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ABSTRACT 9 

In the last decades, an ever-growing number of studies are focusing on the 10 

extreme weather conditions related to the climate change. Some of them are 11 

based on multifractal approaches, such as the Multifractal Detrended Fluctuation 12 

Analysis (MF-DFA), which has been used in this work. Daily diurnal temperature 13 

range (DTR), maximum, minimum and mean temperature from five coastal and 14 

five mainland stations in Spain have been analyzed. For comparison, two periods 15 

of 30 years have been considered: 1960-1989 and 1990-2019. By using the MF-16 

DFA method, generalized Hurst exponents and multifractal spectra have been 17 

obtained. Outcomes corroborate that all these temperature variables have 18 

multifractal nature and show changes in multifractal properties between both 19 

periods. Also, Hurst exponents values indicate that all time series exhibit long-20 

range correlations and a stationary behavior. Coastal locations exhibit in general 21 

wider spectra for minimum and mean temperature than for maximum and DTR, 22 

in both periods. On the contrary, the mainland ones do not show this pattern. 23 

Also, width from multifractal spectra of these two variables is shortened in the last 24 

Manuscript

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:f12gogoj@uco.es
https://www.editorialmanager.com/physa/viewRCResults.aspx?pdf=1&docID=43496&rev=1&fileID=963098&msid=3d4eb206-2f63-41eb-ad9f-b8e693e1db8c
https://www.editorialmanager.com/physa/viewRCResults.aspx?pdf=1&docID=43496&rev=1&fileID=963098&msid=3d4eb206-2f63-41eb-ad9f-b8e693e1db8c


2 
 

period in almost every case. To authors’ mind, changes in multifractal features 25 

might be related to the climate change experienced in the studied region. 26 

Furthermore, reduction of spectra width for minimum and mean temperature 27 

implies a decrease of the complexity of these temperature variables between both 28 

studied periods. Finally, the wider spectra found in coastal stations might be 29 

useful as a discriminator element to improve climate models. 30 

 31 
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1. INTRODUCTION 38 

For decades, it has been widely known the fact that air temperatures are 39 

increasing (on different spatial and time scales), as it has been proven by a 40 

number of different studies [1–3]. All of the last three decades have been 41 

characterized by being consecutively the warmest since 1850 [4], in terms of 42 

Earth’s surface temperature. It is obvious that this temperature rise has a 43 

negative impact on live on Earth: changes in migration and number of many 44 

species; increase of the susceptibility of numerous ecosystems and human 45 

environments; great impacts to crops (wheat or maize among others). All these 46 
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complications have an added negative influence on global politics, society and 47 

demographics [5]. 48 

Due to all this, there is an increasing interest in the scientific community 49 

regarding climate variability. The main approaches consist in climate models and 50 

statistical analyses that investigate extreme episodes which are supposed to be 51 

related to global warming.  In these cases, the highest confidence levels are 52 

usually associated to unusually extreme cold and heat events [6]. Thus, the study 53 

of temperature variables time series is a widespread approach in the field [7–11]. 54 

In the case of Spain (which is where this work is focused), all findings seem 55 

to point to the fact that the main change in temperature during the twentieth 56 

century was recorded from the 1970s onward. This change was characterized by 57 

an abrupt and remarkable increase in temperatures. Nonetheless, this warming 58 

does not have a marked continuity nor regularity throughout the century. Neither 59 

it has been along the year, being winters typically when the strongest changes 60 

were identified. Also, several studies have shown that this change has been more 61 

pronounced for the maximum than for the minimum temperature in the Iberian 62 

Peninsula and in some subregions [12–15]. However, the opposite was found in 63 

other researches [16,17]. 64 

Classical statistical methods have been widely used traditionally in order 65 

to gain information from time series and to confirm climate models [18,19]. 66 

Furthermore, in the last decade, several advanced techniques have gain 67 

importance in the context of analysis of complexity and non-linearity of signal. 68 

Some of them are the so-called fractal and multifractal analysis [20–22]. Among 69 

these last ones, Multifractal Detrended Fluctuation Analysis (MF-DFA) [23] has 70 

become an extensively used technique for analyzing climatic time series [7,24–71 
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27]. This technique combines the Detrended Fluctuation Analysis (DFA) with the 72 

fractal theory, providing a reliable tool that yields information about complex and 73 

non-linear time series. DFA is used to determine fractal properties of non-74 

stationary time series. However, it fails when it comes to characterizing series 75 

with more than one scaling exponent (multifractal), which is why MF-DFA has 76 

advantages over the first one. 77 

The objective pursued in the presented work is to seek evidence of the 78 

influence of climate change in the multifractal properties of temperature time 79 

series in Spain. Furthermore, these multifractal properties will be analyzed to gain 80 

information on the nature and dynamics of the temperature time series. For such 81 

purpose, authors have selected four variables related to temperature (daily 82 

maximum, minimum and average temperature and the diurnal temperature 83 

range) at ten different locations across Spain and for two different time periods: 84 

1960-1989 and 1990-2019. The employed technique for this analysis is the MF-85 

DFA. 86 

87 

88 

2. MATERIALS AND METHODS89 

2.1. Data 90 

The studied data in this document correspond to four temperature time 91 

series of two periods of 30 years: 1960-1989 and 1990-2019. The data that 92 

support the findings of this study are openly available. They are provided by the 93 

Spanish Meteorological Agency (“Agencia Estatal de Meteorología”) from the 94 

AEMET OpenData website at 95 
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http://www.aemet.es/es/datos_abiertos/AEMET_OpenData. The four 96 

temperature variables are daily maximum (𝑇𝑚𝑎𝑥), minimum (𝑇𝑚𝑖𝑛) and mean 97 

temperature (𝑇𝑚𝑎𝑥), and the diurnal temperature range (𝐷𝑇𝑅), which is computed 98 

from the maximum and minimum temperatures (see Fig. 1). Raw data are 99 

recorded at 10 different meteorological stations located over the Iberian 100 

Peninsula, in Spain (Fig. 2). Half of stations belongs to coastal regions and the 101 

rest are mainland. Furthermore, they cover the Atlantic and the Mediterranean 102 

semiarid climates. Descriptive statistic shows a global increase of temperature 103 

variables, especially for mean temperature. 104 

105 

Fig. 1: Example of temperature variables records for 1990 in Málaga station. Daily 106 
mean, minimum and maximum temperature are shown on the left part, while diurnal 107 

temperature range (𝐷𝑇𝑅) is depicted on the right. This last variable was directly 108 
computed by subtracting minimum temperature values to the maximum temperature.109 

http://www.aemet.es/es/datos_abiertos/AEMET_OpenData
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110 

Fig. 2: Map of the studied meteorological stations localized in the Iberian Peninsula, 111 
Spain.112 

Before applying the MF-DFA, data must be preprocessed in order to 113 

remove the seasonality from time series. To this aim, average month values of 114 

temperature time series over all 30 years for each period have been computed. 115 

Next, these mean values are subtracted from the original signals to obtain the 116 

deseasonalized ones. To check that correlations due to seasonal effects are 117 

eliminated, authors have computed the autocorrelation functions of the original 118 

and the deseasonalized time series. In Fig. 3, an example of these functions is 119 

depicted. As it can be observed, the autocorrelation functions before this 120 

procedure is applied, give an almost sinusoidal behavior in the interval [−1, +1] 121 

which soften when increasing scale. After month values are subtracted, these 122 

functions decay rapidly to zero. 123 
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124 

Fig. 3: Example of original (a) and deseasonalized (b) mean temperature time series125 
for Málaga station in the period 1990-2019 and their corresponding autocorrelations 126 

functions (c and d, respectively). For clarity reasons, time series are plotted only for the 127 
first 5000 data (or days).128 

129 

130 

2.1. Multifractal Detrended Fluctuation Analysis 131 

MF-DFA was a method proposed by Kantelhardt et al. [28] for multifractal 132 

analysis of nonstationary time series and it is based on detrended fluctuation 133 

analysis (DFA). The main advantage of these both approaches is that they can 134 

obtain the scaling behavior of the fluctuations in time series. Although the studied 135 

system is affected by artificial correlations derived from unknown underlining 136 
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trends, these techniques allow to retrieve the intrinsic fluctuations of the system 137 

[29]. DFA was invented in order to deal with monofractal time series and the main 138 

concepts were extended by Kantelhardt et al. to multifractal signals. The five 139 

steps to implement the MF-DFA algorithm are the following [28]: 140 

1) Firstly, compute the integrated time series, also known as the “profile”. Let141 

𝑥𝑘 be a time series of length 𝑁 and 〈𝑥〉 the mean value. Then, the profile142 

is defined as: 143 

𝑌(𝑖) ≡ ∑[𝑥𝑘 − 〈𝑥〉]

𝑖

𝑘=1

, 𝑖 = 1, … , 𝑁 (1) 

2) Next, divide the profile 𝑌(𝑖) into 𝑁𝑠 ≡ int(𝑁/𝑠) nonoverlapping segments144 

of equal length 𝑠. The length 𝑁 of the series is often not a multiple of the145 

time scale 𝑠, thus, a short part at the end of the profile may remain. To 146 

hold this part, the same procedure is repeated from the end of the series 147 

to the beginning. Thereby, 2𝑁𝑠 segments are obtained for each time scale 148 

𝑠. 149 

3) Compute the local trend for each segment 𝜈 by means of the least-squares150 

fit of the series. The fitting polynomial 𝑦𝜈(𝑖) can be linear, quadratic, cubic,151 

or higher order polynomial. Different order of the polynomial fit differs in 152 

the capability to eliminate trends in the series [30]. In 𝑚th order of MF-153 

DFA, trends or order 𝑚 in the profile (or, equivalently, of order 𝑚 − 1 in the 154 

original series) are eliminated. Therefore, by subtracting 𝑦𝜈(𝑖) for each155 

segment, one can compute the variance for each 𝑠 value: 156 

𝐹2(𝜈, 𝑠) ≡
1

𝑠
∑{𝑌[(𝜈 − 1)𝑠 + 𝑖] − 𝑦𝜈(𝑖)}2

𝑠

𝑖=1

(2) 
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for each segment 𝜈, 𝜈 = 1, … , 𝑁𝑠 and 157 

𝐹2(𝜈, 𝑠) ≡
1

𝑠
∑{𝑌[𝑁 − (𝜈 − 𝑁𝑠)𝑠 + 𝑖] − 𝑦𝜈(𝑖)}2

𝑠

𝑖=1

(3) 

for each segment 𝜈, 𝜈 = 𝑁𝑠 + 1, … ,2𝑁𝑠. 158 

4) Average over all segments to obtain the 𝑞th order fluctuation function:159 

𝐹𝑞(𝑠) ≡ {
1

2𝑁𝑠
∑[𝐹2(𝜈, 𝑠)]𝑞/2

2𝑁𝑠

𝜈=1

}

1/𝑞

(4) 

where the index 𝑞 can take any real value except zero, because of the 160 

diverging exponent. For 𝑞 = 0, a logarithmic averaging procedure must be 161 

performed and the fluctuation function is computed as follows: 162 

𝐹𝑞=0(𝑠) ≡ exp {
1

4𝑁𝑠
∑ ln[𝐹2(𝜈, 𝑠)]

2𝑁𝑠

𝜈=1

} (5) 

For 𝑞 = 2, the standard DFA method is obtained. To retrieve the scaling 163 

behavior of the generalized 𝑞 dependent fluctuation functions, steps 2 to 4 164 

must be repeated for different time scales 𝑠. 𝐹𝑞(𝑠) will increase with165 

increasing 𝑠. Besides, this fluctuation function depends on the 𝑚 order of 166 

the polynomial fit and, by construction, is only defined for 𝑠 ≥ 𝑚 + 2 [30]. 167 

5) To determine the scaling behavior of the fluctuation functions, it is168 

necessary to analyze the log-log plots of 𝐹𝑞(𝑠) vs 𝑠 for each value of 𝑞. If169 

the series 𝑥𝑘 is long-range power-law correlated, then 𝐹𝑞(𝑠) increases for170 

larges values of 𝑠 as a power law: 171 

𝐹𝑞(𝑠) ~ 𝑠ℎ(𝑞) (6) 
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Hence, the scaling exponent ℎ(𝑞) can be computed by obtaining the 172 

slopes of the log-log plots of 𝐹𝑞(𝑠)  vs 𝑠 for each 𝑞. For very large scales, 173 

𝐹𝑞(𝑠) becomes statistically inaccurate for the averaging procedure, since 174 

the number of segments 2𝑁𝑠 becomes very small. Also, systematic 175 

deviations from the scaling behavior occur for very small scales (𝑠 ≈ 10). 176 

Thus, a thorough analysis is needed in order to determine the best range 177 

for the least-squares fits. 178 

In general, ℎ(𝑞) can depend on 𝑞. For stationary time series, ℎ(2) is the 179 

well-known Hurst exponent 𝐻 whereas, for non-stationary signals, the Hurst 180 

exponent is 𝐻 = ℎ(2) − 1 [31]. For this reason, ℎ(𝑞) is called as generalized Hurst 181 

exponent. On the other hand, the Hurst exponent value (𝐻) gives information 182 

about the correlation properties of the signals. For a white noise process 183 

(uncorrelated time series), 𝐻 = 0.5. When 0 < 𝐻 < 0.5, the signal is anti- long-184 

range anticorrelated, meaning that a large value is more likely to be followed by 185 

a small value and vice versa. Finally, when 𝐻 > 0.5, time series is long-range 186 

correlated and large values are more likely to be followed by other large values 187 

and vice versa [29]. 188 

For monofractal time series, ℎ(𝑞) is independent of 𝑞 and Eq. (4) gives an 189 

identical scaling behavior for all values of 𝑞. Only if small and large fluctuations 190 

scales differently, ℎ(𝑞) will depend significantly on 𝑞. Segments with large 191 

variance 𝐹2(𝜈, 𝑠) or large deviations from the fit will dominate the average value 192 

𝐹𝑞(𝑠) for 𝑞 > 0. On the contrary, segments with small variance 𝐹2(𝜈, 𝑠) will 193 

dominate 𝐹𝑞(𝑠) for 𝑞 < 0. Therefore, ℎ(𝑞) describes the scaling behavior of the 194 
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segments with large fluctuations (when 𝑞 > 0) and the scaling behavior of the 195 

segments with small fluctuations (when 𝑞 < 0). 196 

197 

2.2. Relation to Standard Multifractal Analysis 198 

In order to relate MF-DFA method to the standard multifractal analysis 199 

based on the box counting formalism, Kantelhardt et al. also demonstrated that 200 

the scaling exponent ℎ(𝑞) is related to the scaling exponent 𝜏(𝑞), which is defined 201 

by the partition function of the multifractal formalism [28]. This relationship is 202 

stablished by the expression: 203 

𝜏(𝑞) = 𝑞ℎ(𝑞) − 1 (7) 

Another way to characterize a multifractal series in the standard formalism 204 

is by means of the so-called multifractal spectrum or singularity spectrum 𝑓(𝛼), 205 

which can be computed from 𝜏(𝑞) via the Legendre transform: 206 

𝛼 =
𝑑𝜏(𝑞)

𝑑𝑞
 and 𝑓(𝛼) = 𝑞𝛼 − 𝜏(𝑞) (8) 

where 𝛼 is the singularity strength or Hölder exponent and the shape of 207 

𝑓(𝛼) is usually a concave-down parabola with a maximum value which 208 

correspond to the most dominant scaling behavior [25]. The corresponding value 209 

of the singularity strength at this maximum is often denoted by 𝛼0 and the width 210 

of the multifractal spectrum (i.e., 𝑊 = 𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛) gives information about the 211 

degree of the multifractality of the signal [32]. When the time series is 212 

monofractal, the width of the spectrum will be close to zero. 213 
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If the curve is fitted by a second order polynomial, it can be obtained an 214 

asymmetry parameter 𝐵 to discern between right-skewed or left-skewed 215 

distributions. Hence, the multifractal spectrum can be parametrized by: 216 

𝑓(𝛼) = 𝐴(𝛼 − 𝛼0)2 + 𝐵(𝛼 − 𝛼0) + 𝐶 (9)

When 𝐵 = 0, the spectrum is symmetrical, whereas for 𝐵 > 0 is left-217 

skewed and for negative values is right-skewed [33,34].  A right-skewed spectrum 218 

is related to relatively strongly weighted high fractal exponents. Its broadness is 219 

mainly due to small fluctuations (𝑞 < 0) and the time series is more regular (with 220 

“fine-structure”) [35,36]. On the contrary, a left-skewed spectrum indicates a 221 

relatively strongly weighted low fractal exponents associated to large fluctuations 222 

(𝑞 > 0) and a more singular signal. Thus, it shows a richer multifractal structure 223 

in the arrangement of the large fluctuations. 224 

225 

3. RESULTS AND DISCUSSION226 

3.1. Generalized Hurst Exponents 227 

To calculate the generalized Hurst exponent ℎ(𝑞) of temperature 228 

variables, fluctuation functions 𝐹𝑞(𝑠) with a range of 𝑞 values from -5 to 5 with229 

step 0.5 has been chosen. The interval selected for the scale values 𝑠 is from 5 230 

to 2000 days with step of 5 days. In Fig. 4, values of log [𝐹𝑞(𝑠)] vs log (𝑠) is shown231 

for Málaga in the period 1990-2019 as an example. It is observed that fluctuation 232 

functions increase with scale. As it can also be appreciated, curves can be fitted 233 

by a linear regression to obtain the sought generalized Hurst exponent ℎ(𝑞). The 234 

optimal range to compute the linear fit is approximately between 18 and 355 days 235 
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(almost one year). Nonetheless, in some cases it is necessary to shorten this 236 

range (down to 126 days) to avoid artifacts that worsen the analysis. 237 

238 

Fig. 4: Fluctuation functions vs scale values of segments for Málaga station in the 239 
period 1990-2019. Each curve corresponds to one 𝑞 value. To make clearer charts, 240 

only half of the analyzed curves are depicted.241 

242 

The generalized Hurst exponent for every location and period of time has 243 

been retrieved from their respective least squares regressions and results are 244 

plotted in Fig. 5 for the five coastal locations and in Fig. 6 for the mainland ones. 245 

On the one hand, looking at the five coastal stations, it can be observed 246 

that, in general, the scaling exponent is a decreasing function of 𝑞. One can 247 

define a quantity ∆ℎ(𝑞) = ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛, being ℎ𝑚𝑎𝑥 the maximum value of the248 

generalized Hurst exponent in the interval and ℎ𝑚𝑖𝑛 the minimum. The value of 249 
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∆ℎ(𝑞) gives information about the multifractality degree of the signal. Meaning 250 

that a greater multifractality degree is related to more violent temperature 251 

fluctuations [37]. ∆ℎ(𝑞) is higher for mean and minimum temperature variables. 252 

This fact indicates a more multifractal behavior from these signals which derives 253 

from more complex systems [23]. 254 

Furthermore, the only case where ∆ℎ(𝑞) is almost zero occurs for 𝐷𝑇𝑅 in 255 

Málaga station in the years 1960-1989 (Fig. 5g). This is a characteristic behavior 256 

of monofractal time series. Apparently, for the next 30 years, the 𝐷𝑇𝑅 evolves 257 

slightly to a more multifractal signal in this case, as shown in Fig. 5h. However, 258 

this will be clearer when multifractal spectra are discussed further in the text. 259 

On the other hand, the mainland stations in Fig. 6 present a similar 260 

behavior such as the decreasing trend. Here, negligible differences in ∆ℎ(𝑞) are 261 

shown, contrary to the coastal locations where minimum and mean temperature 262 

had a more pronounced value of ∆ℎ(𝑞). Physically speaking, the major degree of 263 

multifractality for mean and minimum temperature in the coastal stations might 264 

be related to the oceanic influence. Looking at Zaragoza, a monofractal nature is 265 

identified as well in this case for DTR in the 1960-1989 period. This tendency 266 

changes for the next period, exhibiting a higher multifractal degree (same 267 

phenomenon happened with Málaga, as discussed before). 268 

Overall, the Hurst exponent 𝐻 value can be calculated from these curves 269 

for 𝑞 = 2. Because all these times series have a value of ℎ(2) < 1, they are 270 

demonstrated to be stationary signals and the Hurst exponent is exactly this value 271 

[38]. All values of this parameter are in the range [0.601, 0.777]. As 𝐻 > 0.5 for all 272 

the cases, time series are long-range correlated, meaning that a relative high 273 
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value of signals are likely to be followed by other high value and vice versa [25]. 274 

Regarding the ∆ℎ(𝑞), it must be point out the fact that for the studied series, their 275 

values belong to the interval [0.027, 0.187]. This shows that there is a high 276 

variability of the multifractal degree among the different series: from almost 277 

monofractal (as seen with Málaga and Zaragoza) to clearly multifractal ones. 278 
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279 

Fig. 5: Generalized Hurst exponents for 𝑇𝑚𝑎𝑥 (a and b), 𝑇𝑚𝑖𝑛 (c and d), 𝑇𝑚𝑒𝑎𝑛 (e and f) 280 
and 𝐷𝑇𝑅 (g and h) in the five coastal stations (Barcelona, Bilbao, Málaga, La Coruña 281 
and Valencia). Charts on the left side are from the years 1960-1989 (a, c, e and g), 282 

while the ones on the right side correspond to the years 1990-2019.283 
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 284 

 285 

Fig. 6: Generalized Hurst exponents for 𝑇𝑚𝑎𝑥 (a and b), 𝑇𝑚𝑖𝑛 (c and d), 𝑇𝑚𝑒𝑎𝑛 (e and f) 286 
and 𝐷𝑇𝑅 (g and h) in the five mainland stations (Burgos, Sevilla, Zaragoza, Badajoz 287 
and Albacete). Charts on the left side are from the years 1960-1989 (a, c, e and g), 288 

while the ones on the right side correspond to the years 1990-2019. 289 
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3.2. Multifractal Spectra 290 

Multifractal spectra are obtained by means of the computed scaling 291 

exponent 𝜏(𝑞), which is yielded from the relation between this quantity and the 292 

generalized Hurst exponent (see Eq. (7)). Hölder exponents 𝛼 and 𝑓(𝛼) are finally 293 

retrieved from the Legendre transform of this scaling exponent. In Fig. 7 and Fig. 294 

8, it can be seen the multifractal spectra for every city, period and temperature 295 

variable used in this analysis in the same order as Fig. 5 and Fig. 6. Next, the 296 

coastal stations will be discussed. 297 

Looking at the maximum temperature variable in Figs. 7a and b, it can be 298 

observed that some differences are present between both periods. For all stations 299 

except for Málaga, the position of the maxima 𝛼0, which denotes the dominant 300 

singularity strength, is slightly shifted to the right from years 1960-1989 to 1990-301 

2019. On the contrary, Málaga spectrum is shifted to the left, meaning that 302 

Málaga changes to more correlated signal and more regular structure in the last 303 

30 years. Meanwhile, the other four do the opposite, becoming more complex 304 

signals [24]. When it comes to the width (𝑊 = 𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛), La Coruña is the 305 

coastal station that changes the most between both periods, increasing the 306 

degree of multifractality (see Table 1). Barcelona and Valencia spectra have a 307 

rather shorter left tail for the last period in contrast to the first one, denoting that, 308 

in the last 30 years, there is more homogeneity in the large fluctuations for this 309 

series. 310 

Minimum temperature signals (Figs. 7c and d) show that in this case the 311 

peaks of the spectra (𝛼0) experience a shift to the right in the second time period 312 

(the series become less correlated, as explained before). The width of the spectra 313 
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is in this case reduced for every case, pointing to a reduction of the multifractality 314 

of the minimum temperature time series over the years. Again, it is possible to 315 

see that the left tail corresponding to Barcelona and Valencia is shorter for 1990-316 

2019, as happened with the maximum temperature. 317 

For mean temperature (Figs. 7e and f), again 𝛼0 slightly moves to the right 318 

and the widths of the spectra are shortened for every location from years 1960-319 

1989 to 1990-2019. Furthermore, the most highlighted stations that present a 320 

reduced left tail between both periods are Barcelona and Valencia again, being 321 

coherent with the previous results. 322 

DTR results (Figs. 7g and h) also depict slight shifts in the value of 𝛼0. The 323 

difference in this case is that these changes are now towards the left direction of 324 

the x-axis. Now the changes in the value of 𝑊 are not as consistent as in the 325 

previous variables. Multifractal degree of La Coruña and Málaga are increased, 326 

while the others decrease. The last mentioned station (Málaga) stands out by 327 

having a much larger left tail for the last years. 328 

In general, multifractal spectra for minimum and mean temperature are 329 

wider than in the other variables, meaning that the degree of multifractality of 330 

these variables is larger and that these time series have more complex behavior. 331 

This fact is coherent with the outcomes obtained from the generalized Hurst 332 

exponent. On the other hand, the asymmetry parameter 𝐵, which is shown in 333 

Table 2, indicates change in the sign of symmetry for several stations and 334 

variables. La Coruña and Valencia do not change the sign of 𝐵. Barcelona alters 335 

its symmetry for 𝑇𝑚𝑎𝑥 from negative to positive, which denotes that spectrum 336 

changes from right to left-skewed and becomes more singular in the last period, 337 
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as discussed in the Sec. 2.2. Bilbao modify its symmetry from positive to negative 338 

in 𝑇𝑚𝑖𝑛, i.e., it becomes smoother or less singular for the last years. On the 339 

contrary, it is altered from negative to positive in spectra for 𝐷𝑇𝑅 (see Table 2). 340 

Lastly, Málaga changes from positive to negative in 𝑇𝑚𝑎𝑥 and 𝐷𝑇𝑅. 341 

Once the discussion of the results for the coastal stations has been done, 342 

the equivalent for the mainland ones is described, which can be seen in Fig. 8. 343 

Focusing on the maximum temperature (Figs. 8a and b), it seems that there is no 344 

common behavior when it comes to the shift of  𝛼0 for the five stations. Regarding 345 

the shape and the width of the spectra, it must be pointed out that most of them 346 

are very similar, especially for the second period, except for Zaragoza. 347 

Moving to the minimum temperature spectra (Figs. 8c and d), the 𝛼0 348 

positions shifts vary from city to another. While for Sevilla and Albacete become 349 

more correlated (move to the left), the rest do the opposite. The width of the 350 

spectra decreases this time for all of them, except for Zaragoza, that remains 351 

almost the same. It can be clearly seen in the corresponding figure. 352 

For mean temperature, in every mainland station it can be observed how 353 

spectra are shifted to the right (see Figs. 8e and f), meaning that signals become 354 

more complex. By looking at the width, it decreases in all locations except for 355 

Sevilla. Again, the shape of spectra is very alike, more notably for the last 30 356 

years. 357 

Lastly, 𝐷𝑇𝑅 charts (Figs. 8g and h) depict shifted spectra to the left in every 358 

case except for Zaragoza. For the width, almost all the locations show a decrease 359 

of the degree of multifractality. Again, Zaragoza has a different behavior, 360 

increasing the width instead of decreasing. Indeed, the spectrum changes from 361 
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almost monofractal in the years 1960-1989 to multifractal in the last period. This 362 

agrees with the results of the generalized Hurst exponent. 363 

Overall, it cannot be said that the minimum and mean temperature spectra 364 

are wider, as happened to the coastal stations. Hence, the multifractal degree in 365 

this case is relatively similar for all the variables. In this case, the asymmetry 366 

parameter B (see Table 2) maintains its sign for every city and variables, except 367 

for Sevilla (𝑇𝑚𝑎𝑥) and Zaragoza (𝑇𝑚𝑖𝑛 and 𝐷𝑇𝑅). In these cases, the sign always 368 

changes from positive to negative, which means as explained before, that the 369 

spectra change from left to right-skewed. Therefore, the signals become more 370 

regular in the last period. 371 
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372 

Fig. 7: Multifractal spectrum of 𝑇𝑚𝑎𝑥 (a and b), 𝑇𝑚𝑖𝑛 (c and d), 𝑇𝑚𝑒𝑎𝑛 (e and f) and 𝐷𝑇𝑅 373 
(g and h) for every coastal station (Barcelona, Bilbao, Málaga, La Coruña and 374 

Valencia). Charts on the left side are from the years 1960-1989 (a, c, e and g), while 375 
the ones on the right side correspond to the years 1990-2019.376 

377 
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378 

Fig. 8: Multifractal spectrum of 𝑇𝑚𝑎𝑥 (a and b), 𝑇𝑚𝑖𝑛 (c and d), 𝑇𝑚𝑒𝑎𝑛 (e and f) and 𝐷𝑇𝑅 379 
(g and h) for every mainland station (Burgos, Sevilla, Zaragoza, Badajoz and 380 

Albacete). Charts on the left side are from the years 1960-1989 (a, c, e and g), while 381 
the ones on the right side correspond to the years 1990-2019382 



24 

Station 
𝑇𝑚𝑎𝑥 𝑇𝑚𝑖𝑛 𝑇𝑚𝑒𝑎𝑛 𝐷𝑇𝑅 

1960 - 
1989 

1990 - 
2019 

1960 - 
1989 

1990 - 
2019 

1960 - 
1989 

1990 - 
2019 

1960 - 
1989 

1990 - 
2019 

Barcelona 0,336 0,243 0,638 0,336 0,577 0,273 0,137 0,099 

Bilbao 0,332 0,247 0,362 0,266 0,475 0,348 0,147 0,098 

Málaga 0,188 0,198 0,296 0,283 0,355 0,283 0,063 0,261 

La Coruña 0,116 0,239 0,514 0,466 0,330 0,235 0,192 0,215 

Valencia 0,340 0,351 0,524 0,340 0,454 0,419 0,286 0,197 

Burgos 0,110 0,295 0,401 0,313 0,331 0,271 0,294 0,229 

Sevilla 0,311 0,318 0,323 0,130 0,244 0,299 0,254 0,184 

Zaragoza 0,255 0,172 0,248 0,291 0,343 0,253 0,109 0,277 

Badajoz 0,405 0,282 0,308 0,126 0,260 0,249 0,325 0,241 

Albacete 0,324 0,318 0,403 0,221 0,393 0,321 0,271 0,259 

Table 1: Multifractal spectra width 𝑊 of daily maximum (𝑇𝑚𝑎𝑥), minimum (𝑇𝑚𝑖𝑛), 383 
mean temperature (𝑇𝑚𝑒𝑎𝑛) and diurnal temperature range (𝐷𝑇𝑅) for the periods 1960-384 

1989 and 1990-2019 in every station. 385 
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Station 
𝑇𝑚𝑎𝑥 𝑇𝑚𝑖𝑛 𝑇𝑚𝑒𝑎𝑛 𝐷𝑇𝑅 

1960 - 
1989 

1990 - 
2019 

1960 - 
1989 

1990 - 
2019 

1960 - 
1989 

1990 - 
2019 

1960 - 
1989 

1990 - 
2019 

Barcelona -0,408 0,457 0,447 0,487 0,367 0,480 0,561 0,520 

Bilbao 0,495 0,560 0,345 -0,264 0,354 0,627 -0,364 0,407 

Málaga 0,294 -0,218 0,516 0,425 0,472 0,493 0,004 -0,336 

La Coruña 0,432 0,413 0,487 0,361 0,418 0,284 0,345 0,498 

Valencia 0,489 0,486 0,451 0,440 0,425 0,492 -0,269 -0,211 

Burgos 0,221 0,085 0,248 0,411 0,541 0,519 0,233 0,421 

Sevilla 0,508 0,455 0,377 -0,147 0,620 0,452 0,516 0,518 

Zaragoza 0,399 0,488 0,269 -0,329 0,385 0,448 0,232 -0,355 

Badajoz 0,452 0,554 0,382 0,055 0,516 0,525 0,381 0,412 

Albacete 0,519 0,488 0,432 0,414 0,399 0,521 0,447 0,492 

Table 2: Asymmetry parameter 𝐵 of multifractal spectra of daily maximum 386 
(𝑇𝑚𝑎𝑥), minimum (𝑇𝑚𝑖𝑛), mean temperature (𝑇𝑚𝑒𝑎𝑛) and diurnal temperature range 387 

(𝐷𝑇𝑅) for the periods 1960-1989 and 1990-2019 in every station. 388 
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4. CONCLUSIONS389 

The analyzed air surface temperature variables show all distinct scaling 390 

exponents when looking at the fluctuation functions (𝐹(𝑞)) versus scales (𝑠) at 391 

different 𝑞 moments. This fact demonstrates the intrinsic multifractal nature of 392 

signals. It can be concluded that all the series are stationary and long-range 393 

correlated. A way to understand the long-range correlation is that an increase in 394 

temperature would be more likely followed by another increase and vice versa. 395 

The main multifractal features of the four temperature signals vary 396 

between years 1960-1989 and 1990-2019, to a greater or lesser extent. This 397 

result might be interpreted as a possible relation between the climatic change 398 

and the fractal properties. However, in most cases, the symmetry of multifractal 399 

spectra remains almost the same between both periods and changes that we 400 

found lacked any consistency. 401 

Regarding coastal locations, a higher degree of multifractality is mostly 402 

present in both periods in 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑒𝑎𝑛, since they show wider spectra than for 403 

𝑇𝑚𝑎𝑥 and 𝐷𝑇𝑅. This result is a discriminator element between coastal and 404 

mainland stations in both periods because the last ones do not show this pattern. 405 

Thus, authors conclude that ocean might have an impact on the higher complexity 406 

of minimum and mean temperature time series on these locations. 407 

 Nevertheless, a more relevant result obtained from 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑒𝑎𝑛 is a 408 

spectral narrowing on the vast majority of mainland and coastal stations over 409 

time. This means that the complexity of the temperature series decreases. 410 

However, authors believe that changes in complexity for the mean might be 411 

derived from minimum temperature values. Since this effect is not consistent with 412 



27 

the maximum temperature, there is an asymmetry in the temperature behavior. 413 

Brunet et al. already found an asymmetric behavior between maxima and minima 414 

only in mainland stations over the Iberian Peninsula in their statistical study 415 

between 1850 and 2003 [15]. In that study, maximum temperature increased at 416 

greater rates than minimum temperature. On the contrary, other investigations 417 

made by Esteban-Parra et al. in 2003 [16] or Staudt et al. in 2004 [17] obtained 418 

the opposite behavior (higher rates of change for minima than for maxima). 419 

According to this, the climatic change experienced in this region might be linked 420 

to different behaviors in maxima and minima. A relation between this asymmetry 421 

found in the Iberian Peninsula and the different multifractality shown by their 422 

singularity spectra could exist. 423 

The conclusions drawn from these results can help testing models related 424 

to the climate change. One important point extracted from this analysis is that 425 

multifractal properties are not conserved over time for temperature time series. 426 

Hence, to improve future simulations, studies involving greater periods of time 427 

should be done. By doing so, a better understanding of how these parameters 428 

evolve with time could be achieved. Additionally, it must be pointed out the 429 

importance of seeking relations among the multifractal features and the 430 

atmospheric processes involved. A search of the applicability of these outcomes 431 

for assessing different climate models will be the aim of future works. 432 
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