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Abstract

In the literature, several epidemiological studies have already associated

respiratory and cardiovascular diseases to acute exposure of mineral dust.

However, frail people are also sensitive to chronic exposure to particulate

matter with an aerodynamic diameter 10 µm or less (PM10). Consequently,

it is crucial to better understand PM10 fluctuations at all scales. This study

investigates PM10 background atmosphere in the Caribbean area according

to African dust seasonality with complex network framework. For that pur-

pose, the regular Visibility Graph (VG) and the new Upside-Down Visibility

Graph (UDVG) are used for a multifractal analysis. Firstly, concentration

vs degree (v-k) plots highlighted that high degree values (hubs behavior)

are related to the highest PM10 concentrations in VG while hubs is asso-

ciated to the lowest concentrations in UDVG, i.e. probably the background
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atmosphere. Then, the degree distribution analysis showed that VG and 

UDVG difference is reduced for high dust season contrary to the low one. 

As regards the multifractal analysis, the multifractal degree is higher for 

the low season in VG while it is higher for the high season in UDVG. The 

degree distribution behavior and the opposite trend in multifractal degree 

for UDVG are due to the increase of PM10 background atmosphere during 

the high season, i.e. from May to September. To sum up, UDGV is an 

efficient tool to perform noise fluctuations analysis in environmental time 

series where low concentrations play an important role as well. Keywords: 

PM10, Visibility graphs, Upside-down visibility graphs, Multifractal 

analysis, Background atmosphere

1. Introduction

Aeolian processes in North Africa annually transfer important amounts 

of mineral dust westwards to the Atlantic and Caribbean sea (Prospero and 

Carlson, 1981; Petit et al., 2005; Moreno et al., 2006; Van Der Does et al., 

2016). Over the ocean, mineral dust transport is made in a Saharan Air 

Layer (SAL) bounded by temperature inversions and defined by typical ver-

tical gradients of potential temperature and water vapour mixing (Prospero 

and Carlson, 1972; Adams et al., 2012). Even if dust occurrence is systemat-

ically related to a SAL, it is important to underline that a SAL is not always 

dusty (Petit et al., 2005). For the atmosphere to be loaded with soil dust 

particles, several processes are required in Africa (Mahowald et al., 2014):

i) strong wind, ii) dry soil, iii) sparse vegetation and iiii) saltating particles.

Once deposited to the surface by dry or wet deposition (Schepanski, 

2018), dust particles provide micro nutrients to the ocean (Martin et al.,
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1991; Jickells et al., 2005) or to land ecosystems (Painter et al., 2007; Okin 

et al., 2008). Conversely, mineral dust is also known to have many 

harmful effects on human health. Indeed, particulate matter with an 

aerodynamic diameter 10 µm or less (PM10) are frequently associated to 

respiratory and cardiovascular diseases (Gurung et al., 2017; Zhang et al., 

2017; Momtazan et al., 2019; Feng et al., 2019). In the Caribbean area, 

the health impact of dust outbreaks is frequently related to acute 

exposure (Cadelis et al., 2013, 2014). However, pregnant women, 

children and the elderly are also sensitive to chronic exposure. Recently, 

an epidemiological study assessed the impact of dust outbreaks on severe 

small for gestational-age births in Guadeloupe (Viel et al., 2020). The 

results showed that Saharan dust seems to influence weight but not length 

or head circumference at birth. Conse-quently, it is fundamental to 

understand PM10 fluctuations at all scales. Indeed, past chronic exposure 

studies are usually focused on atmospheric pollutants accumulation effects 

(Woodruff et al., 1997; Ling and van Eeden, 2009; Scheers et al., 2015) 

while some works pointed out that exposure to short-term fluctuations of 

air pollution can increase health risks (Schwartz, 1995; Maleki et al., 2016).

To perform a profound analysis of PM10 time series, multifractal frame 

is usually used (Ho et al., 2004; Liu et al., 2015b; Gao et al., 2016; Dong et al., 

2017; Plocoste et al., 2017, 2020c), to mention a few. In all these studies, 

large fluctuations of PM10 values are frequently taken into account. To our 

knowledge, no study has yet assessed the background atmosphere of PM10 

concentrations in a multifractal way. Here, the aim of this study was to 

perform a profound analysis of PM10 noise fluctuations in the Caribbean 

area according to African dust seasonality with complex network framework. 

To achieve this, the regular Visibility Graph (VG) and the new Upside-Down
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Visibility Graph (UDVG) are used.

In order to carry out this study, the paper is organized as follows. Sec-

tion 2 describes the data and the theoretical framework applied. Section 3 

presents the results obtained and discusses them. Lastly, a conclusion and 

an outlook for future studies are given in Section 4.

2. Experimental data and methods

2.1. Experimental data

The time series analyzed here belong to Les Associations Agréées de 

Surveillance de Qualité de l’air, a national organization that overseas air quality 

in each of the French administrative regions. In Guadeloupe archipelago 

(16.25◦N −61.58◦W, ∼1800 km2), the air quality network is managed by 

Gwad’Air agency (http://www.gwadair.fr/) (Plocoste et al., 2019). Located at 

the center of the island, the three air quality stations are close to each other, i.e. 

less than 10 km for the maximum distance (Plocoste et al., 2018). PM10 

measurements are made using the Thermo Scientific Tapered El-ement 

Oscillating Microbalance (TEOM) models 1400ab and 1400-FDMS (Prospero et 

al., 2014). Measurements are made continuously and stored as 15 min averages. 

Here, we focused on Pointe-à-Pitre station (16.2422◦N 61.5414◦W, urban area) 

where PM10 measurements were performed from 2005 to 2012. Contrary to 

many studies where hourly data are frequently used (Yang, 2002; D’Alessandro 

et al., 2003; Grivas and Chaloulakou, 2006; Paschalidou et al., 2011), this study 

deals with quarter-hourly data in or-der to better investigate PM10 

fluctuations. To carry out this study, the year 2009 was chosen because it is a 

classical year (no extreme events) and furthermore the dataset is complete 

(35040 data points). Figure 1 depicts
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the PM10 time series where huge fluctuations can be observed, i.e. strong 

variability.
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Figure 1: PM10 time series measured at Pointe-à-Pitre in 2009.

2.2. Visibility graphs

Over the past decade, a new technique that transforms time series into 

graph or network has been developed. Called Visibility Graph (VG) due 

to its similarities with those used in architecture for space analysis (Turner 

et al., 2001), VG applied to time series was firstly introduced by Lacasa et al.

(2008). In the literature, numerous studies have already shown that VG has
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the benefit of inheriting properties from the original time series (Lacasa 

et al., 2008, 2009; Lacasa and Toral, 2010; Mali et al., 2018; Carmona-

Cabezas et al., 2019b), to mention a few.

Usually, a graph can be described as a set of vertices, points or nodes 

connected to each other by lines that are usually called edges. In VG frame, 

the points in the time series are represented by the nodes. In order to 

transform a time series into VG, a criterion must be established for linking 

the nodes and establishing the edges. The concept is the following: two 

nodes are linked to each other if and only if a line between them can be drawn 

directly, i.e. without passing below any other point in the signal. Thus, for 

a time series y(t), two points (ta, ya) and (tb, yb) will be connected in the 

graph (have visibility), if any given point (tc, yc) between them (ta < tc < tb) 

meets the following condition (Lacasa et al., 2008):

yc < ya + (yb − ya)
tc − ta
tb − ta

(1)

According to VG frame, nodes with highest connectivity (so-called hubs) 

are frequently associated to highest values in the original time series(Carmona-

Cabezas et al., 2019a). In order to analyze the large fluctuations in a time 

series, VG is a very robust tool. However, to study small fluctuations, this 

method has some drawbacks. This is the reason why this approach is not 

suitable for studying the behavior of the background atmosphere in air pol-

lution field.

To remedy this, a new version of VG method was recently presented by 

Soni (2019) in order to retrieve more information from a time series. In this 

new frame, the concept of a signed complex network is integrated. Here, the 

main concept through this new approach is that some of the edges will have
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a positive sign, while some other will be negative. Thus, the classical VG 

firstly presented corresponds to the positive edges of this signed graph while 

the negative connections are made also from the classical VG but computed 

this time over the “upside-down” time series. In more concrete terms, the 

converted series −f(t) is employed in place of the original series f(t). This 

new method has already proven reliable in different fields (Lacasa et al., 2015; 

Sannino et al., 2017; Carmona-Cabezas et al., 2020).

The aim of this study is to investigate the background atmosphere be-

havior related to African dust haze in the Caribbean area. In order to perform 

a profound analysis of this entity, the positive and negative parts need to be 

obtained separately. Therefore, for the rest of the manuscript, the “positive” 

network will be termed regular VG while the “negative” one will be called 

Upside-Down VG (UDVG). Figure 2 depicts an example with both networks. 

As it can be observed, the edges of both graphs differ (VG in blue lines and 

UDVG in red lines) except those linking each node to it closest neighbors (in 

black lines) in the time series. This is reflected in the adjacency matrix as 

well. The last one is one of the most usual ways of representing a graph, which 

consists of a N × N binary matrix (being N the number of nodes or points in 

the time series). The element aij of the matrix equals 1 when the nodes i and j 

and zero otherwise. Therefore, the adjacency matrix of an undirected graph is 

symmetric (as it is the case). As introduced before regarding VG and UDVG 

matrices, they meet the follow-ing criteria (Carmona-Cabezas et al., 2020): 

aVij
G + aUDV G ≤ 1; ∀j 6= i ± 1.

ij

Consequently, for both matrices, the elements surrounding the main diago-

nal are identical and the others cannot be aij = 1 at the same time. In this 

study, the computational cost of VG and UDVG algorithms is respectively 

1.7429 and 1.5333 seconds for the entire PM10 time series.
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Figure 2: Illustration of computation for the regular VG (blue lines) and the UDVG (red

lines) to a sample time series and resulting graphs. Black lines show the common edges.

2.3. Multifractal analysis

In early 80s, multifractal analysis was firstly introduced by Mandelbrot 

(1982) in order to study the energy dissipation in the context of the fully de-

veloped turbulence with multiplicatives cascades models. Subsequently, this 

approach was widely used in environmental studies (Tessier et al., 1994; Seu-

ront et al., 1996; Kravchenko et al., 1999; Lee, 2002; Jiménez-Hornero et al., 

2011; Calif and Schmitt, 2014; Baranowski et al., 2015; Dong et al., 2017; 

Carmona-Cabezas et al., 2019a; Plocoste and Pavón-Domínguez, 2020b), to 

cite a few. Indeed, due to the possibility of having different densities de-

pending on the region of application, multifractal analysis is regarded as the 

inherent property of complex and composite systems (Mandelbrot, 1974).
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Classically, two methods are frequently used to analyze the multifractal 

properties of a time series: the generalized fractal dimension Dq (Tél et al., 

1989; Block et al., 1990; Schreiber and Grussbach, 1991; Posadas et al., 2001) 

and the singularity spectrum f(α) (Chhabra et al., 1989; Bacry et al., 1993; 

Lyra and Tsallis, 1998; Caniego et al., 2005).

2.3.1. Generalized fractal dimension

The generalized fractal or Rényi dimensions Dq was the first approach to 

investigate multifractal formalism (Harte, 2001). This method highlights the 

scaling exponents of the qth moments of the system (Feder, 1988). Usually, 

the fixed size algorithms (FSA) is applied to perform a multifractal analysis 

(Halsey et al., 1986; Mach et al., 1995). However, FSA does not correctly 

estimate the side corresponding to negatives value of q. To overcome this 

drawback, the sandbox algorithm (SBA) is introduced by Tél et al. (1989). 

Based on the box-counting algorithm (Halsey et al., 1986), SBA is able to 

reliably computing the fractal dimensions of real data, even for negative 

moments (Tél et al., 1989). Initially developed by Vicsek et al. (1990), 

this approach was firstly applied in complex networks frame for multifractal 

analysis by Liu et al. (2015a). Many studies have shown that SBA is the 

most effective, feasible and accurate algorithm to investigate the multifractal 

behavior and compute the mass exponent of complex networks (Yu et al., 

2016; Mali et al., 2018; Carmona-Cabezas et al., 2019a).

In SBA procedure, a number of randomly placed boxes are selected for 

each radius. These boxes are always centred on a node of the network. As 

a consequence, the entire network is covered with those boxes by choos-

ing a sufficiently high number of them (Carmona-Cabezas et al., 2019a). 

The following equation is used to determine the probability measurement to
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compute each box (B) (Carmona-Cabezas et al., 2019a):

µ(B) =
M(B)

M0
(2)

Being M(B) the number of counted boxes or points in a given sandbox 

with radius r and M0, the total amount for the whole fractal object. After 

computing this value for each box and radii, the classical generalized fractal 

dimensions can be obtained for the different q values as follows (Carmona-

Cabezas et al., 2019a):

Dq =
1

q − 1
lim
r→0

ln
〈
µ(B)(q−1)

〉
ln r

∀q 6= 1 (3)

Where the < − > terminology indicates that all the µ(B) values from the 

randomly generated boxes are averaged for each radii r. For the case

q = 1, one can obtain the following expression (Mali et al., 2018):

D1 = lim
r→0

< lnµ(B) >

ln r
(4)

In the literature, the protocol for executing the SBA algorithm for com-

plex networks is widely described (Liu et al., 2015a; Yu et al., 2016; Carmona-

Cabezas et al., 2019a). Here, the input parameters are the following: i) the 

interval used for the radii goes from 1 to 30 (r ∈ [1, 30]) according to the 

distance matrix between the nodes; ii) the range of moments is between q = 

−5 and q = +5 with an increment step of 0.25. From equation 3, numerous 

informations can be extracted (Carmona-Cabezas et al., 2019a):

i) Dq=0 corresponds to the fractal dimension of the given system or box-

counting dimension; ii) Dq=1 is the so-called information entropy; iii) Dq=2 

describes the correlation dimension. Clasically, multifractality degree can be 

estimated by ∆ Dq = max Dq − min Dq (Yu et al., 2016).
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2.3.2. Singularity spectrum

The singularity or multifractal spectrum is another approach to inves-

tigate multifractal characteristics of a time series. In many studies, the 

Legendre transformation from mass exponents τ(q) have been applied to 

compute it (Muzy et al., 1993; Olsen, 1995; Schmitt, 2005; Calif et al., 2013). 

However, the possible inclusion of spurious points and error amplification 

from the derivative are serious constraints in applying this transformation 

(Chhabra et al., 1989; Veneziano et al., 1995). Moreover, as τ(q) = (1−q)Dq, 

Legendre transform is dependent to Rényi spectrum. To overcome those lim-

itations, a new way to determine the α-spectrum directly from the original 

time series was introduced by Chhabra et al. (1989). To calculate the prob-

abilities of the boxes of radius r, this approach is based on the normalized 

measure βi(q) and µi from the original time series with the following formula 

(Chhabra et al., 1989):

βi(q, r) = [Pi(r)]
q /

∑
j

[Pj(r)]
q (5)

with Pi(r) the different fractal measurements for each box of radius r, i.e. 

the number of nodes. Subsequently, from Equation 5, f(α) and α are 

obtained by using the following formulas (Chhabra et al., 1989):

f(q) = lim
r→0

∑
i βi(q, r) log[βi(q, r)]

log r
(6)

α(q) = lim
r→0

∑
i βi(q, r) log[Pi(r)]

log r
(7)

where α is the Lipschitz-Hölder exponent (Posadas et al., 2001). In more 

concrete terms, those elements are determined using the slope of
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∑
i βi(q, r) log[βi(q, r)] over log r and 

∑
i βi(q, r) log[Pi(r)] over log r respec-

tively for f(α) and α(q). This slope is defined by means of a linear regression 

in the same range of radii where the other fractal measures are computed 

(Carmona-Cabezas et al., 2019a). Usually, multifractality degree can be 

estimated by the width of the spectrum W = αmax − αmin (Mali et al.,

2018).

3. Results and Discussion

3.1. Overall analysis

3.1.1. Degree distribution

To start this study, the degree distribution P (k) behavior between the 

regular VG and UDVG has firstly been analyzed by the authors for PM10 

time series. To achieve this, Figure 3 depicts in (a)-(b) the degree distribu-

tion for all data in VG and UDVG frames and in (c)-(d) the values of PM10 

concentrations plotted against the degree respectively for VG and UDVG.

In Figure 3(a)-(b), one can observe that VG and UDVG degree distribu-

tions are almost coincident for low degree values. This results are consistent 

with concentration vs degree (v-k) plots in Figure 3(c)-(d). Indeed, low de-

gree values are mostly related to intermediate PM10 concentrations in both 

cases.

For high PM10 concentrations (hubs behavior), the distributions are 

different. In both cases, the tail region of the log-log plot of P (k) can be fit-

ted by a power law like P (k) ∝ k−γ but the γ exponent differs considerably. 

Thus, the exponents computed from the slopes are estimated for k ≥ 22 with 

respectively 3.18±0.16 and 3.87±0.22 for VG and UDVG. The same behav-

ior between VG and UDVG degree distribution was previously observed by
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Carmona-Cabezas et al. (2020) for nitrogen dioxide (NO2) in Cadiz, Spain. 

After computing the skewness for PM10 data (SPM10 = 2.33 ± 0.03), it is 

important to emphasize that NO2 data exhibit the same skewness value with 

SNO2 = 2.32 ± 0.05. For tropospheric ozone (O3) data, Carmona-Cabezas 

et al. (2020) found that VG and UDVG degree distributions are closer with 

skewness value equal to -0.28, i.e. symmetrical distribution. The pollu-

tants nature could explain these skewness values. Indeed, contrary to O3 

which is a secondary pollutant, PM10 and NO2 measured in Guadeloupe 

archipelago come mainly from primary sources (Plocoste et al., 2018). In 

other words, hubs behavior seems to be closely linked to skewness value.

In many studies, v-k plot has shown that highest degrees (hubs) are 

related to the largest values in the regular VG frame (Pierini et al., 2012; 

Carmona-Cabezas et al., 2019a). Looking at Figure 3(c), one can notice 

that this trend is confirmed. As expected for UDVG, Figure 3(d) highlights 

the opposite behavior. In this case, the degree clearly decays as PM10 

concentration rises and v-k relationship is even clearer and smoother that in 

VG case. UDVG hubs seem to describe the PM10 background atmosphere 

because this approach take into account fluctuations in low values. This 

assumption will be discussed later on.

3.1.2. Multifractal analysis

In order to estimate the multifractal properties of PM10 time series be-

tween the regular VG and UDVG, the Rényi and the singularity spectra are 

computed.

For Rényi spectrum, the SBA procedure is firstly applied. Therefore,

the elements ln
〈
µ(B)(q−1)

〉
q−1 for q 6= 1 and < lnµ(B) > for q = 1 are used
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against ln r. From the partition functions, a linear regression is performed for 

all q values in order to build Rényi spectrum from Equation 3 and 4. From q 

= −5 to q = +5 with an increment step of 0.25, a linear regression was 

performed for 0 6 ln r 6 2.5 in VG and 0 6 ln r 6 3.5 in UDVG. This 

methodology is widely described and illustrated in the literature (Liu et al., 

2015a; Yu et al., 2016; Mali et al., 2018; Carmona-Cabezas et al., 2019a). 

Figure 4(a) shows the Rényi spectrum for both approaches. One can observe 

the multifractal properties of PM10 time series in both cases because D0 > D1 

> D2 (see Table 1). However, a clear difference between VG and UDVG 

behavior is noticed. For UDVG, D0 value is remarkably lower than that of 

the regular VG. This result is consistent because D0 is related to how the 

fractal object is covered. We assume that the shape of the lower envelope of 

the PM10 concentration is responsible for this decay in D0 value. In this case, 

it is more difficult for hubs to “see” nodes that are further away and hence, 

the degree is lowered. This effect is visible in the v-k plot (see Figure 3(b)), as 

the VG hubs have much higher degrees.

Multifractal degree (∆ Dq) is higher for VG than UDVG. In other words, 

fluctuations for high concentrations are more important than fluctuations in 

low concentrations. These first results show that UDVG frame represents the 

background atmosphere. Indeed, it seems that the background atmo-sphere 

concentration of PM10 has a less multifractal behavior, which ends up in a 

flatter Rényi curve. This is consistent because in insular context, the 

background atmosphere is mainly composed of marine aerosols and an-

thropogenic pollution (Clergue et al., 2015; Rastelli et al., 2017) which are 

constant PM10 sources through the year. Marine aerosols will be advected by 

the trade winds which blow continuously during the year (Plocoste et al., 

2014; Plocoste and Pavón-Domí nguez, 2020a) while anthropogenic pollution
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is produced by the daily human activities (Plocoste et al., 2018). Conse-

quently, the background atmosphere might have more regular and stable 

dynamics through the year. This is confirmed by the fact that standard de-

viation values (the whiskers) are weak for UDVG. The differences D0 − D1 

and D0 − D2 are as well lower for UDVG. As expected, D0 − D1 is higher for 

VG because hubs are related to strong PM10 concentrations which are 

mainly due to dust outbreaks (Prospero et al., 2014; Euphrasie-Clotilde et al., 

2020; Plocoste et al., 2020a), i.e. the upper envelope has a much more 

irregular and volatile behavior. As regards D0 − D2, the meaning of this 

parameter is less clear in this context. Here, we assume that this parame-ter 

could correspond to fluctuation degree. However, further studies will be 

needed to confirm this.

For singularity spectrum, the Chhabra et al. (1989) procedure is firstly 

required. Thus, the elements 
∑ 

βi(q, r) ln[βi(q, r)] and 
∑ 

βi(q, r) ln[Pi(r)] 

have been used against ln r respectively for computing f(α) and α. For better 

comparison, the same range of linear regression as Rényi spectrum has been 

chosen, i.e. 0 6 ln r 6 2.5 for VG and 0 6 ln r 6 3.5 for UDVG. The steps to 

build singularity spectrum are widely described in literature (Kelty-Stephen 

et al., 2013; Mali et al., 2018; Carmona-Cabezas et al., 2019a).

Figure 4(b) shows the singularity spectrum for both approaches. Over-

all, UDVG spectrum values seem more homogeneous than VG because the 

fluctuations are less important for low concentrations. Multifractal degree 

(W )values are consistent with Rényi spectrum, i.e. WUDV G < WV G. Thus, 

UDVG is marked by a less multifractal dynamics than VG.

According to the multifractal theory, the two sides of the f(α) spectrum 

are related to different scales in the signal. While the left part (related to
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q > 0) filters out the large fluctuations, the right side (q < 0) corresponds to 

small noise-like variations (Mali et al., 2018). Looking at the spectra 

mentioned before, it is possible to notice the asymmetry of their shapes, again 

highlighting a difference between the nature of the VG and UDVG, in 

consonance with what was seen before. Based on the behavior of the hubs 

(previously discussed in section 3.1.1), the left tail of f(α) is more elongated 

for VG. This could be expected, as it might be highlighting the multifractal 

nature of the large fluctuations for the VG and the small noise-like fluc-

tuations for the UDVG, being in this case associated to the background 

pollutant concentration.

In the following section, multifractal properties of PM10 times series are

analyzed in VG and UDVG frames according to African dust seasonality.
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Figure 3: Degree distribution for the overall PM10 data in (a) Visibility Graph (VG) 

and (b) Upside-Down Visibility Graph (UDVG) frames. All tails of degree distribution 

are fitted by a linear regression with confidence interval at 90%. (c) and (d) depict the 

relationship between PM10 time series values and their degrees respectively for VG and 

UDVG methods.
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Figure 4: Illustration of (a) Rényi dimensions and (b) singularity spectrum for the overall

in VG and UDVG frames. Standard deviations are illustrated by the whiskers.18
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3.2. Seasonal analysis

3.2.1. Degree distribution

Here, the aim is to investigate degree distribution P (k) behavior be-tween 

the regular VG and UDVG according to African dust seasonality, i.e. the low 

dust season (October to April) and the high dust season (May to September) 

(Prospero et al., 2014; Plocoste and Pavón-Domí nguez, 2020b). Figure 5(a)-

(d) illustrates the achieved results. As expected, the low de-grees of VG and 

UDVG coincide for both low and high dust seasons since they are related 

mostly to intermediate concentrations. On the other hand, there is a 

difference for high degrees of VG and UDVG. The tail region of the log-log 

plot of P (k) can be fitted by a power law P (k) ∝ k−γ and the gamma 

exponents computed from the slopes are estimated for k ≥ 13 with 

respectively 3.11 ± 0.16/3.97 ± 0.20 for VG/UDVG in the low season and 

2.79 ± 0.15/3.08 ± 0.16 for VG/UDVG in the high season. The skewness is 

respectively equal to 2.52 ± 0.04 and 1.71 ± 0.04 from October to April and 

May to September. During the high dust season, one can notice that the 

skewness and the gap between VG-UDVG gamma exponents values are 

lower. This may be due to the fact that dust outbreaks are more frequent 

from May to September, i.e. more days with high PM10 concentrations 

(Plocoste et al., 2020b). Indeed, during summer months, there is an aver-age 

of ∼6 dust outbreak days in a month (Huang et al., 2010). The arrival of a 

dust outbreak is preceded by the passage of African Easterly Waves (AEWs) 

(Prospero and Carlson, 1981) whose frequency is 3-5 days at scale of 

2000-3000 km (Burpee, 1972; Karyampudi and Carlson, 1988; Prospero and 

Lamb, 2003). In the literature, AEWs is also called “African” distur-bances 

because of their sub-Saharan origin (Carlson, 1969). Dust plume
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is confined between two consecutive AEWs and the SAL top and base in-

versions (Karyampudi et al., 1999). Due to the high amount of dust in 

the outbreaks, the atmosphere is often quite turbid in the Caribbean area 

(Prospero and Carlson, 1981; Karyampudi et al., 1999). In other words, 

there is still a residual quantity of dust in the atmosphere due to the con-

tinuous alternation between AEWs and dust outbreaks. A PM10 statistical 

analysis made by Plocoste et al. (2020a) in Guadeloupe archipelago over 

one decade confirmed this trend. This study highlighted that the maximum 

probability value from the Probability Density Function (PDF peak), goes 

from 16.9 µg/m3 to 19.6 µg/m3 between the low season and the high dust 

season. In summer, whatever the source or process, the dust is carried into 

the Caribbean. To sum up, the large pulses of dust are often associated with 

easterly waves. There is a general background of dust in summer months 

that is linked to various processes that generate and transport dust to the 

Atlantic. Consequently, the background PM10 atmosphere is higher during 

summer and UDVG becomes more similar to what VG is describing.

3.2.2. Multifractal analysis

To perform the multifractal analysis with VG and UDVG frames accord-

ing to African dust seasonality, the same procedures and linear regression 

ranges used in the section 3.1.2 were applied for the two multifractal ap-

proaches.

Figure 6(a) depicts the Rényi spectra obtained for both seasons. As 

expected, Rényi spectra in VG have higher values than UDVG. Whatever 

the season, flatter curves and weaker D0 values are observed for UDVG frame 

(see Table 1). As the overall case, multifractal degree (∆ Dq) is higher for
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VG than UDVG.

For VG, the low dust season curve exhibits higher values and higher 

multifractality degree (∆ Dq). Between both seasons, the high dust season is 

the most uniform period because its exhibits the lowest D0 − D1 values. 

According to Prospero and Lamb (2003), in summer, satellite images show 

dust outbreaks that emerge from the west coast of Africa in pulses every 3 to 

5 days, following behind AEWs. Thereafter, 5 to 7 days later, dust cloud 

reaches the Caribbean basin (Velasco-Merino et al., 2018). From October to 

April, dust outbreaks are more sporadic. Only a particular circulation of air 

masses in spring (Jury, 2017) or extreme events such as a volcanic eruption 

(Plocoste and Calif, 2019) can bring dust haze. On the other hand, re-

currence degree is higher during the low dust season because it exhibits the 

maximum value of D0−D2. This is explained by the fact that between Octo-

ber and April, the PM10 concentrations are mainly linked to anthropogenic 

activity and marine aerosols which composed the background atmosphere 

(Clergue et al., 2015; Rastelli et al., 2017). Overall, the same trend was ob-

served in our previous study but there are some differences (Plocoste et al., 

2020c). This may be attributed to the difference in PM10 data resolution as 

the whiskers seem significantly smaller, i.e. a more accurate description than 

in our previous study where daily data is used (Plocoste et al., 2020c).

As regards UDVG, the low dust season curve still exhibits higher values 

but multifractality degree (∆ Dq) is now higher for the high dust season. 

Between UDVG and VG there is a change in multifractality degree seasonal 

trend, which is flatter for the low season and gains multifractal degree in the 

high dust season due to the general background of dust in summer months 

(Prospero and Carlson, 1981; Karyampudi et al., 1999). The quantities D0 

−D1 and D0 −D2 also show an inverted comparison, with respect to the
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VG case. Due to the alternation in continuously between AEWs and dust

outbreaks, background PM10 atmosphere concentrations fluctuate more.

Figure 6(b) illustrates the singularity spectra obtained for both seasons. 

In Table 1, one can underline that W values are in agreement with ∆ Dq 

values for each case.

For VG, the right tail of f(α) spectrum is more extended for the low 

season while the left tail values are more compact for the high season. Con-

sequently, the small noise-like fluctuations are more probable for the low 

season while large fluctuations are more likely in the high season. These 

results are consistent with our previous findings (Plocoste et al., 2020c).

Regarding UDVG, one can observe that the right tail of f(α) spectrum

is more extended for the high season and more homogeneous for the low

season. This indicates the persistence behavior of PM10 concentrations in

the background atmosphere for the low season with marine aerosols and

anthropogenic pollution. On the other hand, the left tail of f(α) for the

high season is more homogeneous. Here, the increase of fluctuations in

background atmosphere values is highlighted from May to September. All

these results show the existence of a general background of dust in the high

season.

4. Conclusion

In the literature, the health impact of dust outbreaks is frequently related

to acute exposure. However, frail people like pregnant women, children and

the elderly are also sensitive to chronic exposure. The aim of this paper was

to perform a profound analysis of particulate matter (PM10) background
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atmosphere in the Caribbean area according to African dust seasonality with

complex network framework. To achieve this, the regular Visibility Graph

(VG) and the new Upside-Down Visibility Graph (UDVG) are used.

Firstly, the degree distribution analysis between VG and UDVG methods

is performed for the whole year. For low degree values, VG and UDVG

degree distributions are almost coincident while they are different for high

degree values (hubs behavior). Consequently, the gamma (γ) exponent value

of the power law estimated from the tail region of P (k) in log-log plot

differs between both cases with higher value for UDVG. Concentration vs

degree (v-k) plots highlighted that hubs are related to the highest PM10

concentrations in VG while hubs is associated to the lowest concentrations

in UDVG, i.e. probably the background atmosphere.

For the overall, the multifractal analysis was then carried out using Rényi

and singularity spectra for VG and UDVG. A clear difference of behavior

between VG and UDVG is noticed with lower value of fractal object (D0)

for UDVG. Both spectra showed that multifractal degree is higher for VG

than UDVG. Consequently, fluctuations for high concentrations are more

significant than fluctuations for low concentrations. Both UDVG spectra

shapes confirmed that this approach represents the background atmosphere

due to the persistence of low PM10 concentrations related to marine aerosols

and anthropogenic pollution in insular context.

Thereafter, the same analysis was repeated according to African dust

seasonality. This time, degree distribution analysis showed that the differ-

ence between VG and UDVG is reduced for the high season contrary to the

low one. In VG frame, the multifractal degree is higher for the low sea-

son as expected. As regards UDVG frame, the multifractal degree is now

higher for the high season. This opposite trend observed in UVDG is due to
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the increase of PM10 background atmosphere concentration from May to

September. Indeed, contrary to the low season, there is a dusty background

atmosphere in the high season due to the continuous alternation between

African Easterly Waves and dust outbreaks.

In conclusion, all these results pointed out that UDGV in complex net-

work may be an efficient tool to perform the analysis of noise fluctuations in 

environmental time series. For the first time, UDVG frame is used outside of 

just identification of singularities, i.e. global behavior recognition. To pre-

cisely observe PM10 background atmosphere variation through the year, 

the monthly behavior of the degree distribution profile and the multifractal 

characteristics should be considered in future studies with more years.
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usFigure 5: Degree distribution for the low d t season (October to April) in (a) Visibility

Graph (VG) and (b) Upside-Down Visibility Graph (UDVG) frames; and for the high dust 

season (May to September) in (c) Visibility Graph (VG) and (d) Upside-Down Visibility 

Graph (UDVG) methods. All tails of degree distribution are fitted by a linear regression 

with confidence interval at 90%.
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Figure 6: Illustration of (a) Rényi dimensions and (b) singularity spectrum for low dust

season (October to April) and high dust season (May to September) in VG and UDVG

frames. Standard deviations are illustrated by the whiskers.
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