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The growth of the electric car industry has increased in recent 
years, along with the trend of green energy around the world. For 
this reason, automotive companies have invested in finding different 
solutions to monitor lithium batteries that power vehicles. These 
applications include State of Charge (SoC) and State of Health 
(SoH) analysis of the battery cells by monitoring key variables such 
as temperature, current, and voltage to predict the behavior of the 
system and apply preventive maintenance.  

In this paper, a deep neural network using the Deep Learning 
MATLAB Toolbox was designed to predict the SoC from an 
emulated battery in Simulink. The model was then compiled and 
deployed in an NXP S32K344 microcontroller using the NXP Model-
Based Design Toolbox. The results obtained showed a network with 
up to 90% accuracy and an execution time of 2.6 ms when running 
the core at 160 MHz. 

Keywords—Battery Prediction, Embedded Systems, Machine 
Learning, Deployment, Embedded Coder. 

I. INTRODUCTION 

One of the main components that integrates an automotive 
vehicle is the battery, which supplies voltage and current to 
different systems such as the power train, telematic unit, 
infotainment, and body control unit, among others. In fact, the 
usage of this element has only increased with the 
implementation of electric and hybrid vehicles. However, this 
specific component requires a dedicated system known as 
Battery Management System (BMS), which monitors and 
controls the battery and the variables that may influence its 
behavior [1], such as the temperature, state of charge (SOC), and 
state of health (SOH). A BMS requires the implementation of 
several sensors to obtain the value of different variables to be 
monitored. Even when the implemented algorithms ensure 
optimal functionality of the battery and report some faults that 
can occur, it may be difficult to detect and report hardware 
faults. Therefore, some Artificial Intelligence/Machine 
Learning (AI/ML) algorithms have been proposed to help with 
the diagnosis of faults [2]. 

Nowadays, AI/ML algorithms are being used in different 
applications due to their potential, which mostly depends on 
how they are being implemented to ensure that the correct 
training has been performed over the network. An example of 
where these algorithms are being utilized are applications that 
are highly dependent on data classification. This is because AI 
helps to obtain the most reliable data from the set provided to 

the network based on a given training [3]. One of the main 
reasons why AI/ML algorithms are being used in BMS is 
because they help to process and interpret the data from different 
sensors. Some of these algorithms may even help to have 
redundancy of the measured variables when generating a model 
of the battery’s operation [4].  

The training of these AI/ML algorithms might require more 
processing than the typical embedded system is able to provide. 
For this specific problem, one solution is to deploy the algorithm 
with the training phase done over some simulated model using a 
laptop or the cloud. MATLAB and Simulink are some of the 
tools that are commonly employed to generate the system 
model, design the algorithm, and train the neural network. 
However, working on these platforms represents the challenge 
of having to migrate the entire implementation into a 
programming language, such as C, that can be compiled and 
deployed into an embedded system. 

This paper describes the workflow followed to implement an 
AI/ML BMS algorithm in an embedded system. This process 
includes the design of an AI/ML algorithm that is trained with 
simulated data to detect anomalies on a BMS. The algorithm is 
then deployed in the embedded system using NXP’s specific 
tools available on MATLAB. 

 The rest of the sections are organized as follows: Section II 
provides the design of the Machine Learning algorithm, section 
III shows the training with the simulated data, section IV 
describes in detail the method followed for the deployment, 
Section V explains the results obtained in the microcontroller 
and finally, Section VI presents the conclusions. 

II. MACHINE LEARNING ALGORITHM 

Artificial intelligence is the process of sharing data, 
information, and human intelligence with machines. The main 
goal is to develop self-reliant machines that can think and act 
like humans. Machine Learning is a discipline of computer 
science that uses algorithms and analytics to build predictive 
models capable of solving problems. Therefore, it involves the 
ability to adapt to new data through iterations and learn from the 
past to predict the future.  

The workflow to solve a specific problem is contained 
within a defined lifecycle process. The first step is to generate a 
machine learning system called a Model. Then, specific data 
relevant to the application is used to train the Model. Finally, to 



deploy the Model, the algorithm is uploaded into a device to 
solve the desired problem. This process is depicted in Fig. 1. 

 
 

 
Fig. 1. Lifecycle of a Machine Learning system. 
 

Different Machine Learning algorithms are utilized in 
applications such as predictive maintenance and anomaly 
detection depending on the analysis required over the data 
collected by the system. In this case, a classification algorithm 
is required to detect faults in the battery behavior, specifically in 
voltage, current, and temperature. This allows the system to 
easily detect when a set of data belongs to the batterie’s normal 
operation or if it can be interpreted as a malfunction.  

In Fig. 2, the overall structure for the neural network can be 
observed. It consists of an input layer where 𝑥 represents all the 
input variables that are received by the network. Then, the output 
is represented by 𝑦 , as it is not the output of the network but 
instead, it connects to another layer called hidden layer. After 
the hidden layer has processed all the input data from 𝑦 , it then 
generates 𝑦 , depending on the number of hidden layers in the 
network. This 𝑦  is then used for the output layer. The output 
layer generates the expected result in the form of 𝑦 with the most 
statistical weight used as the prediction of the Model. 

 

 
Fig. 2. Common structure of a neural network model. 
 

The State of Charge of a battery can be defined as the ratio 
of charge available according to the following equation: 
 

                                        𝑆𝑜𝐶(𝑡) =
( )

,                                          (2) 

 
where 𝑄(𝑡) is the available capacity and 𝑄  represents the 
nominal capacity. However, obtaining this data tends to be 
difficult as the specific value for the SoC is highly dependent on 
the chemical properties of the battery. Therefore, it is common 
to study the process of SoC based on voltage, current, and 
temperature. 

In order to define the proper model of the battery, a neural 
network was designed to predict the battery charge and 

discharge behavior. The general process is to select an activation 
function that makes the model follow an ideal simulation of the 
battery SoC. There can be more than one activation function, 
depending on the model, to improve its performance.  

The main objective of a regression algorithm is to predict the 
value of a variable depending on other different inputs. There 
are many types of regressions depending on the system that is 
being analyzed. A neural network that implements this specific 
algorithm is usually called a convolutional neural network. A 
wide range of data is typically used as training material for the 
model and, based on the specific information, define an 
activation function for each layer that will integrate the model. 
In this case, the equations found in (1), (2), and (3), which are 
presented next, are the ones selected to match the data shown in 
section IV. 

The input layer will behave as the activation function: 

 
𝑦 = 𝑎𝑥 + 𝑏𝑥 + 𝑐𝑥 + 𝑑                               (1) 

 
where 𝑦  represents the output from the input layer to the hidden 
layer, 𝑥 is a three-dimensional input variable that will receive 
the initial voltage state, the current consumption, the time of the 
operation, and the temperature. Then, 𝑎, 𝑏, 𝑐, 𝑎𝑛𝑑 𝑑  are the 
parameters to be adjusted during the training of the neural 
network. 

Then, the hidden layer is defined by the sigmoid function: 

  

𝑦 =
1

1 + 𝑒
,                                            (2) 

 
where 𝑦  represents the output from the hidden layer to the 

output layer, and 𝑦  is the input for the hidden layer coming out 
of the input layer.  

The output layer result is obtained with the implementation 
of the sigmoid function as well: 

 

𝑦 = ,                                              (3) 

 
but in this case, it receives the output of the hidden layer with 𝑦  
and uses it to generate 𝑦 , which represents the output of the 
neural network, and it is the prediction of the system. It can also 
be used against the training data to verify the reliability of the 
result. 

To evaluate the error of the output layers, the function known 
as the quadratic error function is utilized. It is described by: 

 

                         
𝑀𝑖𝑛

𝑎, 𝑏, 𝑐, 𝑑
   𝑒(𝑦 , 𝑦) =  (𝑦 −  𝑦) ,                     (4) 

 
where 𝑦  indicates the output of the current layer and 𝑦  
represents the desired value for the output. 

 Finally, the number of layers , the quantity of nodes, the 
learning parameters, and the training time need to be defined. 
This creates a more robust model prediction. However, the 



amount of layers and neurons selected may impact the 
performance of the training. In this case, four neurons were 
selected for the input layer, as it will be receiving four different 
inputs in the form of time, temperature, voltage, and current. Six 
hidden layers are implemented with 64 neuron each. The output 
layer will have one neuron, as currently only the SoC is required 
to be obtained from the prediction of the model. The 
implemented neural network can be found in Fig. 3 and Fig. 4. 

 

 
Fig. 3. Neural network implemented to describe the battery. 

 

 
Fig. 4. Neural network block diagram in Simulink. 

III. SIMULATED DATA AND TRAINING 

The BMS is responsible for performance, safe operation, 
and battery life of a vehicle under different environmental 
conditions. When designing these models, engineers develop a 
supervisory control algorithm that: 
 

 Monitors cell temperature and voltage 
 Estimates the SoC and SoH 
 Controls the charging/discharging profile 
 Limits power input supplies for thermal and overload 

protection 
 Balances the SoC of individual cells 

 
Simulink's simulation and modeling features enable BMS 

development. This includes cell equivalent circuit 
parameterization, control logic, automatic C-code generation, 
and validation. With Simulink, it is possible to emulate and 
design a system by 

 

 Parameterization of equivalent circuits using tested 
data for accurate characterization of cell chemistry 

 Modeling battery packs using electrical networks 
whose topology scales with the number of cells. 

 Development of closed-loop control algorithms for 
fault detection. 

 Designing state observers for parameter estimation of 
the SoC and SoH. 

 Design of the power circuit which connects the battery 
pack to the control unit. 

 
The main process for training a ML model usually starts 

with obtaining specific data that describes the system. Then, it 
is recommended to normalize the information and set the 
parameters in a defined scale with maximum and minimum 
ratings to analyze and feed into the model. Once the data is 
normalized, it must be separated into two groups: one that for 
training the network and another for validating the model. This 
normalization process is done using, 
 

                             𝑋 =  ,                                (5) 

 
where 𝑥 represents the current number from the set, 𝑥  is the 
minimum value for that parameter that can be found in the 
dataset, and  𝑥  represents the maximum value for that 
parameter that can be found in the dataset. The entirety of this 
process is graphically defined in Fig. 5. 
 

 
Fig. 5. Process for data conditioning and model training. 

 
 The dataset, obtained from CALCE battery team [5], to train 
the model defines the behavior of a battery discharging from a 
SOC of 100% to 0% and then being charged up again. The 
dataset considers a current of -0.75 Amperes for the discharge 
operation and a current of 0.75 Amperes for charging the battery. 
Both have their graphical representation in Fig. 7 and in Fig. 8 
respectively. 

 Each stage of the battery can be analyzed independently, but 
there is also a set of data available describing the process from a 
full operation with charging and discharging stages as well. This 
set can be analyzed in Fig. 6. 

 
Fig. 6. Discharge and Charge cycles over time at 25C of the battery. 



 

 
 
Fig. 7. Discharge data over time at 25C of the battery. 
 

 

 
 

Fig. 8. Charge data over time at 25C of the battery. 
 

 With the training data obtained, it is then possible to generate 
the proper normalization. In this case, only the variables for the 
voltage and the current have been normalized, as these can be 
enclosed. However, this is also a time-dependent system, and it 
was retained to be able to predict behavior based on the amount 
of time and the current value. This normalization result can be 
observed in Fig. 9. 

 

 
Fig. 9. Normalized data for discharge and charging operation over time. 

 Finally, once the data has been normalized and ordered 
adequately to allow the training of the model, it is required to 
select a specific optimization rule that will serve as the main 
process to follow for the neural network to train itself with the 
input data alongside the different cycles defined. The selected 
rule for this case follows the equation: 

 

                             𝑤 =  𝑤 −  𝐿 ,                                (6) 

 
where 𝑤  represents the parameters that are being optimized in 
the moment. In this case, it can be either 𝑎, 𝑏, 𝑐 or 𝑑 depending 
on the stage of the training. 𝐿  is dictated by the user as it is the 

learning rate that is used to update the parameters, and  is the 

partial derivative of the error based on the parameters that are 
being updated. 

IV. DEPLOYMENT ON MICROCONTROLLER 

 BMS can be exercised under a variety of operating and fault 
conditions using Simulink before committing to hardware 
prototyping. It is also possible to implement control algorithms 
for rapid designing and deploying them in microcontrollers 
through the generation of C code from Simulink models. 
Simulink generates code from electric components, enabling 
real-time simulation to validate the system prior to hardware 
deployment. 

 One major task of the BMS is estimating SoC. However, 
traditional methods require accurate battery models that are 
difficult to characterize. An alternative to this is to create data-
driven models of the cell using AI methods such as neural 
networks. 

 This paper shows how to use Deep Learning Toolbox, 
Simulink, and Embedded Coder to generate C code for AI/ML 
algorithms for battery SoC estimation and deploy them to an 
NXP S32K3 microcontroller.  

 Based on previous work done by McMaster University on 
Deep Learning workflows for battery state estimation, 
Embedded Coder is used to generate optimized C code from a 
neural network imported from TensorFlow and run it in 
processor-in-the-loop mode on an microcontroller [4]. The code 
generation workflow will feature the use of the NXP Model-
Based Design Toolbox, which provides an integrated 
development environment and toolchain for configuring and 
generating all the necessary software to execute complex 
applications on NXP MCUs.  

 Embedded Coder is a tool that can be installed in MATLAB 
to generate code for NXP’s MCUs. It is basically an extension 
of MATLAB Coder and Simulink Coder that allows the 
generation of code compliant with ANSI and ISO C standards 
and the direct deployment of the generated code on the specified 
device. However, this is not the only function that Embedded 
Coder provides, it also has the possibility to run in different 
modes:  

 software in the loop (SIL), which basically consists of 
generating the code and running it on your computer 
instead of the MCU. 



 process in the loop (PIL), which generates the code 
and uploads it to the intended MCU. Through 
configurable parameters, such as an UART instance, it 
obtains the required data to generate measurements on 
the generated code, such as execution time and 
benchmark against SIL. 

 

 Specifically, the MCU chosen was the S32K344. This is an 
automotive-grade general-purpose microcontroller that is 
currently supported within Embedded Coder. This specific 
device also requires the use of Real Time Drivers (RTDs), which 
is an Software Development Package (SDK) that allows the user 
to generate AUTOSAR-grade code to be implemented further in 
the applications. By taking advantage of this feature, it is 
possible to analyze the performance obtained. 

 Once the entire model has been simulated and verified in 
Simulink, the next step is to deploy it on the Microcontroller. 
Embedded Coder tools are used to generate a SIL simulation to 
validate the data from merely software running in the computer 
against the previously obtained information. After the results are 
obtained and validated, a PIL simulation is generated, and the 
code gets deployed directly into the microcontroller. With this 
process, the results are gathered via serial communication and 
analyzed further. 

 
Fig. 10. S32K344 connected to the PC to deploy the generated code. 

V. RESULTS 

 Fig. 11 shows the results of the training step over the neural 
network against the real data that was used for this. Basically, 
this process can be defined in the SIL, thus the results yielded 
by the comparison of the real data against the neural network 
running in the computer are the training results. 

 

 
Fig.11. Neural network in SIL compared with real data. 

 
 Finally, the neural network was deployed in the 
microcontroller. Fig. 12, Fig. 13, Fig. 14, and Fig 15 show the 
proper data obtained from running the neural network on the 
S32K344 with Automotive-grade generated code. 

 

 
Fig. 12. Output of the neural network running in PIL. 

 

 
Fig. 13. Execution time of the functions operating in S32K344. 

 

 
Fig. 14. Execution time percentages of the functions operating in S32K344. 

 

 
Fig. 15. Tasks execution analysis in the S32K344. 

VI. CONCLUSIONS 

 With the results obtained, the successful deployment of the 
neural network on the S32K344 is shown. The results showed a 
SoC prediction accuracy of up to 90% and a run time of 2.6 ms 
using the S32K344 at 160 MHz. These results also provide 
valuable benchmark data to consider when trying to implement 
AI/ML algorithms on the edge.  

 Typically, the industry is used to execute AI/ML models on 
powerful machines, such as personal laptops or the cloud. 
However, as technology increases, it is relevant to explore the 
possibility of having an embedded system with limited 
computing power and amount of memory, capable of running a 



full AI/ML application. Thus, the main goal of building such an 
application on a PC, generating the C code, and implementing 
the model in the embedded system was also achieved. 

 Finally, despite the successful implementation of the 
model, it is also important to highlight certain concerns 
regarding the application because production-grade code will 
certainly need to be more robust, include security features, 
automotive-grade stacks, etc. Therefore, as next steps, it would 
be necessary to analyze this first integrated application to see 
how to integrate it to a full automotive stack. 

REFERENCES 
[1] G. Suciu et al., «AI-based intelligent energy storage using Li-ion 
batteries», en 2021 12th International Symposium on Advanced Topics in 
Electrical Engineering (ATEE), Bucharest, Romania: IEEE, mar. 2021, pp. 1-
5. doi: 10.1109/ATEE52255.2021.9425328. 
[2] K.-T. Kim, H.-J. Lee, J.-H. Park, G. Bere, J. J. Ochoa, y T. Kim, 
«Artificial Intelligence-Based Hardware Fault Detection for Battery Balancing 
Circuits», en 2021 IEEE Energy Conversion Congress and Exposition (ECCE), 
Vancouver, BC, Canada: IEEE, oct. 2021, pp. 1387-1392. doi: 
10.1109/ECCE47101.2021.9595404. 
[3] K. Zidek, J. Pitel, y A. Hosovsky, «Machine learning algorithms 
implementation into embedded systems with web application user interface», 
en 2017 IEEE 21st International Conference on Intelligent Engineering 
Systems (INES), Larnaca: IEEE, oct. 2017, pp. 000077-000082. doi: 
10.1109/INES.2017.8118532. 
[4] M. Naguib, P. Kollmeyer, y A. Emadi, «Application of Deep Neural 
Networks for Lithium-Ion Battery Surface Temperature Estimation Under 
Driving and Fast Charge Conditions», IEEE Trans. Transp. Electrific., vol. 9, 
n.o 1, pp. 1153-1165, mar. 2023, doi: 10.1109/TTE.2022.3200225. 
[5] Saurabh Saxena, Christopher Hendricks and Michael Pecht, «Cycle 
Life Testing and Modeling of Graphite/ LiCoO2 cells under different state of 
charge ranges», Journal of Power Sources, 327 (2016), pp.394-400, 2016. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


