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ABSTRACT 

The Electrical Validation and Debugging, at the system level, of the Reference Clock signals, requires a 

lot of Signal Integrity and High-Frequency knowledge and skills. This work intends to improve the actual 

validation methodology and to increase technical knowledge, so our validation team could find defects 

and root causes sooner. We are analyzing, modeling, and simulating the top four debug cases seen during 

past validation cycles, by designing and using clock buffers with controlled impedance, as well as 

transmission lines. The result obtained is that, besides the great knowledge and skills that have been 

created, we’re also observing a very good correlation between simulation and real product behavior. 
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RESUMEN 

La Validación Eléctrica y depuración, a nivel de sistema, de las señales de reloj de referencia, requiere 

muchos conocimientos y habilidades de Integridad de Señal y Alta Frecuencia. La intención de este trabajo 

es mejorar la metodología de validación actual e incrementar el conocimiento técnico, de esta manera 

nuestro equipo de validación podrá encontrar defectos y causas raíz rápidamente. Estaremos analizando, 

modelando y simulando los principales cuatro casos de depuración vistos en los ciclos de validación 

anteriores, diseñando y utilizando búferes de reloj con impedancia controlada, así como líneas de 

transmisión. El resultado obtenido es que, aparte de haber creado habilidades y conocimiento, también 

estamos observando muy buena correlación entre la simulación y el comportamiento real de nuestros 

productos. 

 

 

  



10 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................................................. 4 

AGRADECIMIENTOS ................................................................................................................................... 5 

DEDICATION .................................................................................................................................................. 6 

DEDICATORIA ............................................................................................................................................... 7 

ABSTRACT ...................................................................................................................................................... 8 

RESUMEN ........................................................................................................................................................ 9 

TABLE OF CONTENTS ............................................................................................................................... 10 

LIST OF FIGURES ........................................................................................................................................ 13 

LIST OF TABLES .......................................................................................................................................... 16 

LIST OF ACRONYMS AND ABBREVIATIONS ...................................................................................... 17 

1. INTRODUCTION .................................................................................................................................. 18 

1.1. BACKGROUND .................................................................................................................................. 19 
1.2. JUSTIFICATION .................................................................................................................................. 19 
1.3. THE PROBLEM .................................................................................................................................. 20 
1.4. HYPOTHESIS ..................................................................................................................................... 20 
1.5. OBJECTIVES ...................................................................................................................................... 21 

1.5.1. General Objective: .............................................................................................................................. 21 
1.5.2. Specific Objectives: ............................................................................................................................ 21 

1.6. CONTRIBUTION OF SCIENTIFIC AND TECHNOLOGICAL INNOVATION ................................................. 21 

2. THE STATE OF THE ART .................................................................................................................. 22 

2.1. THE ELECTRICAL VALIDATION ......................................................................................................... 23 
2.2. THE DEBUG ...................................................................................................................................... 25 

3. THEORETICAL FRAMEWORK AND HISTORICAL DEBUG CASES....................................... 26 

3.1. THE ELECTRICAL VALIDATION OF CLOCKS AT THE SYSTEM LEVEL ................................................... 27 
3.2. DEBUGGING CLOCK DEFECTS............................................................................................................ 27 
3.3. IMPACT ANALYSIS ............................................................................................................................ 28 
3.4. ELECTRICAL PARAMETERS REVIEW ................................................................................................. 29 

4. CLOCK BUFFER ARCHITECTURE ................................................................................................. 33 

4.1. THE PMOS AND NMOS MODELS ........................................................................................................ 34 
4.1.1. Configuring ADS to use the Pmos/Nmos model................................................................................. 34 

4.2. THE INVERTER .................................................................................................................................. 35 
4.3. NMOS LEG TUNING .......................................................................................................................... 37 
4.4. PMOS LEG TUNING ........................................................................................................................... 40 
4.5. PROGRAMMABLE IMPEDANCE DRIVER ............................................................................................. 42 
4.6. NMOS RCOMP FOR A 50Ω DRIVER .................................................................................................... 42 
4.7. PMOS RCOMP FOR A 50Ω DRIVER..................................................................................................... 45 



11 
 

4.8. NMOS AND PMOS RCOMP FOR A 33Ω DRIVER .................................................................................. 47 
4.9. SINGLE-ENDED NON-IDEAL 50Ω TRANSMISSION LINE .................................................................... 48 
4.10. DIFFERENTIAL NON-IDEAL 100Ω TRANSMISSION LINE .................................................................... 51 
4.11. SINGLE-ENDED BUFFER ................................................................................................................... 52 
4.12. COMPLEMENTARY BUFFER ............................................................................................................... 56 

5. CASE STUDIES ..................................................................................................................................... 60 

5.1. THE “UNDERSHOOT” CASE STUDY ................................................................................................... 61 
5.1.1. Simulation Scenario # 1 ...................................................................................................................... 62 
5.1.2. Simulation Scenario # 2 ...................................................................................................................... 63 
5.1.3. Simulation Scenario # 3 ...................................................................................................................... 64 
5.1.4. Conclusion .......................................................................................................................................... 64 

5.2. THE “JITTER” CASE STUDY .............................................................................................................. 65 
5.2.1. Noise Frequency Effect ...................................................................................................................... 65 
5.2.2. System Variation Effect ...................................................................................................................... 67 
5.2.3. Conclusion .......................................................................................................................................... 68 

5.3. THE “FREQUENCY PPM” CASE STUDY .............................................................................................. 69 
5.3.1. Parts per Million ................................................................................................................................. 69 
5.3.2. Colpitts LC Oscillator, Frequency Tuning .......................................................................................... 70 
5.3.3. Ppm and Jitter, Inverters vs. CML, noise in supply voltage ................................................................ 72 
5.3.4. Conclusion .......................................................................................................................................... 74 

5.4. THE “SLEW RATE” CASE STUDY ...................................................................................................... 75 
5.4.1. Slew Rate ............................................................................................................................................ 75 
5.4.2. Simulations to Affect Slew Rate ......................................................................................................... 75 
5.4.3. Conclusion .......................................................................................................................................... 77 

6. CONCLUSIONS .................................................................................................................................... 78 

6.1. CONCLUSIONS .................................................................................................................................. 79 
6.2. FUTURE WORK ................................................................................................................................. 79 

BIBLIOGRAPHY .......................................................................................................................................... 80 

APPENDIX A. MEASUREMENTS IN LTSPICE ...................................................................................... 82 

A.1 Measurement in Colpitts circuit at 32.768kHz .................................................................................. 82 
A.2 Measurement in Colpitts circuit at 100MHz ...................................................................................... 84 
A.3 Measurement in cascaded Inverters circuit ....................................................................................... 84 
A.4 Measurement in cascaded CMLs circuit ............................................................................................ 87 

APPENDIX B. PHASE LOCK LOOP (PLL) .............................................................................................. 91 

B.1 Supply Voltage and Reference Input .................................................................................................. 91 
B.2 Phase Detector and Charge Pump .................................................................................................... 92 
B.3 Loop Filter ......................................................................................................................................... 92 
B.4 Voltage Controlled Oscillator (VCO) ................................................................................................ 93 
B.5 Measurements .................................................................................................................................... 94 
B.6 Size of the transistors ......................................................................................................................... 95 
B.7 Spice directives for the measurements ............................................................................................... 95 
B.8 Spread Spectrum Clock (SSC) ........................................................................................................... 97 
B.9 Conclusion ......................................................................................................................................... 98 



12 
 

APPENDIX C. WCS, TYP, BCS, AND MONTE-CARLO ANALYSIS ................................................... 99 

C.1 Wcs, Typ, Bcs Simulations ................................................................................................................. 99 
C.2 Monte Carlo Simulations ................................................................................................................. 102 
C.3 Conclusion ....................................................................................................................................... 105 

  



13 
 

LIST OF FIGURES 

FIGURE 1: 100MHZ CLOCK SIGNAL. A) FEW CLOCK-CYCLES. B) MORE THAN 100,000 CLOCK CYCLES. ........... 23 
FIGURE 2: RESULTS REPORT. A) CONFIG SCREEN. B) PHASE JITTER. C) PEAK TO PEAK AND RMS JITTER. ........ 23 
FIGURE 3: MEASUREMENTS PERFORMED WITH DPOJET FROM TEKTRONIX. ....................................................... 24 
FIGURE 4: OVERSHOOT AND UNDERSHOOT. ...................................................................................................... 29 
FIGURE 5: JITTER. .............................................................................................................................................. 30 
FIGURE 6: FREQUENCY PPM. .............................................................................................................................. 30 
FIGURE 7: SLEW RATE. ..................................................................................................................................... 30 
FIGURE 8: BASIC PLL CONFIGURATION. ........................................................................................................... 31 
FIGURE 9: CROSS TALK. .................................................................................................................................... 31 
FIGURE 10: PHASE NOISE. ................................................................................................................................. 31 
FIGURE 11: SPREAD SPECTRUM CLOCK PROFILE. ............................................................................................. 32 
FIGURE 12: POWER MANAGEMENT STATES. ..................................................................................................... 32 
FIGURE 13: DUTY CYCLE. ................................................................................................................................. 32 
FIGURE 14: NMOS AND PMOS MODELS. .......................................................................................................... 34 
FIGURE 15: CONFIGURATION OF MODEL IN ADS. ............................................................................................. 34 
FIGURE 16: CMOS INVERTER. .......................................................................................................................... 35 
FIGURE 17: PMOS TO NMOS COMPENSATION. .................................................................................................... 35 
FIGURE 18: IN VS. OUT PLOT, SWEEPING “IN” VOLTAGE. ................................................................................... 36 
FIGURE 19: IN VS. OUT, APPLYING A SQUARE SIGNAL. ...................................................................................... 37 
FIGURE 20: NMOS LEG. ..................................................................................................................................... 37 
FIGURE 21: NMOS WIDTH ADJUSTMENT CIRCUIT. ............................................................................................. 38 
FIGURE 22: SELECTED NMOS WIDTH. ............................................................................................................... 39 
FIGURE 23: PMOS LEG. ...................................................................................................................................... 40 
FIGURE 24: PMOS WIDTH ADJUSTMENT CIRCUIT. .............................................................................................. 40 
FIGURE 25: SELECTED PMOS WIDTH. ................................................................................................................ 42 
FIGURE 26: NMOS LEG. A) CIRCUIT. B) SYMBOL. .............................................................................................. 43 
FIGURE 27: NMOS RCOMP VERIFICATION CIRCUIT. ........................................................................................... 44 
FIGURE 28: NMOS RCOMP CIRCUIT SIMULATION RESULT. ................................................................................. 45 
FIGURE 29: PMOS LEG. A) CIRCUIT. B) SYMBOL................................................................................................ 45 
FIGURE 30: PMOS RCOMP VERIFICATION CIRCUIT. ............................................................................................ 46 
FIGURE 31: PMOS RCOMP CIRCUIT SIMULATION RESULT. .................................................................................. 47 
FIGURE 32: NMOS RCOMP SIMULATION FOR A 33Ω DRIVER. ............................................................................. 47 
FIGURE 33: PMOS RCOMP SIMULATION FOR A 33Ω DRIVER. .............................................................................. 48 
FIGURE 34: JLCPCB TRACK STRUCTURE FOR SINGLE-ENDED TL..................................................................... 49 
FIGURE 35: JLC7628 PCB STACK-UP. .............................................................................................................. 49 
FIGURE 36: LINE CALCULATOR, IN ADS. .......................................................................................................... 50 
FIGURE 37: LINECALC IN ADS, 50Ω SINGLE-ENDED TL. ................................................................................. 50 
FIGURE 38: JLCPCB TRACK STRUCTURE FOR DIFFERENTIAL TL. ..................................................................... 51 
FIGURE 39: LINECALC IN ADS, 100Ω DIFFERENTIAL TL. ................................................................................ 52 
FIGURE 40: SINGLE-ENDED BUFFER. A) IMPEDANCE CONTROL. B) SINGLE-ENDED BUFFER. ............................ 53 
FIGURE 41: MLIN TRANSMISSION LINE. ........................................................................................................... 53 
FIGURE 42: 10PF CAPACITOR LOAD. ................................................................................................................. 54 
FIGURE 43: SMALLEST INVERTER, SINUSOIDAL INSTEAD OF SQUARE. .............................................................. 54 



14 
 

FIGURE 44: INVERTER FOR BUFFER, THE ADJUSTMENT CIRCUIT. ....................................................................... 55 
FIGURE 45: INVERTER ADJUSTED, THE SQUARE SIGNAL AT FAR END. ............................................................... 56 
FIGURE 46: INVERTER. A) CIRCUIT. B) SYMBOL. ............................................................................................... 56 
FIGURE 47: COMPLEMENTARY BUFFER. ............................................................................................................ 57 
FIGURE 48: IMPEDANCE CONTROL FOR 50Ω. A) PMOS. B) NMOS. ..................................................................... 58 
FIGURE 49: COMPLEMENTARY BUFFER DRIVING A 100Ω DIFFERENTIAL TL. ................................................... 59 
FIGURE 50: UNDERSHOOT, SCENARIO 1. ............................................................................................................ 62 
FIGURE 51: UNDERSHOOT, SCENARIO 2. ............................................................................................................ 63 
FIGURE 52: UNDERSHOOT, SCENARIO 3. ............................................................................................................ 64 
FIGURE 53: POWER SUPPLY PLUS NOISE. ........................................................................................................... 65 
FIGURE 54: JITTER PP VS. NOISE FREQUENCY. .................................................................................................. 66 
FIGURE 55: WAVEFORM AND DENSITY, FREQUENCY EFFECT. ........................................................................... 67 
FIGURE 56: JITTER PP VS. SYSTEM CONFIGURATION. ........................................................................................ 67 
FIGURE 57: WAVEFORM AND DENSITY, BUFFER, LENGTH, LOAD, AND NOISE EFFECT. .................................... 68 
FIGURE 58: COLPITTS OSCILLATOR TANK CIRCUIT. .......................................................................................... 70 
FIGURE 59: OSCILLATOR LC COLPITTS AT 32.768KHZ. .................................................................................... 70 
FIGURE 60: OSCILLATOR LC COLPITTS AT 100MHZ. ........................................................................................ 71 
FIGURE 61: THREE CASCADED INVERTERS........................................................................................................ 72 
FIGURE 62: THREE CASCADED CML. ................................................................................................................ 73 
FIGURE 63: PPM RESULTS, CML VS. INVERTER. .................................................................................................. 74 
FIGURE 64: JITTER RESULTS, CML VS. INVERTER. .............................................................................................. 74 
FIGURE 65: EYE DIFF PROBE SETUP. A) EYE DIFF PROBE. B) CONFIG SCREEN. ................................................. 76 
FIGURE 66: RISE SLEW RATE VS. SYSTEM CONFIGURATION. ............................................................................ 76 
FIGURE 67: SPICE DIRECTIVES. A) MENU. B) EDITOR. ....................................................................................... 82 
FIGURE 68: COLPITTS FOR 32.768KHZ SIMULATION.......................................................................................... 82 
FIGURE 69: OSCILLATOR LC COLPITTS AT 100MHZ. ........................................................................................ 84 
FIGURE 70: THREE CASCADED INVERTERS........................................................................................................ 85 
FIGURE 71: THREE CASCADED CML. ................................................................................................................ 87 
FIGURE 72: BASIC PLL CONFIGURATION. .......................................................................................................... 91 
FIGURE 73: PLL CIRCUIT, IMPLEMENTED IN LTSPICE. ....................................................................................... 91 
FIGURE 74: PHASE FREQUENCY DETECTOR AND CHARGE PUMP. ...................................................................... 92 
FIGURE 75: PLL BANDWIDTH. .......................................................................................................................... 93 
FIGURE 76: VOLTAGE CONTROLLED OSCILLATOR. ........................................................................................... 94 
FIGURE 77: SPREAD SPECTRUM ADDITION TO PLL. .......................................................................................... 97 
FIGURE 78: TRIANGULAR SSC SIGNAL. ............................................................................................................. 97 
FIGURE 79: VREF VS. VOUT WITH SSC. A) FFT ANALYSIS. B) ZOOM AT 100MHZ. ........................................... 98 
FIGURE 80: VREF VS. VOUT WITHOUT SSC. A) FFT ANALYSIS. B) ZOOM AT 100MHZ...................................... 98 
FIGURE 81: THREE CASCADED CML. ................................................................................................................ 99 
FIGURE 82: MODELS TWEAKED. TOP LEFT: WCS. TOP RIGHT: TYP. BOTTOM: BCS ......................................... 100 
FIGURE 83: INCLUSION OF THE MODEL. A) WCS. B) TYP. C) BCS. .................................................................... 100 
FIGURE 84: BCS, TYP, WCS, PPM RESULTS. .................................................................................................... 100 
FIGURE 85: BCS, TYP, WCS, JITTER RESULTS. ................................................................................................. 101 
FIGURE 86: BCS, TYP, WCS, RISE TIME, FALL TIME, MAX RESULTS. ................................................................ 101 
FIGURE 87: BCS, TYP, WCS, RISE TIME, FALL TIME, MIN RESULTS. ................................................................. 102 
FIGURE 88: MONTE CARLO CONFIGURATION OF THE NMOS. A) M3. B) M7. C) M9. ........................................ 102 



15 
 

FIGURE 89: MONTE CARLO RESULTS, PART 1. ................................................................................................. 103 
FIGURE 90: MONTE CARLO RESULTS, PART 2. ................................................................................................. 103 
FIGURE 91: MONTE CARLO RESULTS, PART 3. ................................................................................................. 103 
FIGURE 92: MONTE CARLO RESULTS, PART 4. ................................................................................................. 104 
FIGURE 93: MONTE CARLO RESULTS, PART 5. ................................................................................................. 104 



16 
 

LIST OF TABLES 

TABLE 1: RESULTS REPORT, GENERATED WITH THE SKYWORKS TOOL. ............................................................. 23 
TABLE 2: ELECTRICAL PARAMETER FAILED VS. IMPACT. .................................................................................. 28 
TABLE 3: PMOS WIDTH ADJUSTMENT OF THE INVERTER. .................................................................................. 36 
TABLE 4: NMOS WIDTH ADJUSTMENT. .............................................................................................................. 38 
TABLE 5: PMOS WIDTH ADJUSTMENT. ............................................................................................................... 41 
TABLE 6: L, W, AND R, FOR 50Ω AND 250Ω NMOS LEGS. ................................................................................ 42 
TABLE 7: L, W, AND R, FOR 50Ω AND 250Ω PMOS LEGS. ................................................................................. 45 
TABLE 8: TUNING OF THE INVERTER FOR THE BUFFER. ..................................................................................... 54 
TABLE 9: COLPITTS 32P768KHZ, SIMULATING 240MS. ...................................................................................... 71 
TABLE 10: COLPITTS 100MHZ, SIMULATING 400US. ......................................................................................... 72 
TABLE 11: PARAMETER CHANGE VS. SLEW RATE. ............................................................................................ 77 
TABLE 12: ELMORE'S DELAY. ........................................................................................................................... 77 
TABLE 13: DESIGN GOAL VS. BANDWIDTH. ...................................................................................................... 93 
TABLE 14: PLL LOOP FILER ADJUSTMENT, C1 SWEEP. ..................................................................................... 94 
TABLE 15: PLL LOOP FILTER ADJUSTMENT, C2 SWEEP. .................................................................................... 94 
TABLE 16: PLL LOOP FILTER ADJUSTMENT, R1 SWEEP. .................................................................................... 95 
TABLE 17: MONTE CARLO, JITTER AT OUTPUT V4, AN EXAMPLE OF RESULTS. ................................................ 104 

 

  



17 
 

LIST OF ACRONYMS AND ABBREVIATIONS 

   
ADS  Advanced Design System (simulation tool from Keysight) 
Client segment  The market segment for Laptop and Desktop computers 
CML  Current Mode Logic 
CMOS  Complementary Metal Oxide Semiconductor 
DC  Direct Current 
Debug  Process of identifying and correcting errors or issues in 

electronic circuits 
Device segment  The market segment for mobile devices like Tablets and 

Cellphones 
EMI  Electromagnetic Interference 
FR4  Flame Retardant level 4 
GS/s  Giga Samples per second 
IC  Integrated Circuit 
Imgclk  Image Clock, for camera circuit 
ITESO  Instituto Tecnológico y de Estudios Superiores de Occidente 

Western Institute of Technology and Higher Education 
Nmos  N-channel Metal Oxide Semiconductor 
PCB  Printed Circuit Board 
PCIe  Peripheral Component Interconnect Express 
PLL  Phase Lock Loop 
Pmos  P-channel Metal Oxide Semiconductor 
Post-silicon  Silicon physically built 
PPM  Parts per Million 
Pre-silicon  Before building silicon 
PVT  Process, Voltage, Temperature 
Rcomp  Compensating Resistor 
RVP  Reference Validation Platform 
Rx  Receiver 
SCLK  System Clock 
Server segment  The market segment for server systems 
SoC  System on Chip 
SR  Slew Rate 
SSC  Spread Spectrum Clock 
Stepping  The version or release of the IC 
Test Plan  Plan or list of electrical tests for validation 
Tx  Transmitter 
VCO  Voltage Controlled Oscillator 
Vdd  Drain Voltage, a typical name for a circuit’s supply voltage 
Z  Impedance 

  



18 
 

 

 

 

 

 

1. INTRODUCTION 

Summary: In this chapter, we will discuss the electrical validation of clock signals at the system level. We 

will explain the problem, justify it, and present hypotheses. We will also define general and specific 

objectives to achieve in this work. 
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1.1. Background 
System Clock (SCLK) is the name of a circuit, which is inside of an Integrated Circuit (IC), that generates 

and distributes clock signals to several components, inside and outside of the IC, so they can perform their 

function. The clock signals in a system are, comparably, what the heart is for the human body, these are 

pulses that set the rhythm at which diverse circuits get synchronized and work in harmony. 

The SCLK circuit, besides clocking internal circuitries within the IC, provides clock signals to several 

components in a system, at the printed circuit board (PCB) level, also known as a “motherboard” or 

platform, with multiple ICs, and connectors for external electronic cards. At the system level, the SCLK 

must manage several frequencies, trace lengths, and market segments, such as device, client, or server 

segments. More details are in section 3.1. 

Similarly, to any commercialized product, the SCLK circuit must pass through the electrical validation 

process before mass production. The validation process, at a high level, consists of several phases, such 

as readiness or planning (during pre-silicon), test plan execution (during post-silicon), repetitions, and 

approval. 

The execution phase includes debugging in case of unsatisfactory results. The repetitions occur when 

improvements are done to the prototype, and approval is for mass production when all technical 

requirements are met. 

During the test plan execution, it is expected that the SCLK works within electrical specifications when it 

is subjected to diverse stress types, for example, supply voltage and temperature variations. Also, we must 

test ICs that resulted to be faster or slower than the average speed of the produced units, this is called 

process corners. By testing at several PVT combinations (process, voltage, temperature), we can discover 

design problems, sooner, during the validation [1]. 

 

1.2. Justification 
It is very important to uncover problems in the SCLK circuit in the early phases of the design or validation 

and to look for the root cause. If defects are found in late phases, it is very expensive to correct them, and 

customers would be impacted. One example of the cost of not discovering a problem in the design, 

prototype, or validation phases, is the so-called “Pentium flaw”, which cost $475 million to the company 

[2]. 

The phases of the product design process are: 

The idea – although building something “new” can be creative, many of the best ideas are the result of 

working on a product that already exists. 

Investigation – We need to test the idea first, before producing the product, this way we can guarantee that 

we are creating a product that people will buy, for example, by making online surveys and asking for 

opinions in forums, among others. 
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Planning – to draw an initial draft of the product, as detailed as possible, with labels explaining its 

characteristics and functions, to make it clear what components or materials will be needed to create the 

product. 

Prototypes – the objective is to create a product, that will be used as a sample for mass production. It is 

unlikely to occur, to have a finished product on the first try, it’s more probable to experiment with several 

versions of the product and make improvements until we get what we’re looking for. 

Validation – every prototype must pass through a validation phase, this is, to put the product to the test, 

and discover its functionality and specifications meeting level, as well as to uncover defects that must be 

corrected and implemented in the next prototype version. 

Supplies – When creating the prototype, we need also to create the supply chain, with suppliers, resources, 

and necessary activities to create the product, and put it in our customer’s hands, storage, and shipment. 

Look for the lower cost – when completing the previous phases, we’ll have a better idea of the cost of 

producing the product, this way we can determine a price and margin [3]. 

 

1.3. The Problem 
The electrical validation at the system level, of the SCLK’s clocks, requires a lot of Signal Integrity 

knowledge [4], as well as to perform measurements in several PVT combinations, topology, clock types, 

etc. This makes the validation cycle so long that it often fits within the validation window, leaving no time 

for debugging. 

The validation timeframe goes from Power-On, which is when the product is just built and ready to get 

powered, to the Tape-In, which occurs when all needed changes have been applied to create the next 

stepping of the product [5]. This time usually takes from 7 to 13 weeks, leaving very little or null time to 

analyze defects. Similarly, being a very complex branch, when there are problems and debugging needs 

to be done, it takes a lot of time due to the complexity of the circuit and the implementation at the system 

level. 

 

1.4. Hypothesis 
We may currently be running too many tests, such as many PVT combinations that do not provide new 

information about the health of the SCLK, that is, validating more than needed. It’s also probable that the 

specific tests that we are running, not all are the best to find defects in the clock’s circuits. 

It is also believed that the lack of certain technical knowledge, about the SCLK and the implementation at 

the system level, is preventing us from finding the root causes of problems in a more efficient manner. 

Such technical knowledge could be, electrical parameters or physical phenomenon comprehension, about 

Jitter, Phase Noise, Slew Rate, Reflections, Impedance mismatches, etc.  

We believe that, by developing technical knowledge and implementing some root cause analysis 

techniques, we could execute a more efficient validation and debugging. 
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1.5. Objectives 
1.5.1. General Objective: 

To improve the actual validation methodology and to increase the technical knowledge about SCLK 

architecture, so our team could easily find defects and their root cause within the validation time frame. 

 

1.5.2. Specific Objectives: 
To reduce the clock’s electrical validation time from 20% to 30% of the actual time. This is, from 10 

weeks down to 7 or 8 weeks, so we can dedicate 2 to 3 weeks to look for the root cause of the defects 

found, before the tape-in of the next stepping. We’re also trying to reduce the debug time by 20% to 30% 

of the current time. 

 

1.6. Contribution of Scientific and Technological Innovation 
This work is a contribution, aiming to optimize the actual clocks electrical validation methodology, as 

well as, to generate technical knowledge, which helps to debug and root cause the defects more efficiently. 
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2. THE STATE OF THE ART 

Summary: This chapter shows a summary of the current electrical validation techniques, and some 

electrical parameters, that once understood, debugging tends to be easier. 
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2.1. The Electrical Validation 
Currently, there exist several tools to calculate electrical parameters, one example is the “PCIe Clock Jitter 

Tool” from Skyworks company [6], which analyzes reference clock signals for PCIe and provides a report 

with an extensive variety of electrical parameters and their values or measurements. The clock signal to 

be entered in the tool must be taken with an Oscilloscope, able to capture 100,000 or more clock cycles, 

with a minimum sample rate of 25 GS/s. Figure 1 shows a 100MHz reference clock signal for PCIe. 

a)      b)  

Figure 1: 100MHz Clock Signal. a) Few clock-cycles. b) More than 100,000 clock cycles. 

The signal is saved and introduced into the Skyworks tool, which will perform an analysis and generate a 

report with the measurements, Table 1 shows an example. 

 

Table 1: Results report, generated with the Skyworks tool. 

Another tool is the “Clock Jitter Tool” from Intel [7], which analyzes the clock signal and provides the 

rms jitter value, along with a “pass” or “fail” statement. Figure 2 shows an example of the analysis 

generated by this tool. 

a)    b)    c)  

Figure 2: Results report. a) Config screen. b) Phase Jitter. c) Peak to Peak and RMS Jitter. 
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Another tool is the Dpojet software from Tektronix [8], which can perform several types of analyses of 

the clock signal, Figure 3 is an example of the measurements obtained with this tool. 

 

Figure 3: Measurements performed with Dpojet from Tektronix. 
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2.2. The Debug 
Debug is the ability to root cause problems, in this case, on clocks at the system level. It is essential to 

understand most of the physical phenomena that occur in electronic systems, such as Jitter, Phase Noise, 

Slew Rate, Reflections, Impedance Mismatch, etc. There exists a lot of bibliographies that explain these 

phenomena, many times these are complicated themes, and it is difficult to associate them with the system. 

In this work, it is planned to cover multiple electrical parameters, and how they are affected by the different 

characteristics of the system, such as topologies, trace lengths, terminations, etc. With this knowledge, the 

validator can do it reversed way, to attack a problem by knowing what could be affecting that specific 

physical phenomenon, then make some experiments or simulations, and find the root cause sooner. 

There are many methodologies to root cause problems, for example, the 5 whys, which consists of making 

consecutive “why” questions on why something is occurring, then asking another “why” to the answer, 

and continuing up to the root cause. Two iterations would be enough, or typically 5, but more could be 

needed. 

Another methodology is the “changes analysis” or “events analysis”, which consists of carefully analyzing 

the changes made, from the moment that the failure didn’t exist up to this moment, this way we can find 

which of the changes provoked the failure to appear. 

Another method is the cause-and-effect fishbone diagram, also known as Ishikawa’s diagram, which 

visually helps to map causes and effects. It can help to identify the possible causes of a problem and 

encourage us to follow categoric branches to the possible causes until we find the correct one. It is like the 

5 whys, but much more visual [9]. 
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3. THEORETICAL 
FRAMEWORK AND 

HISTORICAL DEBUG CASES 

Summary: In this chapter, the theoretical and conceptual foundations for the electrical validation of 

clocks are presented, as well as the parameters or electrical phenomena whose lack of knowledge makes 

it difficult to find root causes in clock integrated circuits and their implementation in a system. We can 

also see the historic list of defects that have been debugged during the validation of past products, in 

which electrical parameters involved are explained to generate technical knowledge. 
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3.1. The electrical validation of clocks at the system level 
Performing system-level electrical validation of clocks means, validating that clock signals arrive with 

signal integrity to the receiver circuits that require them. This document is focused on systems of the 

“Client” market segment. Although it is not focused on the “Devices” or “Server” segments, many of the 

concepts can be applied as well. The Client segment refers to computer systems like Laptops and Desktop. 

The Devices segment refers to mobile devices like Tablets and Cellphones. Similarly, the Server segment 

refers to Server systems. 

Electrical Validation consists of two main phases, pre-silicon, and post-silicon. Pre-silicon is when the 

integrated circuit hasn’t been built yet, many activities occur in this phase for our group, such as product 

specification study, board design guideline review, specifications, schematic and motherboard analysis, 

and test plan creation. Post-silicon starts at Power-On, which is the first time the physical Integrated Circuit 

is being powered up, and The Test Plan is executed, which is when several tests are performed on the 

product, and it finishes at the Production Release milestone. During the execution of the Test Plan, when 

defects are found, debugging must be done to find the root cause as soon as possible. Though the debug 

is not a planned phase, it is inherently added to the process when failures occur. 

This work focuses mainly on reference clocks for PCIe, which are differential clocks that have a frequency 

of 100MHz and travel distances of 3 to 12 inches across the motherboard before reaching the receiver, 

using FR4 board material in either micro-strip or strip-line traces. Clocks, like any other signal, are 

susceptible to being contaminated by other signals as they travel across the board, which generates 

physical phenomena such as jitter, crosstalk, and noise in general.  

In a “Client” system there are many other clocks with several frequencies and topologies, including Single-

Ended clocks. 

In this document, some failure cases will be reviewed on both, differential and single-ended clocks. 

 

 

3.2. Debugging clock defects 
There is no specific debugging methodology or step-by-step guide to finding the root cause of a clock 

problem on the platform. Instead, based on the electrical parameter where the fault is observed, a series of 

experiments are implemented to help expose and understand the defect. There are many methodologies to 

find the root causes of problems, as described in section 0. 

A more efficient debug can be performed when technical knowledge of parameters or phenomena that 

occur in electronic systems is available, such as jitter, crosstalk, slew rate, and reflections, among others. 

Just like these parameters, many others will be analyzed throughout this work to generate knowledge that 

serves to discover the root causes of failures more efficiently and promptly in the validation phase. 
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3.3. Impact Analysis 
The historical debug cases are analyzed in Table 2, The table contains six columns, and the meaning of 
each column is: 
“Electrical Parameter Failed” – This is the parameter or specification that failed to meet the spec during 
validation. 
“Clock affected” – This is the name of the clock or the circuit that showed the malfunction. 
“Impact” – It shows the actions to do to fix the problem, either redesigning the board or silicon or re-
validation efforts. 
“Recurrence” – In this column there’s a quantification of how frequently the issue has been seen in 
previous projects. 
“Time to fix” – This is the average time that it takes to fix the problem. 
“Rating” – This is the weighing of every parameter, the value in this column shows the result of 
multiplying the factors from columns: Impact, Recurrence, and Time to fix, the higher the value, the more 
problematic issue. 
 

Table 2: Electrical parameter failed vs. Impact. 

Electrical 
Parameter 
Failed 

Clock 
affected 

Impact Recurrence Time to 
fix 
(weeks) 

Rating 

Undershoot Imaging gpio 
clock for 
Camera 

5- Very high, it might 
trigger board redesign. 

3- Medium, 
only seen in 
one project 

20 weeks 300 

Jitter PCIe Serial 
Reference 
Clock (SRC) 

5- Very high, we need to 
perform experiments to 
find the cause, it might 
trigger board or Silicon 
circuit redesign or 
settings workaround. 

4- High, seen 
in some 
projects 

Few to 
several 
weeks (10 
weeks 
average) 

200 

Frequency ppm Susclk from 
Real Time 
Clock 

4- High, we need to tune 
the capacitor value for 
the board. Replace and 
remeasure. 

5- Very high, 
seen in many 
projects 

7 weeks 140 

Slew Rate PCIe Serial 
Reference 
Clock (SRC) 

4- High, we need to 
collect a lot of data, in 
several topologies, 
involve many 
stakeholders in meetings 

5- Very high, 
seen in many 
projects 

7 weeks 140 

Other PLL 
issues 

PLL itself 2- Low impact on our 
team because we don’t 
own the PLL validation. 
It could trigger settings 
changes or Silicon 
circuit changes. Either 
way, we need at least to 
understand PLL basics. 

5- Very high, 
seen in many 
projects 

Few to 
several 
weeks (10 
weeks 
average) 

100 

Cross talk Crystal 
circuit, latest 
in 2015 

4- High, it might trigger 
board redesign. 

1- Very low, 
issue not seen 
since 2015 

20 weeks 80 

Phase Noise Universal 
Flash 
Storage 
(UFS) 

4- High, We can’t afford 
the cost of a PXA 
because it is used only a 
few weeks per year, and 

3- Medium, 
only seen in 
one project 

5 weeks 60 
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Reference 
Clock 

we only have an 
oscilloscope. 

SSC profile 
from PLL 

PCIe Serial 
Reference 
Clock (SRC) 

2- Low, we typically 
need to tune two settings 
in the PLL. 

5- Very high, 
seen in many 
projects 

3 weeks 30 

Power 
Management 
states 

It could be 
any 

2- Low impact on our 
team because we don’t 
own the PM validation. 
It could trigger Software 
flow changes. We could 
study more on this in 
future analyses. 

1- Very low, 
our team hasn't 
been involved 
in these debugs 

A few 
weeks (3 
weeks) 

6 

Duty Cycle Imaging gpio 
clock for 
Camera 

1- Very low, last time it 
was seen by the pre-
silicon team, it was not 
seen during post-silicon 
validation 

1- Very Low, 
issue not seen 
yet during 
validation 

3 weeks 3 

 

3.4. Electrical Parameters Review 
Explaining every electrical parameter from Table 2. 

Undershoot: This is a type of signal integrity issue that occurs when a signal’s voltage drops below its 

intended low level, Figure 4, It can cause incorrect data transmission, especially in digital circuits, or even 

damage to the circuits [4]. Undershoot occurs when the impedance of the signal path is not matched 

properly, leading to reflections that cause the voltage to drop below the expected level. This can be caused 

by factors such as improper termination, incorrect trace lengths, or insufficient drive strength. To mitigate 

undershoot, designers use techniques such as adding series resistors to limit the current flow and prevent 

overshoot/undershoot, adjusting the drive strength of the signal source, or using impedance matching 

techniques to ensure that the signal path is properly matched. 

 

Figure 4: Overshoot and Undershoot. 

 

Jitter: It is a measure of significant variations of a digital signal from its ideal position in time, affecting 

signal phase, width, and period, Figure 5. Jitter is an unwanted factor that can lead to an increase in the bit 

error rate of a serial link [10]. One type of jitter is Random, which is unbounded and can take any shape, 

also known as Gaussian jitter, the other type is Deterministic, which is a predictable jitter, it is further sub-

categorized as period jitter, bounded uncorrelated jitter, and data-dependent jitter. 
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Figure 5: Jitter. 

 

Frequency ppm: This is a measure of frequency precision, Figure 6, represents the output variation due 

to external conditions like temperature, voltage, and load changes, as well as aging. It is typically 

expressed in parts per million (ppm) [11]. For example – if a quartz oscillator has an output frequency of 

1MHz (1,000,000 Hz) and it has a Frequency Stability of 5ppm, it will vary in frequency by 5 Hz. 

 

Figure 6: Frequency ppm. 

 

Slew Rate: It is defined as the rate at which an electronic circuit or device can change its output voltage 

or current, Figure 7. It is often expressed in volts per nanosecond (V/ns) or amperes per nanosecond (A/ns) 

[12]. 

 

Figure 7: Slew Rate. 

 

Other PLL issues: These refer to a variety of issues seen in PLLs, Figure 8, such as locking, lock time, 

bandwidth, stability, and others. This document doesn’t intend to explain PLL debugging since it is out of 

our team validation scope, but still, we’re trying to explain PLL’s functionality for engineers to have a 

basic understanding of it [13]. 
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Figure 8: Basic PLL Configuration. 

 

Cross talk: It is one of the signal-integrity problems. It is the transfer of an unwanted signal from one net 

to an adjacent net and will occur between every pair of nets, Figure 9. The net with the source of the noise 

is typically called the active net of the aggressor net. The net receiving the noise is called the quiet net or 

the victim net [14]. 

 

 

Figure 9: Cross Talk. 

 

Phase Noise: It is typically characterized by a frequency offset from the carrier frequency, and it is usually 

expressed in units of decibels relative to the carrier (dBc), Figure 10. The lower the dBc value, the better 

the phase noise performance of the oscillator. Phase noise is defined as the ratio of the noise in a 1-Hz 

bandwidth at a specified frequency offset, fm, to the oscillator signal amplitude at frequency fo [15]. 

 

Figure 10: Phase Noise. 

 

SSC profile from PLL: SSC is the variation of the frequency of a clock signal in a controlled way, Figure 

11. In the frequency domain, the SSC reduces the peak amplitude of a digital clock signal by shifting the 

frequency. In other words, the energy of the clock is spread, decreasing the peak values of the radiation, 

and it can help with EMI reduction [16]. 
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Figure 11: Spread Spectrum Clock Profile. 

 

Power Management states: These relate to states where the power consumption, of a system, is lower or 

higher. To the user, a computer system appears to be either on or off, there are no other detectable states, 

Figure 12. However, the system supports multiple power states, such as working, standby, sleep, and 

hibernating, among others [17]. 

 

Figure 12: Power Management States. 

 

Duty Cycle: It is the ratio of time a load or circuit is “on” compared to the time the load or circuit is “off”, 

Figure 13. It is sometimes called the “duty factor”, and it is expressed as a percentage of “on” time [18]. 

A 60% duty cycle is a signal that is “on” 60% of the time and “off” the other 40%. 

 

Figure 13: Duty Cycle. 
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4. CLOCK BUFFER 
ARCHITECTURE 

Summary: Many circuits are being designed and explained within this chapter, from CMOS inverters to 

single-ended and complementary buffers with controlled impedance. The design of the transmission lines 

is also explained here.  
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4.1. The Pmos and Nmos models 
One of the tools used during this work is ADS from Keysight company, this tool was learned from the 

course “High Frequency Electronic Design” in ITESO. 

Many of the circuits that we’ll simulate use Pmos and Nmos transistors, and we need to get their model, 

shown in Figure 14, these models are obtained from the “Predictive Technology Model” web page [19]. I 

decided to use the 180nm transistor model [20] because this is the technology we studied in the course 

“Design of Analog Integrated Circuits” so I could use the license owned by the ITESO if needed. 

 

Figure 14: NMOS and PMOS models. 

 

4.1.1. Configuring ADS to use the Pmos/Nmos model 
In ADS, under “Data Items”, select “Netlist”, then double click on the “Netlist Include” object from the 

schematic, select “IncludeFiles[1]=”, browse for the model’s .txt file, click apply and Ok. Figure 15. 

 

  

Figure 15: Configuration of Model in ADS. 
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4.2. The Inverter 
One of the basic CMOS circuits is the Inverter,  which is built with one Pmos and one Nmos transistor, 

connected as in Figure 16. When one transistor is On, the other is Off [21]. 

 

Figure 16: CMOS Inverter. 

 

Though Nmos and Pmos supposedly work the same, in reverse to each other, this is not physically true, 

electrons in Nmos move faster than holes in a Pmos; therefore, Pmos transistors must be compensated, 

and this is done by increasing its “width” to more than twice the Nmos “width”. The circuit in Figure 17 

is used to make this compensation. 

According to my notes from the course “Design of Analog Integrated Circuits”, for a 180nm technology, 

the minimum channel “length” is L = 180nm, and it is recommended to use L = 200nm for layout. 

The minimum channel “width” is W = 320nm, which is derived from the rules of escalation of the 

technology, and it takes “distance to edge”, “contact size” and “contact separation” into consideration, it 

is recommended to use W = 360nm for layout, which is twice the L , so we avoid manufacturing issues 

by separating from the minimum sizes. 

 

Figure 17: Pmos to Nmos compensation. 
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Steps to do the compensation: use the smaller recommended Length/Width values for the Nmos, which is 

200nm/360nm, then use the smaller recommended Length and twice the Nmos Width for the Pmos, which 

is 200nm/720nm. Apply 0.9V (which is half of Vdd) to input “In” and measure Output “Out”. 

Increase or decrease the Pmos Width until “Out” is equal to “In”. In this example, “Out” equal to “In” was 

obtained in Try # 8, Table 3. And Pmos width is 2.35 times Nmos width. 

Table 3: Pmos Width adjustment of the Inverter. 

Try # In Out Nmos L/W Pmos L/W 
1 0.9V 0.646V 200nm/360nm 200nm/720nm 
2 0.9V 0.813V 200nm/360nm 200nm/800nm 
3 0.9V 0.994V 200nm/360nm 200nm/900nm 
4 0.9V 0.907V 200nm/360nm 200nm/850nm 
5 0.9V 0.889V 200nm/360nm 200nm/840nm 
6 0.9V 0.898V 200nm/360nm 200nm/845nm 
7 0.9V 0.902V 200nm/360nm 200nm/847nm 
8 0.9V 0.90014V 200nm/360nm 200nm/846nm 

 
Another way to do the compensation is by sweeping Input “In” from 0 to 1.8V, plotting In vs. Out signals, 

then increasing or decreasing Pmos Width till “In” and “Out” cross at 0.9V. Figure 18. 

 

Figure 18: In vs. Out plot, sweeping “In” voltage. 

 

The “Out” signal should have the same amplitude as the “In” signal but delayed 180°, so when the Input 

is a 1 logic, the Output is a 0 logic, and the other way around. This can be verified by applying a square 

signal to the Inverter and measuring the output. Also, the cross point, where signals are crossing each 

other, occurs at half Vdd, which is 0.9V. Figure 19. 
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Figure 19: In vs. Out, applying a square signal. 

 

4.3. Nmos Leg Tuning 
The Nmos leg is one of the circuits of a complementary buffer with controlled impedance. When designing 

a 50Ω driver, the three typical designs are: 90/10 design, which means 90% resistor, 10% transistor, 

similarly, an 80/20 design means 80% resistor, 20% transistor, as well as 70/30 design meaning 70% 

resistor, 30% transistor. The resistors in silicon show fewer variations to process and temperature because 

their response is linear to voltage, while the transistors show more variations to process, voltage, and 

temperature, because the response is not linear, it passes through different operation regions. 

In this case, I’m focusing on an 80/20 design, in which, the driver consists of one resistor of 40Ω in series 

with two Nmos transistors, from Out to Gnd as in Figure 20.  

 

Figure 20: Nmos leg. 
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One of the Nmos transistors receives the clock signal from the controller, to be transmitted out of the 

buffer. The other Nmos transistor is gated by an “En” control signal, it helps to enable or disable a specific 

leg, so we can create a controlled impedance buffer. 

The width of the Nmos transistors must be adjusted to get ~5 Ohm dc resistance on each, and both added 

to the 40Ω resistor, create a 50Ω driver. The circuit in Figure 21 is used to adjust the Width of the Nmos 

transistors. When using the minimum recommended Length/Width, whose are 200nm/360nm, we are 

getting 1.793V at Vpad. 

 

Figure 21: Nmos Width adjustment circuit. 

 

The objective is to have half Vdd, which is 0.9V, at the Vpad node. This can be done by increasing the 

Width of the Nmos transistors while keeping the minimum recommended Length, of 200nm. Table 4 

shows the iterations tried, increasing the Width of the Nmos transistors, and measuring Vpad until we get 

0.9V. 

Table 4: Nmos Width adjustment. 

Nmos 1 and 2, Length Nmos 1 and 2, Width Vpad Error (Vpad – Target) 
200nm 360nm 1.793V 893mV 
200nm 720nm 1.787V 887mV 
200nm 1.44um 1.774V 874mV 
200nm 2.88um 1.748V 848mV 
200nm 5.76um 1.696V 796mV 
200nm 11.52um 1.595V 695mV 
200nm 23.04um 1.402V 502mV 
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200nm 46.08um 1.146V 246mV 
200nm 92.16um 0.983V 83mV 
200nm 184.32um 0.893V -7mV 
200nm 180.00um 0.896V -4mV 
200nm 175.00um 0.898V -2mV 
200nm 170.00um 0.901V 1mV 
200nm 171.00um 0.90049V 0.49mV 
200nm 172.00um 0.899929220V 0.07078mV  
200nm 173.00um 0.899V -1mV 
200nm 171.90um 0.899985966V -0.014034mV 
200nm 171.85um 0.900014363V 0.014363mV 
200nm 171.875um 0.900000162V 0.000162mV - Selected 
200nm 172.876um 0.899999594V -0.000406mV 

 

Figure 22 shows the circuit with the selected values, Length=200nm and Width=171.875um for the Nmos 

leg and measuring Vpad. 

 

Figure 22: Selected Nmos Width. 
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4.4. Pmos Leg Tuning 
Similarly, the Pmos leg is a circuit as shown in Figure 23, for an 80/20 design, the driver consists of two 

Pmos transistors in series with one resistor of 40Ω, from Vdd to Out. 

 

Figure 23: Pmos leg. 

 

The circuit in Figure 24 is used to adjust the Width of the Pmos transistors. When using the minimum 

recommended Length/Width, whose are 200nm/360nm, we are getting 3mV at Vpad. 

 

Figure 24: Pmos Width adjustment circuit. 
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Similarly, as in the Nmos leg adjustment, the objective is to have half Vdd, which is 0.9V, at the Vpad 

node. This can be done by increasing the Width of the Pmos transistors while keeping the minimum 

recommended Length, of 200nm. Table 5 shows the iterations by increasing the Width of the Pmos 

transistors and measuring the Vpad until we get 0.9V. 

 

Table 5: Pmos Width adjustment. 

Pmos 1 and 2, Length Pmos 1 and 2, Width Vpad Error (Vpad – Target) 
200nm 360nm 0.003V -897mV 
200nm 720nm 0.005V -895mV 
200nm 1.44um 0.011V -889mV 
200nm 2.88um 0.021V -879mV 
200nm 5.76um 0.043V -857mV 
200nm 11.52um 0.084V -816mV 
200nm 23.04um 0.166V -734mV 
200nm 46.08um 0.317V -583mV 
200nm 92.16um 0.550V -350mV 
200nm 184.32um 0.750V -150mV 
200nm 368.64um 0.869V -31mV 
200nm 737.28um 0.933V 33mV 
200nm 700um 0.930V 30mV 
200nm 600um 0.919V 19mV 
200nm 500um 0.903V 3mV 
200nm 450um 0.892V -8mV 
200nm 475um 0.898V -2mV 
200nm 485um 0.8997753784V -0.2246216mV 
200nm 486um 0.899975262V -0.024738mV 
200nm 487um 0.900174352V 0.174352mV 
200nm 486.2um 0.9000151435V -0.0151435mV 
200nm 486.1um 0.8999952068V -0.0047932mV 
200nm 486.15um 0.900005176V 0.005176mV 
200nm 486.14um 0.900003182V 0.003182mV 
200nm 486.13um 0.900001189V 0.001189mV 
200nm 486.12um 0.899999195V -0.000805mV 
200nm 486.121um 0.8999993941V -0.0006059mV 
200nm 486.122um 0.8999995935V -0.0004065mV 
200nm 486.123um 0.899999793V -0.000207mV 
200nm 486.124um 0.899999992V -0.000008mV - Selected 
200nm 486.125um 0.900000192V 0.000192mV 
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Figure 25 shows the circuit with the selected values, Length=200nm and Width=486.124um for the Pmos 

leg and measuring Vpad. 

 

Figure 25: Selected Pmos Width. 

 

4.5. Programmable Impedance Driver 
We can create a programmable impedance driver by putting some replicas of the Nmos and Pmos tuned 

legs. In this example we’re putting 10 legs of each, Nmos and Pmos, we’re selecting the values of W, L, 

and R to get a 50Ω driver when 5 of the 10 legs are used. Every one of the 10 legs must have a DC 

resistance of 250Ω, so when 5 legs are On, the equivalent DC resistance will be 50Ω, this is because they 

are in parallel to each other. 

We want the driver to be tuned at 50Ω with 5 of the 10 legs, in typical, this is in the middle, so when 

working with best and worst cases, we can have the margin to add or remove legs. 

4.6. Nmos Rcomp for a 50Ω Driver 
From the tuned values, found at the Nmos leg tuning, section 4.3, we can create a 250Ω leg by multiplying 

the Resistor by 5 and dividing the Width by 5. Length mustn’t change. Values can be seen in Table 6 and 

the Nmos leg is shown in Figure 26. 

Table 6: L, W, and R, for 50Ω and 250Ω Nmos Legs. 

Length Width Resistor Nmos Leg DC resistance 
200nm 171.875um 40Ω 50Ω 
200nm 34.375um 200Ω 250Ω 
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a)      b)  

Figure 26: Nmos Leg. a) Circuit. b) Symbol. 

 

The circuit in Figure 27 helps to verify that the Nmos driver is tuned to 50Ω when 5 of the 10 legs are 

turned On. The “Nmos_Leg” X1<0:9> block contains 10 Nmos legs in parallel, the Nmos leg Clk_N and 

En_N pins are controlled with VtStep sources, which transition from 0V to 1.8V in a sequence, after 

100usec each. The Nmos are activated with 1.8V. The OpAmp is an Operational Amplifier used as a 

comparator, it compares the 0.9V Vref to the voltage at Vpad. We’re putting a 2pF load at the output of 

the comparator, this is only to have a small load and not an open circuit and to avoid errors in the simulation 

tool. Vdd is 1.8V. 
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Figure 27: Nmos Rcomp verification circuit. 

 

The expectation is that the Vcomp output transitions from 1.8V to 0V when Vpad is equal to Vref=0.9V, 

this is expected to happen when 5 of the 10 legs are activated. Figure 28 shows the simulation of the 

circuit, we can see that effectively, the Vpad is equal to Vref when 5 legs are active, and Vcomp transitions 

correctly. Every step on the Vpad signal represents one more leg that has turned On. 
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Figure 28: Nmos Rcomp circuit simulation result. 

 

4.7. Pmos Rcomp for a 50Ω Driver 
Similarly, from the tuned values, found at the Pmos leg tuning, section 4.4, Table 7 shows the Length, 

Width, and Resistor values for a 250Ω Pmos leg. This is done by multiplying the Resistor by 5 and dividing 

the Width by 5. Length mustn’t change. The Pmos leg is shown in Figure 29. 

Table 7: L, W, and R, for 50Ω and 250Ω Pmos Legs. 

Length Width Resistor Nmos Leg DC resistance 
200nm 486.124um 40Ω 50Ω 
200nm 97.225um 200Ω 250Ω 

 

a)      b)  

Figure 29: Pmos Leg. a) Circuit. b) Symbol. 

 

Figure 30 shows the circuit to verify that the Pmos driver is tuned to 50Ω when 5 of the 10 legs are turned 

On. The “Pmos_Leg” X1<0:9> block contains 10 Pmos legs in parallel, the Pmos leg Clk_P and En_P 

pins are controlled with VtStep sources, which transition from 1.8V to 0V in sequence, after 100usec each. 
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The Pmos are activated with 0V. The OpAmp is comparing the 0.9V Vref to the voltage at Vpad. The 2pF 

load capacitor avoids errors in the simulation tool. Vdd is 1.8V. 

 

Figure 30: Pmos Rcomp verification circuit. 

 

As expected, the Vcomp output transitions from 0V to 1.8V when Vpad is equal to Vref=0.9V, this occurs 

when 5 of the 10 Pmos legs are activated. Every step on the Vpad signal represents one more leg that has 

turned On. Figure 31 shows the result of the simulation. 
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Figure 31: Pmos Rcomp circuit simulation result. 

 

 

4.8. Nmos and Pmos Rcomp for a 33Ω Driver 
The image clock (Imgclk) is a Single-Ended 33Ω driver. By using the “Programmable Impedance Driver” 

reviewed in section 4.5, we only need to run the Rcomp simulations and check how many legs are needed 

to be enabled to get a 33Ω driver. From the simulation in Figure 32 and Figure 33, we can see that we 

need to activate 8 of the 10 legs to obtain a 33Ω driver.  

 

Figure 32: Nmos Rcomp simulation for a 33Ω driver. 
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Figure 33: Pmos Rcomp simulation for a 33Ω driver. 

 

 

4.9. Single-Ended Non-Ideal 50Ω Transmission Line 
In this section we’ll review how to create a non-ideal Single-Ended Transmission Line in ADS, We need 

it to make simulations with a driver and a transmission line and understand how the clock signal arrives 

at the Far-End receiver, which will be closer to the reality. 

In one of the classes at the ITESO, named “Printed Circuit Board Design Workshop”, I learned that we 

could use specific tools from the PCB suppliers, calculators that help to understand the physical 

dimensions of the tracks for a specific Impedance, one of such calculators is from JLCPCB company [22]. 

In this tool, we need to specify the Impedance that we want, In this example we want a 4-layer PCB 

because we’re considering a simple circuit, we’re selecting the Thickness 1.6mm for a cheaper PCB, the 

thicker the PCB, the more expensive it is. We are considering routing the clock in the outer layer, so the 

inner layer will act as the Return Path, and selecting Single-ended, which is the type on the required 

transmission line. 

The result of the calculation is shown in Figure 34, we’re focusing on the JLC7628 stack-up, which is 

shown in Figure 35, we can see that our 50Ω Single-Ended Transmission Line can be built with a trace 

width of 11.55mil, a height H1 of 7.10mil, a Dielectric Constant of 4.6, and a copper thickness T1 of 

1.4mil. 
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Figure 34: JLCPCB track structure for Single-Ended TL. 

 

JLC7628 Stack-up is shown in Figure 35. In the stack-up, we can see the dimensions of every layer. 

 

Figure 35: JLC7628 PCB Stack-up. 
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Another tool to create a Transmission Line is the built-in calculator, which is built-in in the ADS software, 

it can be opened as shown in Figure 36. 

 

Figure 36: Line Calculator, in ADS. 

In this tool, we want to create an MLIN transmission line, we’re inputting some values that were previously 

obtained with the JLCPCB calculator, such as the height H=7.1mil, the dielectric constant Er=4.6, and the 

copper thickness T=1.4mil, other parameters are left as default. We need to set the Z0 impedance to 50Ω, 

the Frequency at 5GHz, which is the recommended bandwidth for a high-speed clock, and then click on 

“Synthesize”. 

The tool calculates the physical width W and length L, and the electrical length E_Eff, which is related to 

the frequency value, see Figure 37.  

 

Figure 37: LineCalc in ADS, 50Ω Single-Ended TL. 

As we can compare, the width W=11.55mil from the JLCPCB calculator is very similar to the width 

W=11.975mil obtained with the LineCalc tool. This is a good indicator that we’re designing our 

Transmission Line correctly. 

The value of width W=11.975039mil will be used in ADS to create the non-ideal MLIN Transmission 

Line. 
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4.10. Differential Non-Ideal 100Ω Transmission Line 
Following the same tools, as in a single-ended transmission line, we’re now building a Differential non-

ideal transmission line. In the calculator from JLCPCB company [22], we need to specify the impedance 

at 100Ω, 4 layers for this example so the PCB is simple, we’re selecting a thickness of 1.6mm for a cheaper 

PCB. We are considering routing the clock in the outer layer, so the inner layer will act as the Return Path, 

and selecting Differential as the Impedance type, For the Trace space we’re selecting 4mil, this is the 

minimum suggested by the supplier and with this trace space we can save space in our board for more 

traces. 

The result of the calculation is shown in Figure 38, similar to the single-ended transmission line, we’re 

focusing on JLC7628 stack-up, we can see that our 100Ω Differential transmission line can be built with 

a trace width of 4.96mil, a height H1 of 7.10mil, a trace separation S1 of 4.0mil, a dielectric constant of 

4.6, and copper thickness T1 of 1.4mil 

 

Figure 38: JLCPCB track structure for Differential TL. 

 

Next, we’re creating an MCLIN, which is a Differential transmission line with the ADS built-in Line 

Calculator, we’re inputting some values previously obtained with the JLCPCB calculator, such as the 

height H=7.1mil, the dielectric constant Er=4.6, the copper thickness T=1.4mil, other parameters are left 

as default. We need to set the ZE=100Ω, the ZO=50Ω, and the Frequency at 5GHz, and then click on 

“Synthesize”. We’re changing the L to 5507mil which represents a 1ns time delay in the TL, then clicking 

on “Analyze” and observing no change in ZE, ZO, W, and S. This is because the length of the track doesn’t 

affect the impedance. 

We’re obtaining the width W and space S for our transmission line, see Figure 39. 
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Figure 39: LineCalc in ADS, 100Ω Differential TL. 

As we can compare, the width W=4.96mil and the S=4mil from the JLCPCB calculator are very similar 

to the width W=4.119055mil and the S=3.735886mil obtained with the LineCalc tool. This is a good 

indicator that we’re designing our Transmission Line correctly. 

The values of width W=4.119055mil and S=3.735886mil will be used in ADS to create the non-ideal 

MCLIN Transmission Line. 

 

4.11. Single-Ended Buffer 
It was created a Single-Ended buffer in ADS, for Image Clock simulations, shown in Figure 40, which is 

built with 10 Pmos and 10 Nmos legs, the impedance is controlled by providing or not providing voltage 

at the En_P and En_N pins with the V_DC sources, Pmos turns On with 0V and turns Off with 1.8V, while 

Nmos turns On with 1.8V and turns Off with 0V. The driver impedance is set to 33Ω by enabling 8 of the 

10 legs, in each Pmos and Nmos arrays. We’re putting an inverter to the Clk_In signal, it’s just acting like 

a buffer to provide enough power to the Buffer’s Input 
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a)      b)  

Figure 40: Single-Ended buffer. a) Impedance Control. b) Single-Ended Buffer. 

 

The Image Clock drives a PDB’s trace of 15 inches in the motherboard, We’re using a non-ideal MLIN 

Transmission Line in ADS Figure 41, and we’re setting W=11.975039 as obtained in section 4.9. 

 

Figure 41: MLIN Transmission Line. 

The typical load of an Image Clock receiver is 10pF, we’re putting a capacitor at the Far End, Figure 42, 

this is noted as the Imgclk node. 
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Figure 42: 10pF Capacitor Load. 

As we saw in the Inverter section, 4.2, the smallest inverter is made with an Nmos of L/W 200nm/360nm, 

and a Pmos of L/W 200nm/846nm. An inverter of this size is not powerful enough to drive the transmission 

line, As seen in Figure 43, the signal at the Far End is sinusoidal instead of square. VtPulse is injecting a 

clean 19.2MHz clock signal into the buffer 

 

Figure 43: Smallest Inverter, Sinusoidal instead of Square. 

We need to adjust the inverter, we can use the Nmos and Pmos from the tuned legs as a base, Nmos L/W 

of 200nm/34.375um and Pmos L/W of 200nm/97.225um, and adjust Pmos’ width to get Out=In, similarly 

as seen in inverter section, 4.2. Table 8 shows the iterations of the adjustment. 

Table 8: Tuning of the Inverter for the Buffer. 

Try # In Out Nmos L/W Pmos L/W 
1 0.9V 1.171V 200nm/34.375um 200nm/97.225um 
2 0.9V 1.062V 200nm/34.375um 200nm/90.0um 
3 0.9V 0.885V 200nm/34.375um 200nm/80.0um 
4 0.9V 0.904V 200nm/34.375um 200nm/81.0um 
5 0.9V 0.895V 200nm/34.375um 200nm/80.5um 
6 0.9V 0.89954 200nm/34.375um 200nm/80.75um 
7 0.9V 0.89956 200nm/34.375um 200nm/80.751um 
8 0.9V 0.899735 200nm/34.375um 200nm/80.76um 
9 0.9V 0.9005 200nm/34.375um 200nm/80.8um 
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10 0.9V 0.90031 200nm/34.375um 200nm/80.79um 
11 0.9V 0.900021 200nm/34.375um 200nm/80.775um 
12 0.9V 0.9000023 

error: 2.3uV 
200nm/34.375um 200nm/80.774um 

13 0.9V 0.899983 
error: -17uV 

200nm/34.375um 200nm/80.773um 

 

From the iterations, we obtained an Output equal to the Input with a Pmos width of 80.774um, as seen in 

Figure 44. 

 

Figure 44: Inverter for Buffer, the adjustment circuit. 

 

Now the signal at the Far End looks square, although it seems to have a big Overshoot and Undershoot, 

which will be studied in section 5.1, This is the correct waveform, Figure 45. 
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Figure 45: Inverter adjusted, the square signal at Far End. 

Figure 46 shows the adjusted inverter, which is now able to drive the buffer, and its symbol. 

a)      b)  

Figure 46: Inverter. a) Circuit. b) Symbol. 

 

 

4.12. Complementary Buffer 
Also, a complementary buffer was created, which is used for PCIe reference clock simulations, shown in 

Figure 47, This is built with two Single-Ended buffers, it has two sets of Pmos and Nmos legs. Two 

inverters are needed to drive the two buffers, Clk_P signal is inverted related to Clk_N, so the buffers will 

drive a differential transmission line in Odd mode, which is, when one signal is high, the other signal is 

low, and vice versa. 
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Figure 47: Complementary Buffer. 

Similarly, the impedance is controlled with 20 DC power supplies, 10 for the Pmos impedance control, 

and 10 for the Nmos side. To have 50Ω drivers, it’s needed to activate 5 of the 10 legs, as seen in sections 

4.6 and 4.7. Pmos are activated with 0V and deactivated with 1.8V, while Nmos are activated with 1.8V 

and deactivated with 0V, see Figure 48. 
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a)      b)  

Figure 48: Impedance Control for 50Ω. a) Pmos. b) Nmos. 

 This buffer can drive a differential transmission line, like the one designed in section 4.10. Figure 49 

shows the eye-diagram response, V_DC supplies 1.8Vdc, and V_1Tone is an AC source that will be used 

to inject noise to Vdd, we’ll explore this later. VtPulse is injecting a clean 100MHz clock signal into the 

buffer. MCLIN is the non-ideal 100Ω differential transmission line, with a length of 5.507 inches, which 

represents a Time Delay of 1ns. SRC_P and SRC_N are the Far End destiny, we’re mimicking the PCIe’s 

input receiver load with the 2pF capacitors on each line. EyeDiff_Probe is the tool to generate the eye 

diagram from the signal being measured, while EyeProbeSummary records the selected measurements 

from the eye in an Excel output file. NetlistInclude is adding the Pmos/Nmos models, and Transient is the 

directive to simulate 300ns in this case. 



59 
 

 

Figure 49: Complementary Buffer driving a 100Ω Differential TL. 
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5. CASE STUDIES 

Summary: The top four debug cases are studied in this chapter, undershoot, jitter, ppm, and slew rate. 

From these, we can learn what physical changes affect each parameter and therefore improve our analysis 

skills to debug real products. 
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5.1. The “Undershoot” Case Study 
In one of the projects, when we measured overshoot/undershoot in the Image clock, which is the clock 

that synchronizes the camera circuit, we discovered that undershoot was lower than -300mV, which is the 

minimum acceptable voltage. The Specification says, for all input/output voltages, with respect to ground, 

the absolute maximum rating is from -0.3V to Vdd + 1V. 

When debugging, we learned that the Image clock’s driver impedance is 33Ω, and it cannot be changed 

from the SoC, so the impedance matching had to be done in the motherboard, it was also discovered that 

the RVP didn’t intercept a change in the topology, there must be a 10Ω resistor within 1 inch near the 

SoC’s transmitter, and it was not there. There was room for a resistor but only near the End connector, We 

performed measurements in the lab, placing the 10Ω resistor but the undershoot was not fixed. 

We had to wait around 20 weeks for an RVP with the correct topology, this is, with a  10Ω resistor near 

the SoC’s transmitter to re-validate. After this time, when the board was received, we saw that the 

undershoot was within spec in the RVP with the correct location of the resistor. 

In this work, we are making simulations to understand how the “Undershoot” behaves regarding the 

physical location of the resistor in the motherboard. Below we can see, in a simulation environment, the 

undershoot effect in three scenarios, first: when the 10Ω resistor is not in the path, second: when the 10Ω 

resistor is near the End connector, and third: when the 10Ω resistor is near the SoC’s transmitter. We can 

observe that, the “Undershoot” is only passing the spec in the “near to the SoC’s transmitter” case. These 

scenarios were simulated in the ADS tool. 
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5.1.1. Simulation Scenario # 1 
This is the implementation in the initial motherboard that was received. In Figure 50, we have the  33Ω 

Tx driver at the Near End, which is at the left of the figure, then we have a 15 inches 50Ω transmission 

line in the board, all lengths L add up to 15,000mil, ending in a connector at the Far End, at the right, the 

connector is not part of the simulation, one 10pF capacitor termination is emulating the receiver’s input 

load; This value of the capacitor was mentioned by an engineer from Signal Integrity team, this is the load 

they use in their simulations. 

As we can see from the simulation, there are big Overshoot and Undershoot in the signal at Imgclk Far 

End. In this case, only the Undershoot is violating the specification, the lower voltage is -407mV, which 

is less than the minimum spec -300mV. 

 

Figure 50: Undershoot, scenario 1. 
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5.1.2. Simulation Scenario # 2 
In the initial board received, the only physical place where we could put a resistor is at the Far End, which 

is at the right, close to the connector. We put a 10Ω resistor there and performed measurements, but the 

Overshoot was not fixed. Figure 51 shows the simulation of this scenario, we are seeing -395mV, which 

is still lower than the minimum spec -300mV. The problem was not fixed at this point. 

 

Figure 51: Undershoot, scenario 2. 
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5.1.3. Simulation Scenario # 3 
Scenario 3 shows the final resolution, which is to put a 10Ω resistor at a maximum of 1 inch from the Tx 

driver. As commented above, we had to wait 20 weeks for a motherboard with this implementation. When 

received, we performed measurements and saw that the Overshoot was not violating the specification 

anymore. As shown in Figure 52, the simulation result is -175mV, which is higher than the minimum spec 

-300mV. 

 

Figure 52: Undershoot, scenario 3. 

 

5.1.4. Conclusion 
The most important point from this case study is that we could try this simulation in the Readiness phase, 

at design board reviews, which occurs a long time before the board is built, and catch these problems 

earlier so we can reduce or eliminate the debug time for Overshoots and Undershoots. We just need to 

know what the Tx driver impedance is, the impedance of the PCB tracks, any resistor value in the path, 

and the impedance of the load. 
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5.2. The “Jitter” Case Study 
It is very common to see excessive jitter in clocks or data lines, and this is one of the more difficult issues 

to root cause. Some of the common causes of high jitter are: 

- Noisy power supplies, This is noise that can cause fluctuations in the voltage of the clock signal, leading 

to jitter.  

- Signal reflections, When the clock signal is transmitted along a transmission line, signal reflections can 

occur due to impedance mismatch, causing jitter. 

- Crosstalk, is the unwanted coupling of signals between two adjacent conductors. When a clock signal is 

routed too close to other high-speed signals, it can lead to crosstalk and jitter. 

- Ground bounce, is the voltage difference between two points in a ground plane. When the ground plane 

has high impedance, the current flowing through it can cause ground bounce, which in turn causes jitter. 

- Temperature variations, can cause variations in the physical properties of the components, leading to 

variations in the propagation delay of the clock signal. 

To reduce high jitter in clock signals, it is important to minimize the effects of these factors by careful 

circuit design, layout, and component selection. 

 

5.2.1. Noise Frequency Effect 
In this section we’ll purposedly induce jitter to a buffer by applying noise to its power supply, it will be 

applied to the complementary buffer created in section 4.12. This is done by adding a “V_1Tone” source 

in series with the “V_DC” power supply, so Vdd is the addition of both sources, Figure 53. We can control 

the amplitude and frequency of the noise added. 

 

Figure 53: Power supply plus noise. 

 

The suggestion is to add noise with a frequency of 11MHz, which is not a direct multiple of the 100Mhz 

clock, and so not being in phase with it, this way we can find bad jitters sooner during simulation. Few 

other frequency values were simulated to see the effect of the jitter. Every simulation captures one 

microsecond of signal, and it takes about ten seconds to execute, A few cases were run capturing more 

time and it was observed that the jitter didn’t change considerably but took much more time to execute. 

So, one microsecond seemed to be a good time for the analysis. There was no necessity to remove a piece 
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of the signal from the start of the simulation, they ran very clean since the very beginning, which was not 

the case from some simulations we did in LTspice in the early phases of this work. 

The graph in Figure 54 shows the Jitter peak to peak versus the Frequency of the noise, We can see that, 

effectively, 11MHz noise produces a high jitter, around 75ps. While other frequencies produce jitter in the 

range of 70ps to 80ps, we can observe that closer multiples of the clock frequency produce less jitter, these 

are the cases of 25MHz, 50MHz, 100MHz, and 200MHz, with jitter values of 58ps, 18ps, 8ps, and 12ps 

respectively, this could be explained because these values are some ways in phase with the clock. 

 

Figure 54: Jitter pp vs. Noise Frequency. 

 

It can also be observed that 100kHz and 300kHz cause low jitter, The explanations for these could be that 

these are low frequencies compared to the simulation window, which is 1us, This can be better appreciated 

in Figure 55, which shows waveform and eye diagrams in various frequencies. 
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Figure 55: Waveform and Density, frequency effect. 

 

5.2.2. System Variation Effect 
Several simulations were run, making some variations to the system, the results can be seen in Figure 56, 

it was iterated by changing the Buffer Impedance to 33Ω and 50Ω; the length of the transmission line to 

3in, 5.5in, and 12in; the far-end load between 2pF capacitors and 50Ω resistors; the noise related to Vdd 

in percentage with values of 0%, 2,5%, 5% and 10%; and every combination was tried 3 times, just to 

observe run to run variation. The impedance of the transmission line was 100Ω differential in all runs. 

 

Figure 56: Jitter pp vs. System Configuration. 
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We can observe that the larger the transmission line, the greater the jitter pp; it can also be observed how 

jitter goes higher as Vdd noise increases; it was observed a small or null run-to-run variation, this gives 

good confidence in the results; when the line is terminated with the 50Ω load we get the lowest jitter 

values; by changing the Buffer Impedance to 33Ω to force mismatch, the jitter didn’t increase excessively 

as expected, maybe the mismatch was not big enough. The waveforms and eye diagrams for some of the 

combinations can be seen in Figure 57. 

 

Figure 57: Waveform and Density, Buffer, Length, Load, and Noise effect. 

 

5.2.3. Conclusion 
We were able to get jitter increased in our circuit, we applied noise to the power supply at diverse 

frequencies and amplitudes, we tried to mismatch the impedance, increased the length of the transmission 

line, as well as changed the load. Other modifications to the system like crosstalk and temperature 
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variations could be considered in future work. We observed how the clock signal gets jittery by changing 

some of the architecture of the system, This learning can be applied to real systems in the laboratory, and 

by performing some experiments, and changing variables in the system, we could more easily understand 

and find the root cause of real problems. 

 

 

5.3. The “Frequency ppm” Case Study 
In some of the projects we have seen that ppm is out of the specification, in this chapter, we’re trying to 

understand the effect of frequency ppm when modifying the value of certain components in an oscillator 

circuit. 

5.3.1. Parts per Million 
Frequency stability in a crystal oscillator is usually represented in ppm (parts per million). However, it is 

easier to understand this in terms of frequency. The formula below gives the variation in Hz for a specific 

frequency and ppm. There exist many calculators on the web to ease the analysis [11]. 

𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐻𝑧 =
𝑓 ∗ 𝑝𝑝𝑚

10
 

Equation 1: Variation in Hz. 

Where, f = center frequency (in Hz) 

Ppm = frequency variation in ppm 

The frequency stability of a crystal oscillator represents the variation in output frequency due to external 

conditions like temperature variation, voltage variation, output load variation, and frequency aging. 

Using the formula, for a 32.768kHz crystal with 20ppm, we can find that: 

Frequency variation:     0.65536 Hz 
Min Frequency:     32.76734464 kHz 
Max Frequency:     32.76865536 kHz 

Similarly, the formula below can calculate the actual ppm for a measured frequency: 

𝑝𝑝𝑚 =
(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐹𝑟𝑒𝑞 − 𝑖𝑑𝑒𝑎𝑙 𝐹𝑟𝑒𝑞) ∗ 10

𝑖𝑑𝑒𝑎𝑙 𝐹𝑟𝑒𝑞
 

Equation 2: PPM equation. 

Stability tolerance can also be expressed as a percentage of frequency deviation rather than as parts per 
million (ppm). 

0.5% = 5000 ppm 
0.01% = 100 ppm 
0.005% = 50 ppm 
0.001% = 10 ppm 
0.0001% = 1 ppm 
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5.3.2. Colpitts LC Oscillator, Frequency Tuning 
During electrical validation, we debugged some issues related to the Crystal oscillator. In this section we 

are studying, and simulating, the Colpitts oscillator, because they are modeled very similarly to Crystals 

[23]. 

The Colpitts Oscillator design uses two capacitors in series with a parallel inductor to form its resonance 

tank circuit producing sinusoidal oscillations, Figure 58. This LC resonance circuit is connected between 

the collector and the base of a single-stage transistor amplifier, producing a sinusoidal output waveform. 

 

Figure 58: Colpitts Oscillator Tank Circuit. 

The condition for oscillations is: 𝑋 + 𝑋 = 𝑋 . The advantage of this configuration is that, with less 

self and mutual inductance within the tank circuit, frequency stability of the oscillator is improved along 

with a simple design [24]. 

My director helped me to create two Colpitts circuits in Tspice, one of them is for 32.768kHz, the same 

frequency as an RTC crystal, Figure 59. As an exercise, we tried to tune the frequency to 0ppm, this is 

done by tuning C1, C2, and L1. 

 

Figure 59: Oscillator LC Colpitts at 32.768kHz. 

Table 9 shows the iterations trying to tune the circuit to 32.768kHz. We started by changing C1 in one or 

a few pico-Farads and see the effect in ppm; as we can observe in the table, a better ppm can be obtained 

when C1 is increased by only 1pF. Then, taking the C1 value as a base, C2 was changed in a few pico-

Farads, observing that a better ppm is obtained by decreasing C2 1pF. Finally, L1 was changed in a few 

nano-Henry, observing that the best ppm is obtained with no change in L1. Ppm is calculated with Equation 

2. Every run takes approximately 30 seconds to execute in LTspice. 
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Table 9: Colpitts 32p768kHz, simulating 240ms. 

C1 C2 L1 Average mid-
Freq 

Ppm Note 

0.999995uF 10.0uF 25.4435uH 32782.7 448.6  
0.999999uF 10.0uF 25.4435uH 32749.1 -576.8  
1.0uF 10.0uF 25.4435uH 32774 183.1 Default 
1.000001uF 10.0uF 25.4435uH 32764.9 -94.6 better 
1.000002uF 10.0uF 25.4435uH 32756 -366.2  
1.001uF 10.0uF 25.4435uH 32757 -335.7  
1.1uF 10.0uF 25.4435uH 31383.6 -42248.5  
      
1.000001uF 9.999997uF 25.4435uH 32781.9 424.2  
1.000001uF 9.999999uF 25.4435uH 32.766 -61.0 better 
1.000001uF 10.0uF 25.4435uH 32764.9 -94.6 Base 
1.000001uF 10.000003uF 25.4435uH 32.763 -152.6  
      
1.000001uF 9.999999uF 25.442uH 32747.6 -622.6 (480ms)  
1.000001uF 9.999999uF 25.442uH 32757.1 -332.6  
1.000001uF 9.999999uF 25.4435uH 32.766 -61.0 Base/best 
1.000001uF 9.999999uF 25.445uH 32764.4 -109.9  

 

The other Colpitts circuit is for 100MHz, the same frequency as a PCIe reference clock, Figure 60. The 

same exercise was executed, trying to tune the frequency to 0ppm, which is done by tuning C1, C2, and 

L1. 

 

Figure 60: Oscillator LC Colpitts at 100MHz. 

Table 10 shows the iterations when tuning the second circuit to 100MHz. Similarly, we started by changing 

C1 in one pico-Farad step and see the effect in ppm; as we can observe in the table, a better ppm can be 

obtained when C1 is increased by 2pF. Then, taking the C1 value as a base, C2 was changed in a few pico-

Farads, observing that a better ppm is obtained by increasing C2 1pF. Finally, L1 was changed in a few 

pico-Henry, observing that the perfect 0 ppm is obtained by decreasing 10 pH in L1. Similarly, ppm is 

calculated with Equation 2. In this circuit, every run takes approximately 3 minutes to execute in LTspice. 
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Table 10: Colpitts 100MHz, simulating 400us. 

C1 C2 L1 Average mid-
Freq 

Ppm Note 

0.249n 2.5n 10.74n 100480000 4800  
0.25n 2.5n 10.74n 100304000 3040.0 Default-Base 
0.251n 2.5n 10.74n 100123000 1230  
0.252n 2.5n 10.74n 99929400 -706 better 
0.253n 2.5n 10.74n 99761300 -2387  
      
0.252n 2.498n 10.74n 99928800 -712  
0.252n 2.5n 10.74n 99929400 -706 Base 
0.252n 2.501n 10.74n 99937700 -623 better 
0.252n 2.503n 10.74n 99936800 -632  
0.252n 2.505n 10.74n 99936000 -640  
      
0.252n 2.501n 10.725n 100011000 110  
0.252n 2.501n 10.729n 99989000 -110  
0.252n 2.501n 10.73n 100000000 0 Perfect match 
0.252n 2.501n 10.731n 99990100 -99  
0.252n 2.501n 10.74n 99937700 -623 Base 
0.252n 2.501n 10.75n 99890800 -1092  

 

 

5.3.3. Ppm and Jitter, Inverters vs. CML, noise in supply voltage 
Two circuits were created by my director, in these circuits, we’re injecting an ideal signal to either three 

cascaded inverters or three cascaded cml circuits, the intention is to compare their performance about ppm 

and jitter.  

Figure 61 shows the circuit with three cascaded inverters, V1 supplies 1.0V and V2 is sourcing a 9MHz 

signal with different amplitudes to provoke 0%, 1%, 5%, and 10% noise to Vdd. V3 injects an ideal 

100MHz square signal into the first inverter, then its output is entered into the second inverter, and 

successively, its output is entered into the third inverter, and the final output is v4. All Cmiller were put to 

experiment about the parasitic capacitance between the gate and drain, but in the end, all of them have a 

value of 0f. All Pmos have L=180nm and W=8.0um, and all Nmos have L=180nm and W=5.77um. 

 

Figure 61: Three Cascaded Inverters. 
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Figure 62 shows the three cascaded CML circuits, similarly, V1 supplies 1.0V and V2 is sourcing a 9MHz 

signal with various amplitudes, This helps to provoke 0%, 1%, 5%, and 10% noise to Vdd. V3 and V4 

inject an ideal differential 100MHz square signal into the first CML, then its differential output is entered 

into the second CML, and successively, its differential output is entered into the third CML, the final 

differential output is obtained at V4p and V4m. 

 

Figure 62: Three Cascaded CML. 

The current at each CML phase is delimited with Current Mirrors. The phases are scaled, the width of the 

transistors is doubled and the Rcml resistors are divided by two, this way The output voltage of every 

phase is maintained, following the formula below. 

𝑉 = 𝐼𝑅 = 2𝐼
𝑅

2
= 4𝐼

𝑅

4
 

Equation 3: Vout formula. 

In the circuit, Rbias is 10kΩ, M1 L/W is 180nm/6um, and ignoring the Ron of the M1, Rbias is limiting 

the current to 100uA, and when measured we’re seeing 58.2uA, the difference is because the real Ron of 

M1 seems to be ~7kΩ. 

M2 L/W is 180nm/6um, and since M2 has the same size as M1, it is mirroring and setting the same current 

to the 1st CML amplifier, We measured 56.3uA when M3 or M4 is active and up to 58.2uA when they 

transition, Rcml1 are 10kΩ, same as Rbias. 

M5 L/W is 180nm/12.5um, its width is nearly twice as M1, so M5 is mirroring and doubling the current 

to the 2nd CML amplifier, we measured 117.2uA when M6 or M7 is active and up to 121uA when they 

transition, Rcml2 are 5kΩ, which is half Rbias. 

M8 L/W is 180nm/25um, and its width is nearly four times the M1’s width, so M8 is mirroring and 

quadrupling the current to the 3rd CML amplifier, we measured 234uA when M9 or M10 is active and up 

to 241.7uA then they transition, Rcml3 are 2.5kΩ, which is a quarter of Rbias. 

Figure 63 shows the ppm results, v1 is the ideal source, v2 is the output of the first cml/inverter, v3 is the 
output of the second cml/inverter, and v4 is the output of the third cml/inverter. The values 0, 0.01, 0.05, 
and 0.1 is the noise, in percentage, applied to the Vdd. 
It can be observed that the inverters affect the ppm, as high as ~700ppm, while the cml ppm values are 
under 100ppm in general. 
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Figure 63: Ppm results, cml vs. inverter. 

 

Figure 64 shows the jitter results, v1 is the ideal source, v2 is the output of the first cml/inverter, v3 is the 
output of the second cml/inverter, and v4 is the output of the third cml/inverter. The values 0, 0.01, 0.05, 
and 0.1 is the noise, in percentage, applied to the Vdd. 
It can be observed that the inverters are noisier than cml, as they generate more jitter, 80ps vs. 10ps. 
 

 

Figure 64: Jitter results, cml vs. inverter. 

 

5.3.4. Conclusion 
It was observed that the Colpitts circuit, oscillating at 32.768kHz, was very unstable, or very sensitive. A 

very small change in any of the components of the tank circuit provokes a large change in ppm; in one of 

the tries, we doubled the simulation time, from 240ms to 480ms, expecting to see a more stable result, but 

we observed the opposite, the ppm almost doubled. The theory about the Colpitts circuit states that this 

circuit is more stable at high frequencies, so 32.768kHz seems to be low for it. 

Contrarily, the Colpitts circuit, oscillating at 100MHz, was observed to be very stable, a small change in 

the components provokes a small change in ppm. In this case, it was possible to tune the circuit to 0ppm, 

which is the ideal case. 
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In the lab, we have seen that, by changing the capacitor loads, of the crystal circuit in that case, in a few 

pico-farads, provokes a small change in ppm, we have been able to effectively tune our platforms to low 

ppm by tuning the capacitors. 

CML has better performance than Inverters, in ppm and jitter. One advantage of inverters is that, if they 

don’t oscillate, they save energy, while a disadvantage is the high noise. One disadvantage of CML is that, 

in silicon, a resistor takes much more area than transistors, while its advantage is the low noise, Another 

disadvantage is that CML is always draining current from Vdd. 

 

 

 

5.4. The “Slew Rate” Case Study 
In this section, we want to make clearer what slew rate is, and how specific characteristics of the system 

provoke changes in slew rate, so debugging can be accelerated. 

 

5.4.1. Slew Rate 
In the context of transmission lines, slew rate refers to the rate of change of the voltage or current signal 

at the output of the line. The slew rate is typically measured in volts per nanosecond (V/ns) for voltage 

signals and amperes per nanosecond (A/ns) for current signals.  

In practical terms, a high slew rate in a transmission line means that the signal can change rapidly, which 

can be useful for transmitting high-frequency signals with fast transitions. However, a high slew rate can 

also cause problems such as overshoot, ringing, and signal distortion. Therefore, it is important to design 

transmission lines with appropriate impedance and termination to minimize the effects of slew rate 

distortion. 

 

5.4.2. Simulations to Affect Slew Rate 
In some of our products, we have seen slew rate, either lower or higher than specification, in this section, 

we made simulations and purposedly changed some parameters in our system, we’re using the 

complementary buffer created in section 4.12. To get the Slew Rate, we need to obtain an Eye Diagram, 

and we need to measure the Rise Time and its Amplitude, this is done with the EyeDiff_Probe tool in 

ADS, where the desired “Measurements” can be added with a double click, Figure 65. 
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a)      b)  

Figure 65: Eye Diff Probe setup. a) Eye Diff Probe. b) Config screen. 

By default, the Rise Time is measured from 20% to 80% of the Amplitude, this threshold, if needed, can 

be changed in “Parameters”. To obtain the Slew Rate, we need to multiply the Amplitude by 0.6, and with 

this, we obtain the voltage between 20% and 80%; Then we need to divide this voltage between the Rise 

Time, and the result is multiplied by 10  so the units will be V/ns, Equation 4. 

𝑆𝑙𝑒𝑤 𝑅𝑎𝑡𝑒 =  
𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 20% 𝑡𝑜 60%

𝑅𝑖𝑠𝑒 𝑇𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 20% 𝑡𝑜 60%
∗ 10  

Equation 4: Slew Rate equation. 

In this experiment, we want to understand the effect on slew rate when changing three parameters of the 

system, the supply voltage Vdd, the length of the transmission line, and the buffer’s impedance. The results 

can be seen in Figure 66. 

 

Figure 66: Rise Slew Rate vs. System Configuration. 

We can observe that higher Vdd produces a higher slew rate. Another observation is that, as trace length 

increases, the slew rate gets lower. By reducing the buffer’s impedance we can get a higher slew rate, 

more details in Table 11. 
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Table 11: Parameter change vs. Slew Rate. 

Parameter Change Slew rate (SR) 
effect 

Explanation 

Vdd ↑↑↑ ↑↑↑ The higher the Vdd, the higher the SR 
Vdd ↓↓↓ ↓↓↓ The lower the Vdd, the lower the SR 

Trace-length ↑↑↑ ↓↓↓ The larger the trace length, the lower the SR 
Trace-length ↓↓↓ ↑↑↑ The shorter the trace length, the higher the SR 
Buffer’s Z ↑↑↑ ↓↓↓ The higher the buffer’s Z, the lower the SR 
Buffer’s Z ↓↓↓ ↑↑↑ The lower the buffer’s Z, the higher the SR 

 

Another way of understanding slew rate is with Elmore’s delay [25], which states that the rise time depends 

on a constant multiplied by the resistance and capacitance of an RC network, tr = kRC, Table 12. The 

bigger the capacitance or resistance, the bigger the rise time, and since the slew rate relates to velocity, the 

bigger the rise time, the smaller the slew rate. 

 

Table 12: Elmore's Delay. 

5.4.3. Conclusion 
By understanding how certain parameters affect slew rate when debugging SR failures, we can rapidly 

review the configuration or architecture of our system and execute a few experiments to find the root cause 

or propose a fix sooner, i.e., to change the buffer’s impedance, to measure and compare another clock with 

shorter or larger trace-length, or to increase/decrease the Vdd to observe if the failure follows a specific 

condition, this way we get more hints for the root cause. 
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6. CONCLUSIONS 

Summary: In this chapter, we’re presenting the conclusions and future work related to the Optimization 

of Electrical Validation and Debugging for Reference Clocks. 
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6.1. Conclusions 
Within this work, we have analyzed the main electrical parameters that are measured to clock signals 

during the electrical validation, we made a table with the most common failures historically found and 

modeled and simulated the most important cases. These simulations helped to have a better understanding 

of why failures occur, what could be the most common root causes, and what experiments to execute when 

we find similar failures in future validations. The circuit models created in this work will be used as part 

of our debug process in real products to ease the root cause finding. 

We have a clearer understanding of what to do when we see failures like Undershoot, Jitter, Ppm, and 

Slew Rate, we need to quickly review things like Impedance matching, power supply quality, circuit 

capacitive loading, and longitude of PCB tracks, principally. 

We also observed a perfect match, comparing our simulations of the Undershoot to the measurements 

obtained on a real product in the laboratory, this is a good indication that we can catch this type of error 

during the readiness phase. 

We want to capture errors before they appear, and if show up, we want to have a very good understanding 

of failures and quickly propose some debug experiments to find the root cause soon. 

We believe that, if we catch the first four failures from the debug table, sooner during the validation or 

even before it starts, we can reduce the validation window, including debug, down to 70% or 80% of the 

actual time. 

 

6.2. Future Work 
We consider all items below can apport significant value to our team knowledge and they could be 

developed in the future. 

 To simulate the undershoot at the Image clock in LTspice, the value we see is that LTspice is an 

open tool, we don’t need to pay for a license, which is not the case for ADS. 

 To add more variables for Jitter simulations, so we can understand how it is affected by Crosstalk, 

Temperature variations, Process variations, and bigger Impedance mismatches. We could also 

add vias and connectors to the path and observe the effect. 

 To execute experiments with Even Impedances (ZE) and Odd Impedances (ZO), so we can have 

a better understanding of how Impedance works in Transmission Lines. 

 In our real products, sometimes we can make improvements by correcting a few settings, for 

future work, we could add those circuits to the complementary buffer created in this work, 

simulate those changes, and observe their effect sooner than executing real measurements in the 

laboratory. 

 To simulate the Bouncing created by Impedance mismatches, along with the theory and 

calculations, including the time delay of the Transmission Line. 
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APPENDIX A. Measurements in LTspice 

The measurements in LTspice are performed with Spice directives [26], which are created by right-

clicking in an empty area of the schematic, then selecting the “Draft” option and “SPICE Directive”, and 

adding spice commands line by line, Figure 67. 

a)      b)  

Figure 67: Spice Directives. a) Menu. b) Editor. 

 

A.1 Measurement in Colpitts circuit at 32.768kHz 
The Colpitts oscillator for 32.768kHz starts to oscillate after 24ms of simulation. We’re letting it run for 

240ms and measuring several parameters, including period, frequency, duty cycle, and jitter, among others 

at 60ms, 120ms, 180ms, and 240ms, Figure 68. The output voltage of this oscillator can be as high as 

~21.6V. 

 

Figure 68: Colpitts for 32.768kHz simulation. 

Spice Directives and Explanation: 

.param tstop=60m; variable tstopinitialized to 60ms 

.tran {tstop} startup; time domain analysis, with step-size “tstop”, “startup” solves the initial operating point with  
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* Independent voltage and current sources turned off or set to zero. 
.step param tstop 60m 240m 60m; step is sweeping the variable tstop, similar to a for-loop, the sweep starts at 60ms, 

      * stops at 240ms with a step of 60ms 
 
* tstop will be equal to 60ms, 120ms, 180ms and 240ms, one at a time 
.meas tini0 param tstop-350u; tini0 equal to tstop minus 350us (getting ~11 clock cycles), clock period: 30.5us 
.meas TRAN MaxV MAX V(vout) FROM tini0; measuring MaxV in vout, within 11 cycles near tstop 
.meas TRAN MinV MIN V(vout) FROM tini0; measuring MinV in vout, within 11 cycles near tstop 
.meas Vs param MaxV-MinV; calculating range between MinV and MaxV 
.meas Vth param (MaxV+MinV)/2; calculating Vth, this is the midpoint between MaxV and MinV 
  
.meas TRAN tini1 TARG V(vout)=Vth TD=tini0 RISE=1; tini1: time when vout first rises after tini0 
  
.meas TRAN Period1 TRIG V(vout)=Vth TD=tini1 RISE=1 TARG V(vout)=Vth TD=tini1 RISE=2; 1st period 
.meas TRAN Period2 TRIG V(vout)=Vth TD=tini1 RISE=2 TARG V(vout)=Vth TD=tini1 RISE=3; 2nd period 
.meas TRAN Period3 TRIG V(vout)=Vth TD=tini1 RISE=3 TARG V(vout)=Vth TD=tini1 RISE=4; 3rd period 
.meas TRAN Period4 TRIG V(vout)=Vth TD=tini1 RISE=4 TARG V(vout)=Vth TD=tini1 RISE=5; 4th period 
.meas TRAN Period5 TRIG V(vout)=Vth TD=tini1 RISE=5 TARG V(vout)=Vth TD=tini1 RISE=6; 5th period 
.meas TRAN Period6 TRIG V(vout)=Vth TD=tini1 RISE=6 TARG V(vout)=Vth TD=tini1 RISE=7; 6th period 
.meas TRAN Period7 TRIG V(vout)=Vth TD=tini1 RISE=7 TARG V(vout)=Vth TD=tini1 RISE=8; 7th period 
.meas TRAN Period8 TRIG V(vout)=Vth TD=tini1 RISE=8 TARG V(vout)=Vth TD=tini1 RISE=9; 8th period 
.meas TRAN Period9 TRIG V(vout)=Vth TD=tini1 RISE=9 TARG V(vout)=Vth TD=tini1 RISE=10; 9th period 
.meas TRAN Period10 TRIG V(vout)=Vth TD=tini1 RISE=10 TARG V(vout)=Vth TD=tini1 RISE=11; 10th period 
  
.meas TRAN SemiPos1 TRIG V(vout)=Vth TD=tini1 RISE=1 TARG V(vout)=Vth TD=tini1 FALL=1; 1st duty cycle 
.meas TRAN SemiPos2 TRIG V(vout)=Vth TD=tini1 RISE=2 TARG V(vout)=Vth TD=tini1 FALL=2; 2nd duty cycle 
.meas TRAN SemiPos3 TRIG V(vout)=Vth TD=tini1 RISE=3 TARG V(vout)=Vth TD=tini1 FALL=3; 3rd duty cycle 
.meas TRAN SemiPos4 TRIG V(vout)=Vth TD=tini1 RISE=4 TARG V(vout)=Vth TD=tini1 FALL=4; 4th duty cycle 
.meas TRAN SemiPos5 TRIG V(vout)=Vth TD=tini1 RISE=5 TARG V(vout)=Vth TD=tini1 FALL=5; 5th duty cycle 
.meas TRAN SemiPos6 TRIG V(vout)=Vth TD=tini1 RISE=6 TARG V(vout)=Vth TD=tini1 FALL=6; 6th duty cycle 
.meas TRAN SemiPos7 TRIG V(vout)=Vth TD=tini1 RISE=7 TARG V(vout)=Vth TD=tini1 FALL=7; 7th duty cycle 
.meas TRAN SemiPos8 TRIG V(vout)=Vth TD=tini1 RISE=8 TARG V(vout)=Vth TD=tini1 FALL=8; 8th duty cycle 
.meas TRAN SemiPos9 TRIG V(vout)=Vth TD=tini1 RISE=9 TARG V(vout)=Vth TD=tini1 FALL=9; 9th duty cycle 
.meas TRAN SemiPos10 TRIG V(vout)=Vth TD=tini1 RISE=10 TARG V(vout)=Vth TD=tini1 FALL=10; 10th dc 
  
.meas Cyc2Cyc1 param Period2-Period1; Calculating cycle to cycle jitter, which is the delta between adjacent periods 
.meas Cyc2Cyc2 param Period3-Period2 
.meas Cyc2Cyc3 param Period4-Period3 
.meas Cyc2Cyc4 param Period5-Period4 
.meas Cyc2Cyc5 param Period6-Period5 
.meas Cyc2Cyc6 param Period7-Period6 
.meas Cyc2Cyc7 param Period8-Period7 
.meas Cyc2Cyc8 param Period9-Period8 
.meas Cyc2Cyc9 param Period10-Period9 
  
.meas DutyCycle1 param 100*SemiPos1/Period1; Calculating duty cycle in percentage of the period 
.meas DutyCycle2 param 100*SemiPos2/Period2  
.meas DutyCycle3 param 100*SemiPos3/Period3  
.meas DutyCycle4 param 100*SemiPos4/Period4  
.meas DutyCycle5 param 100*SemiPos5/Period5  
.meas DutyCycle6 param 100*SemiPos6/Period6  
.meas DutyCycle7 param 100*SemiPos7/Period7  
.meas DutyCycle8 param 100*SemiPos8/Period8  
.meas DutyCycle9 param 100*SemiPos9/Period8  
.meas DutyCycle10 param 100*SemiPos10/Period10  
  
.meas PeriodMax param 
max(Period1,max(Period2,max(Period3,max(Period4,max(Period5,max(Period6,max(Period7,max(Period8,max(Period9,
Period10))))))))); Calculating Maximum of the 10 periods 
.meas PeriodMin param 
min(Period1,min(Period2,min(Period3,min(Period4,min(Period5,min(Period6,min(Period7,min(Period8,min(Period9,Peri
od10))))))))); Calculating Minimum of the 10 periods 
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.meas FreqMax param 1/PeriodMin; Calculating Max Frequency 

.meas FreqMin param 1/PeriodMax; Calculating Min Frequency 

.meas FreqMid param 2/(PeriodMax+PeriodMin); Calculating Mid-Frequency 

.meas AccSkew param PeriodMax-PeriodMin; Calculating Accumulated Skew, this is the jitter 

.meas AccSkewPer param 100*AccSkew*FreqMid; Calculating Accumulated Skew in percentage 

.meas Cyc2CycMax param 
max(Cyc2Cyc1,max(Cyc2Cyc2,max(Cyc2Cyc3,max(Cyc2Cyc4,max(Cyc2Cyc5,max(Cyc2Cyc6,max(Cyc2Cyc7,max(Cy
c2Cyc8,Cyc2Cyc9)))))))); Calculating Max of cycle-to-cycle jitter 
.meas Cyc2CycMin param 
min(Cyc2Cyc1,min(Cyc2Cyc2,min(Cyc2Cyc3,min(Cyc2Cyc4,min(Cyc2Cyc5,min(Cyc2Cyc6,min(Cyc2Cyc7,min(Cyc2
Cyc8,Cyc2Cyc9)))))))); Calculating Min of cycle-to-cycle jitter 
.meas DutyCycleMax param 
max(DutyCycle1,max(DutyCycle2,max(DutyCycle3,max(DutyCycle4,max(DutyCycle5,max(DutyCycle6,max(DutyCycl
e7,max(DutyCycle8,max(DutyCycle9,DutyCycle10))))))))); Calculating Max of duty cycle 
.meas DutyCycleMin param 
min(DutyCycle1,min(DutyCycle2,min(DutyCycle3,min(DutyCycle4,min(DutyCycle5,min(DutyCycle6,min(DutyCycle7,
min(DutyCycle8,min(DutyCycle9,DutyCycle10))))))))); Calculating Min of duty cycle 
 

A.2 Measurement in Colpitts circuit at 100MHz 
The Colpitts oscillator for 100MHz starts to oscillate after 3us of simulation. We’re letting it run for 400us. 

The same measurements are collected as in the 32.768kHz oscillator. The output voltage can be as high as 

~21.3V, Figure 69. 

 

Figure 69: Oscillator LC Colpitts at 100MHz. 

The commands from the 32.768kHz oscillator can be reused, only below 4 lines are different: 

.param tstop=100u; variable tstop initialized to 100us 

.step param tstop 100u 400u 100u; step is sweeping the variable tstop, similar to a for-loop, the sweep starts at 100us, 
      * stops at 400us with a step of 100us 

.meas tini0 PARAM tstop-1u; tini0 equal to tstop minus 1us (getting ~100 clock cycles), clock period: 10ns 
 
 

A.3 Measurement in cascaded Inverters circuit 
Below we can see the Spice directives to make measurements in the Inverters circuit from Figure 70. 
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Figure 70: Three Cascaded Inverters. 

We have a set of measurements for V1, V2, V3, and V4, including period, frequency, duty cycle, and 

jitter, among others. 

***** general parameters ***** 
.param vddval=1; V1 power supply set to 1V 
.param noiseval=0.1; voltage for noise injection to the power supply 
.param noisefreq=9Meg; frequency for noise injection to the power supply 
.param tper=10n; period of the clock V3 entering to the inverters 
.param trf=tper/10; rise time of the clock V3 set to 10% of the period 
.param ton=tper/2-trf; high time of the clock V3 
.param Cmiller=0f; Miller capacitors in the inverters 
.param LoTh=0.2; low threshold set to 20% 
.param HiTh=0.8; high threshold set to 80% 
.param tstop=120n; time to stop set to 120ns 
.tran {tstop}; transient analysis stopping at tstop 
.meas tini0 PARAM tstop-115n; tini0 equal to tstop minus 115ns  
.meas v0_Vth PARAM vddval/2; v0_Vth equal to half vddval 
  
*****v1 measurements***** 
.meas TRAN v1_MaxV MAX V(v1) FROM tini0; measuring Max V on v1 node 
.meas TRAN v1_MinV MIN V(v1) FROM tini0; measuring Min V on v1 node 
.meas v1_Vs param v1_MaxV-v1_MinV; Range of voltage between MinV and MaxV on v1 node 
.meas v1_Vth param (v1_MaxV+v1_MinV)/2; calculating v1_Vth, this is the midpoint between MaxV and MinV 
.meas TRAN v1_tini1 TARG V(v1)=v0_Vth TD=tini0 RISE=1; v1_tini1: time when v1 first rises after tini0 
  
.meas TRAN v1_Period1 TRIG V(v1)=v0_Vth TD=v1_tini1 RISE=1 TARG V(v1)=v0_Vth TD=v1_tini1 RISE=2; period 1 
.meas TRAN v1_Period2 TRIG V(v1)=v0_Vth TD=v1_tini1 RISE=2 TARG V(v1)=v0_Vth TD=v1_tini1 RISE=3; period 2 
 … 
 … 
.meas TRAN v1_Period10 TRIG V(v1)=v0_Vth TD=v1_tini1 RISE=10 TARG V(v1)=v0_Vth TD=v1_tini1 RISE=11; period 10 
  
.meas TRAN v1_SemiPos1 TRIG V(v1)=v0_Vth TD=v1_tini1 RISE=1 TARG V(v1)=v0_Vth TD=v1_tini1 FALL=1; 1st duty cycle 
.meas TRAN v1_SemiPos2 TRIG V(v1)=v0_Vth TD=v1_tini1 RISE=2 TARG V(v1)=v0_Vth TD=v1_tini1 FALL=2; 2nd duty cycle 
 … 
 … 
.meas TRAN v1_SemiPos10 TRIG V(v1)=v0_Vth TD=v1_tini1 RISE=10 TARG V(v1)=v0_Vth TD=v1_tini1 FALL=10;10th duty cycle 
 
.meas TRAN v1_Rise1 TRIG V(v1)=vddval*LoTh TD=v1_tini1 RISE=1 TARG V(v1)=vddval*HiTh TD=v1_tini1 RISE=2; 1st rise time on v1 
.meas TRAN v1_Rise2 TRIG V(v1)=vddval*LoTh TD=v1_tini1 RISE=2 TARG V(v1)=vddval*HiTh TD=v1_tini1 RISE=3; 2nd rise time on v1 
 … 
 … 
.meas TRAN v1_Rise10 TRIG V(v1)=vddval*LoTh TD=v1_tini1 RISE=10 TARG V(v1)=vddval*HiTh TD=v1_tini1 RISE=11; 10th rise time on v1 
  
.meas TRAN v1_Fall1 TRIG V(v1)=vddval*HiTh TD=v1_tini1 FALL=2 TARG V(v1)=vddval*LoTh TD=v1_tini1 FALL=2; 1st fall time on v1 
.meas TRAN v1_Fall2 TRIG V(v1)=vddval*HiTh TD=v1_tini1 FALL=3 TARG V(v1)=vddval*LoTh TD=v1_tini1 FALL=3; 2nd fall time on v1 
 … 
 … 
.meas TRAN v1_Fall10 TRIG V(v1)=vddval*HiTh TD=v1_tini1 FALL=11 TARG V(v1)=vddval*LoTh TD=v1_tini1 FALL=11; 10th fall time on v1 

 
.meas v1_Cyc2Cyc1 param v1_Period2-v1_Period1; Calculating cycle to cycle jitter, which is the delta between adjacent periods 
.meas v1_Cyc2Cyc2 param v1_Period3-v1_Period2 
 … 
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 … 
.meas v1_Cyc2Cyc9 param v1_Period10-v1_Period9 
  
.meas v1_DutyCycle1 param 100*v1_SemiPos1/v1_Period1; Calculating duty cycle in percentage of the period 
.meas v1_DutyCycle2 param 100*v1_SemiPos2/v1_Period2 
 … 
 …  
.meas v1_DutyCycle10 param 100*v1_SemiPos10/v1_Period10  
 
.meas v1_PeriodMax param 
max(v1_Period1,max(v1_Period2,max(v1_Period3,max(v1_Period4,max(v1_Period5,max(v1_Period6,max(v1_Period7,
max(v1_Period8,max(v1_Period9,v1_Period10))))))))); v1 period max 
.meas v1_PeriodMin param 
min(v1_Period1,min(v1_Period2,min(v1_Period3,min(v1_Period4,min(v1_Period5,min(v1_Period6,min(v1_Period7,min
(v1_Period8,min(v1_Period9,v1_Period10))))))))); v1 period min 
.meas v1_FreqMax param 1/v1_PeriodMin; max Frequency on v1 
.meas v1_FreqMin param 1/v1_PeriodMax; min Frequency on v1 
.meas v1_FreqMid param 2/(v1_PeriodMax+v1_PeriodMin); mid-Frequency on v1 
.meas v1_100Mppm param 1e6*(v1_FreqMid-100e6)/100e6; Frequency ppm on v1 
.meas v1_AccSkew param v1_PeriodMax-v1_PeriodMin; Accumulated skew jitter on v1 
.meas v1_AccSkewPer param 100*v1_AccSkew*v1_FreqMid; Accumulated skew jitter in percentage on v1 
.meas v1_Cyc2CycMax param 
max(v1_Cyc2Cyc1,max(v1_Cyc2Cyc2,max(v1_Cyc2Cyc3,max(v1_Cyc2Cyc4,max(v1_Cyc2Cyc5,max(v1_Cyc2Cyc6,m
ax(v1_Cyc2Cyc7,max(v1_Cyc2Cyc8,v1_Cyc2Cyc9)))))))); max of cycle-to-cycle jitter 
.meas v1_Cyc2CycMin param 
min(v1_Cyc2Cyc1,min(v1_Cyc2Cyc2,min(v1_Cyc2Cyc3,min(v1_Cyc2Cyc4,min(v1_Cyc2Cyc5,min(v1_Cyc2Cyc6,min(
v1_Cyc2Cyc7,min(v1_Cyc2Cyc8,v1_Cyc2Cyc9)))))))); min of cycle-to-cycle jitter 
.meas v1_Cyc2CycMaxPer param 100*v1_Cyc2CycMax*v1_FreqMid; max cycle to cycle jitter in percentage 
.meas v1_Cyc2CycMinPer param 100*v1_Cyc2CycMin*v1_FreqMid; min cycle to cycle jitter in percentage 
 
.meas v1_DutyCycleMax param 
max(v1_DutyCycle1,max(v1_DutyCycle2,max(v1_DutyCycle3,max(v1_DutyCycle4,max(v1_DutyCycle5,max(v1_Duty
Cycle6,max(v1_DutyCycle7,max(v1_DutyCycle8,max(v1_DutyCycle9,v1_DutyCycle10))))))))); max of duty cycle 
.meas v1_DutyCycleMin param 
min(v1_DutyCycle1,min(v1_DutyCycle2,min(v1_DutyCycle3,min(v1_DutyCycle4,min(v1_DutyCycle5,min(v1_DutyCy
cle6,min(v1_DutyCycle7,min(v1_DutyCycle8,min(v1_DutyCycle9,v1_DutyCycle10))))))))); min of duty cycle 
 
.meas v1_RiseMax param 
max(v1_Rise1,max(v1_Rise2,max(v1_Rise3,max(v1_Rise4,max(v1_Rise5,max(v1_Rise6,max(v1_Rise7,max(v1_Rise8,
max(v1_Rise9,v1_Rise10))))))))); max of rise time 
.meas v1_RiseMin param 
min(v1_Rise1,min(v1_Rise2,min(v1_Rise3,min(v1_Rise4,min(v1_Rise5,min(v1_Rise6,min(v1_Rise7,min(v1_Rise8,min
(v1_Rise9,v1_Rise10))))))))); min of rise time 
.meas v1_FallMax param 
max(v1_Fall1,max(v1_Fall2,max(v1_Fall3,max(v1_Fall4,max(v1_Fall5,max(v1_Fall6,max(v1_Fall7,max(v1_Fall8,max(
v1_Fall9,v1_Fall10))))))))); max of fall time 
.meas v1_FallMin param 
min(v1_Fall1,min(v1_Fall2,min(v1_Fall3,min(v1_Fall4,min(v1_Fall5,min(v1_Fall6,min(v1_Fall7,min(v1_Fall8,min(v1_
Fall9,v1_Fall10))))))))); min of fall time 
 
*****v2 measurements***** 
* same code as in v1 measurements, just need to rename all v1 as v2 
 
*****v3 measurements***** 
* same code as in v1 measurements, just need to rename all v1 as v3 
 
*****v4 measurements***** 
* same code as in v1 measurements, just need to rename all v1 as v4 
 
*****Measurements Summary***** 
.meas sv1_MaxV PARAM v1_MaxV; Max Voltages 
.meas sv2_MaxV PARAM v2_MaxV 
.meas sv3_MaxV PARAM v3_MaxV 
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.meas sv4_MaxV PARAM v4_MaxV 

.meas sv1_MinV PARAM v1_MinV; Min Voltages 

.meas sv2_MinV PARAM v2_MinV 

.meas sv3_MinV PARAM v3_MinV 

.meas sv4_MinV PARAM v4_MinV 

.meas sv1_RiseMax PARAM v1_RiseMax; Max, Min, Rise, Fall v1 

.meas sv1_RiseMin PARAM v1_RiseMin 

.meas sv1_FallMax PARAM v1_FallMax 

.meas sv1_FallMin PARAM v1_FallMin 

.meas sv2_RiseMax PARAM v2_RiseMax; Max, Min, Rise, Fall v2 

.meas sv2_RiseMin PARAM v2_RiseMin 

.meas sv2_FallMax PARAM v2_FallMax 

.meas sv2_FallMin PARAM v2_FallMin 

.meas sv3_RiseMax PARAM v3_RiseMax; Max, Min, Rise, Fall v3 

.meas sv3_RiseMin PARAM v3_RiseMin 

.meas sv3_FallMax PARAM v3_FallMax 

.meas sv3_FallMin PARAM v3_FallMin 

.meas sv4_RiseMax PARAM v4_RiseMax; Max, Min, Rise, Fall v4 

.meas sv4_RiseMin PARAM v4_RiseMin 

.meas sv4_FallMax PARAM v4_FallMax 

.meas sv4_FallMin PARAM v4_FallMin 

.meas sv1_AccSkew PARAM v1_AccSkew; Accumulated Skew, jitter 

.meas sv2_AccSkew PARAM v2_AccSkew 

.meas sv3_AccSkew PARAM v3_AccSkew 

.meas sv4_AccSkew PARAM v4_AccSkew 

.meas sv1_100Mppm PARAM v1_100Mppm; Frequency ppm 

.meas sv2_100Mppm PARAM v2_100Mppm 

.meas sv3_100Mppm PARAM v3_100Mppm 

.meas sv4_100Mppm PARAM v4_100Mppm 
 

A.4 Measurement in cascaded CMLs circuit 
These are the cascaded CMLs and the Spice directives to make measurements, Figure 71. 

 

Figure 71: Three Cascaded CML. 

***** general parameters ***** 
.param vddval=1; supply voltage set to 1V 
.param noiseval=0.1; noise voltage 
.param noisefreq=9Meg; noise frequency 
.param tper=10n; period of clock injected 
.param trf=tper/10; rise/fall time 
.param ton=tper/2-trf; high time 
.param Rbias=10K; resistor for the current mirror 
.param Rcml1=10K; cml1 load resistor 
.param Rcml2=5K; cml2 load resistor 
.param Rcml3=2.5K; cml3 load resistor 
.param Wdiode=6u; M1 width 
.param Wtail1=6u; M2 width 
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.param Wdiff1=6u; M3 and M4 width 

.param Wtail2=12.5u; M5 width 

.param Wdiff2=12.5u; M6 and M7 width 

.param Wtail3=25u; M8 width 

.param Wdiff3=25u; M9 and M10 width 

.param LoTh=-0.3; Low threshold 

.param HiTh=0.3; High threshold 

.param tstop=120n; tstop set to 120ns 

.tran {tstop}; transient analysis ending at tstop 
 
.meas tini0 PARAM tstop-115n; tini0 set to tstop minus 115n 
.meas v0_Vth PARAM vddval/2; Vth set to half vddval 
  
*****v1 measurements***** 
.meas TRAN v1p_MaxV MAX V(v1p) FROM tini0; MaxV on v1p 
.meas TRAN v1p_MinV MIN V(v1p) FROM tini0; MinV on v1p 
.meas TRAN v1m_MaxV MAX V(v1m) FROM tini0; MaxV on v1m 
.meas TRAN v1m_MinV MIN V(v1m) FROM tini0; MinV on v1m 
.meas TRAN v1_MaxV MAX V(v1p)-V(v1m) FROM tini0; MaxV on differential v1 
.meas TRAN v1_MinV MIN V(v1p)-V(v1m) FROM tini0; MinV on differential v1 
.meas v1_Vs param v1_MaxV-v1_MinV; voltage range between Max and Min on differential v1 
.meas v1_Vth param (v1_MaxV+v1_MinV)/2; threshold voltage, half of differential signal 
.meas TRAN v1_tini1 TARG V(v1p)-V(v1m)=v1_Vth TD=tini0 RISE=1; v1_tini1: time at first rise after tini0 
  
.meas TRAN v1_Period1 TRIG V(v1p)-V(v1m)=v1_Vth TD=v1_tini1 RISE=1 TARG V(v1p)-V(v1m)=v1_Vth TD=v1_tini1 RISE=2; period 1 
.meas TRAN v1_Period2 TRIG V(v1p)-V(v1m)=v1_Vth TD=v1_tini1 RISE=2 TARG V(v1p)-V(v1m)=v1_Vth TD=v1_tini1 RISE=3; period 2 
 … 
 … 
.meas TRAN v1_Period10 TRIG V(v1p)-V(v1m)=v1_Vth TD=v1_tini1 RISE=10 TARG V(v1p)-V(v1m)=v1_Vth TD=v1_tini1 RISE=11; period 10 

  
.meas TRAN v1_SemiPos1 TRIG V(v1p)-V(v1m)=v1_Vth TD=v1_tini1 RISE=1 TARG V(v1p)-V(v1m)=v1_Vth TD=v1_tini1 FALL=1; 1st duty cycle 
.meas TRAN v1_SemiPos2 TRIG V(v1p)-V(v1m)=v1_Vth TD=v1_tini1 RISE=2 TARG V(v1p)-V(v1m)=v1_Vth TD=v1_tini1 FALL=2; 2nd duty cycle 
 … 
 … 
.meas TRAN v1_SemiPos10 TRIG V(v1p)-V(v1m)=v1_Vth TD=v1_tini1 RISE=10 TARG V(v1p)-V(v1m)=v1_Vth TD=v1_tini1 FALL=10; 10th duty cycl 

 
.meas TRAN v1_Rise1 TRIG V(v1p)-V(v1m)=vddval*LoTh TD=v1_tini1 RISE=1 TARG V(v1p)-V(v1m)=vddval*HiTh TD=v1_tini1 RISE=2; 1st rise 
.meas TRAN v1_Rise2 TRIG V(v1p)-V(v1m)=vddval*LoTh TD=v1_tini1 RISE=2 TARG V(v1p)-V(v1m)=vddval*HiTh TD=v1_tini1 RISE=3; 2nd rise 
 … 
 … 
.meas TRAN v1_Rise10 TRIG V(v1p)-V(v1m)=vddval*LoTh TD=v1_tini1 RISE=10 TARG V(v1p)-V(v1m)=vddval*HiTh TD=v1_tini1 RISE=11; 10rd ri 

 
.meas TRAN v1_Fall1 TRIG V(v1p)-V(v1m)=vddval*HiTh TD=v1_tini1 FALL=2 TARG V(v1p)-V(v1m)=vddval*LoTh TD=v1_tini1 FALL=2; 1st fall 
.meas TRAN v1_Fall2 TRIG V(v1p)-V(v1m)=vddval*HiTh TD=v1_tini1 FALL=3 TARG V(v1p)-V(v1m)=vddval*LoTh TD=v1_tini1 FALL=3; 2nd fall 
 … 
 … 
.meas TRAN v1_Fall10 TRIG V(v1p)-V(v1m)=vddval*HiTh TD=v1_tini1 FALL=11 TARG V(v1p)-V(v1m)=vddval*LoTh TD=v1_tini1 FALL=11; 10th f 

  
.meas v1_Cyc2Cyc1 param v1_Period2-v1_Period1; Calculating cycle to cycle jitter, which is the delta between adjacent periods 
.meas v1_Cyc2Cyc2 param v1_Period3-v1_Period2 
 … 
 … 
.meas v1_Cyc2Cyc9 param v1_Period10-v1_Period9 
  
.meas v1_DutyCycle1 param 100*v1_SemiPos1/v1_Period1; Calculating duty cycle in percentage of the period 
.meas v1_DutyCycle2 param 100*v1_SemiPos2/v1_Period2  
 … 
 … 
.meas v1_DutyCycle10 param 100*v1_SemiPos10/v1_Period10  
  
.meas v1_PeriodMax param 
max(v1_Period1,max(v1_Period2,max(v1_Period3,max(v1_Period4,max(v1_Period5,max(v1_Period6,max(v1_Period7,
max(v1_Period8,max(v1_Period9,v1_Period10))))))))); v1 period max 
.meas v1_PeriodMin param 
min(v1_Period1,min(v1_Period2,min(v1_Period3,min(v1_Period4,min(v1_Period5,min(v1_Period6,min(v1_Period7,min
(v1_Period8,min(v1_Period9,v1_Period10))))))))); v1 period min 
.meas v1_FreqMax param 1/v1_PeriodMin; max frequency 
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.meas v1_FreqMin param 1/v1_PeriodMax; min frequency 

.meas v1_FreqMid param 2/(v1_PeriodMax+v1_PeriodMin); mid-frequency 

.meas v1_100Mppm param 1e6*(v1_FreqMid-100e6)/100e6; frequency ppm 

.meas v1_AccSkew param v1_PeriodMax-v1_PeriodMin; accumulated skew jitter 

.meas v1_AccSkewPer param 100*v1_AccSkew*v1_FreqMid; Accumulated skew jitter in percentage 
 
.meas v1_Cyc2CycMax param 
max(v1_Cyc2Cyc1,max(v1_Cyc2Cyc2,max(v1_Cyc2Cyc3,max(v1_Cyc2Cyc4,max(v1_Cyc2Cyc5,max(v1_Cyc2Cyc6,max(v1_Cyc2Cyc7,max(v1_Cyc2Cy
c8,v1_Cyc2Cyc9)))))))); max of cycle to cycle jitter 
.meas v1_Cyc2CycMin param 
min(v1_Cyc2Cyc1,min(v1_Cyc2Cyc2,min(v1_Cyc2Cyc3,min(v1_Cyc2Cyc4,min(v1_Cyc2Cyc5,min(v1_Cyc2Cyc6,min(v1_Cyc2Cyc7,min(v1_Cyc2Cyc8,
v1_Cyc2Cyc9)))))))); min of cycle to cycle jitter 
.meas v1_Cyc2CycMaxPer param 100*v1_Cyc2CycMax*v1_FreqMid; max cycle to cycle jitter in percentage 
.meas v1_Cyc2CycMinPer param 100*v1_Cyc2CycMin*v1_FreqMid; min cycle to cycle jitter in percentage 
.meas v1_DutyCycleMax param 
max(v1_DutyCycle1,max(v1_DutyCycle2,max(v1_DutyCycle3,max(v1_DutyCycle4,max(v1_DutyCycle5,max(v1_DutyCycle6,max(v1_DutyCycle7,max(v
1_DutyCycle8,max(v1_DutyCycle9,v1_DutyCycle10))))))))); max of duty cycle 
.meas v1_DutyCycleMin param 
min(v1_DutyCycle1,min(v1_DutyCycle2,min(v1_DutyCycle3,min(v1_DutyCycle4,min(v1_DutyCycle5,min(v1_DutyCycle6,min(v1_DutyCycle7,min(v1_
DutyCycle8,min(v1_DutyCycle9,v1_DutyCycle10))))))))); min of duty cycle 
 
.meas v1_RiseMax param 
max(v1_Rise1,max(v1_Rise2,max(v1_Rise3,max(v1_Rise4,max(v1_Rise5,max(v1_Rise6,max(v1_Rise7,max(v1_Rise8,max(v1_Rise9,
v1_Rise10))))))))); max of rise time 
.meas v1_RiseMin param 
min(v1_Rise1,min(v1_Rise2,min(v1_Rise3,min(v1_Rise4,min(v1_Rise5,min(v1_Rise6,min(v1_Rise7,min(v1_Rise8,min(v1_Rise9,v1_
Rise10))))))))); min of rise time 
.meas v1_FallMax param 
max(v1_Fall1,max(v1_Fall2,max(v1_Fall3,max(v1_Fall4,max(v1_Fall5,max(v1_Fall6,max(v1_Fall7,max(v1_Fall8,max(v1_Fall9,v1_F
all10))))))))); max of fall time 
.meas v1_FallMin param 
min(v1_Fall1,min(v1_Fall2,min(v1_Fall3,min(v1_Fall4,min(v1_Fall5,min(v1_Fall6,min(v1_Fall7,min(v1_Fall8,min(v1_Fall9,v1_Fall1
0))))))))); min of fall time 
 
 
 
*****v2 measurements***** 
* same code as in v1 measurements, just need to rename all v1 as v2 
 
*****v3 measurements***** 
* same code as in v1 measurements, just need to rename all v1 as v3 
 
*****v4 measurements***** 
* same code as in v1 measurements, just need to rename all v1 as v4 
 
*****Measurements Summary1***** 
.meas sv1p_MaxV PARAM v1p_MaxV; Max p Voltages 
 … 
.meas sv4p_MaxV PARAM v4p_MaxV 
.meas sv1p_MinV PARAM v1p_MinV; Min p Voltages 
 … 
.meas sv4p_MinV PARAM v4p_MinV  
.meas sv1m_MaxV PARAM v1m_MaxV; Max m Voltages 
 … 
.meas sv4m_MaxV PARAM v4m_MaxV  
.meas sv1m_MinV PARAM v1m_MinV; Min m Voltages 
 … 
.meas sv4m_MinV PARAM v4m_MinV  
.meas sv1_MaxV PARAM v1_MaxV; Max diff Voltages 
 … 
.meas sv4_MaxV PARAM v4_MaxV  
.meas sv1_MinV PARAM v1_MinV; Min diff Voltages 
 … 
.meas sv4_MinV PARAM v4_MinV  
 
.meas sv1_RiseMax PARAM v1_RiseMax; Max, Min, Rise, Fall v1, repeats for v2, v3 and v4 
.meas sv1_RiseMin PARAM v1_RiseMin 
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.meas sv1_FallMax PARAM v1_FallMax 

.meas sv1_FallMin PARAM v1_FallMin 
 
.meas sv1_FreqMid PARAM v1_FreqMid; Mid Freq 
 … 
.meas sv4_FreqMid PARAM v4_FreqMid 
 .meas sv1_AccSkew PARAM v1_AccSkew; Accumulated Skew, jitter 
 … 
.meas sv4_AccSkew PARAM v4_AccSkew 
.meas sv1_100Mppm PARAM v1_100Mppm; Frequency ppm 
 … 
.meas sv4_100Mppm PARAM v4_100Mppm  
.meas sv1_AccSkewPer PARAM v1_AccSkewPer; Accumulated Skew, jitter in percentage 
 … 
.meas sv4_AccSkewPer PARAM v4_AccSkewPer  
.meas sv1_Cyc2CycMaxPer PARAM v1_Cyc2CycMaxPer; Max cycle to cycle jitter 
 … 
.meas sv4_Cyc2CycMaxPer PARAM v4_Cyc2CycMaxPer  
.meas sv1_Cyc2CycMinPer PARAM v1_Cyc2CycMinPer; Min cycle to cycle jitter 
 … 
.meas sv4_Cyc2CycMinPer PARAM v4_Cyc2CycMinPer  
.meas sv1_DutyCycleMax PARAM v1_DutyCycleMax; Max Duty cycle 
 … 
.meas sv4_DutyCycleMax PARAM v4_DutyCycleMax  
.meas sv1_DutyCycleMin PARAM v1_DutyCycleMin; Min Duty cycle 
 … 
.meas sv4_DutyCycleMin PARAM v4_DutyCycleMin 
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APPENDIX B. Phase Lock Loop (PLL) 

The PLL is a circuit whose objective is to adjust to a desired Output frequency [27], the basic configuration 

can be seen in Figure 72. 

 

Figure 72: Basic PLL configuration. 

My director helped me to make this PLL, The original circuit obtained from the internet was not working, 

which is very similar to this one, and it was very difficult and time-consuming to get it to work. In the end, 

this is the working configuration for LTspice, Figure 73. 

 

Figure 73: PLL circuit, implemented in LTspice. 

 

For learning purposes, our PLL is receiving a 100MHz square signal, and the desired output is the same, 

so we don’t have an “R Divider” at the input of the PLL, nor an “N Divider” in the feedback loop, nor an 

“Output Divider” at the output of the PLL. 

R-Divider divides down the input Reference frequency, so the PLL can work with a lower frequency input. 

N-Divider divides down the output frequency of the VCO and creates the feedback to the Phase Detector, 

its output should match the frequency of the R-Divider’s output, so the VCO can work at higher 

frequencies. Output-Divider divides down the frequency of the VCO to the final output frequency. 

B.1 Supply Voltage and Reference Input 
Vdd is supplying 1.0V to the circuit. Vref is a 100MHz square signal with rise and fall times set to 1ns, 

and a period equal to 10ns. 
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B.2 Phase Detector and Charge Pump 
The Phase Detector consists of two D-flops, one Nand, and a Delay circuit, and the Charge Pump consists 

of one Pmos and one Nmos, Figure 74. 

 

Figure 74: Phase Frequency Detector and Charge Pump. 

The phase frequency detector compares the VCO’s output (Vout) and the reference input (Vref) and 

converts this to a correction voltage. The charge pump converts this correction voltage into a correction 

current. 

If the compared frequencies are the same, then the PLL is considered to be in “Lock” and theoretically the 

output of the charge pump should be in high impedance, in practice, there are narrow and alternating 

positive and negative pulses of current with a period equal to the phase detector period. When out of the 

lock, these pulses become much wider and in the same direction, this adjusts the voltage to the loop filter, 

which controls the VCO output frequency. In summary, the charge pump sources current if the output 

frequency/phase is too low, and it sinks current if the output frequency/phase is too high. 

 

B.3 Loop Filter 
The Loop Filter is a low pass filter, implemented with C1, R1, and C2. It integrates the correction currents 

and produces a tuning voltage to steer the VCO output frequency. The loop filter has a dramatic effect on 

performance, it determines the PLL loop bandwidth, which impacts the phase noise spurs and switching 

speed. 

The PLL closed-loop transfer function has a huge impact on phase noise, spurs, and lock time. The PLL 

loop bandwidth (BW), is the most critical parameter that impacts these performance metrics, Figure 75. 
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Figure 75: PLL Bandwidth. 

To minimize jitter, choose the loop bandwidth to be BWJIT, which minimizes the area under the curve, this 

is where the free-running VCO and phase noise are equal. BW can be increased or decreased to achieve a 

different goal [27], see Table 13. 

Table 13: Design Goal vs. Bandwidth. 

Design Goal Bandwidth 
Minimize Jitter BW = BWJIT 
Minimize Phase Noise at offset < BWJIT BW > BWJIT 
Minimize Phase Noise at offset > BWJIT BW < BWJIT 
Minimize Lock Time BW > BWJIT 
Minimize Spurs BW < BWJIT 

 

 

B.4 Voltage Controlled Oscillator (VCO) 
The VCO produces frequencies within a limited frequency band, typically higher than the reference clock. 

The VCO’s frequency is tunable, and it’s controlled by changing its input voltage, and it can vary 

significantly over temperature, supply voltage, or semiconductor process. 

Our VCO is built with a ring oscillator, which is a circuit composed of an odd number of inverters in a 

ring, whose outputs switch between two values, low or high, Figure 76. The inverters are attached in a 

chain and the output of the last inverter is fed back into the first. Our ring oscillator is made with 5 

inverters, built by M1/M2, M3/M4, M5/M6, M7/M8, M9/M10. The Pmos transistors M26, M15, M16, 

M17, M18, and M19 are controlling the current to the Pmos of the inverters from the “Vctrl” input. 

Similarly, the Nmos transistors M25, M20, M21, M22, M23, and M24 control the current to the Nmos of 

the inverters from the “Vctrl” input. We have 2 more inverters just before “Vout”, formed by M11/M12 

and M13/M14, they improve the rise/fall times of the “Vout”. 
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Figure 76: Voltage Controlled Oscillator. 

B.5 Measurements 
We tried to adjust the PLL as close as possible to 100MHz and less than 100ppm, which is the PCIe 

specification when SSC is off. While measuring ppm at the output of the VCO, C1, C2, and R1 in the loop 

filter were swept, see Table 14, Table 15, and Table 16. The average ppm was obtained by measuring 

approximately the last 10 periods of the simulation, calculating the frequencies of the 10 periods, 

calculating the average frequency of them, and the average ppm is calculated from the average frequency, 

more details can be seen in section B.7. 

Table 14: PLL Loop Filer adjustment, C1 sweep. 

C1 (pF) C2 (pF) R1 (Ω) Avg PPM Note 
60 10 100 -102.057  
70 10 100 48.2754  
80 10 100 74.5155  
90 10 100 80.7398  
100 10 100 -69.9759  
110 10 100 13.3808 Base / Best 
120 10 100 -186.818  
130 10 100 78.31  
140 10 100 58.6802  
150 10 100 -87.974  

 

Table 15: PLL Loop Filter adjustment, C2 sweep. 

C1 (pF) C2 (pF) R1 (Ω) Avg PPM Note 
110 5 100 -323.447  
110 6 100 82.5588  
110 7 100 -150.512  
110 8 100 -69.3328  
110 9 100 -0.12677 Best 
110 10 100 13.3808 Base 
110 11 100 -71.2855  
110 12 100 -114.401  
110 13 100 90.5293  
110 14 100 32.4274  
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Table 16: PLL Loop Filter adjustment, R1 sweep. 

C1 (pF) C2 (pF) R1 (Ω) Avg PPM Note 
110 9 50 65.9354  
110 9 60 -2.43E-08 Best 
110 9 70 124.955  
110 9 80 81.3133  
110 9 90 8.68422  
110 9 100 -0.126767  
110 9 110 -58.5055  
110 9 120 82.5245  
110 9 130 -86.3701  
110 9 140 11.6098  
110 9 150 88.5844  

 

The best values found are: C1: 110pF, C2: 9pF and R1: 60Ω, obtaining a ppm of -2.4e-8, which is 

practically 0ppm. 

 

B.6 Size of the transistors 
The size of the transistors in the PLL is shown below, in the form of Length / Width. 

Phase Detector Pmos: M5, M3, M1, M17: 180n/1u 
Phase Detector Nmos: M6, M4, M2, M18: 180n/1u 
Charge Pump Pmos: M11: 180n/1.6u 
Charge Pump Nmos: M12: 180n/1u 
VCO Pmos: M26, M15, M16, M17, M18, M19, M11: 180n/2u 
VCO Pmos: M1, M3, M5, M7, M9, M13: 180n/3.31u 
VCO Nmos: M2, M4, M6, M8, M10, M14: 180n/1.66u 
VCO Nmos: M25, M20, M21, M22, M23, M24, M12: 180n/1u 
 

B.7 Spice directives for the measurements 
Below we can see the Spice directives to make the measurements in the PLL. 

***** general parameters ***** 
.include BSIM4_models.txt; adding the model of the Pmos/Nmos transistors 
.param tstop=10u; tstop set to 10us 
.param tmeas=9.88u; tmeas set to 9.88us 
.param vddval=1; vddval set to 1V 
.param P1val=3.31u; all P1val transistor width set to 3.31um 
.param N1val=1.66u; all N1val transistor width set to 1.66um 
.param P2val=2u; all P2val transistor width set to 2um 
.param N2val=1u; all N2val transistor width set to 1um 
.param P1val2=2u; all P1val2 transistor width set to 2um 
.param N1val2=1u; all N1val2 transistor width set to 1um 
.param LoTh=0.1; Low threshold set to 0.1V 
.param HiTh=0.9; High threshold set to 0.9V  
.tran {tstop}; tran analysis during tstop time 
 
*****vref measurements***** 
.meas v0_Vth PARAM vddval/2; Vth set to half vddval 
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.meas tini0 PARAM tmeas; tini0 set to tmeas time 

.meas TRAN vref_Period1 TRIG V(vref)=v0_Vth TD=tmeas RISE=1 TARG V(vref)=v0_Vth TD=tmeas RISE=2; period of vref 

.meas vref_freq PARAM 1/vref_Period1; frequency of Vref 

.meas vref_100Mppm param 1e6*(vref_freq-100e6)/100e6; ppm of Vref 
  
*****vout measurements***** 
.meas TRAN vout_tini1 TARG V(Vout)=v0_Vth TD=tini0 RISE=1; vout_tini1: time at first rise after tini0 
  
.meas TRAN vout_Period1 TRIG V(Vout)=v0_Vth TD=vout_tini1 RISE=1 TARG V(Vout)=v0_Vth TD=vout_tini1 RISE=2; period 1 
.meas TRAN vout_Period2 TRIG V(Vout)=v0_Vth TD=vout_tini1 RISE=2 TARG V(Vout)=v0_Vth TD=vout_tini1 RISE=3; period 2 
 … 
 … 
.meas TRAN vout_Period10 TRIG V(Vout)=v0_Vth TD=vout_tini1 RISE=10 TARG V(Vout)=v0_Vth TD=vout_tini1 RISE=11; period 10 
 
.meas TRAN vout_SemiPos1 TRIG V(Vout)=v0_Vth TD=vout_tini1 RISE=1 TARG V(Vout)=v0_Vth TD=vout_tini1 FALL=1; 1st duty cycle 
.meas TRAN vout_SemiPos2 TRIG V(Vout)=v0_Vth TD=vout_tini1 RISE=2 TARG V(Vout)=v0_Vth TD=vout_tini1 FALL=2; 2nd duty cycle 
 … 
 … 
.meas TRAN vout_SemiPos10 TRIG V(Vout)=v0_Vth TD=vout_tini1 RISE=10 TARG V(Vout)=v0_Vth TD=vout_tini1 FALL=10; 10th duty cycle 

  
.meas TRAN vout_Rise1 TRIG V(Vout)=vddval*LoTh TD=vout_tini1 RISE=1 TARG V(Vout)=vddval*HiTh TD=vout_tini1 RISE=2; vout rise time 
.meas TRAN vout_Fall1 TRIG V(Vout)=vddval*HiTh TD=vout_tini1 FALL=2 TARG V(Vout)=vddval*LoTh TD=vout_tini1 FALL=2; vout fall time 

  
.meas vout_Cyc2Cyc1 param vout_Period2-vout_Period1; Calculating cycle to cycle jitter, which is the delta between adjacent periods 
.meas vout_Cyc2Cyc2 param vout_Period3-vout_Period2 
 … 
 … 
.meas vout_Cyc2Cyc9 param vout_Period10-vout_Period9 
  
.meas vout_DutyCycle1 param 100*vout_SemiPos1/vout_Period1; Calculating duty cycle in percentage of the period 
.meas vout_DutyCycle2 param 100*vout_SemiPos2/vout_Period2  
 … 
 … 
.meas vout_DutyCycle10 param 100*vout_SemiPos10/vout_Period10  
  
.meas vout_PeriodMax param 
max(vout_Period1,max(vout_Period2,max(vout_Period3,max(vout_Period4,max(vout_Period5,max(vout_Period6,max(v
out_Period7,max(vout_Period8,max(vout_Period9,vout_Period10))))))))); Vout period max 
.meas vout_PeriodMin param 
min(vout_Period1,min(vout_Period2,min(vout_Period3,min(vout_Period4,min(vout_Period5,min(vout_Period6,min(vout
_Period7,min(vout_Period8,min(vout_Period9,vout_Period10))))))))); Vout period min 
.meas vout_FreqMax param 1/vout_PeriodMin; max frequency 
.meas vout_FreqMin param 1/vout_PeriodMax; min frequency 
.meas vout_FreqMid param 2/(vout_PeriodMax+vout_PeriodMin); mid-frequency 
.meas vout_100MppmMax param 1e6*(vout_FreqMax-100e6)/100e6; ppm max 
.meas vout_100MppmMin param 1e6*(vout_FreqMin-100e6)/100e6; ppm min 
.meas vout_100MppmMid param 1e6*(vout_FreqMid-100e6)/100e6; ppm mid 
.meas vout_AccSkew param vout_PeriodMax-vout_PeriodMin; accumulated skew jitter 
.meas vout_AccSkewPer param 100*vout_AccSkew*vout_FreqMid; Accumulated skew jitter in percentage 
.meas vout_Cyc2CycMax param 
max(vout_Cyc2Cyc1,max(vout_Cyc2Cyc2,max(vout_Cyc2Cyc3,max(vout_Cyc2Cyc4,max(vout_Cyc2Cyc5,max(vout_C
yc2Cyc6,max(vout_Cyc2Cyc7,max(vout_Cyc2Cyc8,vout_Cyc2Cyc9)))))))); max of cycle to cycle jitter 
.meas vout_Cyc2CycMin param 
min(vout_Cyc2Cyc1,min(vout_Cyc2Cyc2,min(vout_Cyc2Cyc3,min(vout_Cyc2Cyc4,min(vout_Cyc2Cyc5,min(vout_Cyc
2Cyc6,min(vout_Cyc2Cyc7,min(vout_Cyc2Cyc8,vout_Cyc2Cyc9)))))))); min of cycle to cycle jitter 
.meas vout_Cyc2CycMaxPer param 100*vout_Cyc2CycMax*vout_FreqMid; max cycle to cycle jitter in percentage 
.meas vout_Cyc2CycMinPer param 100*vout_Cyc2CycMin*vout_FreqMid; min cycle to cycle jitter in percentage 
.meas vout_DutyCycleMax param 
max(vout_DutyCycle1,max(vout_DutyCycle2,max(vout_DutyCycle3,max(vout_DutyCycle4,max(vout_DutyCycle5,max(vout_DutyCyc
le6,max(vout_DutyCycle7,max(vout_DutyCycle8,max(vout_DutyCycle9,vout_DutyCycle10))))))))); max of duty cycle 
.meas vout_DutyCycleMin param 
min(vout_DutyCycle1,min(vout_DutyCycle2,min(vout_DutyCycle3,min(vout_DutyCycle4,min(vout_DutyCycle5,min(vout_DutyCycle
6,min(vout_DutyCycle7,min(vout_DutyCycle8,min(vout_DutyCycle9,vout_DutyCycle10))))))))); min of duty cycle 
  
.meas vout_Freq1 param 1/vout_Period1; frequency of period 1 
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.meas vout_Freq2 param 1/vout_Period2; frequency of period 2 
 … 
 … 
.meas vout_Freq10 param 1/vout_Period10; frequency of period 10 
.meas vout_FreqAvg param 
(vout_Freq1+vout_Freq2+vout_Freq3+vout_Freq4+vout_Freq5+vout_Freq6+vout_Freq7+vout_Freq8+vout_Freq9+vout
_Freq10)/10; average frequency 
.meas vout_100MppmAvg param 1e6*(vout_FreqAvg-100e6)/100e6; average ppm 
 

 

B.8 Spread Spectrum Clock (SSC) 
Spread Spectrum helps to reduce power at the output peak frequency to reduce Electromagnetic 

Interference (EMI) and avoid disturbing other circuits [28]. 

We can inject an SSC signal to our PLL at the control voltage of the VCO, so we can force it to modulate 

its output frequency and follow the SSC form, see “Vssc” in Figure 77. 

 

Figure 77: Spread Spectrum addition to PLL. 

 

We tried sinusoidal, triangular, and Hershey’s kiss SSC forms in our experiments, in this example, we’re 

showing the triangular SSC case, see Figure 78.  

 

Figure 78: Triangular SSC signal. 

With the Fast Fourier Transform (FFT) analysis, when SSC is applied, we can observe the effect of the 

SSC, the Vout power at 100MHz is slightly lower than the Vref power, Figure 79. 
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a)      b)  

Figure 79: Vref vs. Vout with SSC. a) FFT analysis. b) Zoom at 100MHz. 

Contrarily, when SSC is not applied, we can observe that the Vout power at 100MHz is the same as the 

Vref power, Figure 80. 

  a)        b)  

Figure 80: Vref vs. Vout without SSC. a) FFT analysis. b) Zoom at 100MHz. 

 

B.9 Conclusion 
This PLL worked fine in the end, we were able to obtain 0 ppm concerning the desired output frequency 

of 100MHz, meaning that the PLL got locked and tuned. We were able to modulate the Pll’s output 

frequency with an SSC signal and slightly reduce the power at the peak frequency, we could reduce it 

more by changing the frequency of the SSC signal. I obtained great knowledge by simulating this circuit, 

I now can understand how the blocks work, how the PLL is locked, how the bandwidth of the PLL is tuned 

with the Loop Filter, why dividers are needed in some designs, how phase detector outputs an error, that 

is converted to a correction current and later to a correction voltage, and how the VCO’s input voltages 

and the output frequency is tuned. The PLL is a very interesting circuit. The knowledge obtained will help 

us to understand the debug scenarios seen during our validation. 

 

 

  



99 
 

APPENDIX C. Wcs, Typ, Bcs, and Monte-Carlo Analysis 

Worst-Case-Speed (Wcs), Typical (Typ), and Best-Case-Speed (Bcs) analysis can be done by tweaking 

the parameters of the transistor from its model file or obtaining such files from the internet [29]. 

Monte Carlo (MC) analysis can be done by randomly changing the Length and Width of the transistors by 

a certain percentage and observing the effect in the simulation results [30]. 

Both analyses are being performed in our Cml circuit, which was previously analyzed in this document, 

and can be seen in Figure 81. V1p/V1m is the input signal, V2p/V2m is the output of the first Cml, 

V3p/V3m is the output of the second CML and V4p/V4m is the final output, which is the output of the 

third Cml. 

 

Figure 81: Three Cascaded CML. 

C.1 Wcs, Typ, Bcs Simulations 
As recommended by my director, we’re tweaking two internal parameters of the transistor, as they seem 

to be the most important and he had already some experience with them from the past. 

We’re tweaking the threshold voltage (vth0) and the thickness of the gate oxide (toxref). The vth0 

determines the voltage needed in the gate to turn it on, while the toxref determines the gate oxide 

capacitance (cox), by changing both parameters we can create the worst and best cases. 

For Wcs, we’re increasing vth0 by 20% and toxref by 8%. 
For Typ, we’re using the default values of the model. 
For Bcs, we’re reducing vth0 by 20% and toxref by 8%. 
 
The tweaking of the models can be seen in Figure 82. 
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Figure 82: Models tweaked. Top left: Wcs. Top right: Typ. Bottom: Bcs 

To simulate every case, we need to include the corresponding model with the spice directive “.include”, 

see Figure 83. 

a)    b)    c)  

Figure 83: Inclusion of the model. a) Wcs. b) Typ. c) Bcs. 

The effort invested in this analysis could be exponentially increased, for example, in this case, we are also 

adding 0%, 1%, 5%, and 10% of noise to the power supply, so to collect all these scenarios we need to 

execute our simulation 12 times, this is 3 models times 4 noise-percentages. 

In Figure 84, we can see the average ppm result, V2 has a higher ppm (worse) with Bcs transistors, V3 

has a higher ppm with Typ transistors, and V4 has a higher ppm with Wcs transistors. V1 ppm is always 

0 because this is an ideal signal from the generator source. 

 

Figure 84: Bcs, Typ, Wcs, PPM results. 
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In Figure 85, we can see the accumulated skew or Jitter, V2 has a higher Jitter (worse) with Bcs transistors, 

V3 has a higher Jitter with Typ transistors, and V4 has a higher Jitter with Wcs transistors. V1 ppm is 

always 0 because this is an ideal signal from the generator source. 

 

Figure 85: Bcs, Typ, Wcs, Jitter results. 

 

In Figure 86, we can see the maximum rise and fall times, in this case, all, V2, V3, and V4 have higher 

maximum rise/fall (worse) with Wcs transistors, V1 rise/fall is always the same because this is an ideal 

signal from generator source. 

 

Figure 86: Bcs, Typ, Wcs, Rise time, Fall time, max results. 

 

In Figure 87, we can see the minimum rise and fall times, like maximum cases, all, V2, V3, and V4 have 

higher minimum rise/fall (worse) with Wcs transistors, V1 rise/fall is always the same because this is an 

ideal signal from generator source. 
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Figure 87: Bcs, Typ, Wcs, Rise time, Fall time, min results. 

 

C.2 Monte Carlo Simulations 
A Monte Carlo simulation is a mathematical technique that simulates the range of possible outcomes for 

an uncertain event. These predictions are based on an estimated range of values instead of a fixed set of 

values and evolve randomly [30]. 

We’re making MC simulations in our CML circuit, which was analyzed in the previous section. In Figure 

88 we can see the MC formula applied to the Length and Width of the transistors of the circuit. 

a)    b)    c)  

Figure 88: Monte Carlo configuration of the Nmos. a) M3. b) M7. c) M9. 

From the MC formulas, we’re telling LTspice to randomly change the Length of the transistors to the 

minimum 180nm +/- 10%, similarly, we’re telling to randomly reduce and increase the Width by 30% of 

the minimum 180nm. 

In our CML circuit, M1, M2, M3, and M4 have the same configuration, similarly, M5, M6, and M7 share 

the same parameters, and M8, M9, and M10 are configured the same way. The Resistors and Capacitors 

are simulated with their nominal values. 

These are the possible MC iterations in our circuit: 

Transistor models               Bcs, Typ, Wcs 
Noise in the power supply  0%, 1%, 5%, 10% 
Quantity of runs                  30, 100, 200, 1024 
Jitter measurement at          v1, v2, v3, v4 
Ppm measurement at           v1, v2, v3, v4 
Rise time measurement at   v1, v2, v3, v4 
Fall time measurement at    v1, v2, v3, v4 
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For now, and for learning purposes, we’re only executing the iteration: model Wcs, noise 10%, and Jitter 

at v4 output, with 200 runs. 

The LTspice directive, to run MC, is: “.step param run 1 200 1” where 200 is the number of runs. 

Execute the simulation, and once it’s finished, select “View” and “SPICE Error Log”, Figure 89. 

 

Figure 89: Monte Carlo results, part 1. 

Right-click within the Log and select “Plot .step’ed .meas data”, Figure 90. 

 

Figure 90: Monte Carlo results, part 2. 

Right-click in the measurements pane and select “Add Traces”, Figure 91. 

 

Figure 91: Monte Carlo results, part 3. 

Select the measurement to plot, “sv4_accskew” in this example, for Jitter at v4 output, Figure 92. 
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Figure 92: Monte Carlo results, part 4. 

Finally, we obtain the Jitter at v4 output during the 200 runs of the Monte Carlo simulation. We can 

observe that the Jitter varied from 30.5ps to 44.5ps, Figure 93. 

 

Figure 93: Monte Carlo results, part 5. 

About how many runs to execute, it is not recommended very few since the precision will be low, but not 

so many because the simulation could last too much time. The minimum quantity could be 30, as a rule of 

thumb, and the maximum number could be 2 at the number of variables. For example, in our circuit we’re 

doing MC in 10 transistors, so 210 is 1024. 

1024 runs would be very time-consuming, we observed that 10 runs are executed in 3.5 seconds, 30 runs 

in 9.2 sec, 100 runs in 34 sec, and 200 runs in 93 seconds. We also observed that minimum and maximum 

Jitter did not change significantly when executing a larger quantity of runs, see Table 17. 

Table 17: Monte Carlo, Jitter at output v4, an example of results. 

model noise 
(mV) 

runs sv4_accskew_min 
(ps) 

sv4_accskew_max 
(ps) 

Time elapsed (s) 

Wcs 0.1 10 33.84 43.62 3.5 

Wcs 0.1 30 32.23 43.61 9.2 

Wcs 0.1 100 31.88 43.88 34.3 

Wcs 0.1 200 30.96 44.61 93 
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C.3 Conclusion 
It is interesting how we can simulate better or worse transistors by shifting their internal parameters, saving 

the model, and calling it from LTspice. It is important to learn what parameters are the most representative 

in a real process and tweak those, another alternative is to look for best- and worst-case models from the 

suppliers. Then make measurements and observe the effect on specific electrical parameters of interest. 

Monte Carlo analysis is another very useful tool, with this, we can easily understand how our circuit will 

behave when the components have skewed values, for example, values according to their tolerances from 

the production. We could put the MC formula to all components that need to be analyzed. 

 


