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ABSTRACT

Aims. In astronomy, machine learning has been successful in various tasks such as source localisation, classification, anomaly detec-
tion, and segmentation. However, feature regression remains an area with room for improvement. We aim to design a network that
can accurately estimate sources’ features and their uncertainties from single-band image cutouts, given the approximated locations of
the sources provided by the previously developed code AutoSourceID-Light (ASID-L) or other external catalogues. This work serves
as a proof of concept, showing the potential of machine learning in estimating astronomical features when trained on meticulously
crafted synthetic images and subsequently applied to real astronomical data.
Methods. The algorithm presented here, AutoSourceID-FeatureExtractor (ASID-FE), uses single-band cutouts of 32x32 pixels around
the localised sources to estimate flux, sub-pixel centre coordinates, and their uncertainties. ASID-FE employs a two-step mean vari-
ance estimation (TS-MVE) approach to first estimate the features and then their uncertainties without the need for additional informa-
tion, for example the point spread function (PSF). For this proof of concept, we generated a synthetic dataset comprising only point
sources directly derived from real images, ensuring a controlled yet authentic testing environment.
Results. We show that ASID-FE, trained on synthetic images derived from the MeerLICHT telescope, can predict more accurate
features with respect to similar codes such as SourceExtractor and that the two-step method can estimate well-calibrated uncertainties
that are better behaved compared to similar methods that use deep ensembles of simple MVE networks. Finally, we evaluate the model
on real images from the MeerLICHT telescope and the Zwicky Transient Facility (ZTF) to test its transfer learning abilities.
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1. Introduction

Optical sky surveys have a significant impact on various scien-
tific fields, such as astrophysics, cosmology, and planetary sci-
ence. These surveys collect data on the positions, luminosities,
and additional attributes of celestial objects, such as stars, galax-
ies, and quasars, and have contributed greatly to the scientific
community’s knowledge and understanding of the universe.

Shortly, the development of multiple large-scale optical sur-
vey telescopes will substantially enhance our capacity to inves-
tigate the cosmos and expand our understanding of its properties
and evolution. A prime example is the Vera C. Rubin Observa-
tory (Ivezić et al. 2019), which is presently under construction
in Chile. Equipped with an 8.4-metre telescope engineered for

conducting an extensive sky survey spanning over 20,000 square
degrees, it will deliver crucial data on billions of celestial ob-
jects. Furthermore, the adoption of large-format complementary
metal-oxide semiconductor (CMOS) detectors in astronomy is
expected to increase data acquisition speeds by two orders of
magnitude, leading to a substantial increase in data volume.

Due to the imminent surge of data, traditional image pro-
cessing methods will face escalating challenges. Consequently,
recent years have witnessed a transition towards using machine
learning techniques for data analysis, with the ultimate objec-
tive of real-time processing. Specifically, within the specialised
field of astronomical image processing, convolutional neural net-
works (CNNs, Lecun et al. 1998) have proven remarkably ef-
fective, excelling in a variety of applications such as galaxy
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classification based on morphological characteristics (Vavilova
et al. 2022), exoplanet detection (Cuéllar et al. 2022), image re-
construction from noise-corrupted or incomplete data (Flamary
2016), detection and classification of point sources from gamma-
ray data (Panes et al. 2021), and photometric redshift estimation
(Mu et al. 2020; Schuldt et al. 2021).

Nevertheless, while there have been some applications of
CNNs for photometric redshift estimation in astronomy (Hoyle
2016; D’Isanto & Polsterer 2018; Pasquet et al. 2019), their em-
ployment for feature regression tasks, such as estimating flux and
other source properties, remains largely unexplored. In this con-
text, feature regression involves predicting continuous numerical
output values based on features extracted from images, requir-
ing the network to manage the complexity of image data as in-
put while simultaneously performing a regression task. Several
factors may account for this underutilisation. First, the complex-
ity of astronomical tasks could be a significant barrier. Second,
the lack of adequately labelled data for training these networks
may limit their use. Lastly, the novelty of applying CNNs in this
context might lead to hesitance within the astronomical commu-
nity. Despite these challenges, they represent unique opportuni-
ties for groundbreaking work in this promising intersection of
deep learning and astronomy.

A shared concern in both domains is the reliable estimation
of uncertainties, which is essential for ensuring the robustness of
astronomical findings. While deep neural networks (DNNs) have
achieved remarkable performance across various applications
(LeCun et al. 2015; Schmidhuber 2015; Goodfellow et al. 2016),
their black-box nature often hinders their ability to quantify pre-
dictive uncertainties effectively. Beyond merely predicting an
expected value, it is crucial to gauge and understand the asso-
ciated uncertainty. Such an approach, as highlighted by many
others (Rasmussen & Williams 2004; Kiureghian & Ditlevsen
2009; Ghahramani 2015; Kendall & Gal 2017; Smith & Gal
2018; Wilson & Izmailov 2020), not only enhances the reliability
and confidence of predictions but also facilitates more informed
decision-making. This reliable estimation of uncertainties will
also be a central theme of this paper.

Another pivotal aspect in the realm of astronomical data pro-
cessing is the use of synthetic astronomical image generators. As
the intersection of machine learning and astronomy continues to
evolve, it is essential to recognise the burgeoning role of these
sophisticated tools. Tools such as Pyxel (Arko et al. 2022) and
ScopeSim (Leschinski et al. 2020) are leading this advancement,
striving to produce images with an unparalleled level of detail
that encapsulate everything from subtle celestial features to a
broad spectrum of observational artefacts. While the astronomi-
cal landscape may not be dominated by these synthetic images,
their increasing fidelity makes them invaluable assets for ma-
chine learning training. By utilising these high-quality synthetic
images, we can ensure that machine learning models are trained
on true features and are adeptly prepared to handle the nuances
of real-world astronomical data. This paper is a testament to our
commitment to this progressive approach. It introduces one of
the core data processing techniques that we intend to integrate
into our envisioned comprehensive pipeline. This pipeline is de-
signed to harness the full potential of machine learning tools,
from source detection and feature regression to transient iden-
tification, with the ultimate goal of establishing the first fully
automated machine learning-driven telescope pipeline.

Building on this vision and recognising the need for prac-
tical tools and methodologies, for this study, we tackled two
objectives. First, we constructed a network capable of predict-
ing, from image cutouts of sources detected with AutoSourceID-

Light (ASID-L, Stoppa et al. 2022a) or through other tools, their
flux, sub-pixel centre coordinates, and corresponding uncertain-
ties. Second, we aimed to enhance the field of uncertainty esti-
mation in machine learning by implementing what we call a two-
step mean variance estimation (TS-MVE) network. In Section 3,
we demonstrate the concept on a synthetic dataset and highlight
its improvements from an astronomical perspective and an un-
certainty characterisation standpoint. Subsequently, we compare
its outcomes with SourceExtractor (Bertin & Arnouts 1996) and
another DNN for regression that adopts an ensemble methodol-
ogy (Lakshminarayanan et al. 2017). Lastly, as explained in Sec-
tion 4.2, we applied the trained model to a real set of images from
the MeerLICHT (Bloemen et al. 2016) and the Zwicky Transient
Facility (ZTF, Bellm et al. 2019) telescopes to evaluate its trans-
fer learning capabilities.
The code presented here1 is the third deep learning algorithm
developed within the context of MeerLICHT/BlackGEM (Bloe-
men et al. 2016; Groot et al. 2022), following MeerCRAB (Ho-
senie et al. 2021), an algorithm employed to classify real and
bogus transients in optical images, and ASID-L (Stoppa et al.
2022b), an algorithm designed for rapid source localisation in
optical images.

2. Data

An appropriate experimental protocol must be established to as-
sess the efficacy of the proposed two-step network for feature re-
gression and validate the core concept of the proposed method.
One vital component of this protocol is employing both synthetic
and real MeerLICHT telescope image datasets to train and eval-
uate the network performance. While the real dataset provides
real-world scenarios and helps assess the network’s performance
in practical applications, the synthetic dataset is necessary to
train the network on true, exact features.

2.1. MeerLICHT telescope

The 65 cm optical MeerLICHT telescope has a 2.7 square degree
field of view and a 10.5k × 10.5k pixel CCD. Its primary objec-
tive is to track the pointings of the MeerKAT radio telescope
(Jonas & MeerKAT Team 2016), facilitating the concurrent de-
tection of transients in both radio and optical wavelengths. The
telescope employs the Sloan Digital Sky Survey (SDSS) ugriz
filter set and an extra wide g+ r filter called q (440-720nm band-
pass). Images captured are promptly sent to the IDIA/ilifu facil-
ity, where BlackBOX image processing software 2, Vreeswijk et
al., in prep) handles the images using standard methods. This in-
cludes source detection (currently with SourceExtractor, Bertin
& Arnouts 1996), astrometric and photometric calibration, de-
termination of position-dependent image point spread function
(PSF), image subtraction, and transient detection.

2.2. Synthetic dataset

Using synthetic datasets for model training and evaluation before
testing on real-world data is a prevalent practice in deep learning
and computer vision; it offers greater control over the problem,
diminishes the impact of unforeseen variations in real-world
data, and enables more efficient use of computational resources.
Real data quality, in fact, can be impacted by various factors,

1 https://github.com/FiorenSt/
AutoSourceID-FeatureExtractor
2 https://github.com/pmvreeswijk/BlackBOX
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such as atmospheric conditions, telescope optics, and camera
noise. To address these constraints and to have exact labelled
features, researchers have investigated using synthetic data for
training machine learning models (Tremblay et al. 2018).

The synthetic dataset built for this paper is designed to com-
prise a substantial number of image samples, approximately 500
full-field MeerLICHT images, each associated with a set of tar-
get feature values. The synthetic images are built using the as-
trometric calibration, the characterisation of the PSF and the
photometric calibration of actual MeerLICHT images. These
products are kept for each image following the original im-
age processing. The astrometric calibration is accurate to about
0.03" and is inferred using Astrometry.net (Lang et al. 2010)
with Gaia DR2 (Gaia Collaboration et al. 2018) index files. The
position-dependent PSF for each image is determined using PS-
FEx (Bertin 2013), which uses hundreds of selected stars across
the image to fit their profile, where the PSF is allowed to vary
as a function of X- and Y-position with a 2nd-order polynomial.
From the PSFEx products, a pixel map of the PSF at each posi-
tion in the image can be created, with a radius of 5 times the av-
erage image full-width at half maximum (FWHM) inferred from
the stellar profiles (the PSF image is actually square, but the pix-
els at distances larger than a radius of 5 times the FWHM are set
to zero). The photometric calibration is based on the photome-
try of stars down to ∼ 17th magnitude from a combination of
surveys (Gaia DR2, SDSS, Pan-STARRS, SkyMapper, GALEX
and 2MASS) for which stellar templates are fit. The MeerLICHT
magnitudes are inferred from the best-fit template, taking into
account the typical atmospheric conditions at Sutherland and the
wavelength-dependent transmission of the telescope, including
the mirror reflectivity, filter transmission and CCD sensitivity.
This provides an all-sky calibration catalogue that is used to cal-
ibrate each MeerLICHT image, which typically contains hun-
dreds of calibration stars, to an accuracy of ∼ 0.02 mag in the
q-band. When inferring the instrumental flux of the sources to
be compared to the calibrated fluxes, the source flux is weighted
with the PSF at the source position; this optimal flux determina-
tion closely follows the method described in Horne (1986).

Using these three components from an actual MeerLICHT
image, we project all relevant sources from the Gaia catalogue
onto a blank image with the same size as a reduced MeerLICHT
image (10560×10560 pixels). In this projection, the Gaia G-band
magnitude is converted to flux (unit: electrons/s) using the im-
age q-band zero-point, taking into account the actual airmass of
the image and the typical q-band extinction coefficient. This flux
determines the amplitude of the PSF pixel map inferred at each
particular location so that the total flux (now in units of electrons
with the image exposure time taken into account) is the volume
below the PSF surface. Although the Gaia G-band filter is very
different from the MeerLICHT q-band (despite having similar
central wavelengths), this is not important as the resulting flux
is simply adopted as the true flux of the object. Besides the Gaia
sources, we also added the sky background image and its stan-
dard deviation image (inferred on sub-images of size 60×60 pix-
els, with the detected sources masked out) of the original image;
similar to the PSF characterisation, these are pipeline products
that are kept for all MeerLICHT images. In this way, a sample
of 500 synthetic images has been built from actual MeerLICHT
images, reflecting the actual observing conditions under which
the images were taken, with a wide range of image quality and
limiting magnitudes.

In each synthetic image, sources are identified using both
ASID-L and SourceExtractor. The mutually identified sources
are then matched with their true positions in the synthetic images
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Fig. 1. Number of sources as a function of S/N. This plot showcases
the range of S/N present in our synthetic dataset, emphasising the vari-
ety of conditions under which the network will need to be trained and
evaluated. A significant portion of the sources exhibit low S/N, under-
scoring the challenges the network will face in accurately detecting and
analysing these sources.

S/N: ~3 S/N: ~10 S/N: ~30 S/N: ~100 S/N: ~300

Fig. 2. Random selection of cutouts from the synthetic exposures show-
casing the variety and quality of the simulated data. This visual repre-
sentation aids in understanding the conditions and challenges the net-
work is designed to handle.

to generate single-band cutouts. This process results in approx-
imately 3.5 million cutouts, each measuring 34x34 pixels. To
further elucidate the characteristics of our synthetic dataset, we
have plotted the number of sources as a function of the signal-
to-noise ratio (S/N). Training a network to accurately detect and
analyse such low S/N sources presents a considerable challenge,
given the inherent difficulty in distinguishing these faint sources
from the background. Fig. 1 provides insights into the distribu-
tion of sources across different S/N values, highlighting the di-
versity and richness of our dataset.
To provide a clearer visual understanding of the cutouts and a
glimpse into the conditions under which the regressor operates,
in Fig. 2, we show a random selection of cutouts at different S/N.

The dataset is then split into 60% training, 20% test, and 20%
validation. The true centre in pixel coordinates and flux were
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stored and incorporated into the final training set for each source.
Even though the stored cutouts have dimensions of 34x34 pix-
els, the training process is carried out on 32x32 pixel images.
Having additional pixels at the edges of the cutouts allows us to
shift the location of the sources within the image dynamically
during training, serving a dual purpose: providing a more varied
dataset and simulating suboptimal source localisation by a prior
tool. This approach enhances the training dataset and prepares
the model to handle situations where source localisation is less
than ideal, thereby improving its overall performance and adapt-
ability in various scenarios.
This controlled environment is ideal for training our network and
assessing its performance with alternative architectures, such as
deep ensemble methods and widely used algorithms like Source-
Extractor.

2.3. Real dataset

While synthetic datasets have advantages, they inevitably lack
the full range of real-world complexities. Therefore, it is cru-
cial to validate the performance of the trained models on a real
dataset as well. The real dataset used for this study comprises the
same set of 500 full-field images captured by the MeerLICHT
telescope, identical to those used to create the synthetic dataset.
Each image in the real dataset matches the dimensions of those
in the synthetic dataset, being 10.5k × 10.5k pixels. Moreover,
the creation of cutouts from the real dataset follows the same
methodology employed for the synthetic images, as detailed in
the previous section.

The processing of this dataset, however, is quite different.
Source extraction is performed using SourceExtractor (Bertin
& Arnouts 1996), a widely used astronomical source detection
tool that identifies and measures the properties of sources in the
given images. In contrast to the synthetic dataset, where true fea-
ture values are known precisely, this software provides estimated
values for various features such as flux, position, and shape pa-
rameters based on the real image data. Consequently, these val-
ues can be impacted by various factors such as the background
noise level, the complexity of the object itself, and even the sub-
tle intricacies of the software’s algorithms. As a result, unlike
the synthetic data, the features obtained from this real data do
not have associated true values. However, the real dataset is in-
valuable for assessing the network’s performance in real-world
scenarios, and it provides an essential test of the generalisation
ability of the trained models.

3. Method

In astronomy, various methods exist to infer a star’s flux in an op-
tical image. The most prevalent techniques include aperture pho-
tometry, which entails positioning a circular aperture around the
star and measuring the flux within that aperture (Golay 1974),
and profile-fitting photometry, which involves fitting a model
of the PSF of the telescope to the star’s image (Heasley 1999).
However, these methods exhibit limitations, particularly when
handling crowded fields or images with a low S/N.

This paper proposes a machine learning approach to estimate
the flux and sub-pixel centre position, x and y, of the optical
sources, along with associated uncertainties, without using PSF
information. The quantities of interest in the problem, flux, x,
and y, can be collectively represented as β = {x, y, f lux}. These
true quantities are related to the estimated values, β̂, through a
model of the form:

β = β̂ + ϵ,

where ϵ denotes the residuals or errors in the estimate, which
are assumed to follow a Gaussian distribution with a mean of
zero and a covariance matrix Σ, that is, ϵ ∼ N(0,Σ). Assuming
Gaussian distributed residuals allows us to estimate not only the
quantities of interest, β̂, but also the uncertainties in these esti-
mates, namely the covariance matrix Σ̂ of ϵ.

This Gaussian residual assumption is particularly valid when
our synthetic images closely emulate real images in every nu-
ance, including the presence of artefacts. In such cases, the neu-
ral network is trained to account for these intricacies, leading
to residuals that predominantly follow a Gaussian distribution.
This is because the network would have learned to adjust for
these artefacts during the training process, and any deviations
from the predictions would be due to random noise, which is of-
ten Gaussian in nature. However, the efficacy of our model heav-
ily hinges on the fidelity of the synthetic images to real-world
images. If the synthetic images fall short of capturing the intri-
cate complexities inherent in real images, it can lead to residu-
als that stray from a Gaussian distribution. Specifically, issues
such as contamination from image artefacts and confusion noise
at low source density can introduce pronounced non-Gaussian
noise contributions, undermining the effectiveness of our pro-
posed model. Beyond the fidelity of synthetic images, intrinsic
data complexities can lead to non-Gaussian residuals. For in-
stance, in spectroscopic multiple-star systems, photometric pa-
rameters may not be directly inferred from the data and instead
need to be constrained by prior knowledge, such as previous ob-
servational data, theoretical models, or known astrophysical con-
straints. Similarly, for complex sources such as galaxies or areas
with saturation, the interpretation of features can introduce non-
Gaussian uncertainties. For example, distinguishing whether a
spot is part of a galaxy or a foreground object adds further vari-
ance to the residuals. Thus, while our model is effective in es-
timating Gaussian-distributed residuals, extending it to handle
these more intricate scenarios is an avenue for future work.

In machine learning, to estimate the quantity of interest fol-
lowing the setting above, we can employ a mean variance esti-
mation (MVE) network (Nix & Weigend 1994). These models
use a negative Gaussian loglikelihood as a loss function and pre-
dict an estimate of the quantity and their uncertainties. Despite
its fame, several authors have observed that training an MVE net-
work can be challenging (see, e.g. Detlefsen et al. 2019; Seitzer
et al. 2022; Sluijterman et al. 2023). The primary argument is
that the network tends to focus on areas where it performs well,
consequently neglecting initially poorly fitted regions. One of
the most common solutions for this problem is the application
of an ensemble methodology; the main architecture using this
procedure is the widely used deep ensembles regression (Lak-
shminarayanan et al. 2017) that uses an ensemble of MVE to
mitigate this effect.

In the following section, we first present how the state-of-
the-art methodology, deep ensembles, would function in predict-
ing the features of interest and their uncertainties. Subsequently,
we demonstrate how our two-step network better predicts the
features of interest and addresses the controversial problem of
the challenging training of MVE networks. In addition, we com-
pare our results with the ones of SourceExtractor applied to the
synthetic images.

3.1. Deep ensemble regression on synthetic images

Deep neural networks (DNNs) are prevalent black box predictors
demonstrating robust performance across various tasks. How-
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ever, determining the uncertainty of predictions made by DNNs
remains a challenging problem yet to be fully resolved. Uncer-
tainties are an inherent aspect of many real-world problems, and
it is essential to understand the different types of uncertainty that
can arise when building models. In machine learning, uncertain-
ties are usually divided into epistemic and aleatoric uncertainty
(Kendall & Gal 2017; Kiureghian & Ditlevsen 2009). Epistemic
uncertainty refers to the uncertainty that arises from a lack of
knowledge, while aleatoric uncertainty refers to uncertainty that
arises from stochastic processes and that cannot be reduced no
matter how good our model is. Epistemic uncertainties can be
mitigated and, if a model has enough information and is well-
calibrated, can become negligible (Smith & Gal 2018; Wilson &
Izmailov 2020).

One of the standard solutions to mitigate epistemic uncer-
tainties is employing Bayesian DNNs, which estimate uncer-
tainty by modelling a distribution over the network’s weights
(Kendall & Gal 2017; Blundell et al. 2015); this approach ne-
cessitates significant modifications to the training process and
is computationally expensive. Another often-used method to ad-
dress this issue, deep ensemble regression, offers an alternative,
user-friendly approach requiring no modification to the model or
loss function: an ensemble of MVE networks. Training multiple
MVE networks on identical data, predicting their β̂ and Σ̂, and
then combining their predictions is a straightforward strategy for
enhancing the MVE network’s predictive uncertainty estimation
and also partially mitigating the MVE training problems intro-
duced in Section 1.

We trained three MVE networks, a small deep ensemble set-
ting, on the problem at hand. Each network outputs six values:
the predicted values for flux, x, and y, and their uncertainties. It
is worth noting that while we do not estimate the full covariance
matrix due to the primary quantities (flux, x, and y) being mostly
uncorrelated within a cutout, our model can be easily extended
to account for the full covariance matrix. This would involve in-
creasing the output to nine values: three for the quantities and
six for the covariance matrix components.

The training process is straightforward and employs the neg-
ative loglikelihood as a loss (Lakshminarayanan et al. 2017):

NLL =
1
2

log |Σ| +
1
2

(β − β̂)TΣ−1(β − β̂). (1)

The architecture comprises two branches: one for the means
and another for the uncertainties. Each branch contains three
CNN blocks for feature extraction from the images and three
dense layers independently trained for each feature. The CNN
blocks in each branch consist of 4x4 kernel-sized convolutional
layers with 32 channels, followed by max-pooling. No dropout
layers are used in the CNN blocks. After the feature extraction,
the multilayer perceptron (MLP) consists of three hidden layers
with 128, 64, and 32 neurons, respectively. We trained the net-
works using the Adam optimiser with a learning rate of 0.001
and a learning rate decay of 0.1. The training process used early
stopping with patience of 8 epochs to prevent overfitting. As in-
troduced in Sec. 2.2, we also applied data augmentation tech-
niques to improve the model’s generalisation capabilities. This
design allows for more efficient learning of both the mean pre-
dictions and their associated uncertainties, contributing to the
overall performance and accuracy of the proposed method. The
entire architecture is shown in Fig. 3.

The deep ensemble MVE method is based on replicating the
training process multiple times; this can provide a more accurate
distribution of estimated parameters and uncertainties. However,
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Fig. 3. MVE architecture used for the deep ensemble. Two branches of
three convolution layers followed by three independent groups of dense
layers, one for each variable of interest. Inputs are single-band optical
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shows the loss values computed over multiple training iterations on the
dataset. Results suggest that MVE III outperforms the other models in
minimising the loss function. However, all three models are used being
an ensemble setting.

as illustrated in Fig. 4, the outcomes vary and converge to dis-
tinct loss values depending on the initialisation of the model’s
weights.

This sensitivity of MVE networks to the random initialisation
values of the weights can lead to suboptimal solutions. An en-
semble of the MVE networks, averaging the predictions from
the three MVEs, results in a more robust estimation of the target
being less dependent on a single random initialisation. Never-
theless, it is essential to note that the deep ensemble methods re-
quire increased computational resources due to the need to train
multiple models.

In this paper, we propose to solve the problem at its core, improv-
ing the trainability of MVEs, and ensuring better performances
and more consistent results.
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3.2. Two-step network on synthetic images

In this section, we introduce the two-step mean variance estima-
tion (TS-MVE) approach, an expansion of the method presented
in Sluijterman et al. (2023) for more effective training of MVE
networks in regression tasks. This novel TS-MVE approach has
been specially adapted for image feature regression, confronting
the complex challenge of estimating uncertainties while simul-
taneously delivering enhanced accuracy.

The solution for an improved training approach such as TS-
MVE stems from recent insights shared by Sluijterman et al.
(2023). Their study underscores a crucial flaw in MVE networks
when the parameters β and Σ are trained concurrently. The high-
lighted challenges encompass instability in training MVE net-
works and a tendency for the network to falter in learning the
mean function, particularly in regions where it initially has a
large error. This predicament can trigger an escalation in the vari-
ance estimate, driving the network to disproportionately concen-
trate on well-performing regions and neglect areas of poor fit.

Our novel TS-MVE method strives to overcome these iden-
tified limitations. Our key objectives with this two-step network
are twofold. Firstly, we aim to achieve lower mean squared er-
ror (MSE), mean absolute error (MAE), and negative loglike-
lihood (NLL) values than those yielded by conventional MVE
networks. Secondly, we intend to demonstrate that, regardless of
the initial parameter settings, our TS-MVE model exhibits con-
sistent stability, converging reliably towards a more optimised
loss value.

The proposed TS-MVE method maintains the same num-
ber of parameters as a single iteration of the MVE architecture
shown in Fig. 3, ensuring the model’s complexity remains com-
parable. However, the key differentiating factor of our approach
is the implementation of two distinct training stages, which leads
to a more robust and effective training process. In the first stage,
the model focuses on learning the mean function of the target
variable. This stage primarily emphasises capturing the overall
structure and trends present in the data, establishing a solid foun-
dation for subsequent variance estimation. The primary objective
of this stage is to minimise the Huber loss (Huber 1964; Hastie
et al. 2009), a widely used and reliable metric for regression
tasks as shown in Eq. 2. Following the completion of the first
stage, the second stage begins, which involves learning the vari-
ance function of the target variable. By incorporating the infor-
mation gathered during the initial stage, the model can now con-
centrate on estimating the uncertainties of its predictions. This
is achieved through a negative Gaussian loglikelihood loss func-
tion, which allows the model to effectively capture and represent
the complex relationships between features and uncertainties in
the target variable.
The separation of mean and variance estimation allows for a
more focused learning process, enabling the model to accurately
capture the underlying structure of the data while accounting for
uncertainties.

3.2.1. Part I: estimating β

In the first stage of the TS-MVE approach, we train a network
that estimates the target variables’ mean values, β. This network
is primarily concerned with learning the underlying relationships
between the input features and the target variables, x, y, and flux,
without considering uncertainties. The architecture of the Part I
network, as depicted in Fig. 5, follows the same structure as a
single branch of the MVE, shown in Fig. 3.

The Part I network is trained to minimise the Huber loss :
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d1
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d3

µ

d1

d2
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d2

d3

µ

Fig. 5. Architecture used for Part I network. Same as a single branch of
Fig. 3: three convolution layers followed by three independent groups
of dense layers, one for each variable of interest. Inputs are single-band
optical images; output is µ of flux, x and y.

Lδ(y, f (x)) =
{ 1

2 (y − f (x))2 for |y − f (x)| ≤ δ
δ(|y − f (x)| − 1

2δ) otherwise
(2)

The Huber loss represents a hybrid of the MSE and MAE loss
functions, rendering it less sensitive to outliers than a simple
MSE loss function. By adjusting the value of the parameter δ,
the user can modify the balance between the two types of loss
functions, optimising performance according to the specific de-
mands of the dataset. For our application, we use the standard
value of δ = 1. While the Huber loss is not directly comparable
to the loss of the ensemble network, we observe that the MSE
and MAE values for the TS-MVE Part I network are lower than
those of any of the MVEs of the ensemble. A comprehensive
comparison of the performance metrics of each network is pro-
vided in Section 3.2.3.

3.2.2. Part II: estimating Σ

In the second stage of the TS-MVE approach, we leverage the
optimised parameters obtained from the Part I network to pre-
dict the uncertainties, Σ, using a second network. The architec-
ture of the Part II network, as illustrated in Fig. 6, uses the same
structure of the complete MVE architecture presented in Fig. 3.
The key distinction lies in that the weights for the mean branch
are already set to the optimised values derived from the Part I
network. The objective of the Part II network is to predict the
most suitable σ values while concurrently enhancing the mean
prediction. In the present study, we assume no correlation exists
between the variables x, y, and flux. Nevertheless, the complete
covariance matrix Σ prediction is feasible and straightforward,
presenting no significant complications.

During the Part II network training, we employ the nega-
tive Gaussian loglikelihood loss as the loss function. This loss
function is particularly suited for uncertainty estimation, as it
accounts for both the difference between the predicted mean and
the true target value and the predicted uncertainty.
By dividing the training process into two stages, TS-MVE can
effectively learn the target parameters and their associated un-
certainties more stably. This separation of concerns allows each
network to focus on a specific aspect of the problem, resulting in
improved overall performance.
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Fig. 6. Architecture used for Part II network. Same as shown in Fig.
3: two branches of three convolution layers followed by three indepen-
dent groups of dense layers, one for each variable of interest. The grey
branch is not trained from scratch but is initialised with the results of
the Part I network. Inputs are single band optical images; outputs are
improved µ and predicted σ of flux, x and y.
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Fig. 7. Comparison of the loss for the TS-MVE Part II and all the MVEs
models part of the ensemble. The TS-MVE converges to a lower loss
value than any of the MVEs.

3.2.3. Metrics comparison

In this section, we evaluate and compare the performance of the
TS-MVE network with the MVEs of the ensemble using two
widely adopted metrics, mean squared error (MSE) and mean
absolute error (MAE). These metrics offer a quantitative assess-
ment of the accuracy and precision of the models.

Our analysis highlights several advantages of the TS-MVE
approach over the ensemble models. As shown in Fig. 7, 8,
and 9, the TS-MVE network achieves lower MSE, MAE, and
NLL values, indicating superior overall accuracy. This improve-
ment in both MSE and MAE metrics demonstrates the effec-
tiveness of the TS-MVE method in reducing prediction errors
and enhancing precision. Our analysis also revealed that the TS-
MVE network exhibits less dependence towards random weight
initialisation, demonstrating no significant differences between
models with varying initialisations. To illustrate, when train-
ing the Part I network multiple times with different initialisa-
tions while maintaining the same architecture, we noticed a uni-
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Fig. 8. Comparison of the MSE metric for all models. TS-MVE Part I
and Part II network predictions for µ have significantly lower MSE than
any of the MVEs composing the ensemble network.
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Fig. 9. Comparison of the MAE metric for all models. TS-MVE Part I
and Part II network predictions for µ have significantly lower MAE than
any of the MVEs composing the ensemble network. TS-MVE Part II,
built on the results of Part I, converges to an even lower MAE value.

formity in the models converging towards a consistently small
Huber loss value. Similarly, the corresponding Part II networks
trained under different initial conditions also converged towards
nearly identical negative loglikelihood values. This remarkable
consistency underscores the robustness of the TS-MVE network
against variability in initial weight settings.

Our findings suggest that, for feature regression from im-
ages, the TS-MVE network indeed outperforms a standard MVE
network. Interestingly, an ensemble composed of the three MVE
networks also did not offer any performance improvement, de-
spite being more computationally expensive. However, this does
not signify an overarching redundancy of deep ensemble tech-
niques. Quite to the contrary, in certain situations, these tech-
niques remain crucial. Notably, even when the model demon-
strates stability, some epistemic uncertainty may persist, such as
when comprehensive knowledge about the underlying system is
lacking (Rasmussen & Williams 2004). Nevertheless, it is evi-
dent that a TS-MVE network tends to yield superior performance
and offers a stronger buffer against epistemic uncertainties com-
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pared to its conventional counterparts. Furthermore, it is impor-
tant to note that the TS-MVE approach is not mutually exclu-
sive with ensemble techniques. Despite the strength of a single
TS-MVE model, we can further enhance performance and ro-
bustness by employing an ensemble of TS-MVE networks. This
combination could potentially offer a powerful tool for address-
ing complex regression tasks, combining the specific advantages
of the TS-MVE approach with the general benefits of ensemble
methods.

3.2.4. Saliency maps

Prediction models in machine learning can be highly reliable
when developed and deployed appropriately. However, the relia-
bility of a model depends on various factors, such as the quality
and quantity of data used to train the model, the choice of algo-
rithms and parameters, and the complexity of the problem. Thus,
it is essential to evaluate the reliability of a prediction model be-
fore using it in real-world applications.

One way to assess the reliability of a machine learning model
is by studying its output. The output of a model can be examined
on the performance of the test dataset as in the previous sections,
but it can also be examined based on the relationship between in-
put and output. Deep taylor decomposition (DTD) and axiomatic
attribution are methods used to explain decisions made by non-
linear classification models such as deep neural networks. DTD
decomposes the decision-making process into simpler compo-
nents, enabling a better interpretation of the model’s predictions
(Montavon et al. 2017). Axiomatic attribution provides a math-
ematical framework to understand the contribution of individual
input features to the final prediction (Sundararajan et al. 2017).

For image classification and regression, some specific meth-
ods have been developed to evaluate the reliability of networks,
Saliency Maps (Simonyan et al. 2013). They are commonly used
to visualise and understand the behaviour of machine learning
models, particularly CNNs. A saliency map visualises which
parts of the input image are most important for a given prediction
by the model. There are several different methods for creating
saliency maps. One common approach is applying a gradient-
based optimisation method to the input to find the pixels that
significantly impact the model’s output.

In particular, we used SMOOTHGRAD (Smilkov et al.
2017), a method for creating saliency maps that aim to reduce
noise and improve the interpretability of the resulting maps.
Saliency maps can sometimes be noisy, with little and unim-
portant features highlighted as important due to random fluc-
tuations in the model’s output. SMOOTHGRAD addresses this
problem by creating an ensemble of saliency maps, each slightly
perturbed with Gaussian noise from the original input. The re-
sulting maps are then averaged together, which helps to smooth
out the noise and highlight more robust and reliable features.

In Fig. 10, we show the saliency map for predicting a single
source of ASID-FE. The network seems to be able to discern the
source from the background, focusing primarily on the source
to predict its x, y, and flux properties. Interestingly, the network
pays less attention to the edges of the image, which suggests that
it has learned to differentiate between relevant and less relevant
information for the task at hand.
This observation highlights the network’s capability to recognise
and prioritise the relevant features of the input image for accu-
rate prediction, thereby demonstrating its effectiveness in han-
dling the task. The dipole-like structure observed in the saliency
maps for x and y could be attributed to the network learning the
gradient direction in the source’s position, which is an important

Fig. 10. Saliency map of ASID-FE’s features prediction for a single
source. The images are from left to right: original image, saliency for x,
saliency for y, and saliency for f lux. The colour map indicates the de-
gree of importance assigned to each pixel in the image. The brighter the
colour, the more important the pixel is for the prediction. As expected,
the network mainly focuses on the source to determine its centre and
flux while paying less attention to the edges of the image.

Fig. 11. Saliency map of ASID-FE’s uncertainties prediction for a single
source. The images are from left to right: original image, saliency for
σx, saliency for σy, and saliency for σ f lux. The colour map indicates the
degree of importance assigned to each pixel in the image. The brighter
the colour, the more important the pixel is for the prediction. Results
suggest that the network focuses mostly on the central pixels to estimate
σx and σy, while it pays more attention to a wide area around the source
to estimate σ f lux.

factor in determining the source’s centre. Further investigation
is needed to understand better this structure’s significance and
implications on the network’s predictions.
In Fig. 11, we present the saliency map for the uncertainties
of the three quantities of interest: σx, σy, and σ f lux. The vi-
sualisation shows that the network adopts a different approach
when estimating uncertainties compared to predicting the main
features. Notably, the network appears to place more impor-
tance on the background pixels than before, which suggests that
the background may contain valuable information for estimat-
ing uncertainties. For σx and σy, the network seems to focus
primarily on the central pixels of the source. This could imply
that the model is leveraging the central region’s intensity dis-
tribution to estimate the positional uncertainties. In the case of
σ f lux, the network pays more attention to a wider area around
the source, which may indicate that the network highly consid-
ers the source’s background when estimating the uncertainty in
flux.

These observations provide valuable insights into the neural
network’s decision-making process when estimating uncertain-
ties. By understanding how the network focuses on different re-
gions and features of the input image, we can identify potential
areas of improvement and develop strategies to enhance the net-
work’s accuracy and robustness.

4. Results

This section offers a comprehensive evaluation of ASID-FE’s
performance in predicting the flux and location of sources within
astronomical images, alongside a comparison with SourceEx-
tractor (Bertin & Arnouts 1996). As a widely used software
package in the field of astronomy, SourceExtractor has become a
standard tool for detecting and analysing celestial objects such as
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stars and galaxies. Our analysis is divided into two main subsec-
tions: the first focuses on a detailed examination of ASID-FE and
SourceExtractor using synthetic test sets (comprising approxi-
mately 600k sources), and the second extends the evaluation to
real-world data, specifically MeerLICHT images.

The synthetic test set analysis explores the accuracy, un-
certainties, and behaviour of the two methods across different
signal-to-noise levels, employing both quantitative metrics and
visualisations. The real-world data analysis assesses the models’
generalisation, adaptability, and alignment with established soft-
ware. Together, these evaluations provide a robust understanding
of ASID-FE’s strengths and limitations and its comparative per-
formance with SourceExtractor in the context of astronomical
image analysis.

4.1. Results of ASID-FE and SourceExtractor on synthetic
images

In this subsection, we assess the performance of ASID-FE and
SourceExtractor in predicting the flux and location of sources
within our synthetic test set of astronomical images. Each source
in the test set is accompanied by the predicted flux and centre co-
ordinate as determined by SourceExtractor, applied to full-field
simulated images.

Our analysis begins with a comparison of the methods’ pre-
dictions for the x and y coordinates. We only present results
for the x coordinate as the y coordinate showed no significant
difference in performance. SourceExtractor’s inherent flexibil-
ity offers a variety of estimators for parameter determination,
and we selected the windowed positions to estimate source lo-
cations. For the estimation process, SourceExtractor determines
the source position through an iterative Gaussian fitting approach
that refines the source profile until a definitive location is iden-
tified. Following this, uncertainties in these positions are calcu-
lated using a windowed centroiding method. Based on the as-
sumption of uncorrelated pixel noise, standard error propagation
is applied to derive variances and covariance for the windowed x
and y coordinates. These are obtained by taking weighted sums
of the squared deviations between each pixel’s position and the
overall windowed centroid, and then normalising by the square
of the weighted intensity sum. This approach yields a robust
quantification of positional uncertainties.

The results of this comparison are presented in Fig. 12,
where we examine the mean absolute relative error (MARE)
with respect to the true synthetic values as a function of S/N:

MARE =
1
n

∑∣∣∣∣∣∣β − β̂β
∣∣∣∣∣∣ . (3)

Here, β represents the true value, β̂ represents the estimated value
by the algorithms, and the sum is over the sources within an S/N
bin.

Our evaluations reveal an astonishing level of accuracy in
predicting sources’ x and y positions across all three methods.
While ASID-FE and the ensemble slightly outperform Source-
Extractor, the differences are subtle. What sets ASID-FE apart
is its efficiency: achieving comparable results as a single net-
work, it stands as a more computationally streamlined solution
compared to the ensemble, which is composed of three MVE
networks of the same size. This efficiency does not compromise
performance, making ASID-FE a compelling choice in this con-
text.
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Fig. 12. Mean absolute relative error for the x coordinate by SourceEx-
tractor (blue), the MVEs ensemble (green) and ASID-FE (red). ASID-
FE and the ensemble have overall better results than SourceExtractor at
any S/N level.

Next, we delve into the uncertainties associated with these
predictions. We utilise the standard deviation of the standardised
residuals as a robust metric for evaluating the performance of
both estimator and uncertainties. Ideally, this metric should be
close to 1, indicating that the residuals are approximately nor-
mally distributed and that the estimator’s uncertainty is well-
calibrated. Deviations from 1 suggest that the estimator is either
overconfident or underconfident in its predictions. In Fig. 13, we
present the standard deviation of the standardised residuals for
the x coordinate as estimated by SourceExtractor, the MVEs en-
semble, and ASID-FE across various S/N levels.
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Fig. 13. Standard deviation of the standardised residuals for the x co-
ordinate by SourceExtractor (blue), the MVEs ensemble (green) and
ASID-FE (red). ASID-FE has overall better results than SourceExtrac-
tor at any S/N level.

Some nuances in the calibration of uncertainties are observed
across the different methods. SourceExtractor shows decently
calibrated uncertainties at low S/N levels but tends to increas-
ingly underestimate the uncertainties as the S/N rises. In partic-
ular, SourceExtractor’s sigma values at high S/N can reach ex-
tremely small values, equivalent to approximately 0.0011 arcsec-
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onds. These values are significantly smaller than the telescope’s
resolution of 0.56 arcseconds per pixel, highlighting its tendency
to underestimate uncertainties. The ensemble method performs
better across the S/N spectrum but still tends to slightly under-
estimate σ. In contrast, ASID-FE exhibits excellent calibration,
almost perfectly aligning at 1 for the standard deviation of the
standardised residuals across most S/N levels. The only excep-
tion is an overestimation of uncertainties in the highest S/N bin,
which is likely attributable to the scarcity of training samples at
these levels. However, it is worth noting that these discrepan-
cies are not highly consequential for any of the three algorithms,
given the already high accuracy of the predictions themselves.

Having assessed the accuracy and uncertainties in predicting
the spatial coordinates of the sources, we now shift our focus to
another vital aspect of astronomical image analysis: the estima-
tion of flux. Flux measurement is central to understanding the
intensity and distribution of light from astronomical objects, and
it requires a different set of considerations and methodologies
compared to spatial localisation. For this purpose, we compare
our results with the FLUX_AUTO output of SourceExtractor.
This method estimates the flux by integrating pixel values within
an adaptively scaled aperture, following Kron’s first-moment al-
gorithm. Initially, it calculates the flux within an elliptical aper-
ture, automatically defined to encompass most of the light from
the source. The aperture’s size and shape are dynamically ad-
justed based on the source’s properties, such as brightness and
spatial extent. This adaptability makes FLUX_AUTO a robust
and flexible method for measuring fluxes across various astro-
nomical objects, expected to capture at least 90% of the source
flux.

The flux produced by SourceExtractor is directly compara-
ble to the flux estimate from ASID-FE. In Figure 14, we rig-
orously assess the flux estimates derived from SourceExtractor,
ASID-FE, and the ensemble method, employing the mean abso-
lute relative error as our evaluation metric across a spectrum of
S/N.
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Fig. 14. Mean absolute relative error for the flux by SourceExtractor
(blue), the MVEs ensemble (green) and ASID-FE (red). ASID-FE and
the MVEs ensemble have overall better results than SourceExtractor at
any S/N level.

All three methods exhibit a decreasing MARE as the S/N in-
creases. However, ASID-FE and the ensemble method consis-
tently outperform SourceExtractor across the entire S/N range.
The most pronounced difference is observed at medium S/N lev-

els, where ASID-FE and the ensemble method demonstrate ap-
proximately 5-10% less error compared to SourceExtractor. It is
worth noting that the performance of ASID-FE at the extremes
of the S/N spectrum is likely influenced by the scarcity of train-
ing samples at these levels, which could be an avenue for future
improvement.

While the comparison of flux estimation yields promising
results, a key difference arises in how uncertainty is quantified
between SourceExtractor’s FLUXERR_AUTO and ASID-FE’s
uncertainty measure. This divergence is rooted not just in the
mathematical equations used but also in the fundamental sta-
tistical interpretation of what uncertainty actually signifies. Al-
though commonly referred to as an error in astronomical jargon,
SourceExtractor’s FLUXERR_AUTO, from a statistical stand-
point, is an estimate of the standard deviation of the true, unob-
servable flux F rather than an error in the flux estimator F̂.
To further elucidate this distinction, we shall consider the statis-
tical problem at hand, which consists of three main components:

F → F∗ → F̂

In this framework, F is the true, constant flux of the source. The
telescope measures F∗, which is a realisation of F subject to
Poisson noise due to the photon-counting process, as well as ad-
ditional complexities introduced by the instrument, for example
the PSF. SourceExtractor, the ensemble, and ASID-FE aim to
estimate F∗ through an estimator F̂. However, SourceExtractor
overlooks the inaccuracies in the estimated F̂ and uses it as a
perfect proxy of F∗. SourceExtractor then proceeds to calculate
FLUXERR_AUTO, an estimate of the standard deviation of the true,
unobservable flux F, as:

σ̂(F) =

√(√
F̂
)2
+ σ̂2

bkg

where σ̂bkg and
√

F̂ are an estimate of the standard deviation of
flux in the background and of the source, respectively. In con-
trast, ASID-FE adopts a more nuanced methodology, explicitly
accounting for the estimator imperfections. This approach yields
what ASID-FE refers to as its sigma values, which serve as a
measure of the divergence between F̂ and F∗. By incorporat-
ing this sigma term into the equation, ASID-FE provides a more
comprehensive and realistic estimate for the standard deviation
of the true flux F. This estimate not only captures the inherent
uncertainties in F∗ but also includes the uncertainties associated
with the estimator F̂ itself:

σ̂(F) =

√(√
F̂
)2
+ σ̂2

F̂

Here,
√

F̂ represents the standard deviation of the measured
source, and σ̂F̂ represents the uncertainty on the estimator F̂.
Importantly, it should be noted that the uncertainty term σ̂F̂
in ASID-FE’s formulation inherently includes the background
noise, σ̂bkg. By including an additional component, ASID-FE
offers a more detailed and accurate reflection of the true uncer-
tainties. The lack of this additional component in SourceExtrac-
tor’s formulation might explain why its uncertainties are often
underestimated for high S/N sources, as noted in studies such as
Becker et al. (2007) and Sonnett et al. (2013).

In Fig. 15, we present the standard deviation of the standard-
ised residuals for the flux as estimated by SourceExtractor, the
MVEs ensemble, and ASID-FE across various S/N levels.
The plot reveals nuanced differences in the performance of the
three methods. Specifically, at high S/N levels, SourceExtrac-
tor, despite having a MARE of approximately 4% as shown
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Fig. 15. Standard deviation of the standardised residuals for the flux
and σ̂(F) by SourceExtractor (blue), the MVEs ensemble (green) and
ASID-FE (red). ASID-FE’s results more closely adhere to the ideal
value of 1, showing overall better-calibrated uncertainties at any S/N
level.

in Fig. 14, tends to underestimate its FLUXERR_AUTO. This re-
sults in a pronounced deviation from the ideal standard devi-
ation value of 1 for the standardised residuals. In addition to
previously discussed factors, the underperformance of Source-
Extractor’s FLUXERR_AUTO in Fig. 15 could also be attributed to
its neglect of uncertainties associated with aperture scaling and
centroid positioning.
The ensemble method slightly underestimates the uncertainties
across all S/N levels, albeit to a lesser extent than SourceEx-
tractor. In contrast, ASID-FE’s results more closely adhere to
the ideal value, particularly at low and medium S/N levels, un-
derscoring its superior calibration of uncertainties. It is worth
noting that ASID-FE slightly overestimates the uncertainties at
high S/N levels; however, its reliance on training with synthetic
datasets offers an opportunity for refinement. A correction fac-
tor could be introduced to ensure that the estimated uncertain-
ties and, consequentially, the standardised residuals align with
a standard Gaussian distribution across all S/N levels. This po-
tential for fine-tuning, coupled with the observed performance,
underscores the robustness of the methods, with ASID-FE stand-
ing out for its efficiency and adaptability.
In summary, the comparison between SourceExtractor and
ASID-FE uncovers significant differences in error estimation.
While SourceExtractor emphasises the variability induced by
noise, ASID-FE incorporates potential errors in flux estimation.
This comprehensive approach in ASID-FE enhances the under-
standing of the flux’s true uncertainty and contributes to its su-
perior performance in predicting astronomical sources.

In addition to the quantitative metrics, in Fig. 16, we show
the results obtained using both SourceExtractor and ASID-FE
on three examples of crowded images. In all figures, the detected
sources are indicated by the white circles, and the Percentage
Error (PE) of the predicted fluxes for that source is written on top
of each source. Only the sources detected by SourceExtractor are
shown for comparison.
The three images show that ASID-FE produces more accurate
predictions than SourceExtractor, with fewer sources showing
significant under- or over-predictions. The PE values for ASID-
FE are generally smaller than those for SourceExtractor, indi-
cating better overall performance in crowded regions. Overall,

Table 1. Comparison of Pearson correlation coefficients and ConTEST
results for ASID-FE models applied to real MeerLICHT images. The
Direct model was trained on synthetic images, while the Scratch model
was retrained using SourceExtractor’s predictions. Correlation coeffi-
cients assess the alignment of predicted x and y source positions and
f lux values between ASID-FE and SourceExtractor. The ConTEST
analysis evaluates the consistency between the two methods’ predic-
tions.

Method x y f lux Consistency
Direct 0.896 0.913 0.998 Rejected

Scratch 0.956 0.952 0.999 Not Rejected

these visualisations provide a qualitative assessment of the per-
formance of the two methods and highlight the superior perfor-
mance of ASID-FE in predicting the properties of astronomical
sources in crowded images.

4.2. Real images application

While synthetic datasets are needed for training models under
controlled conditions, they cannot yet fully mimic the complex-
ities of real-world data. Despite our best efforts to make them
resemble real images, they lack the varied and intricate details
found in actual MeerLICHT images. These details encompass
factors such as atmospheric conditions, the telescope optics’
unique characteristics, and the camera system’s inherent noise.
Hence, it becomes imperative to evaluate our model’s perfor-
mance within the context of real data, where these complexities
are inherent.

For this study, we used the real dataset of MeerLICHT im-
ages described in Sec. 2.3. This dataset does not have ground
truth labels, but we can still evaluate our model’s performance
by comparing its predictions to those made by established soft-
ware such as SourceExtractor. This is a crucial step, as it helps
us understand how well our model can generalise and how use-
ful it might be in practical situations. Without real source prop-
erties in our dataset, we used two different approaches to test
how well ASID-FE performs with real images. First, we applied
the model, originally trained on synthetic images, directly to the
real images. This helped us see how well ASID-FE could han-
dle real data right off the bat. Then, we retrained the network
from scratch, using predictions from SourceExtractor as training
features. This allowed us to see how well ASID-FE could learn
from and adapt to the complex features of real images.

To measure the similarity between predictions from our
methods and those from SourceExtractor, we employed the Pear-
son correlation coefficient (Pearson 1895), a statistical tool that
quantifies the linear correlation between two data sets. More
specifically, we compared the predictions made by ASID-FE
from both the Direct and Scratch methodologies to those made
by SourceExtractor. The results, as shown in Table 1, reveal that
the Pearson correlation coefficients for both the directly applied
and the retrained ASID-FE models with respect to SourceExtrac-
tor are close to one. This implies a strong correlation, signifying
that our models’ predictions align closely with SourceExtractor’s
predictions.

Alongside correlation coefficients, we employed ConTEST
(Stoppa et al. 2023), a robust nonparametric hypothesis test-
ing method, to evaluate the consistency between the predic-
tions yielded by SourceExtractor and ASID-FE. This statistical
method allowed us to evaluate if the variations between the pre-
dictions, taking into account uncertainties, predominantly hover
around zero. A non-rejection of the consistency hypothesis sug-
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Fig. 16. Comparison of predicted flux percentage error for ASID-FE and SourceExtractor, highlighting their performance differences for different
levels of image crowdedness.

gests a notable alignment between the predictions of the two
methods. However, applying ConTEST to the ASID-FE model
trained on synthetic images and directly applied to real images
led to the rejection of the consistency hypothesis for all three
predicted quantities—x, y, and flux. This result points to dis-
crepancies between this model’s outputs and those generated
by SourceExtractor. On the other hand, when we applied Con-
TEST to the ASID-FE model that was retrained from scratch on
real images using SourceExtractor’s results, the consistency hy-
pothesis was not rejected. This finding highlights the capacity
of ASID-FE to adapt to real image data and produce results that
align with established software such as SourceExtractor.

The ConTEST analysis revealed a significant divergence be-
tween the predictions of the ASID-FE model trained on synthetic
images and then applied to real ones and the results from Source-
Extractor. This difference underscores the inherent variation be-
tween synthetic and real images. While ASID-FE demonstrates
a strong capability in predicting features when trained on them,
the results suggest that the main determinant is the nature of
the training images themselves. In future studies, we aim to ad-
dress this discrepancy between synthetic and real images more
effectively. By integrating software such as Pyxel (Arko et al.
2022), we hope to train on images that more closely resemble
real-world scenarios, minimising the potential performance drop
when a model trained on synthetic images is used for prediction
on real-world data. Ultimately, these advancements will serve to
close the reality gap, enhancing the model’s applicability and re-
liability in real-world applications (Caron et al. 2023).

4.3. Transfer learning on ZTF images

There are multiple approaches to transferring the knowledge of
a network to a similar application. In their study, Yosinski et al.
(2014) found that deep neural networks tend to learn a hierar-
chy of features, where the first layers capture more general, low-
level features (e.g. edges and textures), while the last layers cap-
ture more task-specific, high-level features (e.g. object parts and
shapes). This finding gives excellent insight into the use of trans-
fer learning in fine-tuning models for specific tasks. Additional
studies have also tried quantifying this behaviour (Orhand et al.
2021).

In this section, we discuss the application of transfer learning
on our regression model trained on MeerLICHT synthetic data
and its application to real images from the Zwicky Transient Fa-

Table 2. Pearson correlation coefficient and consistency test between
ASID-FE and DAOPHOT for the four different transfer learning meth-
ods.

Method x y f lux Consistency
Direct 0.723 0.707 0.982 Rejected
Frozen 0.833 0.803 0.998 Rejected

Retrained 0.938 0.930 0.999 Not Rejected
Scratch 0.958 0.954 0.999 Not Rejected

cility (ZTF, Bellm et al. 2019). ZTF is a large-scale astronomical
survey designed to study the dynamic sky in the optical regime.
However, there are notable differences between the MeerLICHT
and ZTF images, most prominently concerning spatial resolution
and sky coverage. ZTF provides a larger field of view with lower
resolution images than MeerLICHT, impacting the detectability
of faint sources and the precision of extracted features. Further,
variations may arise from different filters used by the two sur-
veys, affecting the observed fluxes of astronomical sources.
As for Sec. 4.2, due to the lack of exact features in real
images, we use DAOPHOT (Stetson 1987) catalogues, which
are paired with ZTF images, as a benchmark. DAOPHOT is
a renowned software in the astronomical community, offering
tools for detecting, measuring, and analysing the properties of
point sources in astronomical images. Comparing our transfer
learning model’s results with the DAOPHOT catalogues will
shed light on our methodology’s real-world effectiveness and
highlight areas requiring improvement.

We adopt three distinct strategies to evaluate the model, ini-
tially trained on synthetic MeerLICHT images on ZTF data.
First, we directly apply the MeerLICHT-trained model. Next,
considering the significant differences between the telescopes,
we fine-tune the model in two unique ways. In the first approach,
we retain the weights of the early layers and retrain the final lay-
ers using real ZTF data and Daophot’s results. In the second,
we use the full pre-trained model on synthetic images as a base-
line, retraining it entirely with real ZTF data. Additionally, we
also explore a ground-up approach, where we train a new net-
work from scratch using DAOPHOT’s predictions as training
data. We name the four applications Direct, Frozen, Retrained
and Scratch; the Pearson coefficient for all the methods is calcu-
lated and presented in Table 2.

Our investigation revealed that both the Direct application
and the Frozen approach, where the early layers were kept con-
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stant, and the rest were allowed to learn, failed to produce op-
timal outcomes. The suboptimal performance can be largely at-
tributed to the differences in the PSF size - a crucial low-level
feature that varies between MeerLICHT and ZTF images. As
such, preserving the early layers of the architecture, which are
fundamental for learning this feature, turned out to be counter-
productive.
The Retrained approach, rooted in the synthetic MeerLICHT im-
ages, yielded promising results. It showed performance on par
with the Scratch model trained from real ZTF data. Both these
methods showcased outcomes that aligned well with the bench-
marks set by the official DAOPHOT catalogues, providing an
encouraging indication of our methodology’s potential effective-
ness. To further validate these findings, we deployed the Con-
TEST statistical test, introduced in the previous section, to as-
sess the consistency against DAOPHOT predictions. As antici-
pated, the null hypothesis of consistency is not rejected only for
the Retrained and Scratch methods, which further endorses their
superior performance.

Through this investigation, it becomes clear that while a
model trained on synthetic data from one telescope can tech-
nically be applied to data from a different telescope, the process
often necessitates significant adjustments or comprehensive re-
training to cater to the unique characteristics of real data derived
from different telescopes. This is especially the case when there
is a substantial difference in the angular resolution between tele-
scopes. Given these findings, we recommend against the practice
of transfer learning in such scenarios. If a synthetic dataset tai-
lored specifically to the target telescope (such as ZTF) is avail-
able, training a model directly on this synthetic dataset is the su-
perior approach. This highlights the critical importance of gen-
erating and employing synthetic datasets designed to match the
specific characteristics of the telescopes used in the study.

5. Discussion on PSF

For many years, the point spread function has been an essential
tool for astronomers to estimate the flux of sources in astronomi-
cal images accurately. The PSF describes the spread of light from
a point source in the image, and its knowledge helps to separate
sources that are close together and deconvolve the PSF effects
from the measured flux.

However, traditional methods for flux estimation relying on
knowledge of the PSF have several limitations. In crowded re-
gions with closely spaced sources, it can be challenging to accu-
rately separate the sources and estimate their fluxes, even with
knowledge of the PSF. Furthermore, for observations with vary-
ing PSFs across the image, PSF information may not be read-
ily available or accurate, leading to inaccuracies in flux estima-
tion. This paper explores the possibility of estimating the flux
of astronomical sources without explicit knowledge of the PSF.
We leverage regression algorithms, a subset of machine learn-
ing techniques, to model the inherent distribution of sources in
an image to predict their fluxes. These algorithms offer a com-
plementary approach to traditional methods, demonstrating the
ability to adapt and provide precise flux estimates across various
astronomical datasets.

It is essential to consider, however, that while machine learn-
ing offers considerable benefits and possibilities, its effectiveness
depends on the training data’s quality and the chosen model’s
appropriateness. Despite these advancements, the value of PSF
information in flux estimation should not be undermined, as it
still serves a critical role in numerous scenarios.

6. Conclusions

By implementing a two-step mean variance estimation network,
we have created a novel method for estimating features of as-
tronomical sources in images, known as ASID-FE. This tech-
nique involves a two-fold process: initially, the network esti-
mates the source’s centre coordinates and flux through a con-
volutional neural network trained on synthetic images. The sec-
ond stage harnesses the insights gained from the first phase to
fine-tune the predictions of x, y, and flux while simultaneously
characterising the uncertainties tied to these predictions.

Through rigorous testing on both synthetic and real images,
we have verified the robustness and precision of our method in
estimating the properties of astronomical sources. The unique
two-step process of our methodology allows it to outperform
simple MVE networks. Our evaluation showed that when deal-
ing with synthetic images with known true values, ASID-FE
results show less bias than those yielded by SourceExtractor.
Furthermore, our technique demonstrates superior proficiency in
characterising uncertainties. Unlike traditional methods, ASID-
FE estimates a more detailed and nuanced uncertainty that often
goes overlooked, providing a richer understanding of the under-
lying statistical properties.

In summary, ASID-FE presents an efficient, versatile tool for
the estimation of properties of astronomical sources. Our method
holds distinct advantages over traditional methodologies, pri-
marily its capacity to learn from large synthetic datasets with
known ground truth and effectively apply these insights to real
images. Looking forward, we aim to explore methods to min-
imise further the disparity between synthetic and real images,
including the potential integration of software such as Pyxel and
ScopeSim. By doing so, we hope to ensure a minimal loss in
performance when making predictions using models trained on
synthetic images. As we continue refining our methodology, we
are optimistic about improving the accuracy and versatility of
ASID-FE across various astronomical contexts.

The straightforward nature of our introduced TS-MVE
method lends itself to the substantial potential for broader appli-
cations, particularly concerning feature regression tasks in im-
ages. Future avenues of exploration could include assessing our
method’s generalisability across diverse astronomical datasets
and exploring its potential for multi-wavelength analysis of as-
tronomical sources.
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Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111
Jonas, J. & MeerKAT Team. 2016, in MeerKAT Science: On the Pathway to the

SKA, 1
Kendall, A. & Gal, Y. 2017, Advances in neural information processing systems,

30
Kiureghian, A. D. & Ditlevsen, O. 2009, Structural Safety, 31, 105, risk Accep-

tance and Risk Communication
Lakshminarayanan, B., Pritzel, A., & Blundell, C. 2017, in Proceedings of the

31st International Conference on Neural Information Processing Systems,
NIPS’17 (Red Hook, NY, USA: Curran Associates Inc.), 6405–6416

Lang, D., Hogg, D. W., Mierle, K., Blanton, M., & Roweis, S. 2010, AJ, 139,
1782

LeCun, Y., Bengio, Y., & Hinton, G. 2015, Nature, 521, 436
Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. 1998, Proceedings of the IEEE,

86, 2278
Leschinski, K., Buddelmeijer, H., Czoske, O., et al. 2020, in Society of Photo-

Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 11452,
Software and Cyberinfrastructure for Astronomy VI, ed. J. C. Guzman &
J. Ibsen, 114521Z

Montavon, G., Lapuschkin, S., Binder, A., Samek, W., & Müller, K.-R. 2017,
Pattern Recognition, 65, 211

Mu, Y.-H., Qiu, B., Zhang, J.-N., Ma, J.-C., & Fan, X.-D. 2020, Research in
Astronomy and Astrophysics, 20, 089

Nix, D. & Weigend, A. 1994, in Proceedings of 1994 IEEE International Con-
ference on Neural Networks (ICNN’94), Vol. 1, 55–60 vol.1

Orhand, R., Khodji, H., Hutt, A., & Jeannin-Girardon, A. 2021, Procedia
Computer Science, 192, 138, knowledge-Based and Intelligent Information
& Engineering Systems: Proceedings of the 25th International Conference
KES2021

Panes, B., Eckner, C., Hendriks, L., et al. 2021, A&A, 656, A62
Pasquet, J., Bertin, E., Treyer, M., Arnouts, S., & Fouchez, D. 2019, A&A, 621,

A26
Pearson, K. 1895, Proceedings of the Royal Society of London Series I, 58, 240
Rasmussen, C. E. & Williams, C. K. 2004, Lecture notes in computer science,

3176, 63
Schmidhuber, J. 2015, Neural Networks, 61, 85
Schuldt, S., Suyu, S. H., Cañameras, R., et al. 2021, A&A, 651, A55
Seitzer, M., Tavakoli, A., Antic, D., & Martius, G. 2022, arXiv e-prints,

arXiv:2203.09168
Simonyan, K., Vedaldi, A., & Zisserman, A. 2013, CoRR, abs/1312.6034
Sluijterman, L., Cator, E., & Heskes, T. 2023, arXiv preprint arXiv:2302.08875
Smilkov, D., Thorat, N., Kim, B., Viégas, F. B., & Wattenberg, M. 2017, CoRR,

abs/1706.03825 [1706.03825]
Smith, L. & Gal, Y. 2018, arXiv e-prints, arXiv:1803.08533
Sonnett, S., Meech, K., Jedicke, R., et al. 2013, PASP, 125, 456
Stetson, P. B. 1987, Publications of the Astronomical Society of the Pacific, 99,

191

Stoppa, F., Cator, E., & Nelemans, G. 2023, MNRAS, 524, 1061
Stoppa, F., Vreeswijk, P., Bloemen, S., et al. 2022a, A&A, 662, A109
Stoppa, F., Vreeswijk, P., Bloemen, S., et al. 2022b, AutoSourceID-Light: Source

localization in optical images, Astrophysics Source Code Library, record
ascl:2203.014

Sundararajan, M., Taly, A., & Yan, Q. 2017, in International Conference on Ma-
chine Learning

Tremblay, J., Prakash, A., Acuna, D., et al. 2018, 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), 1082

Vavilova, I. B., Khramtsov, V., Dobrycheva, D. V., et al. 2022, Space Science &
Technology, 28, 03

Wilson, A. G. & Izmailov, P. 2020, Advances in neural information processing
systems, 33, 4697

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. 2014, in NIPS

Article number, page 14 of 14


