
Instituto Tecnológico
y de Estudios Superiores de Occidente

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial 15018,
publicado en el Diario Oficial de la Federación del 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática
Especialidad en Sistemas Embebidos

Deployment of Machine Learning Algorithm to predict

Battery behavior

TRABAJO RECEPCIONAL que para obtener el GRADO de

ESPECIALISTA EN SISTEMAS EMBEBIDOS

Presenta: JESUS ALBERTO CINCO AHUMADA, JORGE ALEJANDRO

FLORES TRIANA

Director LUIS ENRIQUE GARABITO SIORDIA

Tlaquepaque, Jalisco. julio de 2023.

Deployment of Machine Learning Algorithm to
predict Battery behavior

Jesus Alberto Cinco Ahumada
Student
ITESO

Guadalajara, Mexico
jesus.cinco@iteso.mx

Jorge Alejandro Flores Triana

Student
ITESO

Guadalajara, Mexico
jorge.flores@iteso.mx

The growth of the electric car industry has increased in recent
years, along with the trend of green energy around the world. For
this reason, automotive companies have invested in finding different
solutions to monitor lithium batteries that power vehicles. These
applications include State of Charge (SoC) and State of Health
(SoH) analysis of the battery cells by monitoring key variables such
as temperature, current, and voltage to predict the behavior of the
system and apply preventive maintenance.

In this paper, a deep neural network using the Deep Learning
MATLAB Toolbox was designed to predict the SoC from an
emulated battery in Simulink. The model was then compiled and
deployed in an NXP S32K344 microcontroller using the NXP Model-
Based Design Toolbox. The results obtained showed a network with
up to 90% accuracy and an execution time of 2.6 ms when running
the core at 160 MHz.

Keywords—Battery Prediction, Embedded Systems, Machine
Learning, Deployment, Embedded Coder.

I. INTRODUCTION

One of the main components that integrates an automotive
vehicle is the battery, which supplies voltage and current to
different systems such as the power train, telematic unit,
infotainment, and body control unit, among others. In fact, the
usage of this element has only increased with the
implementation of electric and hybrid vehicles. However, this
specific component requires a dedicated system known as
Battery Management System (BMS), which monitors and
controls the battery and the variables that may influence its
behavior [1], such as the temperature, state of charge (SOC), and
state of health (SOH). A BMS requires the implementation of
several sensors to obtain the value of different variables to be
monitored. Even when the implemented algorithms ensure
optimal functionality of the battery and report some faults that
can occur, it may be difficult to detect and report hardware
faults. Therefore, some Artificial Intelligence/Machine
Learning (AI/ML) algorithms have been proposed to help with
the diagnosis of faults [2].

Nowadays, AI/ML algorithms are being used in different
applications due to their potential, which mostly depends on
how they are being implemented to ensure that the correct
training has been performed over the network. An example of
where these algorithms are being utilized are applications that
are highly dependent on data classification. This is because AI
helps to obtain the most reliable data from the set provided to

the network based on a given training [3]. One of the main
reasons why AI/ML algorithms are being used in BMS is
because they help to process and interpret the data from different
sensors. Some of these algorithms may even help to have
redundancy of the measured variables when generating a model
of the battery’s operation [4].

The training of these AI/ML algorithms might require more
processing than the typical embedded system is able to provide.
For this specific problem, one solution is to deploy the algorithm
with the training phase done over some simulated model using a
laptop or the cloud. MATLAB and Simulink are some of the
tools that are commonly employed to generate the system
model, design the algorithm, and train the neural network.
However, working on these platforms represents the challenge
of having to migrate the entire implementation into a
programming language, such as C, that can be compiled and
deployed into an embedded system.

This paper describes the workflow followed to implement an
AI/ML BMS algorithm in an embedded system. This process
includes the design of an AI/ML algorithm that is trained with
simulated data to detect anomalies on a BMS. The algorithm is
then deployed in the embedded system using NXP’s specific
tools available on MATLAB.

 The rest of the sections are organized as follows: Section II
provides the design of the Machine Learning algorithm, section
III shows the training with the simulated data, section IV
describes in detail the method followed for the deployment,
Section V explains the results obtained in the microcontroller
and finally, Section VI presents the conclusions.

II. MACHINE LEARNING ALGORITHM

Artificial intelligence is the process of sharing data,
information, and human intelligence with machines. The main
goal is to develop self-reliant machines that can think and act
like humans. Machine Learning is a discipline of computer
science that uses algorithms and analytics to build predictive
models capable of solving problems. Therefore, it involves the
ability to adapt to new data through iterations and learn from the
past to predict the future.

The workflow to solve a specific problem is contained
within a defined lifecycle process. The first step is to generate a
machine learning system called a Model. Then, specific data
relevant to the application is used to train the Model. Finally, to

deploy the Model, the algorithm is uploaded into a device to
solve the desired problem. This process is depicted in Fig. 1.

Fig. 1. Lifecycle of a Machine Learning system.

Different Machine Learning algorithms are utilized in
applications such as predictive maintenance and anomaly
detection depending on the analysis required over the data
collected by the system. In this case, a classification algorithm
is required to detect faults in the battery behavior, specifically in
voltage, current, and temperature. This allows the system to
easily detect when a set of data belongs to the batterie’s normal
operation or if it can be interpreted as a malfunction.

In Fig. 2, the overall structure for the neural network can be
observed. It consists of an input layer where 𝑥 represents all the
input variables that are received by the network. Then, the output
is represented by 𝑦 , as it is not the output of the network but
instead, it connects to another layer called hidden layer. After
the hidden layer has processed all the input data from 𝑦 , it then
generates 𝑦 , depending on the number of hidden layers in the
network. This 𝑦 is then used for the output layer. The output
layer generates the expected result in the form of 𝑦 with the most
statistical weight used as the prediction of the Model.

Fig. 2. Common structure of a neural network model.

The State of Charge of a battery can be defined as the ratio
of charge available according to the following equation:

 𝑆𝑜𝐶(𝑡) =
()

, (2)

where 𝑄(𝑡) is the available capacity and 𝑄 represents the
nominal capacity. However, obtaining this data tends to be
difficult as the specific value for the SoC is highly dependent on
the chemical properties of the battery. Therefore, it is common
to study the process of SoC based on voltage, current, and
temperature.

In order to define the proper model of the battery, a neural
network was designed to predict the battery charge and

discharge behavior. The general process is to select an activation
function that makes the model follow an ideal simulation of the
battery SoC. There can be more than one activation function,
depending on the model, to improve its performance.

The main objective of a regression algorithm is to predict the
value of a variable depending on other different inputs. There
are many types of regressions depending on the system that is
being analyzed. A neural network that implements this specific
algorithm is usually called a convolutional neural network. A
wide range of data is typically used as training material for the
model and, based on the specific information, define an
activation function for each layer that will integrate the model.
In this case, the equations found in (1), (2), and (3), which are
presented next, are the ones selected to match the data shown in
section IV.

The input layer will behave as the activation function:

𝑦 = 𝑎𝑥 + 𝑏𝑥 + 𝑐𝑥 + 𝑑 (1)

where 𝑦 represents the output from the input layer to the hidden
layer, 𝑥 is a three-dimensional input variable that will receive
the initial voltage state, the current consumption, the time of the
operation, and the temperature. Then, 𝑎, 𝑏, 𝑐, 𝑎𝑛𝑑 𝑑 are the
parameters to be adjusted during the training of the neural
network.

Then, the hidden layer is defined by the sigmoid function:

𝑦 =
1

1 + 𝑒
, (2)

where 𝑦 represents the output from the hidden layer to the

output layer, and 𝑦 is the input for the hidden layer coming out
of the input layer.

The output layer result is obtained with the implementation
of the sigmoid function as well:

𝑦 = , (3)

but in this case, it receives the output of the hidden layer with 𝑦
and uses it to generate 𝑦 , which represents the output of the
neural network, and it is the prediction of the system. It can also
be used against the training data to verify the reliability of the
result.

To evaluate the error of the output layers, the function known
as the quadratic error function is utilized. It is described by:

𝑀𝑖𝑛

𝑎, 𝑏, 𝑐, 𝑑
 𝑒(𝑦 , 𝑦) = (𝑦 − 𝑦) , (4)

where 𝑦 indicates the output of the current layer and 𝑦
represents the desired value for the output.

 Finally, the number of layers , the quantity of nodes, the
learning parameters, and the training time need to be defined.
This creates a more robust model prediction. However, the

amount of layers and neurons selected may impact the
performance of the training. In this case, four neurons were
selected for the input layer, as it will be receiving four different
inputs in the form of time, temperature, voltage, and current. Six
hidden layers are implemented with 64 neuron each. The output
layer will have one neuron, as currently only the SoC is required
to be obtained from the prediction of the model. The
implemented neural network can be found in Fig. 3 and Fig. 4.

Fig. 3. Neural network implemented to describe the battery.

Fig. 4. Neural network block diagram in Simulink.

III. SIMULATED DATA AND TRAINING

The BMS is responsible for performance, safe operation,
and battery life of a vehicle under different environmental
conditions. When designing these models, engineers develop a
supervisory control algorithm that:

 Monitors cell temperature and voltage
 Estimates the SoC and SoH
 Controls the charging/discharging profile
 Limits power input supplies for thermal and overload

protection
 Balances the SoC of individual cells

Simulink's simulation and modeling features enable BMS

development. This includes cell equivalent circuit
parameterization, control logic, automatic C-code generation,
and validation. With Simulink, it is possible to emulate and
design a system by

 Parameterization of equivalent circuits using tested
data for accurate characterization of cell chemistry

 Modeling battery packs using electrical networks
whose topology scales with the number of cells.

 Development of closed-loop control algorithms for
fault detection.

 Designing state observers for parameter estimation of
the SoC and SoH.

 Design of the power circuit which connects the battery
pack to the control unit.

The main process for training a ML model usually starts

with obtaining specific data that describes the system. Then, it
is recommended to normalize the information and set the
parameters in a defined scale with maximum and minimum
ratings to analyze and feed into the model. Once the data is
normalized, it must be separated into two groups: one that for
training the network and another for validating the model. This
normalization process is done using,

 𝑋 = , (5)

where 𝑥 represents the current number from the set, 𝑥 is the
minimum value for that parameter that can be found in the
dataset, and 𝑥 represents the maximum value for that
parameter that can be found in the dataset. The entirety of this
process is graphically defined in Fig. 5.

Fig. 5. Process for data conditioning and model training.

 The dataset, obtained from CALCE battery team [5], to train
the model defines the behavior of a battery discharging from a
SOC of 100% to 0% and then being charged up again. The
dataset considers a current of -0.75 Amperes for the discharge
operation and a current of 0.75 Amperes for charging the battery.
Both have their graphical representation in Fig. 7 and in Fig. 8
respectively.

 Each stage of the battery can be analyzed independently, but
there is also a set of data available describing the process from a
full operation with charging and discharging stages as well. This
set can be analyzed in Fig. 6.

Fig. 6. Discharge and Charge cycles over time at 25C of the battery.

Fig. 7. Discharge data over time at 25C of the battery.

Fig. 8. Charge data over time at 25C of the battery.

 With the training data obtained, it is then possible to generate
the proper normalization. In this case, only the variables for the
voltage and the current have been normalized, as these can be
enclosed. However, this is also a time-dependent system, and it
was retained to be able to predict behavior based on the amount
of time and the current value. This normalization result can be
observed in Fig. 9.

Fig. 9. Normalized data for discharge and charging operation over time.

 Finally, once the data has been normalized and ordered
adequately to allow the training of the model, it is required to
select a specific optimization rule that will serve as the main
process to follow for the neural network to train itself with the
input data alongside the different cycles defined. The selected
rule for this case follows the equation:

 𝑤 = 𝑤 − 𝐿 , (6)

where 𝑤 represents the parameters that are being optimized in
the moment. In this case, it can be either 𝑎, 𝑏, 𝑐 or 𝑑 depending
on the stage of the training. 𝐿 is dictated by the user as it is the

learning rate that is used to update the parameters, and is the

partial derivative of the error based on the parameters that are
being updated.

IV. DEPLOYMENT ON MICROCONTROLLER

 BMS can be exercised under a variety of operating and fault
conditions using Simulink before committing to hardware
prototyping. It is also possible to implement control algorithms
for rapid designing and deploying them in microcontrollers
through the generation of C code from Simulink models.
Simulink generates code from electric components, enabling
real-time simulation to validate the system prior to hardware
deployment.

 One major task of the BMS is estimating SoC. However,
traditional methods require accurate battery models that are
difficult to characterize. An alternative to this is to create data-
driven models of the cell using AI methods such as neural
networks.

 This paper shows how to use Deep Learning Toolbox,
Simulink, and Embedded Coder to generate C code for AI/ML
algorithms for battery SoC estimation and deploy them to an
NXP S32K3 microcontroller.

 Based on previous work done by McMaster University on
Deep Learning workflows for battery state estimation,
Embedded Coder is used to generate optimized C code from a
neural network imported from TensorFlow and run it in
processor-in-the-loop mode on an microcontroller [4]. The code
generation workflow will feature the use of the NXP Model-
Based Design Toolbox, which provides an integrated
development environment and toolchain for configuring and
generating all the necessary software to execute complex
applications on NXP MCUs.

 Embedded Coder is a tool that can be installed in MATLAB
to generate code for NXP’s MCUs. It is basically an extension
of MATLAB Coder and Simulink Coder that allows the
generation of code compliant with ANSI and ISO C standards
and the direct deployment of the generated code on the specified
device. However, this is not the only function that Embedded
Coder provides, it also has the possibility to run in different
modes:

 software in the loop (SIL), which basically consists of
generating the code and running it on your computer
instead of the MCU.

 process in the loop (PIL), which generates the code
and uploads it to the intended MCU. Through
configurable parameters, such as an UART instance, it
obtains the required data to generate measurements on
the generated code, such as execution time and
benchmark against SIL.

 Specifically, the MCU chosen was the S32K344. This is an
automotive-grade general-purpose microcontroller that is
currently supported within Embedded Coder. This specific
device also requires the use of Real Time Drivers (RTDs), which
is an Software Development Package (SDK) that allows the user
to generate AUTOSAR-grade code to be implemented further in
the applications. By taking advantage of this feature, it is
possible to analyze the performance obtained.

 Once the entire model has been simulated and verified in
Simulink, the next step is to deploy it on the Microcontroller.
Embedded Coder tools are used to generate a SIL simulation to
validate the data from merely software running in the computer
against the previously obtained information. After the results are
obtained and validated, a PIL simulation is generated, and the
code gets deployed directly into the microcontroller. With this
process, the results are gathered via serial communication and
analyzed further.

Fig. 10. S32K344 connected to the PC to deploy the generated code.

V. RESULTS

 Fig. 11 shows the results of the training step over the neural
network against the real data that was used for this. Basically,
this process can be defined in the SIL, thus the results yielded
by the comparison of the real data against the neural network
running in the computer are the training results.

Fig.11. Neural network in SIL compared with real data.

 Finally, the neural network was deployed in the
microcontroller. Fig. 12, Fig. 13, Fig. 14, and Fig 15 show the
proper data obtained from running the neural network on the
S32K344 with Automotive-grade generated code.

Fig. 12. Output of the neural network running in PIL.

Fig. 13. Execution time of the functions operating in S32K344.

Fig. 14. Execution time percentages of the functions operating in S32K344.

Fig. 15. Tasks execution analysis in the S32K344.

VI. CONCLUSIONS

 With the results obtained, the successful deployment of the
neural network on the S32K344 is shown. The results showed a
SoC prediction accuracy of up to 90% and a run time of 2.6 ms
using the S32K344 at 160 MHz. These results also provide
valuable benchmark data to consider when trying to implement
AI/ML algorithms on the edge.

 Typically, the industry is used to execute AI/ML models on
powerful machines, such as personal laptops or the cloud.
However, as technology increases, it is relevant to explore the
possibility of having an embedded system with limited
computing power and amount of memory, capable of running a

full AI/ML application. Thus, the main goal of building such an
application on a PC, generating the C code, and implementing
the model in the embedded system was also achieved.

 Finally, despite the successful implementation of the
model, it is also important to highlight certain concerns
regarding the application because production-grade code will
certainly need to be more robust, include security features,
automotive-grade stacks, etc. Therefore, as next steps, it would
be necessary to analyze this first integrated application to see
how to integrate it to a full automotive stack.

REFERENCES
[1] G. Suciu et al., «AI-based intelligent energy storage using Li-ion
batteries», en 2021 12th International Symposium on Advanced Topics in
Electrical Engineering (ATEE), Bucharest, Romania: IEEE, mar. 2021, pp. 1-
5. doi: 10.1109/ATEE52255.2021.9425328.
[2] K.-T. Kim, H.-J. Lee, J.-H. Park, G. Bere, J. J. Ochoa, y T. Kim,
«Artificial Intelligence-Based Hardware Fault Detection for Battery Balancing
Circuits», en 2021 IEEE Energy Conversion Congress and Exposition (ECCE),
Vancouver, BC, Canada: IEEE, oct. 2021, pp. 1387-1392. doi:
10.1109/ECCE47101.2021.9595404.
[3] K. Zidek, J. Pitel, y A. Hosovsky, «Machine learning algorithms
implementation into embedded systems with web application user interface»,
en 2017 IEEE 21st International Conference on Intelligent Engineering
Systems (INES), Larnaca: IEEE, oct. 2017, pp. 000077-000082. doi:
10.1109/INES.2017.8118532.
[4] M. Naguib, P. Kollmeyer, y A. Emadi, «Application of Deep Neural
Networks for Lithium-Ion Battery Surface Temperature Estimation Under
Driving and Fast Charge Conditions», IEEE Trans. Transp. Electrific., vol. 9,
n.o 1, pp. 1153-1165, mar. 2023, doi: 10.1109/TTE.2022.3200225.
[5] Saurabh Saxena, Christopher Hendricks and Michael Pecht, «Cycle
Life Testing and Modeling of Graphite/ LiCoO2 cells under different state of
charge ranges», Journal of Power Sources, 327 (2016), pp.394-400, 2016.

