving the data from the 

sensor. After taking these pre-emptive measures, the QoS agent continues to monitor the 

acquisition and if the issue still persists, the logical conclusion (ASL) is that there must be a 

hardware failure either on the sensor side or the device adapter is failing to operate correctly.  

To address the point of failure in the data pre-processing layer for the missing data issue, we can 

have QoS agents monitoring each service running in this layer. The failure of these services might 

cause the data to be missing in the overall data flow. Thus, the agents are tasked to monitor the 

status of these services on failure they take the pre-emptive measure of restarting the services and 

then informing the admin for possible anomalies that can hamper the overall QoS of the system. 

In the data transfer layer, IoT platforms incorporate several communication protocols for example 

Message Queue Telemetry Transport (MQTT) or the hypertext transfer protocol (HTTP) protocol. 

The endpoint of these protocols is managed by services in the data transfer layer. They are tasked 

with creating the necessary socket connections with proper security measures and our QoS agents 

are monitoring these services if they have stopped due to some bugs or errors which would result 

in the complete stoppage of data flow in the IoT platform. 

Following we discuss the QoS agents that we have developed in our fog nodes, and we discuss 

how they can be used across all different IoT platforms. 
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2.4.3 Agents to support QoS in single nodes 

We describe in this subsection the QoS agent which is in charge of catering to the point of failures 

related to fog layer (defined in section 2.3).  These agents are dynamic in nature as they are not 

tied to a particular resource, the idea is to have generic agents with configurations to manage any 

specific resource (running services, Internet connectivity, memory resources, etc.).  

 A) QoS agent for service monitoring 
The QoS agent for service monitoring is used for proper monitoring of services running in the fog 

layer with pre-emptive measures and notification system to inform the admin (AFT). We create a 

generic agent which takes in as parameters the name of the services and which actions to be taken 

in cases of failures. We use a JSON config file as an input for these agents to keep it independent 

from any specific platform (ASL)(Figure 14). We can set the action parameters to 1 or 0 denoting 

whether these actions are to be taken by the agent or not. 

For example, in the case of missing data issue the service monitoring agent can help pinpoint the 

source of the issue without delay.  

 

Figure 14. QoS agent input configuration for service monitoring 

 B) QoS agent for the Internet connection  
In the case of the Internet connection issue, the data is being collected from the sensors and being 

pre-processed in the fog node but is unable to get transferred to the cloud layer, now there are two 

steps in addressing this issue: The first step is to try and restart the Wi-Fi or Ethernet adapter in 

the node and to check if the connection is up or not (AFT). We create a QoS agent to monitor the 

Internet connection and take the necessary action in case of failure (ASL) [45].  
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 C) QoS agent for data recovery 
The QoS agent for internet connection does not guarantee the reliability of the platform in case of 

the Internet failure as the internet provider fails to provide the internet connectivity. So, as a 

remedy to such cases, we built a data recovery agent. This agent has multiple functionalities, it 

starts from storing data locally in the fog node to syncing data to the cloud nodes on a periodic 

basis and to use minimal fog node resources in doing so (AFT). This agent has a sublayer in each 

of the services in the data pre-processing layer, it has a local database setup and a local storage 

service which is mainly used to manage the database and perform the syncing of data with the 

cloud database (Figure 15). The data recovery micro-agent is a plugin to each of the pre-processing 

services and the main functionality of these agents is to put the pre-processed data in the local 

database. After the data is put in the database, the local storage service is tasked to sync with the 

cloud database at a periodic interval.  

 

Figure 15. Data Recovery QoS Agent 
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 D) QoS agent for resource constraint 
The fog nodes have limited resources for computation and storage purposes (HCR). In order to 

maintain the reliability of the platform, we have to manage the resource utilization of the nodes by 

all the services running in it such that a particular service or a group of service does not cause over 

saturation of resource usage, thus causing a breakdown of the node. According to our analysis, the 

main resources that need to be targeted are CPU, disk space and physical memory usages. 

Therefore, we built QoS agents to monitor and maintain them. 

 a) QoS agent for CPU 

A QoS agent running as a separate service inside the fog node monitoring the CPU usage at a 

definite interval, a similar model was proposed in “Self-healing Approach for IoT Architecture: 

AMI Platform” [45]. This agent takes in as an input the threshold CPU usage for a particular node 

and an interval to perform this check. At a particular interval if it was noticed that the current CPU 

usage is more than the threshold value the agent takes action to counter overloading of the node. 

It goes into a deeper level of searches where it checks the CPU usage of all the running services in 

the node and selects the heaviest process running in the system. It restricts the usage of that 

particular service to half of the CPU resource. The service also notifies the admin about such 

scenarios to have a proper optimization of the service as soon as possible.  

 b) QoS agent for disk usage 

Similar to the agent for monitoring the CPU usage we have an agent for monitoring the disk space 

usage. This is the secondary memory space, or the external memory attached to the fog node. The 

agent takes in the threshold value for the disk usage and the interval at which the check needs to 

be performed. Now, it was observed that this space is overloaded mainly by logs and different 

secondary files that the running services might produce at run time. So, the pre-emptive action that 

the agent takes in case of overloading is that it truncates all the log files and stores the last 100 

lines of each service logs in a separate file. The admin on notification can reach out to the node 

while having the latest logs and the reliability of the node is also not compromised. 



Design Approach for supporting QoS in Fog layer 

50 
 

 c) QoS agent for physical memory usage  

The input format for the QoS physical memory agent is the same as the prior resource constrain 

agents, it requires the threshold value and the interval value. There are not many pre-emptive 

actions that can be taken in case of an overloading of the RAM or the physical memory. The best 

solution for such cases is to perform a reboot of the fog node. However, unsupervised reboots of 

the nodes are not advised as it might enter an infinite loop of reboots due to some unknown reason. 

Hence, the action taken by this agent is to provide the admin with a high alert notification to solve 

the problem on an immediate basis. 

 E) QoS agent for heartbeat 
This agent is built with the idea to always monitor the status of the fog node. This agent although 

runs independently in the fog node and can be used across different platforms, it requires a twin 

agent in the cloud. An “alive” message is sent by the agent in the fog node to the agent in the cloud 

node which on receiving the message sends back an “acknowledgement” message. Both of these 

agents in the fog and the cloud nodes have a timer called “alive” timer and “acknowledgement” 

timer respectively. The timers work on the same philosophy, so if the timer runs out of the specified 

time period it raises an alarm. The admin is notified with a high alert message denoting the fog 

node or the cloud node being down and needs to be powered back in or restarted to re-establish a 

connection (AFT). This agent is mainly used as a tool for the offline capability of a fog node. 

 F) QoS data model agent for data interoperability 
The raw data acquired by the data acquisition layer has different data formats due to the 

heterogeneous nature of the different edge devices and sensors. To be able to use these data 

throughout the pipeline of the IoT platform and even for cross-platform usage we need to have a 

specific data format else it becomes exceedingly problematic in handling the data interoperations. 

So, in the data pre-processing layer, we have a QoS agent which wraps all these different data 

formats into a specified data model that is easily readable and can be interoperated on various 

platforms. The data model used is a generic and dynamic model which supports all known data 

types (known till date). The QoS agent comes with its own data encryption methods along with 

conversion methods between different encryption, which is a very essential requirement for 

network communications in regard to security. This QoS agent can be used across the entire IoT 

platform to maintain the same data structure throughout the IoT pipeline. 
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This agent is mainly focused on converting all different data formats to a specific data model which 

resolves the data interoperability issue and also helps maintain a singular data format throughout 

the IoT platform. We depict the structure used in AMI platform to wrap the acquired data from the 

edge layer (Figure 16) and some method conversions provided by this agent (Figure 17).  

 

Figure 16 Data model semantics 

 

 

Figure 17. Encryption provided by the QoS Agent 
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Discussion  
We have discussed in this section numerous issues related to a singular node fog layer. We 

discussed the approach to address these issues caused by different points of failures. While this 

approach is good to address the issues faced, it is not scalable for larger domain of services. With 

a singular fog node, the major setback that remains is the lack of extensive resources (HCR). QoS 

management comes with an overhead of resources in the fog layer. The monitoring aspect of the 

QoS agents can be addressed to using a singular fog node, however, the agent being able to resolve 

the issue might not be possible as it would require more memory or processing units to be able to 

perform the necessary tasks. For example, we handled the offline capabilities by adding an agent 

to manage a local data storage component but the limit for the data storage unit is very less and is 

not sustainable for a moderately longer time period. A solution to this drawback situation is a 

distributed system which consists of multiple fog nodes providing more resources to work with in 

a distributed fog layer.  Following we discuss distributed fog layer in support to IoT QoS. 

2.4.4 Support for QoS in Distributed Fog Layer 

To highlight the importance of the need for distributed fog system to ensure QoS, we can present 

the following example of Bluetooth from our real-life deployment in regard to scalability and 

reliability. AMI platform supports Bluetooth devices, and a single fog node is able to scan for any 

nearby device while acquiring data from the already registered devices. But it had a limit to a 

number of devices it can scan and acquire data at the same time. The drawback in this 

implementation was that the Bluetooth adapter was only able to support one to two Bluetooth 

device at a time and crashed during higher rates of data transfer. As a solution we developed a QoS 

agent, which monitored the service and the pre-emptive measure for failure scenarios was to restart 

the service. Although the pre-emptive measure resolved the issue at hand, it had an impact on the 

number of uptime and downtime of the service resulting in loss of data. 

Another example from our deployment is the time taken to deploy our IoT system components in 

the fog nodes. On an average it took about thirty minutes to install the system components in a 

single fog node option, and to deploy multiple nodes it became very difficult for a user to take care 

of it.  
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With these examples in mind, we move forward to the next section which includes the QoS 

implementations in a distributed environment with multiple fog nodes locally connected to one 

another in the same network.  

Overview of QoS in Distributed Fog layer  
The idea behind our distributed fog layer is to overcome the challenges faced by a singular node 

in the fog layer. The approach for the distributed Fog layer is not to build anymore small QoS 

agents but to have one generic distribution model which can be used to not only perform 

distribution functionalities in between the fog nodes but also to enforce QoS metrices in more than 

one node at a time (Figure 18). 

We have enlisted several QoS metrices in our literature review, which any IoT platform should 

take into consideration to have a better overall system performance. In order to enforce these QoS 

metrices, we propose a dynamic distribution model along with an engine supporting the model 

which provides the implementation of the above-mentioned QoS metrices.  

In the next section, we discuss our distributed approach detailing the distribution model and its 

internal components. 

 

Figure 18. Gateway nodes in a distributed fog system 
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Distributed Model 
The main goal of the model is not to have a one-time distributed system which is able to handle 

any fog layered complexities, but to provide a base on which we can develop and scale our 

distributed model with the capability to adjust to any unforeseen circumstances. Our approach is 

to provide the tools required by QoS agents to make the desired distributed system with QoS 

enablement.  

The major aspects that will be targeted in our approach is the distribution of resources and the 

ability for a proper management and monitoring system across all the nodes. The distribution 

model follows a demand-action architecture (Figure 19). The demand from the external 

environment (in the form of an input model) gets converted into tasks by our distribution engine 

which is then carried out by our system to meet the desired results. The model also provides an 

acknowledgement after carrying out the action and this is provided through an output model. Along 

with the input and output model, the distribution engine (Figure 19) consists of three main internal 

components –  

• Communication engine: The engine that is tasked with all communications across the 

distributed system. It also manages the security aspect to block access to the distributed 

system from outside fog nodes. 

• Distributed Library engine: The main task for this engine is to convert the incoming 

communications to the respected tasks. This library engine is also used to handle erroneous 

or abnormal communications. 

• Remote Hosts Engine: This engine has the specific task of keeping the fog node updated 

with the distributed environment. Also has a security layer to prevent from outside attacks.  
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Figure 19. Distribution Engine: Internal Structure 

Following, we discuss in detail the internal components of the distributed model and then we will 

discuss how these components help provide a stable model for QoS implementations in the fog 

layer.  

 A) Input Model 
The input model is a measure of communication in the distributed environment. For the 

interoperability of multiple nodes in the distributed system, we designed a generic and dynamic 

model of communication. It is built in a JSON format, with the key value architecture. The key 

denotes the name of the action or task that is intended to be performed at any other node present 

in the distribution environment. From our real-life deployment, we observed that most of the issues 

due to any point of failure required the same actions as part of their solutions. Now, to automatize 

this step, we have this model equipped with the most commonly used actions by any user to fix 

issues Figure 20. The model itself is not static in nature and hence addition or removal of tasks is 

very easily achievable due to the simplicity of the structure of our model (based on JSON format), 

no complex data format is required to update the model.  
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Figure 20 Input Model 

We integrated a set of features in the input model (detailed in the table below with the required 

parameters for each feature and the achievable outcomes (Table 9) which are used for QoS 

applications. These features are used by QoS agents to carry out their roles in the fog nodes. 
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Table 9. Input Model Features 

Feature 
Name 

Parameters Function QoS application 

Save flag: indicates the status, 
whether this feature is used or 
not. 
path: The absolute path for the 
content to be saved. 
content: The content to save. 
(Json, string, byte strings) 

Saving any content to 
a specific path in any 
connected local or 
remote nodes. 

QoS agents can use this feature to 
share configuration and status of 
each node to one another 
providing a better QoS 
monitoring system. 

Create flag: indicates the status whether 
this feature is used or not. 
path: The absolute path of the 
file. 

Creating a file in a 
remote node at a 
specified position. 

QoS agent in one node with 
proper knowledge of an issue can 
help another QoS agent in other 
nodes by creating files and 
sharing information. 

Remove flag: indicates the status whether 
this feature is used or not. 
path: The absolute path of the 
file. 

Deleting or removing 
a file in a remote node 
from a specified 
position. 

QoS agents can remove unwanted 
files causing bugs and issues in 
the system, for example 
unwanted log files overrunning 
the memory. 

Path_exists flag: indicates the status whether 
this feature is used or not. 
path: The absolute path of the 
file. 

Checking if the 
specified path is 
existing in the remote 
node. 

QoS agents can use this feature to 
verify the existence of files and 
folders which can be used as a 
security measure to check for 
vulnerabilities in the system. 

Exc_cmd flag: indicates the status whether 
this feature is used or not. 
cmd: the command to be 
executed. 

Execute a specific 
command in the 
remote node. 

QoS agents can execute any 
command in any node for any 
tasks. For example, one node can 
execute a command to restart a 
particular service in another node 
if need be. 

Install  flag: indicates the status whether 
this feature is used or not. 
path: Path for the script to be 
installed. 

Install the specified 
scripts. 

This feature is specific to QoS 
agents handling the challenge of 
fast deployments. QoS agents can 
install all the required services 
from an IoT platform by 
distributing the tasks in the 
different nodes and running 



Design Approach for supporting QoS in Fog layer 

58 
 

installations on them. This limits 
user intervention to install each 
service on the designated nodes. 

Service_mo
nitor 

flag: indicates the status whether 
this feature is used or not. 
monitoring_service: name of 
the service to be monitored. 

Gets the status of the 
service running in the 
remote or local node. 

QoS agents use this feature to 
monitor the status of the services 
running in other nodes. 

Service_list flag: indicates the status whether 
this feature is used or not. 

Gets the list of 
running services from 
the remote nodes. 

QoS agents are able to 
communicate with each other by 
providing a list of running 
services in their respective nodes. 

Alive flag: indicates the status whether 
this feature is used or not. 

heartbeat features to 
check if a node is 
alive or not. 

It’s a ping property of all nodes 
used by QoS agents to monitor 
the heartbeat of all nodes. 

 

Next, we discuss the response data model corresponding to this input model. When any action is 

being carried out through the input model in one of the nodes, it sends back the response in the 

specific data format. 

 B) Output Model 
The output model is built with the same key value architecture in the JSON format. This model, 

on the other hand, is static as it is used as a reply mechanism to the tasks executed corresponding 

to some inputs. The output model has two features denoting the action which was executed and 

the response of the system to that action (Figure 21).  

 

Figure 21. Output Model  

 

Table 9. Input Model Features 
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Table 10. Output model features 

Feature Name Parameters Function 

Action action_name: specifies which input feature was 
executed. 

action_parameters: the parameters used for the 
execution. 

To enable the engine on the 
other end to understand the 
context of the response 

Response status: True or False depending on the success of 
execution. 

description: Error messages if any. 

To notify the result after the 
execution of the input model. 

 

The table above (Table 10) describes the attributes of the output model of what each parameter is 

defined as and their functionalities. It provides in detail how the features can be used by the 

distributed model as an acknowledgement mechanism in correspondence to the input model. 

The output model is used as a means by the distributed model to verify the tasks carried out through 

the input model were completed successfully or not. Based on the response QoS agents can take 

necessary actions.  

In the next part we are going to depict how these input and output models are being used by the 

distribution model, along with the fault tolerance mechanisms and tools to build new QoS agents 

on top of this model. 

 C) Distribution Library 
The distribution library is used as a mapper between the input features described in the input model 

to the tasks that the features demand to be carried out in the operating system. As developers we 

come across a number of used daily tasks and commands that are performed in order to maintain 

or monitor a system. The idea is to provide the platform with the knowledge base to carry out 

required functionalities without a user intervention (fault tolerance abilities). The task list defined 

in our input model has methods corresponding to them in this distribution library. The methods 

are executed with a layer of exception handling. For instance, the input model has the “save” 

feature to be executed, so we are trying to save some content to a remote node at specific path, but 

the path seems to be not present at that location, in such cases the exceptions are handled, and the 
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path is first created and then the content is saved. It again becomes a little tricky when we need to 

append some content to an already existing file, we need to make sure the format of the file is not 

broken. For example, we are trying to append a new content to an already existing file with other 

values, now if we simply add the content to that file without proper checking it might break the 

file structure as the two different content might not be compatible with one another. On first glance 

this seems to be a very small aspect, but the library being able to handle such exceptional scenarios 

adds to its overall stability. The flowchart of the save feature is represented in Figure 22. 

 

Figure 22. Flow chart for “save” feature in the distribution library. 
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Another example of fault tolerance in the model we have handled the ‘install’ feature with several 

layers to be able to handle more than one real-time scenario. The method corresponding to this 

feature is tasked to install script at a particular location of the node (Figure 23). However, we know 

that there exist numerous types of scripts with different methods of invoking each script. This 

library takes into consideration this aspect and is able to distinguish the type of script dynamically 

on the run time and thus takes necessary steps to compile if required or just simply execute the 

script. For now, the library supports four different types of scripts – Python, Ansible, C, and Java.  

 

Figure 23. Flow chart for “install” feature in the distribution library 
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Another key point of this library is its synchronous nature. An input model with multiple tasks 

can be sent by some node to be executed in another node. Now the execution of the first task might 

take up a long time and might end up hampering or delaying the execution of other tasks. Keeping 

this in mind, the library has a secured thread execution of independent tasks which does not block 

the execution of other tasks.  

 D) Distribution Engine 
The distribution engine is built with the idea of having a global singleton service with all the 

necessary modules to enforce our QoS metrices in a distributed system. The internal structure of 

the engine (Figure 19) shows the three major components of the engine, the communication 

driver, the distributed library driver, and the remote hosts discovery driver. This engine is also 

tasked with providing a level of abstraction to the user where in the user can just lay down their 

set of demands and requirements and the engine handles the translation of those demands into 

actions. This also adds a layer of security where in no user has direct access to our distribution 

engine itself.  

The very first key functionality of a distribution system is to build  its own identification and this 

engine caters to this requirement. Each fog node will have its own identity (Figure 24) built from 

the system statistics and can be shared with other hosts or fog nodes as metric for identification 

and security. 

 

Figure 24. A typical fog node identification format 

 a) Remote Hosts Discovery 

In a distributed system, it is crucial to know the environment. This means all the nodes in the 

distributed system should have the capability to know the existence of all the other nodes. To 

complete this step, we set up the engine with a host discovery driver (e.g., ‘systemd-resolve’, 
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‘resolv.conf’, ‘avahi’) which searches for all the other hosts connected to the same local network 

and are taking part in the distributed system. For the discovery of other hosts, we have used 

“Avahi”, which is an open source zero-configuration implementation. The implementation of 

avahi also includes a multicast DNS/DNS-SD service discovery feature.  

The functionality of this module is to register our devices in each of the other participating fog 

nodes using the avahi daemon.  

In the run time the remote host discovery component in the distribution engine browses for the 

particular DNS names used to register our devices. The traditional way of registering a particular 

device is by using the communication protocol as the domain name, for example, if the devices 

are using MQTT protocol we register the devices as ‘_mqtt_tcp.loacal’ or for HTTP protocols the 

registration is done as ‘_http_tcp.local’ and it is binding on a particular port so the avahi browse 

service searches for domains with ‘.local’ extensions and if they match the entire registration name 

it returns the device IP and MAC address. Hence, any other fog node which is not a part of the 

distribution system will not be registered as a device which serves as a measure to provide security 

against any phishing mechanism. 

 b) Distributed Library Driver 

In the previous section, we have discussed the concept of the distribution library and the 

functionalities that can be achieved from it. In this part, we will discuss the necessary driver tools 

implemented in the distribution engine to control the flow of the library. All the methods described 

in the library are triggered by this driver in the engine, it derives the input or output model from 

the communication driver and is able to parse the model to be able to invoke the particular library 

method. We have two separate modules in this driver, the first is called CommandAction which is 

responsible for converting the input requirements to suitable service-related tasks in the system, 

and the second module is the ResponseAction and its tasked to handle the responses or outputs 

provided by other hosts in the distributed system. As our engine is able to parse and handle both 

the input and output model, we have two distinct modules for each model to have the least code 

complexity and better readability. 

The CommandAction component is operated when the distribution engine receives an input model 

from users in the external environment or other host devices internal to the system. This driver has 
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a mapping of all supported input features and their corresponding executable methods. So, all 

commands are carried out by this CommandAction module.  

On the other hand,the ResponseAction module is used to handle the output model being sent from 

other nodes. This module has failure mechanisms implemented in it. For example, the action 

“_path exists” was executed in some host device but the response status was “False” with some 

error description. We can have an autonomic computing component of self-configuration 

implemented in this method where we can resend an input model with the ‘create’ feature set to 

true for that specific path. Another scenario, for the feature “service_monitor,” if the status of a 

particular service in some host device was received as false meaning not active, we can send 

another input model with ‘exc_cmd’ feature enabled with the command for restarting the service. 

The default fault handling mechanism which is implemented in all the methods in the 

ResponseAction module is the notification protocol to inform the admin about the issue. This 

creates a knowledge base with all the different features and their respective failure which can later 

be used for developing newer self-healing concepts in the form of QoS agents.   

 c) Communication Driver 

The communication driver is the basic communicator of the engine which has the responsibility of 

managing all the communication in between all the different host devices connected to the same 

network. There are a number of communication protocols that can be used in our model. The idea 

is to provide dynamicity to the distributed system as our model is not restricted to any particular 

protocol. By removing the dependency on any specific protocol, our model is in accordance with 

the QoS metric of scalability and reliability. The logic used behind the communication protocol 

structure is generic and is not dependent on a particular protocol, in our solution, we have used the 

messaging protocol called Message Queue Telemetry Transport (MQTT). However, the same 

messaging structure can be used by another protocol for example with the base implementation 

hypertext transfer protocol (HTTP) we can use our logic for all data messages going in and out of 

the engine. A brief introduction to MQTT, it is based on a publish/subscribe model. In this type of 

model, we have a client with the capability of publishing and subscribing to topics. Topics are 

message recognition paths and is set to be unique for each type of messages. The communication 

driver has two main components, the remote listener and the remote publisher. The listener 
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component is the subscription to various topics and is used to wait for any communication from 

other hosts. The distinctive feature here is the ability to handle any data rate which seems 

challenging as each communication protocol has their own mechanisms to handle data rates. To 

counter this dependency, we have a generic queue implementation and so the distribution engine 

is not tied to any particular set of protocols. We can have another communication protocol 

implementation, for example the queue could be listening to a HTTP client and the flow of the 

distribution engine will be unhinged. Small internal modules such as this helps to make this system 

less dependent and specific for a particular platform but in turn enables it to be used as a building 

block for any other service or system in general. The remote publisher component, as the naming 

suggests, is used as a message transferring module in between different host devices. It is further 

divided into two parts- the commands publishing section and the response publishing section. The 

key difference between the two methods is commands publishing refers to the input model features 

being published to different hosts while the latter is used for the output model transmission. The 

reason for this segregation is mainly code optimization and for having better readability. In case 

of input model which consists of a varied number of features it is not viable for the entire block of 

features to be transmitted each time for a particular feature in need. It would also require more 

bandwidth which is definitely in violation of the basic QoS requirements. So, in this case the flag 

variable is checked for each feature and then only the feature in use is sent to the destined host. 

For the second case, the output model has a fixed structure, and it has no particular specification 

for a transfer, so the method is clearly a separate entity for publishing it to defined destinations. 

One more key feature is that for publishing we need to have different clients for publishing as each 

client can bind to one destination address at a time, so instead of creating a client for each 

transmission we record a mapping of each destination host address and a client corresponding to 

it and hence it can be reused each time for transmission to that specific host.  

The next question is how this publish feature can be reused for other communication protocols 

thus not binding it to any specific domain or functionality. In future there can be another 

communication client with a HTTPs protocol implementation or Constrained Application Protocol 

(CoAP) implementation. The only aspect that needs to be updated is the client parameters, if it’s 

different from the MQTT protocols, otherwise no change is required as the message body and the 

topic since everything is generic. The only way to make sure the topic which is the message path 

in terms of HTTP APIs, does not involve any hardcoded values specific to any domain. Hence, we 
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develop a unique path with host ids for both sender and receiver and the targeted service name 

which corresponds to the message body. 

2.5 Discussion 

We propose in this chapter our approach to overcome the challenges discussed of the thesis related 

to building a QoS enabled fog layer in an IoT platform. The first step was to define all the failures 

in an IoT platform. So, we discuss a number of failures in the fog layer of  IoT platforms which 

we learned from our real-life deployment and through our literature review. These failures led us 

to the exact point of failures in the fog layer. As a solution to the discovered point of failures, we 

devised QoS requirements, and we developed two approaches to fulfill these requirements. The 

first approach is to enable QoS in a fog layer with singular fog node. In the fog nodes we developed 

granular modules which are generic and dynamic in nature to handle the different point of failures. 

Although we were able to establish a stable architecture for addressing the QoS requirements in 

the singular node fog layer, we soon faced the big hurdle of resource constraints and to overcome 

that issue we proposed our second approach where we used a distributed fog system comprising 

of multiple fog nodes with different resources and different capacities providing more options and 

pathways to manage and monitor all the QoS requirements. Our distributed approach comprised 

of a distribution model. We discussed in this chapter the internal components of the distribution 

model and its usage in providing the modules built in our first approach, an extended ability to 

overcome the difficulties and challenges pertaining to resource constraints and better management 

in the fog layer. Thus, with the two proposed approaches, we were able to provide a QoS enabled 

fog layer.  

 

In our review of the existing solutions closer to our proposed approach of the distributed model in 

the fog layer, we have found one distributed fog system called ‘KubeEdge’ which provides 

distributed services in fog layer. KubeEdge is the most widely used solution until now [46]. 

Following, we will discuss KubeEdge and highlight the key differences between it and our model. 
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KubeEdge is a proposed infrastructure in the fog environment of IoT. It is mainly an extension of 

the existing cloud functionalities of Kubernetes [47]  to the edge or fog layers of IoT. The cloud 

resources are shared among the fog layer nodes and the cloud layer servers [47]. This concept was 

built to overcome the fog layer challenges with singular fog nodes. The KubeEdge consist of a 

network protocol stack, a distributed storage, and a service for synchronization along with an agent 

at the edge. The features targeted by KubeEdge are - Kubernetes-native support which manages 

edge applications and edge devices in the cloud with fully compatible Kubernetes APIs, Cloud-

Edge Reliable Collaboration which ensures reliable message delivery without loss over unstable 

cloud-edge network, Edge Autonomy ensuring edge nodes running autonomously and the 

applications in the edge run normally, when the cloud-edge network is unstable, or edge is offline 

and restarted, Edge Devices Management managing edge devices through Kubernetes native 

APIs, Extremely Lightweight Edge Agent (EdgeCore) for running on resource-constrained edge 

[49]. 

Compared to our distributed model, KubeEdge requires the use of dockerized containers having 

all the requirements fulfilled. Therefore, it’s not viable enough to be used dynamically with any 

other existing IoT platforms without bringing an extensive amount of overhead. In comparison to 

KubeEdge, we do not require setting up docker images thus occupying more space in the system. 

Our distribution model has a smaller memory size capable of handling similar functionalities of 

KubeEdge.  

The KubeEdge does not have any QoS model in its architecture, so it is not capable of handling 

unknown situations. There is no self-learning model included in the architecture which is a key 

aspect of our QoS distributed model. Hence, in comparison to KubeEdge our system is more 

dynamic in supporting QoS in the fog layer. 

In the next section, we will discuss the technical evaluation of our proposed approaches and 

observe the QoS metrices being satisfied with our distribution model. 
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Chapter 3  

Technical Evaluation 

We discuss in this section the evaluations and practical implementations with focus on how to use 

our distributed model to achieve different functionalities and how the QoS metrices can be 

enforced using the model. Following, we start by discussing the principles used to validate our 

approach.  

3.1 QoS evaluation techniques in distributed service models 

According to our literature review, there is no specific work addressing QoS for the fog layer. 

Most of the work in the literature has been done in the provisioning of QoS for the cloud layer [35] 

(i.e., including integration, separation, transparency, asynchronous resource management and 

performance principle). Therefore, one part of our research was to extend the application of the 

current QoS principles (applied in the cloud layer) to the fog layer. Following, we discuss our 

extension of these QoS principles. 

The integration principle states that quality of services should have proper maintenance, 

configuration, and prediction capabilities throughout all the architectural layers. The QoS modules 

being transferred from one layer to another must consist of QoS configurations, resource 

guarantees and proper flow maintenance [35]. The separation principle depicts that all processes 

must have their own architectural structures. Some processes are prone to use high data transfer 
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rate with low latency while some processes might have low data rate with low latency. In this 

example having separate architectural flow maintains the QoS [35]. The concept of abstraction is 

being stated by the transparency principle. The IoT services should not have direct knowledge of 

any background mechanisms of QoS monitoring and maintenance [35]. According to the  

asynchronous resource management principle, we should have a proper distinction between the 

functionality of each architectural components, especially the components which manages the 

access and control modeling system. In distributed environment communication, we have essential 

time constraints and having separate functionalities in the architectural components would help 

overcome any deadlock scenarios [35]. The performance concept is the measurement of following 

a generally agreed standard for the implementation of all architectural components. For example, 

a set of rules for routing protocols, data formats, criteria for avoiding multiplexing, etc. [35].  

3.2 Validation of QoS Agents in Fog Node 

In this section we will discuss the results achieved through the AMI platform especially focusing 

on the results obtained by our QoS agents in the fog node. We deployed the AMI platform for a 

project duration of six months at an apartment in Sherbrooke, Canada. The objective of the project 

was to monitor the behavior change of a person based on the type of medication received at 

different stages of medical interventions. The hardware used for the tests and deployments is a 

Raspberry Pi4 with Raspbian OS. Next, we describe the tests and results for each QoS agents in a 

single fog node. 

3.2.1 service monitoring 

The test goals are to show the QoS agent for service monitoring is able to monitor the status of the 

running services in a fog node and is able to react in cases of anomaly situations. The QoS agent 

is crucial for maintaining system reliability. 

For this test we set up a Raspberry Pi with a set of services running. We built the configuration for 

the QoS agent to monitor a particular service.  
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Table 11. Service check notifications in server database 

 

Once the QoS agent was running, we opened up another terminal to manually switch the status of 

the services from ‘active’ to ‘inactive.’ The QoS agent was able to notice this change and took 

action to restart the services.  

The status was checked again by the QoS agent to make sure that the service was running and then 

reported to the admin about the occurrence of the issue and that it was resolved due to the action 

taken by it (Table 11). The ‘phenomenon.instant’ in Table 11 shows the instant at which the service 

named  ‘mqtt-transmission-manager’ (in the field ‘result.trigger.device_name’ of Table 11) had  a 

failure. The fault is mentioned in the ‘result.faults’ in  Table 11. The action taken by the agent is 

reflected in ‘result.action’ field. In this test the agent restarted the service to resolve the issue. The 

final state of the service is reflected in the field ‘result.valueState’ of  Table 11. 

The test was successful, the QoS agent was able to satisfy the requirements of the test goals. With 

respect to the requirements of the test, the QoS agent detected the inactive state of the running 

service, was able to inform the admin and even reacted to the situation by restarting the service 

which in turn resolved the status of the service. 
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3.2.2 Internet connectivity 

The goal for this test is to observe the QoS agent being able to detect whether internet connection 

is present and is then able to react to the situation. The main QoS metric targeted from this agent 

is to resolve the offline capacity of the platform. 

The AMI platform had an existing self-healing component monitoring this point of failure, 

however, the action taken during the operation was to try and switch the Wi-Fi interface up and 

down hoping to reconnect to the network. While the measure taken is a must go to operation, but 

it failed in providing the knowledge of the up time and down time. We have built on this property 

a QoS agent which not only takes care of the pre-emptive measure but also records the timestamp 

of first disconnection until the internet connection is back up which is then sent to the server to 

inform it about the actual time the node went down which is an essential information to have. We 

manually disconnected a running Raspberry Pi for a period of seven minutes and the agent was 

able to specify the exact down time (Table 12). The ‘phenomenonTime.instant’ is the first recorded 

time of the occurrence of the issue and when the connection was brought back it sent the current 

time in ‘resultTime.’ The fault is mentioned in the ‘result.faults’ in  Table 12. The action taken by 

the agent is reflected in ‘result.action’ field. In this test the agent tried to bring the wifi  or ethernet 

interface up. The field ‘result.valueText’ shows the exact issue that led the agent to state that the 

internet connection is unavailable. The final state of the service is reflected in the field 

‘result.valueState’ of Table 12. 

The experiment was successful as the QoS agent was not only able to detect the absence of the 

internet connection but was also able to inform the admin about the exact time at which the 

connection was disrupted (Table 12). 
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Table 12. Internet connection status by QoS agent 

 

3.2.3 Data recovery 

The goal of the test is to successfully retrieve data from the fog nodes after the nodes have been 

offline for a period of time. This agent is another very crucial component for having offline 

capabilities and maintaining the data consistency in IoT platforms.  

In our deployment of AMI platform in the Sherbrooke apartment, we came across a huge challenge 

in December 2021, when there was a security concern with the Apache Log4j implementation. 

Due to this security breach, all the servers around the globe were compromised and had to be shut 

down which was the case with our servers as well. This meant that there would not be any data 

being transferred to our cloud storage. However, with our implementation of the QoS agent for 

data recovery, we were not only able to avoid data loss but also were able to get the data to our 

cloud storage as soon as the servers were up without any technical intervention.  
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Figure 25. Data recovery during Log4j vulnerability 

The pattern for the collection of data during the vulnerable period   speaks greatly about the 

reliability of our platform (Figure 25). This agent goes hand in hand with the previous agent for 

monitoring the Internet connection, while the prior agent is essential for pre-emptive measures and 

building a proper knowledge base the current agent is mainly focused on maintaining the data 

consistency of the system in the IoT platform.  

The data recovery QoS agent worked perfectly in a real-life deployment showcasing the successful 

recovery of data. The data during the infamous  log4j vulnerability where all our servers were 

required to shut down until further investigation was successfully recovered and is depicted in 

(Figure 25).  

3.2.4 QoS agent: resource constraint 

The test goals are to observe the QoS agent being able to monitor the resources of the fog node 

and is able to react to overloading scenarios to avoid the fog nodes from stop functioning. This 

agent targets the QoS metric of resource constraints and thus provides a stable and reliable 

platform. 

The AMI platform came equipped with resource constrain measures, where in the platform was 

able to raise alerts in cases of overuse of CPU and disk resources. However, it was not sufficient 

to satisfy the QoS requirement of the system with lower resource capacities. The QoS agent for 

resource management is subdivided into three categories, as discussed in chapter 2. In this test, we 

try to run a service which initially takes more CPU resource around 99.8% (Figure 26) than the 

allowed threshold value and we capture the CPU resources being cut to 55.5% for that service by 

the agent in Figure 27. 
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Figure 26. Initial CPU% by a process 

 

Figure 27. CPU usage after the QoS agent action 

 

Also, for the knowledge base we inform the server for the issue (Table 13). The 

‘phenomenonTime.instant’ is the exact moment when the agent recorded the cpu usage for the 

service to be more than the threshold. The fault is mentioned in the ‘result.faults’ in  Table 13. The 

action taken by the agent is reflected in ‘result.action’ field. The field ‘result.valueText’ shows the 

exact issue that led the agent to raise a flag for excessive CPU usage. The final state of the service 

is reflected in the field ‘result.valueState’ of Table 13. 

 

Table 13. Notification for higher usage of CPU resource 
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The disk space management by the QoS agent was tested during our deployment in the Sherbrooke 

apartment as we met with a challenge of memory leak in the system which filled the daemon log 

files and crashed the node. For this test we lowered the threshold value to 20 percent to trigger the 

action from the QoS agent. We observe the log files before and after the QoS agent takes action. 

Before the QoS agent the disk space was filled with unmonitored logs (Figure 28). With the QoS 

agent we were able to save the latest logs for all our running services and truncated all the log files 

to free up disk space (Figure 29). We can see that after the action there are new journal logs for 

services and the unnecessary log files have been truncated. 

 

Figure 28. Disk usage reaching the threshold value 
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Figure 29. Disk space management by QoS agent 

Next, the physical memory management is generally a defense mechanism in case of certain 

services using huge RAM space. However, the only solution for such cases is to raise a high alert 

to the admin and the admin going on site to take care of the issue (Table 14). The 

‘phenomenonTime.instant’ is the exact moment when the agent recorded the physical memory 

usage to be more than the threshold. The fault is mentioned in the ‘result.faults’ in  Table 14. The 

action suggested by the agent is reflected in ‘result.action’ field. Here the agent suggests to the 

user to make a reboot in order to resolve the issue.  
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Table 14. An example of RAM space being almost full 

 

The tests were successful for all the monitored fog node resources. For the CPU, disk and RAM 

resources, the QoS agents were able to detect the overloading situation and react to it by reducing 

the usage and then also provided the admin with the knowledge of the situation. 

3.2.5 Heartbeat 

The goal is to test the fog node and cloud being able to acknowledge the presence of one another 

at all times. This agent helps in providing the system availability, stability of the IoT platform 

and hence the overall reliability. 

The heartbeat agent is tested mainly from the server side, we deployed a Raspberry Pi4 in our lab 

and after the initial connection to our virtual node in the cloud we turned down the OpenVPN 

connection which resulted in no communication between the fog node and the cloud node. The 

cloud node not being able to detect the presence of the corresponding fog node for a period of 

time, informed the admin server with a high alert message denoting the fog node being down 

(Table 15). The ‘phenomenon.instant’ in Table 15 shows the first instance at which the cloud was 

not able to get any acknowledgement from the fog node.  
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Table 15. Example notification for heartbeat 

 

The fault is mentioned in the ‘result.faults’ in  Table 15. In this test the fault was detected by the 

cloud agent which tried communicating with the agent in the fog node for 15 minutes but was not 

able to do so. After 15 mins the cloud agent notified the admin and thus the ‘resultTime’ is different 

from phenomenon.instant. The action suggested by the agent is reflected in ‘result.action’ field. 

The final state of the service is reflected in the field ‘result.valueState’ of  Table 15 and the service 

name is mentioned in the field ‘result.trigger.service_name’ of  Table 15. 

The test was successfully executed as the heartbeat agents were able to detect the absence of the 

other agent and raised an alarm for the admin. 

In the next section, we will discuss the tests performed on the distributed model and validate our 

mode with the results. 
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3.3 Validation of the Distributed model 

For the test of our distribution model, we set up three fog nodes consisting of two Raspberry Pi4 

and one Raspberry Pi3. Each had the Raspbian OS setup with initial package installations. We will 

be showcasing the usage of the model to counter the drawbacks that we came across in the singular 

node fog system. The main targeted QoS metrices are reliability, scalability, offline capacity, 

security. 

We choose one of the Raspberry Pi4 as the master node while the other Raspberry Pi4 and 

Raspberry Pi3 act as the slave nodes. The distribution model can be used to implement any number 

of services, for our evaluation of metrices we have implemented the default services which are 

tasked to create and maintain the communication channel in the distributed system. It is with the 

help of these services we are able to satisfy the intended QoS metrices. 

3.3.1 Establishing a Communication Channel 

The goal of the test is for the fog nodes being able to identify all the other fog nodes in the 

distributed environment. 

The first functionality in our distribution engine is the remote host discovery service which is 

capable of recognizing all the registered fog nodes and saves that in a file in the system for future 

use (Figure 30). Thus, no manual configuration is needed at the master node level for it to 

recognize the other participating nodes.  
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Figure 30. Master node discovering remote hosts 

 

 

Each node has a standard data format (model, number of processors, RAM, Ip address) for their 

identification which helps to build a proper management system (Figure 31).  The nodes share 

their identification to one another, thus setting up the communication path in between them (Figure 

32). The QoS metric that is satisfied in this service is the layer of security. The discovery service 

only accepts hosts with a defined host name so any external node will not be a part of the distributed 

system. The slave nodes will be directed by the master node to have the identification of other 

nodes so even in this case the communication loop is closed to the nodes participating in the 

distributed system.  

The test was successful, we observed all the fog nodes being able to detect the other fog nodes in 

their configuration files with details of their respective internal system components. 
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Figure 31. Node identification built by each fog node 

 

Figure 32. Identification of remote fog nodes 
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3.3.2 Autonomous installations 

The goal of the test is to install services in remote hosts directed by the master node in the 

distributed environment. With this validation we target the QoS metric of scalability in which we 

are able to deploy multiple nodes at run time without user intervention. 

In section 2.4.3 we came across this challenge in our real-life deployment where we had to hand 

build all the node installations and that took several hours to complete. In this part we will see 

dynamic distribution of services to different nodes based on a configuration file stating the 

requirements of each node. For this experiment we took three fog nodes and were able to get their 

required set of services running after the distribution of tasks from the master node was completed. 

We check the status of a service before and after the installation script is invoked by the master 

node. The status of the service is observed to be not found while the installation is in 

progress(Figure 33) and at the instant the service installation is completed we can see the active 

status for the same service (Figure 34).  

 

Figure 33. Service status while installation is in progress 
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Figure 34. Service status when installation is completed. 

The service named ‘mqtt-transmission-manager_webt’ was successfully installed in a remote node 

after being communicated by the master node to run that service installation in that particular node. 

With regards to time, as all the nodes are capable of installing their tasks at the same time, the 

entire deployment takes on an average the same time as one node which in our case of 

implementation is approximately 20 minutes for three nodes which, on the other hand, would have 

taken around 20 mins for each node so approximately 60 minutes. 

3.3.3 QoS monitoring and Management 

The goal of the test is to prove that the master node has the capability to monitor and manage all 

the services running in all the remote hosts. This feature helps in proper monitoring of all services 

in the distributed system, thus maintaining system reliability with less resource utilization. 

All the slave nodes have a feature in which they create a list of all the running services in the node 

and send it to the master node (Figure 35). The master node thus has an eagle-eyed view of all the 

services that are being provided by the entire distributed system. Referring to the QoS agent of 

service monitoring in singular fog nodes (section 3.4.3 A), we extend that idea here where the QoS 

agent in master node is capable of monitoring the service status of all running services in the 
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distributed system. Say the QoS agents in every node takes up x% of the entire resource in the 

distributed system, but with this feature it is reduced to x/number of nodes percent.  

In this test we can showcase that the master node has the knowledge of all the running services in 

the distributed system, thus resulting in a success for the test.   

 

 

Figure 35. List of running services of a fog node in the master node 

 

3.3.4 Over the air update (OTA) 

The goal of the test is to prove that any fog node has the ability to update resources or services in 

another node using our distributed model at any point in time. The QoS metrices satisfied from 

this feature is the  scalability of the system to support  an over-the-air update in any IoT system 

which can help maintain the reliability, availability of the system at all times. 

Over the air update is a crucial feature that is a big part of all IoT systems in which we have updates 

being pushed from the cloud layer to our fog layer. We take that idea and validate it in our 

distribution model by enabling updates from the master node to other slave nodes. The service can 

be further extended to other IoT layers as the file transfer mechanism is independent from any 

specific domain. For our validation, we have used a firewall ansible script to open specific ports 
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for communication. The initial script had a set of ports defined in it while the update script has the 

newer definition of another port. We monitor the ufw rules in the system before the update (Figure 

36).  We can observe the slave node executing the updated script with an updated ufw rules in 

which we enabled port 9002 for tcp communications (Figure 37). We again check the ufw status 

after the completion of the update and we see the updated rules for the port 9002 (Figure 38).  

 

Figure 36. UFW status before performing update 
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Figure 37. Update of firewall rules in progress 



Technical Evaluation 

87 
 

 

Figure 38. UFW status after performing update 

The test was successfully executed as the master node was able to update the ufw security rules in 

a remote node. 

3.3.5 Resource management 

The goal of the test is to showcase the resource management ability of our distributed system hence 

providing better service functionality in a distributed environment compared to a single fog node 

implementation of the same service. We will take the example of the Bluetooth service in our test. 

We target the QoS metrices of scalability and interoperability through this test. 

One of the experiments we conducted was to have inter service communications. Based on the 

challenges faced with Bluetooth in singular nodes, we tasked one to be the discovery node for all 



Technical Evaluation 

88 
 

the nearby Bluetooth devices and another node just responsible for the acquisition of data from the 

discovered list of devices. The list of devices was easily transferred with our input model of the 

distribution tool and saved as a file in the other node for it to run acquisition. The service status 

for acquisition was stable throughout our experiment phase. The previous limit to our single node 

implementation was 2 devices and with this implementation it was raised to 6 to 7 devices after 

which the stability of the Bluetooth driver fails due to concurrent access of the driver at a high rate.  

The distribution of the Bluetooth service in more than one node increased the overall stability of 

the service. Thus, the test was successful.  

3.3.6 Delegation of master node 

The goal of the test is to check the ability of the distributed system to handle the situations when 

the master node is offline. Through this test we are trying to prove the offline capability of the 

distributed system and in turn providing for the platform availability and stability. 

One of the major challenges discussed in lessons learned section in Chapter 2 is the offline 

capability of the system. In case of a distributed system, the master node monitors the heartbeat of 

all slave nodes, however, the important question is what happens when the master node itself goes 

down. For this solution the  master node selects one slave node as its delegate by saving a 

configuration file in that node. The initial configuration file of the slave node has different constant 

values and a different set of tasks activated(Figure 39).We then manually power down the master 

node while monitoring the slave node. After a specific period of time, when the scanned devices 

do not show the current master node as alive, we see the initial configuration file for that slave 

node changes to the master node configurations (Figure 40).  
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Figure 39. Initial configuration file of slave node 

 

Figure 40. Updated configuration file of slave node acting as master node. 
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The functionality of the master node was carried out by the delegated slave node after the master 

node went offline. Hence the test was successful.  

3.4 Conclusion 

In this chapter we discussed the tests and the validation of  our QoS agents in a single fog node 

and we also validated our distribution model with a set of tests which showcased the possibilities 

of satisfying QoS metrices through the model. We have highlighted the targeted QoS metrices in 

all our tests. In the introduction, we mentioned our goal was to have a fog layer with QoS 

implementation and based on our tests we have provided solutions to the major drawbacks 

reviewed in our literature and real-life deployments. We have also provided the tools for future 

implementations and improvements and the ability to be integrated in any IoT platform. 
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Conclusion 

The main target of the thesis is the concept of QoS in IoT, with focus on the fog layer. We target 

an approach to be generic enough for use beyond a specific IoT system. Our approach had two 

parts, one targeting the single fog node and the other providing a distributed fog layer. In order to 

create autonomous solutions, we built QoS agents in the form of dynamic modules for the 

discovered point of failures. With multiple QoS agents handling different aspects of the fog layer 

system, we were able to achieve an overall stable fog layer. 

As for our approach for a singular fog node, we have brought forward a simple but dynamic aspect 

which is scalable to fit any number of QoS agents which can be reusable for targeting more than 

metric at a time. The main idea from the beginning was to have reusable structure for enforcing 

and maintain QoS metrices in IoT platforms. In this regard our approach is able to provide answers 

to all domains of failures that are known to us currently and even having the ability to incorporate 

unforeseen point of failures and situations in the future.  

Similarly, the major issue faced in the single node fog layer is how to have a proper distribution 

system for fog layer without having to go to the cloud layer. Our distributed model is not restricted 

to fog layer only but can be used for distribution at any layer as there are no concepts tying the 

model to a particular layer of implementation. We validated our model with a set of use cases 

showcasing the ability of the model to cater to any number of QoS metrices. The dynamicity of 

the model will allow it for a significant growth in the future. 
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While this study provides a valuable insight into the need of QoS in IoT and the means to achieve 

that in the fog layer of the IoT platform, a number of limitations need to be acknowledged: 

o The study focuses on a single layer of the IoT platform, while we proposed methods to stabilize 

one layer, we need to have QoS implementations in all other layers. 

o The distributed model does not yet support mechanisms to have communication outside the 

internal network layer.  

o Our distributed model does not include a machine learning model to learn from the knowledge 

base in our QoS agents. 

With these limitations we would have a number of steps to take in the future to extend the work 

and make it more robust and dynamic.  

In future works we should mainly focus on using the knowledge base created by our QoS agents 

to be able to classify new patterns of failures and possible solutions for such cases. The future 

work would definitely include establishing QoS in all the other layers using our approach in the 

fog layer. In particular, it is very essential to have a better implementation of QoS in cloud layer 

to enhance the stability and reliability of the system. With respect to the distribution model, the 

future work would include a distribution of local database and a QoS agent managing the entire 

data of the distributed system, this will help in resource management and provide for better offline 

capabilities.
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Appendix 

Implementation Design 

We describe in detail in this section our implementation of the QoS agent for data recovery as 

discussed in chapter 2.4.3. This agent is crucial for having a local database management system in 

the fog layers.   

QoS agent for data recovery 
The data recovery agent is built with the idea of storing all data from the edge devices on the fog 

nodes and then synching it with the cloud. The agent uses SQLite database as its storage 

component. The data recovery agent gets the data from the services in the fog layer which fetches 

data from the edge devices, and it looks for an instance of the SQLite database with that particular 

service name. If the instance does not exist it creates the instance with the instance name as the 

service name, for example, “{service_name}.db” is the instance name for a pre-processing service 

called “{service_name}”. After the database has been created, the next step is to create the internal 

tables. The initial approach that we used was to create one table for each service. Although it 

served the purpose of storing data locally, we had several challenges in regard to management of 

data and data synching with the cloud. The issue with having a single table was that the size of the 

database table  grew very fast and so parsing the table  became extensively difficult. Due to this 

challenge we decided to create tables based on defined intervals. 
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Figure 41. Internal Structure of the database. 

 

For example, if the interval is set as four, we would create a new table for a particular service each 

four hours. In this way, we can have smaller tables to manage while maintaining the structure of 

the data in our database Figure 48. These tables are then used to synchronize the data with the 

cloud. To perform the data storage and synchronization tasks the data recovery agent uses two 

components: the database library and the local storage module. We detail the functionalities of 

these two components in the following parts. 

 

 a) Data Recovery: Database Library 

The database library is another internal component of the data recovery agent which is used to 

provide the micro agents the functionalities to use the database services with ease. This library 

supports the basic database services like insertion, deletion, creation of tables, updating tables and 

managing the database transactions. This library is built with the idea of dynamicity, so any new 

functionalities can be added with the least possible complexity and can be used by all services in 

the system. This library is used by the micro agents and other fog services. Next, we will discuss 

how the agent handles the synchronization task with the help of the  local storage module. 
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 b) Data Recovery: Local Storage Module  

The local storage module is used to perform the database synchronization with the cloud database. 

The module  uses a defined interval as an input to perform synchronization. The first step of this 

module is to check the number of database instances we have in our node, it then gets the 

timestamps of the first entry and the last entry of each table in an instance and sends them to the 

cloud nodes. The cloud nodes send a list of all the ids in that timeframe and the local storage 

module then deletes all the received ids from that table and if there are still some ids left in the 

tables it suggests that the data corresponding to those ids was not sent to the cloud. These data are 

sent to the cloud thus synching the local database with the cloud database. Upon sending these 

data we still keep them and do not delete them at this point as it might have not been transmitted 

properly due to some network issues. The idea is to wait for the next iteration and delete only those 

data from the local database that we have received in the cloud. This iteration is done on each table 

in all the instances of the database at a definite interval period.  

One more feature that is added in this module is the database rotation feature. One major issue that 

was observed with this implementation was that by default the fog nodes have limited memory 

resources and if the connection between the fog node and the cloud nodes is not established for a 

significant amount of time then it causes the fog nodes to crash due to over saturation of memory 

resources. Keeping this issue in mind, we came up with the idea of database rotation in which we 

keep on deleting data from a table in one instance of the database at a particular time. We assume 

a threshold for the total database memory usage and on reaching that threshold this functionality 

is triggered where in we rotate the database to free up memory space.  

This process results in permanent data loss but it’s one of the most optimized ways to process such 

resource constraint trade-offs. It can be further optimized in a distributed architecture of fog layer. 
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