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Abstract It is well known that Lawson methods suffer from a severe order reduc-
tion when integrating initial boundary value problems where the solutions are not
periodic in space or do not satisfy enough conditions of annihilation on the bound-
ary. However, in a previous paper, a modification of Lawson quadrature rules has
been suggested so that no order reduction turns up when integrating linear problems
subject to time-dependent boundary conditions. In this paper, we describe and thor-
oughly analyse a technique to avoid also order reduction when integrating nonlinear
problems. This is very useful because, given any Runge-Kutta method of any classi-
cal order, a Lawson method can be constructed associated to it for which the order is
conserved.
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1 Introduction

There is an effort in the recent literature to understand the order reduction which
turns up when integrating initial boundary value problems subject to non-periodic
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boundary conditions with exponential methods. In that sense, we mention the papers
[2,5,11] which correspond to the integration of linear differential problems by Law-
son and standard exponential quadrature rules and also through splitting integrators.
Understanding this well has led to the design of techniques to avoid that order re-
duction for both linear and nonlinear problems when the boundary conditions are not
only non-periodic but also time-dependent. In that way, for linear problems, suitable
modifications of Lawson and exponential quadrature rules have been seen to lead to
the order of the underlying classical quadrature rule, as high as desired [3,5]. How-
ever, with exponential splitting methods, up to our knowledge, just order 2 has been
achieved for the moment for both linear and nonlinear problems [1,4,6,9,10]. As
for exponential Runge-Kutta methods [15], stiff order conditions have been deduced
to get a given order when integrating semilinear parabolic problems with vanish-
ing boundary conditions [13]. Apart from not considering non-vanishing boundaries
there, this implies imposing restrictions on the coefficients of the methods, which
may increase the number of stages and therefore the computational cost [17].

As Lawson methods of classical order as high as desired can be constructed di-
rectly from any chosen Runge-Kutta method of that order [16], our aim in this paper
is to devise a technique to avoid the order reduction which turns up when integrating
nonlinear reaction-diffusion initial boundary value problems with Lawson methods
and to recover, in such a way, the classical order. The standard approach consists
of integrating firstly in space and then in time. With linear problems and vanishing
boundary conditions, this has been proved to lead to order 1 in parabolic problems
[2]. With non-vanishing boundary conditions, the behaviour is even worse and, even
for linear problems, there may be no convergence at all or the error may diminish with
the time stepsize but grow with the space grid [3]. There are always exceptions; for
example, when considering boundary conditions which are periodic or which satisfy
enough conditions of annihilation on the boundary [2] (see also Remarks 3.2, 4.1 and
5.1 in this paper). However, in this paper the main aim is to avoid the strong order
reduction which turns up in the general case.

On the other hand, with our proposal, when integrating firstly in time, some terms
of Lawson method are calculated through the solution of linear initial boundary value
problems for which suitable boundary values are chosen. Then, the space discretiza-
tion of those problems must be performed. The main achievement of the paper is
how to choose those boundary values in order to get a given accuracy and how to
calculate them in terms of the given data of the problem. More precisely, with any
consistent RK method, we prove that local order 2 can be achieved by calculating the
boundary values exactly in terms of the given data for Dirichlet boundary conditions
or in an approximate way (through the numerical solution) for Neumann/Robin ones.
In any case, to obtain local order 2, there is no need to resort to numerical differen-
tiation. Besides, if the RK method has order ≥ 2, global order 2 is achieved if the
summation-by-parts argument is applied. Look at [12] (page 226) for a stiff ordinary
differential equation where already local and global order coincide with a similar ar-
gument, and at [2] to see the same phenomenon when integrating linear parabolic
initial boundary value problems with Lawson methods. Moreover, by resorting to
numerical differentiation, local order 3 can be achieved with these methods whose
underlying Runge-Kutta has classical second order and, whenever a CFL condition is
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satisfied (4.4), global order ≥ 2 and smaller errors are obtained. (We remark that this
condition is not very restrictive in the sense that, when the differential problem is of
second-order in space and the boundary conditions are Dirichlet, γ = 1 in (4.4) and
therefore it just means that the time stepsize is not too big with respect to the space
grid. With Robin/Neumann boundary conditions and the same type of differential op-
erator, γ = 0 and no CFL restriction would even turn up.) Up to our knowledge, it is
the first time in the literature in which the error coming from numerical differentia-
tion is thoroughly considered in the analysis. Finally, although the formulas get more
complicated, by using numerical differentiation, local order 4 can also be achieved if
the underlying RK method is of order ≥ 3. We have not described the formulas to get
local order ≥ 5 because they get more and more complicated, because there are less
problems where so much accuracy is required, and also due to the fact that numerical
differentiation is ill-posed [19], and therefore the rounding errors associated to their
use might cause that not so much accuracy is achieved.

The paper is structured as follows. Section 2 gives some preliminaries on the
abstract framework for the problem, on Lawson methods and on the assumptions we
make for the space discretization. The technique to avoid order reduction is suggested
in Sections 3, 4 and 5, separating the cases in which we want to achieve local orders
2, 3 and 4. The final formulas to be implemented are respectively (3.6), (4.2) and
(5.1) and, in Remark 3.1 and Subsections 4.1 and 5.1, a thorough discussion is given
on how to calculate the required suggested boundaries for either Dirichlet, Robin or
Neumann boundary conditions. Finally, some numerical results are shown in Section
6 which corroborate the theoretical results and prove the great improvement of the
method suggested against the standard approach. For the sake of brevity and read-
ability, we just show here the precise proofs of some of the theorems, which have
been postponed to an appendix.

2 Preliminaries

Let X and Y be Banach spaces and let A : D(A)⊂ X → X and ∂ : D(A)→Y be linear
operators. Our goal is to avoid order reduction when integrating in time through Law-
son methods the nonlinear abstract non-homogeneous initial boundary value problem

u′(t) = Au(t)+ f (t,u(t)), 0 ≤ t ≤ T,
u(0) = u0 ∈ X ,

∂u(t) = g(t) ∈ Y, 0 ≤ t ≤ T.
(2.1)

We will assume that the functions f : [0,T ]×X → X (in general nonlinear) and g :
[0,T ]→ Y are regular enough.

The abstract setting (2.1) permits to cover a wide range of nonlinear evolutionary
problems governed by partial differential equations. We use the following hypotheses,
similar to the ones made in [4] to avoid order reduction when integrating the same
kind of problems with exponential splitting methods.

(A1) ∂ : D(A)⊂ X → Y is onto and g ∈C1([0,T ],Y ).
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(A2) Ker(∂ ) is dense in X and A0 = A|Ker(∂ ) is the infinitesimal generator of a C0-
semigroup {etA0}t≥0 in X of negative type ω .

(A3) If z ∈ C satisfies ℜ(z)> ω and v ∈ Y , then the problem

Ax = zx, (2.2)
∂x = v, (2.3)

has a unique solution (x = K(z)v) which satisfies

∥K(z)v∥ ≤C∥v∥, (2.4)

where the constant C holds for any z such that Re(z)≥ ω0 > ω .
(A4) f ∈C1([0,T ]×X ,X).
(A5) u ∈C1([0,T ],X), u(t) ∈ D(A) for all t ∈ [0,T ] and Au ∈C([0,T ],X).

The well-posedness of problem (2.1) is assured by (A1)-(A4), as explained in [4].
Besides, as it was also justified there, (A4) is quite restrictive in an Lp Banach space.
However, if the supremum norm is chosen, (A4) is satisfied whenever f has the form

f (t,u) = φ(u)+h(t), (2.5)

with φ ∈C1(C,C) and h ∈C1([0,T ],X). For simplicity, we will assume from now on
that f has the form (2.5), and also that the following hypotheses are satisfied:

(A6) φ is such that, whenever w ∈ D(Al) for natural number l, φ(w) and φ ′(w) also
belong to D(Al).

(A7) For natural l and j, whenever r ∈ C j([0,T ],X) with r(t) ∈ D(Al) for every t ∈
[0,T ], it follows that Alr,Alφ(r) ∈C j([0,T ],X).

Notice that, when A is a space differential operator, (A6) means that φ and φ ′ do
not reduce the regularity in space of their arguments. As for (A7), it means that the
regularity in time is not disturbed by that in space. In the remaining of the paper,
we always suppose that (A1)-(A7) are satisfied. However, more regularity will be
assumed in certain results.

Because of hypothesis (A2), {ϕ j(tA0)}3
j=1 are bounded operators for t > 0, where

{ϕ j} are the standard functions which are used in exponential methods [15] and
which are defined by

ϕ j(tA0) =
1
t j

∫ t

0
e(t−τ)A0

τ j−1

( j−1)!
dτ, j ≥ 1. (2.6)

They can also be recursively defined through the formulas

ϕ j+1(z) =
ϕ j(z)−1/ j!

z
, z ̸= 0, ϕ j+1(0) =

1
( j+1)!

, ϕ0(z) = ez. (2.7)

For the time integration, we will center on exponential Lawson methods which
are determined by an explicit Runge-Kutta tableau and which, when applied to a
finite-dimensional nonlinear problem like

U ′(t) = MU(t)+F(t,U(t)), (2.8)
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where M is a matrix, read like this at each step

Kn,i = ecikMUn + k
i−1

∑
j=1

ai je(ci−c j)kMF(tn + c jk,Kn, j), i = 1, . . . ,s, (2.9)

Un+1 = ekMUn + k
s

∑
i=1

bie(1−ci)kMF(tn + cik,Kn,i), (2.10)

where k > 0 is the time stepsize and tn = t0 +nk. We will assume that the coefficients
of Butcher tableau satisfy the following standard equalities:

s

∑
i=1

bi = 1 (consistency),
i−1

∑
j=1

ai j = ci, i = 1, . . . ,s. (2.11)

Following the example in Section 2 of [4], we take X = C(Ω) for a certain
bounded domain Ω ∈ Rd . There, we consider the maximum norm and a certain grid
Ωh (of Ω ) over which the approximated numerical solution will be defined. In this
way, this numerical approximation belongs to CN , where N is the number of nodes
in the grid, and the maximum norm ∥uh∥h = ∥[u1, . . . ,uN ]

T∥h = max1≤i≤N |ui| is con-
sidered.

Notice that, when dealing with Dirichlet boundary conditions, the values at nodes
on the boundary are not subject to numerical approximation since we already know
the exact values there while, with Neumann or Robin boundary conditions, an ap-
proximation for the values at those nodes is usually given.

We denote by

Ph : X → CN , (2.12)

the nodal projection on the grid Ωh. As for the discretization of the operator A, we
consider

Ah,0Uh +Chg,

where Ah,0 is the matrix which discretizes A0 and Ch : Y → CN is the operator which
takes the boundary information ∂u = g.

Notice that, as the source function f is given by (2.5), it can also be understood
as a function from [0,T ]×CN on CN and, for each t ∈ [0,T ] and u ∈ X ,

Ph f (t,u) = f (t,Phu). (2.13)

In a similar way to [4], in the rest of the paper we consider the following hypothe-
ses:

(H1) Ah,0 is such that
(a) ∥etAh,0∥h ≤ 1,
(b) Ah,0 is invertible and ∥A−1

h,0∥h is uniformly bounded on h.
This hypothesis is related to (A2) for the continuous problem.
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(H2) We define the elliptic projection Rh : D(A)→ CN as the solution of

Ah,0Rhu+Ch∂u = PhAu. (2.14)

We assume that, for a certain subspace Z ⊂ D(A), it follows that:
(a) For u ∈ Z, A−1

0 u ∈ Z and etA0u, f (t,u) ∈ Z, for t ∈ [0,T ].
Whenever w ∈ D(Al) with Alw ∈ Z, Alφ(w) ∈ Z.
Whenever r ∈C1([0,T ],D(Al)), with Alr(t) ∈ Z for every t ∈ [0,T ],
Al ṙ(t),Alφ(r(t)),Alφ ′(r(t))w ∈ Z for every t ∈ [0,T ] and w ∈ Z.

(b) For some εh and ηh decreasing with h,

∥∥Ah,0(Phu−Rhu)
∥∥≤ εh ∥u∥Z , ∥Phu−Rhu∥ ≤ ηh ∥u∥Z . (2.15)

These assumptions are related to the fact that, in order to get a given accuracy
after the space discretization of an elliptic problem, some extra regularity is
required. Look at Section 6 for an example.

(c) ∥A−1
h,0Ch∥h ≤ C′′ is uniformly bounded on h. This corresponds to the discrete

maximum principle associated to the continuous one (2.4) when z = 0.

As in [4], hypothesis (H1a) can be deduced in our numerical experiments by using
the logarithmic norm of matrix Ah,0.

Notice that, by using the space discretization which is described previously, the
following semidiscrete problem arises after discretising (2.1),

U ′
h(t) = Ah,0Uh(t)+Chg(t)+ f (t,Uh(t)),

Uh(t0) = Phu(t0).
(2.16)

Then, applying Lawson method (2.9)-(2.10) to this, the following formulas define
one step from Un

h to Un+1
h :

Kn
h,i = ecikAh,0Un

h + k
i−1

∑
j=1

ai je(ci−c j)kAh,0 [Chg(tn + c jk)+ f (tn + c jk,Kn
h, j)],

Un+1
h = ekAh,0Un

h + k
s

∑
i=1

bie(1−ci)kAh,0 [Chg(tn + cik)+ f (tn + cik,Kn
h,i)].(2.17)

This corresponds to the standard method of lines which was already proved to lead to
strong order reduction in [2] for linear problems and vanishing boundary conditions.
In a more precise way, for the nonlinear problems under consideration in this paper,
in [7] it is proved that just order 1 in time (uniformly in space) turns up with general
vanishing boundary conditions. As for non-vanishing ones, either order 1 in time
occurs (but not uniformly in space, so that the errors rapidly grow when the space
grid diminishes) or even no convergence in time is observed.
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3 Searching for local order 2

Our approach consists of discretizing firstly in time and then in space. When dis-
cretizing in time, some attention must be given to the exponential terms which turn
up in Lawson formulas (2.9)-(2.10). If u(tn) or f evaluated at the stages vanished at
the boundary, it could seem natural to substitute those exponential operators by the
C0-semigroup eτA0 for suitable scalar values τ . However, that may also lead to order
reduction since the solution of

u̇(τ) = A0u(τ), u(0) = α,

cannot be accurately enough approximated by an expansion of the form

u0 + τA0α +
τ2

2
A2

0α + · · ·

unless α ∈D(Al
0) for a high enough l. Besides, as u(tn) or f evaluated at the stages do

not vanish in general, the solution of suitable initial boundary value problems must be
considered as candidates for each exponential term. More precisely, boundary values
must be chosen which approximate till a given order the exponential function in some
way.

We will consider three different cases depending on whether we want to achieve
local order 2, 3 or 4. For local order 2 and Dirichlet boundary conditions, those
boundaries can be calculated directly in terms of the data f and g of the problem
(2.1). For the same order, but with Neumann/Robin boundary conditions, the approx-
imation at the boundary given by the space discretization of the problem must be
used. For higher orders, we will have to resort to numerical differentiation to calcu-
late those boundaries.

The main difference with respect to the linear case is that now the stages have
a role. More precisely, in order to get local order 2, starting from the continuous
approximation un at t = tn, we consider recursively for the stages:

Kn,i = vn(cik)+ k
i−1

∑
j=1

ai jwn, j((ci − c j)k), i = 1, . . . ,s, (3.1)

where  v̇n(σ) = Avn(σ),
vn(0) = un,

∂vn(σ) = ∂u(tn),

 ẇn, j(σ) = Awn, j(σ),
wn, j(0) = f (tn + c jk,Kn, j),

∂wn, j(σ) = 0,
(3.2)

Notice that we are more accurate in handling the boundary conditions for vn than for
wn, j because of the factor k before the sum in (3.1). Then, we suggest as the numerical
approximation at the next step

un+1 = ṽn(k)+ k
s

∑
i=1

biw̃n,i((1− ci)k), (3.3)
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where 
˙̃vn(σ) = Aṽn(σ),
ṽn(0) = un,

∂ ṽn(σ) = ∂ [u(tn)+σAu(tn)],


˙̃wn, j(σ) = Aw̃n, j(σ),
w̃n, j(0) = f (tn + c jk,Kn, j),

∂ w̃n, j(σ) = ∂ f (tn,u(tn)).
(3.4)

Notice that we are again more accurate in the boundary for ṽn than for w̃n, j and, in
any case, we are one order more accurate than in (3.2) because we are approximating
the solution and not just the stages. After discretizing (3.2) and (3.4) in space, the
following systems arise when starting from the discrete numerical approximation Un,h
at the previous step, and denoting by Kn,h, j to the discretized stages,{

V̇n,h(σ) = Ah,0Vn,h(σ)+Ch∂u(tn),
Vn,h(0) = Un,h,

{
Ẇn,h, j(σ) = Ah,0Wn,h, j(σ),
Wn,h, j(0) = f (tn + c jk,Kn,h, j).{ ˙̃Vn,h(σ) = Ah,0Ṽn,h(σ)+Ch[∂u(tn)+σAu(tn)],

Ṽn,h(0) = Un,h,{ ˙̃Wn,h, j(σ) = Ah,0W̃n,h, j(σ)+Ch∂ f (tn,u(tn)),
W̃n,h, j(0) = f (tn + c jk,Kn,h, j).

(3.5)

By using the variation-of-constants formula and the definition of ϕ j in (2.6), we have

Vn,h(σ) = eσAh,0Un,h +
∫

σ

0
e(σ−τ)Ah,0Ch∂u(tn)dτ = eσAh,0Un,h +σϕ1(σAh,0)Ch∂u(tn),

Ṽn,h(σ) = eσAh,0Un,h +σϕ1(σAh,0)Ch∂u(tn)+σ
2
ϕ2(σAh,0)Ch∂Au(tn),

W̃n,h, j(σ) = eσAh,0 f (tn + c jk,Kn,h, j)+σϕ1(σAh,0)Ch∂ f (tn,u(tn)).

Therefore, considering (3.1) and (3.3), the full discretized numerical solution after
one step is calculated recursively through the following formulas

Kn,h,i = ecikAh,0Un,h + cikϕ1(cikAh,0)Ch∂u(tn)+ k
i−1

∑
j=1

ai je(ci−c j)kAh,0 f (tn + c jk,Kn,h, j),

Un+1,h = ekAh,0Un,h + kϕ1(kAh,0)Ch∂u(tn)+ k2
ϕ2(kAh,0)Ch∂Au(tn)

+k
s

∑
i=1

bi

[
e(1−ci)kAh,0 f (tn + cik,Kn,h,i)

+(1− ci)kϕ1((1− ci)kAh,0)Ch∂ f (tn,u(tn))
]
. (3.6)

Remark 3.1 Notice that the three terms on the boundary ∂u(tn), ∂Au(tn) and ∂ f (tn,u(tn)),
are necessary to consider this approximation. However, as

∂u(tn) = g(tn), ∂Au(tn) = ġ(tn)−∂ f (tn,u(tn)),

all reduces to calculate ∂ f (tn,u(tn)). In the same way as it was stated in [4,10], with
Dirichlet boundary conditions, using (2.5), that term can be calculated exactly as

∂ f (tn,u(tn)) = φ(g(tn))+∂h(tn).
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With Neumann or Robin boundary conditions

∂u(t) = αu(t)|∂Ω +β∂nu(t)|∂Ω = g(t), β ̸= 0, (3.7)

as

∂ f (tn,u(tn)) = α[φ(u(tn)|∂Ω )+h(tn)|∂Ω ]+β [φ ′(u(tn)|∂Ω )∂nu(tn)|∂Ω +∂nh(tn)|∂Ω ],

u(tn)|∂Ω can be approximated by the numerical solution which the space discretiza-
tion of the problem necessarily gives in this case and ∂nu(tn)|∂Ω by the result of
solving from (3.7). Notice that, with this type of boundary condition, the grid where
the solution is approximated contains nodes on the boundary. Those approximated
nodal values are usually the ones which Ch needs to calculate Ch∂ f (tn,u(tn)). In any
case, the error which comes from the approximation of the boundary terms in (3.6) is
given in Table 4.1.

Remark 3.2 We also notice that, when ∂u(t) = ∂Au(t) = 0, because of (2.1), it neces-
sarily happens that ∂ f (t,u(t)) = 0. Besides, in this case, (3.6) is equivalent to (2.17).
In this way, through Theorems 3.1 and 3.2, we will be implicitly proving local order
2 for the standard approach in such a case.

3.1 Local error of the time semidiscretization

In order to define the local error of the time semidiscretization, we consider

K̄n,i = v̄n(cik)+ k
i−1

∑
j=1

ai jw̄n, j((ci − c j)k), i = 1, . . . ,s,

ūn+1 = ¯̃vn(k)+ k
s

∑
i=1

bi ¯̃wn,i((1− ci)k), (3.8)

where v̄n and ¯̃vn satisfy the same equation and boundary conditions as vn and ṽn,
but starting from u(tn) instead of un. The same happens with w̄n,i, ¯̃wn,i and wn,i, w̃n,i
with the difference that the initial condition is now f (tn + cik, K̄n,i) instead of f (tn +
cik,Kn,i). Then, for the local error ρn = ūn+1 −u(tn+1), the following theorem can be
stated, as it is proved in the appendix.

Theorem 3.1 Assuming that

h ∈C1([0,T ],D(A)), u ∈C2([0,T ],D(A2)), (3.9)

it follows that ρn = O(k2). Moreover, if f ∈C2([0,T ]×X ,X),u ∈C3([0,T ],X), there
exists a constant C such that the following bound holds

∥A−1
0 fu(t,u(t))A0w∥ ≤C∥w∥, for every t ∈ [0,T ], w ∈ D(A0), (3.10)

and the Runge-Kutta tableau corresponds to a method of classical order ≥ 2, it fol-
lows that A−1

0 ρn = O(k3).
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3.2 Local error of the full discretization

We define the local error of the full discretization as ρn+1,h = Ūn+1,h −Phu(tn+1),
where Ūn+1,h is defined as Un+1,h but starting from Phu(tn). The next result then fol-
lows, with similar arguments as those in [4] for splitting methods, as it is thoroughly
shown in [7]:

Theorem 3.2 Under the same hypotheses of the first part of Theorem 3.1, and as-
suming also that, for t ∈ [0,T ],

Alu(t) ∈ Z, l = 0,1,2, Alh(t) ∈ Z, l = 0,1, t ∈ [0,T ], (3.11)

it holds that ρn,h = O(k2 + kεh) where εh is that in (2.15). Moreover, under the ad-
ditional hypotheses of the second part of Theorem 3.1, together with the following
condition which is related to (3.10),

∥A−1
h,0 fu(t,Phu(t))Ah,0∥h ≤C, t ∈ [0,T ], h ≤ h0, (3.12)

it follows that A−1
h,0ρn,h = O(k3 + kηh + k2εh), where ηh is that in (2.15).

3.3 Global error of the full discretization

From the first part of Theorem 3.2, the classical argument would lead to global error
en,h = Un,h −Phu(tn) = O(k+ εh). However, for parabolic problems, for which this
bound is expected to hold (see [14]),

∥kAh,0

n−1

∑
r=1

erkAh,0∥h ≤C, 0 ≤ nk ≤ T, (3.13)

using the second part of the same theorem, a summation-by-parts argument leads
to second order in time, as the following theorem states. The theorem is valid for
both Dirichlet and Neumann/Robin boundary conditions, in spite of the fact that, for
the latter, ∂ f (t,u(t)) must be approximated through the numerical solution itself, as
explained in Remark 3.1. The proof of the theorem is again in the appendix.

Theorem 3.3 Under hypotheses of Theorem 3.2, but assuming also (3.13) and that

φ ∈C3(C,C), h ∈C3([0,T ],D(A)), u ∈C4([0,T ],D(A2)),

Al u̇(t) ∈ Z, l = 0,1,2, Alh(t) ∈ Z, l = 0,1, t ∈ [0,T ],

it follows that en,h =Un,h −Phu(tn) = O(k2 + kεh +ηh).
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4 Searching for local order 3

For the stages, we again consider (3.1), but where now we are one order more accurate
for the boundaries of vn and wn, j. In this manner, the latter can be calculated through
(3.4) instead of (3.2). On the other hand, un+1 is calculated through (3.3) where now
ṽn, w̃n, j( j = 1, . . . ,s) satisfy

˙̃vn(σ) = Aṽn(σ),
ṽn(0) = un,

∂ ṽn(σ) = ∂ [u(tn)+σAu(tn)+ σ2

2 A2u(tn)],
˙̃wn, j(σ) = Aw̃n, j(σ),
w̃n, j(0) = f (tn + c jk,Kn, j),

∂ w̃n, j(σ) = ∂ [ f (tn + c jk,u(tn)+ c jku̇(tn))+σA f (tn,u(tn))].
(4.1)

After discretizing in space and using the variation-of-constants formula, as we did in
Section 3, the full discretized numerical solution after one step is given by

Kn,h,i = ecikAh,0Un,h + cikϕ1(cikAh,0)Ch∂u(tn)+ c2
i k2

ϕ2(cikAh,0)Ch∂Au(tn)

+k
i−1

∑
j=1

ai j

[
e(ci−c j)kAh,0 f (tn + c jk,Kn,h, j)

+(ci − c j)kϕ1((ci − c j)kAh,0)Ch∂ f (tn,u(tn))
]
, i = 1, . . . ,s,

Un+1,h = ekAh,0Un,h +
3

∑
l=1

kl
ϕl(kAh,0)Ch∂Al−1u(tn)

+k
s

∑
i=1

bi

[
e(1−ci)kAh,0 f (tn + cik,Kn,h,i)

+(1− ci)kϕ1((1− ci)kAh,0)Ch∂ f (tn + cik,u(tn)+ ciku̇(tn))

+(1− ci)
2k2

ϕ2((1− ci)kAh,0)Ch∂A f (tn,u(tn))
]
. (4.2)

Remark 4.1 We notice that, if ∂u(t) = ∂Au(t) = ∂A2u(t) = 0, from (2.1) it follows
that ∂ f (t,u(t)) = ∂A f (t,u(t)) = 0. In particular, this implies that ∂ f (tn + cik,u(tn +
cik)) = 0, which differs from ∂ f (tn + cik,u(tn) + ciku̇(tn)) in O(k2). Then, in this
case, each step in (4.2) differs from the standard approach (2.17) in O(k3) since the
difference is

k
s

∑
i=1

bi(1− ci)kϕ1((1− ci)kAh,0)ChO(k2) = k
s

∑
i=1

bi[e(1−ci)kAh,0 − I]A−1
h,0ChO(k2),

and, according to (H2c), A−1
h,0Ch is uniformly bounded. This justifies, through The-

orems 4.1 and 4.2, that the local error with the standard approach, under these par-
ticular boundary conditions, behaves with order 3 under the assumptions of those
theorems.
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4.1 Calculation or approximation of the boundaries which are required to achieve
local order 3

Notice that, apart from the terms on the boundary which were already necessary to
achieve local order 2 and which can be calculated according to Remark 3.1, now we
also need ∂A2u(tn), ∂ f (tn + cik,u(tn)+ ciku̇(tn)) and ∂A f (tn,u(tn)).

With Dirichlet boundary conditions, using (2.5), it follows that

∂ f (tn + cik,u(tn)+ ciku̇(tn)) = φ(g(tn)+ cikġ(tn))+∂h(tn + cik),

∂A2u(tn) = g̈(tn)−∂ ḣ(tn)−φ
′(g(tn))ġ(tn)−∂A f (tn,u(tn)),

and the only term that cannot be calculated exactly in terms of data is ∂A f (tn,u(tn)).
However, that can be approximated resorting to numerical differentiation. For exam-
ple, in one dimension and assuming that A is the second spatial derivative,

A f (tn,u(tn)) = φ
′′(u(tn))ux(tn)2 +φ

′(u(tn))uxx(tn)+hxx(tn),

from what

∂A f (tn,u(tn))≈ φ
′′(g(tn))ûx(tn)2|∂Ω +φ

′(g(tn))(ġ(tn)−φ(g(tn))−∂h(tn))+∂hxx(tn),

where ûx(tn)|∂Ω is the result of applying numerical differentiation to approximate
ux(tn) on the boundary. For that, both the exact values at the boundary and the ap-
proximated values at the interior of the domain given by the numerical approximation
must be used. As a result, ûx(tn)− ux(tn) = O(νh +

en,h
h ), where νh decreases with h

and comes from the error of the numerical differentiation if the exact values of the
solutions were used. The second term en,h

h comes from the fact that the values at the
interior are just the approximations which are given by the numerical solution and to
the necessity of dividing by h when approximating a first derivative in space. For a
general operator A, we will assume that the error when approximating both ∂A2u(tn)
and ∂A f (tn,u(tn)) is as specified in Table 4.1 for some real value γ , where νh comes
from the numerical approximation of the corresponding derivatives in space if the
exact values had been taken.

As for Robin/Neumann boundary conditions (3.7), we notice that

∂ f (tn + cik,u(tn)+ ciku̇(tn)) = α[φ(u(tn)|∂Ω + ciku̇(tn)|∂Ω )+h(tn + cik)|∂Ω ]

+β [φ ′(u(tn)|∂Ω + ciku̇(tn)|∂Ω )(∂nu(tn)|∂Ω + cik∂nu̇(tn)|∂Ω )+∂nh(tn + cik)|∂Ω ].

Here u(tn)|∂Ω and ∂nu(tn)|∂Ω are approximated through the numerical solution, as
in Remark 3.1, u̇(tn)|∂Ω is approximated through numerical differentiation in time
from the approximated values at the boundary and ∂nu̇(tn)|∂Ω is then solved from the
differentiation in time of (3.7). In such a way, if the error coming from the numerical
differentiation in time from the exact values is O(µk,1), with µk,1 decreasing when k
decreases, it happens that the error when approximating ∂ f (tn +cik,u(tn)+ciku̇(tn))
is O(kµk,1 + en,h), with the same argument as before for space numerical differentia-
tion, and taking now into account the factor k which is multiplying the corresponding
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Table 4.1 Errors which are committed at each step when approximating the corresponding boundary terms
with the suggested technique to avoid order reduction, as justified in Remark 3.1 and Subsections 4.1 and
5.1.

Dirichlet Robin/Neumann

∂u(tn) - -

∂Au(tn)/∂ f (tn,u(tn)) - O(en,h)

∂ f (tn + cik,u(tn)+ ciku̇(tn)) - O(kµk,1 + en,h)

∂A2u(tn)/∂A f (tn,u(tn)) O(νh +
en,h
hγ ) O(µk,1 +

en,h
k +νh +

en,h
hγ )

∂A f (tn + cik,u(tn)+ ciku̇(tn)) O(νh +
en,h
hγ +

kµk,1
hγ ) O(kµk,1 + kµk,2 +

en,h
k +νh +

en,h
hγ )

∂A3u(tn)/∂A2 f (tn,u(tn)) O(νh +
en,h
khγ +

µk,1
hγ ) O(µk,1 +µk,2 +

en,h
k2 +νh +

en,h
khγ )

derivative. As for ∂A2u(tn), using (2.1), ∂A2u = g̈− ∂ [ḣ+ φ ′(u)u̇]− ∂ (A f ). More-
over,

∂ [ḣ+φ
′(u)u̇] = α[ḣ|∂Ω +φ

′(u|∂Ω )u̇|∂Ω ]+β [∂nḣ|∂Ω +φ
′′(u|∂Ω )∂nu|∂Ω u̇|∂Ω

+φ
′(u|∂Ω )∂nu̇|∂Ω ],

and it is then necessary to approximate u|∂Ω , ∂nu|∂Ω , u̇|∂Ω and ∂nu̇|∂Ω , as before. On
the other hand, when A is the second derivative in one dimension,

∂ (A f ) = α

[
φ
′′(u|∂Ω )u2

x |∂Ω +φ
′(u|∂Ω )[u̇|∂Ω −φ(u|∂Ω )−h|∂Ω ]+hxx|∂Ω

]
+β

[
φ
′′′(u|∂Ω )u3

x |∂Ω +3φ
′′(u|∂Ω )ux|∂Ω [u̇|∂Ω −φ(u|∂Ω )−h|∂Ω ]

+φ
′(u|∂Ω )[u̇x|∂Ω −φ

′(u|∂Ω )ux|∂Ω −hx|∂Ω ]+hxxx|∂Ω

]
.

Therefore, in this particular case, approximating u|∂Ω , u̇|∂Ω , ux|∂Ω and u̇x|∂Ω as
above, the error which comes from calculating ∂A2u(tn) and ∂A f (tn,u(tn)) is O(µk,1+
en,h

k ). However, for more general operators, space numerical differentiation may be
also needed, and therefore we will assume that, in general, the error coming from the
calculation of those boundaries is as specified in Table 4.1.

4.2 Local error of the time semidiscretization

When discretizing in time as specified at the beginning of Subsection 4, we have the
following result, which is stronger than Theorem 3.1 because more accuracy is being
considered with respect to the boundaries of the problems in (3.2) and (3.4). (Its proof
is similar to that of Theorem 3.1 and is shown in [7].)

Theorem 4.1 Assuming that

φ ∈C2(C,C), h ∈C2([0,T ],D(A2)), u ∈C3([0,T ],D(A3)), (4.3)
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and that the Runge-Kutta tableau corresponds to a method of classical order ≥ 2, it
follows that ρn = O(k3). Moreover, if f ∈C3([0,T ]×X ,X),u ∈C4([0,T ],X), (3.10)
holds and the Runge-Kutta tableau corresponds to a method of classical order ≥ 3,
it follows that A−1

0 ρn = O(k4).

4.3 Local error of the full discretization

Following a similar proof to that of Theorem 3.2, the following result turns up when
considering also the space discretization and applying therefore formula (4.2):

Theorem 4.2 Under the same hypotheses of the first part of Theorem 4.1, and as-
suming also that, for t ∈ [0,T ], Alu(t) ∈ Z, (l = 0,1,2,3), it happens that ρn,h =
O(k3 + kεh). Moreover, under the additional hypotheses of the second part of Theo-
rem 4.1, together with condition (3.12), it follows that A−1

h,0ρn,h = O(k4+kηh+k2εh).

4.4 Global error of the full discretization

This subsection is different from 4.1.3 in the fact that, for both Dirichlet and Robin/Neu-
mann boundary conditions, numerical differentiation must be used to approximate the
corresponding boundary values in (4.2). Because of that, in order to assure conver-
gence with this technique, we will have to ask that k is sufficiently small with respect
to hγ , where γ is the parameter which turns up when applying numerical differenti-
ation in space, as stated in Subsection 4.1. Again, the classical argument would lead
to a worse bound for the global error than in parabolic problems, when a summation-
by-parts arguments can be used.

Theorem 4.3 Under the hypotheses of the first part of Theorem 4.2, if there exists a
constant C such that

k
hγ

≤C, (4.4)

when considering Dirichlet boundary conditions, en,h = O(k2 + εh + kνh) and, with
Robin/Neumann boundary conditions, en,h = O(k2 + εh + kνh + kµk,1), where νh and
µk,1 are the errors coming respectively from numerical differentiation in space and
time according to Subsection 4.1. On the other hand, under the hypotheses of the
second part of Theorem 4.2, but assuming also (3.13) and that

φ ∈C4, h ∈C4([0,T ],D(A2)), u ∈C5([0,T ],D(A3)),

Alu(t) ∈ Z, l = 0,1,2,3, Alh(t) ∈ Z, l = 0,1,2, t ∈ [0,T ], (4.5)

it follows that, when considering Dirichlet boundary conditions, en,h = O(k3 +kεh +
ηh + kνh) and, with Robin/Neumann boundary conditions, en,h = O(k3 + kεh +ηh +
kµk,1 + kνh).
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5 Searching for local order 4

The idea is again to calculate the stages as in (3.1) but with vn, wn, j as in (4.1), and
un+1 through (3.3) but with ṽn, w̃n, j satisfying

˙̃vn(σ) = Aṽn(σ),
ṽn(0) = un,

∂ ṽn(σ) = ∂ [u(tn)+σAu(tn)+ σ2

2 A2u(tn)+ σ3

6 A3u(tn)],

˙̃wn, j(σ) = Aw̃n, j(σ),
w̃n, j(0) = f (tn + c jk,Kn, j),

∂ w̃n, j(σ) = ∂

[
f
(

tn + c jk,u(tn)+ c jkAu(tn)+
c2

j k
2

2 A2u(tn)

+k ∑
j−1
r=1 a j,r[ f (tn + crk,u(tn)+ crku̇(tn))+(c j − cr)kA f (tn,u(tn))]

)
+σA f (tn + c jk,u(tn)+ c jku̇(tn))+ s2

2 A2 f (tn,u(tn))
]
,

where one more order of accuracy has been considered for the boundaries with
respect to (4.1). Again, after discretizing these problems in space and using the
variation-of-constants formula, the following full discretization formulas arise:

Kn,h,i = ecikAh,0Un,h +
3

∑
l=1

cl
ik

l
ϕl(cikAh,0)Ch∂Al−1u(tn)

+k
i−1

∑
j=1

ai j

[
e(ci−c j)kAh,0 f (tn + c jk,Kn,h, j)

+(ci − c j)kϕ1((ci − c j)kAh,0)Ch∂ f (tn + c jk,u(tn)+ c jku̇(tn))

+(ci − c j)
2k2

ϕ2((ci − c j)kAh,0)Ch∂A f (tn,u(tn))
]
,

Un+1,h = ekAh,0Un,h +
4

∑
l=1

kl
ϕl(kAh,0)Ch∂Al−1u(tn)

+k
s

∑
i=1

bi

[
e(1−ci)kAh,0 f (tn + cik,Kn,h,i)

+(1− ci)kϕ1((1− ci)kAh,0)Ch∂ f
(

tn + cik,u(tn)+ cikAu(tn)+
c2

i k2

2
A2u(tn)

+k
i−1

∑
j=1

ai j[ f (tn + c jk,u(tn)+ c jku̇(tn))+(ci − c j)kA f (tn,u(tn))]
)

+(1− ci)
2k2

ϕ2((1− ci)kAh,0)Ch∂A f (tn + cik,u(tn)+ ciku̇(tn))

+(1− ci)
3k3

ϕ3((1− ci)kAh,0)Ch∂A2 f (tn,u(tn))
]
. (5.1)

Remark 5.1 We notice that, if ∂u(t) = ∂Au(t) = ∂A2u(t) = ∂A3u(t) = 0, from (2.1)
it follows that ∂ f (t,u(t)) = ∂A f (t,u(t)) = ∂A2 f (t,u(t)) = 0. As in Remark 4.1,
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∂ f (tn+cik,u(tn+cik)) = 0 differs from ∂ f (tn+cik,u(tn)+ciku̇(tn)) in O(k2). Then,
the stages in (5.1) differ from those in the standard approach (2.17) in

k
i−1

∑
j=1

ai j(ci − c j)kϕ1((ci − c j)kAh,0)ChO(k2) = k
i−1

∑
j=1

ai j[e(ci−c j)kAh,0 − I]A−1
h,0ChO(k2)

= O(k3).

On the other hand, ∂ f (tn+cik,u(tn+cik))= 0 also differs from the factor with the big
parenthesis in (5.1) in O(k3) and ∂A f (tn +cik,u(tn +cik)) = 0 differs from ∂A f (tn +
cik,u(tn)+ ciku̇(tn)) in O(k2) . Because of all this, the difference in the numerical
solution between (5.1) and the standard approach is

k
s

∑
i=1

bi

[
e(1−ci)kAh,0O(k3)+(1− ci)kϕ1((1− ci)kAh,0)ChO(k3)

+(1− ci)
2k2

ϕ2((1− ci)kAh,0)ChO(k2)

]
= k

s

∑
i=1

bi

[
e(1−ci)kAh,0O(k3)+ [e(1−ci)kAh,0 − I]A−1

h,0ChO(k3)

+(1− ci)k[ϕ1((1− ci)kAh,0)− I]A−1
h,0ChO(k2)

]
= O(k4).

This justifies, through Theorems 5.1 and 5.2, that the local error with the standard
approach, under these particular boundary conditions, behaves with order 4 under the
assumptions of those theorems.

5.1 Calculation or approximation of the boundaries which are required to achieve
local order 4

Apart from the terms on the boundaries which were already necessary to achieve
local order 3, now

∂A3u(tn), ∂A2 f (tn,u(tn)) and ∂A f (tn + cik,u(tn)+ ciku̇(tn)) (5.2)

must also be calculated. Using (2.1) and simplifying notation,

∂A3u = ∂ [
...
u −( ftt +2 ftuu̇+ fuuu̇2 + fuü)]−∂ [A( ft + fuu̇)]−∂A2 f , (5.3)

where here everything is assumed to be evaluated either at tn or (tn,u(tn)). Now, in
order to calculate ∂ [A( ft + fuu̇)] and ∂A2 f , we can see that, in case A is the second
derivative in one dimension, using (2.5),

A( ft + fuu̇) = φ
′′′(u)u2

x u̇+φ
′′(u)uxxu̇+2φ

′′(u)uxu̇x +φ
′(u)u̇xx +htxx,

and it happens that uxx and u̇xx can be calculated through

uxx = u̇−φ(u)−h, u̇xx = ü−φ
′(u)u̇−ht . (5.4)
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As for A2 f ,

A2 f = φ
(4)(u)u4

x +6φ
(3)(u)u2

xuxx +3φ
′′(u)u2

xx +4φ
′′(u)uxuxxx +φ

′(u)uxxxx +hxxxx,

where uxx can be calculated as in (5.4) and

uxxx = u̇x−φ
′(u)ux−hx, uxxxx = ü−φ

′(u)u̇−ht −φ
′′(u)u2

x −φ
′(u)(u̇−φ(u)−h)−hxx.

Finally,

A f (tn + cik,u(tn)+ ciku̇(tn))

= φ
′′(u+ ciku̇)(ux + ciku̇x)

2 +φ
′(u+ ciku̇)(uxx + ciku̇xx)+hxx(tn + cik),

where, in the right-hand-side u and its derivatives are all evaluated at t = tn and, for
uxx, (5.4) can again be used.

Therefore, when A is the second derivative in space and Dirichlet boundary con-
ditions are considered, the boundary of every term is exactly calculable in terms of
data except for ux and u̇x. Then, ux can be approximated as in Subsection 4.1 and
so u̇x considering also space numerical differentiation over the exact values of u̇ on
the boundary and the approximated values of u̇ in the interior of the domain, which
can again be approximated by numerical differentiation in time from the values of
the numerical solution. It can thus be deduced that, in this case, the approximation
of u̇x at the boundary differs from the exact in O(νh +

en,h
hk +

µk,1
h ), where µk,1 is the

error which comes from the approximation of the first derivative if the values from
which it is calculated were all exact. Because of this, the error of approximation of
the first two terms in (5.2) behaves as O(νh +

en,h
hk +

µk,1
h ) and, for the last one, as

O(νh +
en,h

h + k µk,1
h ) due to the factor k multiplying u̇x. For a general operator A, we

will assume all terms in (5.2) are calculated except for an error as that in Table 4.1
for some real value γ .

With Robin/Neumann boundary conditions, in one dimension and with A the
second derivative in space, u|∂Ω ,ux|∂Ω , u̇|∂Ω , u̇x|∂Ω , ü|∂Ω , üx|∂Ω will also be needed.
(Notice that

...
u just appears linearly in (5.3) and therefore is given directly in terms of

data through ∂
...
u=

...
g.) Then, u|∂Ω and ux|∂Ω are calculated except for O(en,h) as in

Remark 3.1; u̇|∂Ω and u̇x|∂Ω except for O(µk,1 +
en,h

k ) as in Subsection 4.1 and ü|∂Ω

and üx|∂Ω in a similar way through numerical differentiation except for O(µk,2+
en,h
k2 ),

where µk,2 comes from the error in the numerical approximation of the second deriva-
tive. For a general operator A, we thus assume that the error in the calculation of the
first two boundaries of (5.2) is as written in the right-bottom part of Table 4.1 where
the last two terms come from the possible error in the numerical approximation of
some spatial derivatives of u and u̇. For the boundary of the last term in (5.2), the
error in the calculation, due to the factor k multiplying u̇, is also as specified in Table
4.1.

5.2 Local error of the time semidiscretization

When discretizing in time as specified at the beginning of Subsection 5, with a similar
proof to that of Theorems 3.1 and 4.1 (see [7]), the following result follows for the
local error if enough regularity is assumed:
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Theorem 5.1 Assuming that

φ ∈C3, h ∈C3([0,T ],D(A3)), u ∈C4([0,T ],D(A4)), (5.5)

and if the Runge-Kutta tableau corresponds to a method of classical order ≥ 3, it
follows that ρn = O(k4). Moreover, if f ∈C4([0,T ]×X ,X),u ∈C5([0,T ],X), (3.10)
holds and the Runge-Kutta tableau corresponds to a method of classical order ≥ 4,
it follows that A−1

0 ρn = O(k5).

5.3 Local error of the full discretization

In a similar way to the proof of Theorem 4.2, it follows that, when considering for-
mulas (5.1), the local error after full discretization behaves in the following way:

Theorem 5.2 Under the same hypotheses of the first part of Theorem 5.1, and as-
suming also that, for t ∈ [0,T ],

Alu(t) ∈ Z, l = 0,1, . . . ,4, (5.6)

it happens that ρn,h = O(k4 + kεh). Moreover, under the additional hypotheses of the
second part of Theorem 5.1, together with condition (3.12), A−1

h,0ρn,h = O(k5 + kηh).

5.4 Global error of the full discretization

In a similar way to Subsection 4.4, the following result follows for the global error
after full discretization with (5.1):

Theorem 5.3 Under hypotheses of the first part of Theorem 5.2 and assuming that
(4.4) holds, when considering Dirichlet boundary conditions, en,h = O(k3 + εh +
kνh+kµk,1) and, with Robin/Neumann boundary conditions, en,h =O(k3+εh+kνh+
kµk,1 + k2µk,2), where νh and µk,1,µk,2 are the errors coming from numerical differ-
entiation in space and time according to Subsection 5.1. On the other hand, under
the hypotheses of the second part of Theorem 5.2, but assuming also (3.13) and that

φ ∈C5, h ∈C5([0,T ],D(A3)), u ∈C6([0,T ],D(A4))

Alu(t) ∈ Z, l = 0,1, . . . ,4, Alh(t) ∈ Z, l = 0,1,2,3, t ∈ [0,T ], (5.7)

it follows that, with Dirichlet boundary conditions, en,h = O(k4 + kεh +ηh + kνh +
kµk,1) and, with R/N boundary conditions, en,h = O(k4 + kεh +ηh + kµk,1 + k2µk,2 +
kνh).
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6 Numerical results

In this section, we show some numerical experiments which corroborate the previous
results. For that, we have considered the following set of problems

ut(t,x) = uxx(t,x)+u2(t,x)+h(t,x), x ∈ [0,1], t ∈ [0,1],
u(0,x) = u0(x), (6.1)

where the boundary conditions are either Dirichlet

u(t,0) = g0(t), u(t,1) = g1(t), (6.2)

or mixed (Dirichlet/Neumann),

u(t,0) = g0(t), ux(t,1) = g1(t), (6.3)

and where h(t,x), u0(x) and g0(t),g1(t) are such that the exact solution of the problem
is

u(x, t) = cos(x+ t). (6.4)

In the first place, as space discretization we have considered the symmetric 2nd-order
difference scheme for which, in the Dirichlet case (6.2),

Ah,0 = tridiag(1,−2,1)/h2, Ch[g0(t),g1(t)]T = [g0(t),0, . . . ,0,g1(t)]T/h2,(6.5)

and, in the Dirichlet/Neumann case (6.3),

Ah,0 =
1
h2


−2 1 0 . . . 0
1 −2 1

. . . . . . . . .
1 −2 1
0 2 −2

 , Ch

[
g0(t)
g1(t)

]
=


1
h2 g0(t)

0
...
0

2
h g1(t)

 . (6.6)

All differential problems (6.1) with boundary conditions (6.2)-(6.3) satisfy hypothe-
ses (A1)-(A7) with X = C([0,1]) and the respective space discretizations (6.5) and
(6.6) satisfy hypotheses (H1)-(H2), as it was justified in [4] for Z =C4([0,1]), εh,ηh
being O(h2) for (6.5) and εh = O(h), ηh = O(h2) for (6.6). Besides, the considered
solution (6.4) and f are so smooth that all conditions of regularity in the paper are
satisfied. Finally, (3.10) is satisfied in the Dirichlet case (6.2) because it corresponds
to bound

2
∫ x

0

∫
σ

0
cos(ξ + t)w′′(ξ )dξ dσ −2x

∫ 1

0

∫
σ

0
cos(ξ + t)w′′(ξ )dξ dσ ,

whenever w ∈ D(A0). Integrating twice by parts, that can be seen equal to

2cos(x+ t)w(x)+4
∫ x

0
sin(σ + t)w(σ)dσ −2

∫ x

0

∫
σ

0
cos(ξ + t)w(ξ )dξ dσ

−4x
∫ 1

0
sin(σ + t)w(σ)dσ +2x

∫ 1

0

∫
σ

0
cos(ξ + t)w(ξ )dξ dσ ,
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Table 6.1 Local error when integrating Dirichlet problem with non-vanishing boundary conditions with
the standard approach (2.17) associated to the second-order method (6.7).

h k=1e-3 k=5e-4 k=2.5e-4 k=1.25e-4

2e-3 1.2404e+2 6.1563e+1 3.0339e+1 1.4751e+1
1e-3 4.9902e+2 2.4903e+2 1.2404e+2 6.1563e+1
5e-4 1.9990e+3 9.9902e+2 4.9902e+2 2.4903e+2

Table 6.2 Global error when integrating Dirichlet problem with non-vanishing boundary conditions with
the standard approach (2.17) associated to the second-order method (6.7).

h k=1e-3 k=5e-4 k=2.5e-4 k=1.25e-4

2e-3 6.7023e+1 3.3264e+1 1.6394e+1 7.9729e+0
1e-3 2.6962e+2 1.3455e+2 6.7023e+1 3.3264e+1
5e-4 1.0801e+3 5.3977e+2 2.6962e+2 1.3455e+2

Table 6.3 Local and global error when integrating Dirichlet problem with nonvanishing boundary con-
ditions with the suggested approach (3.6) associated to the second-order method (6.7), with which no
numerical differentiation is required.

k 1e-03 5e-4 2.5e-4 1.25e-4

Local error 1.5664e-7 3.9176e-8 9.7933e-9 2.4473e-9
Order 2.00 2.00 2.00

Global error 8.2929e-7 2.0714e-7 5.1712e-8 1.2903e-8
Order 2.00 2.00 2.00

which can be clearly bounded by ∥w∥∞. Similarly, in the Dirichlet/Neumann case,
(3.10) corresponds to bound

2
∫ x

0

∫
σ

0
cos(ξ + t)w′′(ξ )dξ dσ −2x

∫ 1

0
cos(ξ + t)w′′(ξ )dξ

= 2cos(x+ t)w(x)+4
∫ x

0
sin(σ + t)w(σ)dσ −2

∫ x

0

∫
σ

0
cos(ξ + t)w(ξ )dξ dσ

−2xsin(t +1)w(1)+2x
∫ 1

0
cos(ξ + t)w(ξ )dξ ,

which is again bounded by ∥w∥∞. Although we do not provide a proof for the condi-
tion (3.12) in the maximum norm, as expected from the fact that (3.10) is satisfied, it
can be numerically verified that this condition holds uniformly on h for Ah,0 in (6.5)
and (6.6).

6.1 Second-order method

We first show the results which are obtained when integrating problem (6.1) asso-
ciated to the Dirichlet boundary conditions with the Lawson method which is con-



Avoiding order reduction with Lawson methods 21

Table 6.4 Local and global error when integrating Dirichlet problem with nonvanishing boundary condi-
tions with the suggested approach (4.2) associated to the second-order method (6.7), for which numerical
differentiation is required.

k 8e-3 4e-3 2e-3 1e-3

Local error 1.3126e-7 1.6797e-8 2.1350e-9 2.7857e-10
Order 2.97 2.98 2.94

Global error 5.9892e-7 1.4972e-7 3.7367e-8 9.2309e-9
Order 2.00 2.00 2.02

structed with the second-order RK tableau

0 0
1 1 0

1
2

1
2

. (6.7)

As Tables 6.1 and 6.2 show, when using the standard approach (2.17) for integrating
(6.1), the local and global orders are 1, the errors are very big and even grow when
h diminishes. However, that bad behaviour can be solved by using the suggested
approach (3.6), where every term on the boundary can be calculated in terms of data,
without resorting to numerical differentiation. In such a way, local and global order
2 is obtained, as shown in Table 6.3 with h = 5×10−4, for which the error in space
is negligible and does not grow with h. This corroborates Theorems 3.2 and 3.3.
On the other hand, with this method, it is even possible to achieve local order 3
with formula (4.2), although numerical differentiation is required to approximate the
boundary of the first derivative in space of the exact solution, as it is thoroughly
explained in Subsection 4.1. For that, we have considered the 2-BDF formula, for
which νh = O(h2) and, as already predicted by the first part of Theorems 4.2 and 4.3,
Table 6.4 shows local order near 3 and global order 2 in time, but with a size of errors
quite smaller than those of Table 6.3. (We notice that again the terms of the error
which come from the space discretization and numerical differentiation are negligible
compared to the error which just depends on the time stepsize k.) Moreover, condition
(4.4) seems not to be very restrictive since, as stated in Subsection 4.1, γ = 1 because
A corresponds to second-order differentiation in space.

Although it is not an aim of this paper to compare with other methods, we give a
brief comparison in CPU time with this exponential Runge-Kutta method (suggested
in [13,20]), and which also has as underlying Runge-Kutta method that in (6.7).

0 0
1 ϕ1 0

ϕ1 −ϕ2 ϕ2

. (6.8)

This method happens to show also second order for the corresponding discretization
(2.16) of problem (6.1). We have implemented this method as suggested in [13], using
Krylov methods for the evaluation of the exponential-type functions. More precisely,
the subroutines in [18], which are the same ones which have been used for the imple-
mentation of the different techniques described above for Lawson method based on
(6.7). As Figure 6.1 shows, the suggested implementation of Lawson method (4.2),
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Fig. 6.1 Error against CPU time when integrating problem (6.1), using the exponential RK method (6.8)
(blue asterisks), the suggested approach (3.6) for Lawson method based on (6.7) (red circles and continuous
line) and the suggested approach (4.2) for Lawson method associated to (6.7) (black circles and dashed
line). The parameters k and h have been chosen as for Tables 6.3 and 6.4.

Table 6.5 Local and global error when integrating mixed D/N problem with nonvanishing boundary con-
ditions with the standard approach associated to the third-order method (6.9), h = 10−3.

k 0.2 0.1 0.05 0.025
Local error 9.7639e-1 9.8964e-1 9.9108e-1 9.8877e-1

Order -0.02 -0.00 0.00
Global error 5.3822e-1 5.3736e-1 5.3613e-1 5.3439e-1

Order 0.00 0.00 0.00

which avoids order reduction for both local and global errors through numerical dif-
ferentiation, is more efficient than (6.8). We also notice that, for a same stepsize
(k = 10−3), approach (4.2) is cheaper than (3.6) in spite of the fact that more terms
are calculated and numerical differentiation is required. An explanation for that is
given in [8].

6.2 Third-order method

In this subsection we show the results which are obtained when considering (6.1)
associated to the mixed Dirichlet/Neumann boundary conditions in (6.3) and inte-
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Table 6.6 Local and global error when integrating mixed D/N problem with nonvanishing boundary con-
ditions with the suggested approach (4.2) associated to the third-order method (6.9), for which numerical
differentiation is required, h = 10−3.

k 0.2 0.1 0.05 0.025

Local error 1.3911e-3 1.7489e-3 2.1806e-5 2.7212e-6
Order 2.99 3.00 3.00

Global error 1.5136e-3 2.3369e-4 2.9913e-5 3.6533e-6
Order 2.70 2.97 3.03

Table 6.7 Local and global error when integrating Dirichlet problem with nonvanishing boundary condi-
tions with the suggested approach (5.1) associated to the fourth-order method (6.10), when the terms on
the boundary are exactly provided, h = 5×10−4.

k 0.2 0.1 0.05 0.025

Local error 1.8356e-4 1.0396e-5 6.1679e-7 3.7509e-8
Order 4.14 4.08 4.04

Global error 1.9072e-4 9.3054e-6 5.4646e-7 3.5333e-8
Order 4.36 4.09 3.95

grating it in time with the Lawson method associated to the third order Heun method

0
1
3

1
3

2
3 0 2

3
1
4 0 3

4

. (6.9)

The standard approach shows no convergence either on the local nor the global error
when the timestepsize diminishes, as it is shown in Table 6.5. (Notice the different
behaviour with respect to the standard approach in Tables 6.1 and 6.2. Here the errors
do not diminish with k but, although not shown here for the sake of brevity, they
neither grow when h diminishes as it happens in those tables. This is due to the fact
that now every ci is different from 1 [7]). We can get local and thus global order 3
with our modified approach (4.2), by calculating the terms on the boundary following
again Subsection 4.1. For the Dirichlet boundary condition, we have used numerical
differentiation in space with the 2-BDF formula and, for the Neumann one, numerical
differentiation in time with the 3-BDF scheme. In such a case, Theorem 4.2 as well as
the second part of Theorem 4.3 apply, with νh = O(h2) and µk,1 = O(k3). Therefore,
when the error in space is negligible, order 3 in the time stepsize should be seen, as
Table 6.6 corroborates.
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Table 6.8 Local and global error when integrating Dirichlet problem with nonvanishing boundary con-
ditions with the suggested approach (5.1) associated to the fourth-order method (6.10), when the terms
on the boundary are calculated through numerical differentiation and Gauss-Lobatto collocation space
discretization is used.

k 2.5e-2 1.25e-2 6.25e-3 3.125e-3

Local error 3.4537e-8 2.0441e-9 1.1954e-10 6.8247e-12
Order 4.08 4.10 4.13

Global error 3.3314e-8 2.0054e-9 1.1968e-10 7.0050e-12
Order 4.05 4.07 4.09

6.3 Fourth-order method

Finally, we show that local and global order 4 can be obtained when integrating in
time with the Lawson method associated to the fourth-order RK method

0
1
3

1
3

2
3 − 1

3 1
1 1 −1 1

1
8

3
8

3
8

1
8

. (6.10)

Nevertheless, we point out that condition (4.4) is in fact necessary. We remind that,
in our problem (6.1), γ = 1, as it was justified in Subsections 4.1 and 5.1. For the
sake of brevity, we will center on the Dirichlet boundary condition in (6.2), and we
will directly integrate that problem with the suggested formulas (5.1) by inserting the
needed boundaries in an exact way from the known solution. As Table 6.7 shows,
local and global order 4 are observed in that way. However, when not knowing the
exact solution, those boundaries must be calculated in terms of data following Sub-
section 5.1. For that, we have considered again the 3 (resp. 2)-BDF formula for the
numerical differentiation in time (resp. in space) and, according to Theorems 5.2 and
5.3, global order 4 in the time stepsize should be observed when the error in space is
negligible and (4.4) holds for some constant C. However, as the error in space is just
of second order, in order that the error in space is negligible with respect to that in
time, h must be quite small with respect to k, and then the global error explodes to
infinity with the parameters of Table 6.7 because condition (4.4) is not satisfied for a
suitable constant C.

In spite of all this, the problem can be solved by considering a more accurate
space discretization. Thus we have considered a Gauss-Lobatto collocation space
discretization with 17 nodes, for which the error in space is nearly of the order of
rounding errors for this problem. Besides, the space grid is quite moderate, so con-
dition (4.4) is very weak in this case. Considering then numerical differentiation in
time as before and numerical differentiation in space through the derivation of the
corresponding collocation polynomials, the results in Table 6.8 are obtained, where
both local and global order 4 are achieved.



Avoiding order reduction with Lawson methods 25

References

1. I. Alonso–Mallo, B. Cano and N. Reguera, Avoiding order reduction when integrating linear initial
boundary value problems with exponential splitting methods, IMA J. Num. Anal., 38, 1294-1323 (2018).

2. I. Alonso–Mallo, B. Cano and N. Reguera, Analysis of order reduction when integrating linear ini-
tial boundary value problems with Lawson methods, Applied Numerical Mathematics, 118, pp. 64-74
(2017).

3. I. Alonso–Mallo, B. Cano and N. Reguera, Avoiding order reduction when integrating linear initial
boundary value problems with Lawson methods, IMA Journal of Numerical Analysis 37, pp. 2091-2119
(2017).

4. I. Alonso–Mallo, B. Cano and N. Reguera, Avoiding order reduction when integrating reaction-
diffusion boundary value problems with exponential splitting methods, J. Comput. Appl. Math. 357,
pp. 228-250 (2019).

5. B. Cano and M. J. Moreta, Exponential quadrature rules without order reduction for integrating linear
initial boundary value problems, SIAM J. Num. Anal. 56-3, pp. 1187-1209 (2018).

6. B. Cano and N. Reguera, Avoiding order reduction when integrating nonlinear Schrödinger equation
with Strang method, J. Comp. Appl. Math. 316, pp. 86-99 (2017).

7. B. Cano and N. Reguera, Order reduction and how to avoid it when Lawson methods integrate reaction-
diffusion boundary value problems, http://arxiv.org/abs/1909.12659

8. B. Cano and N. Reguera, Why Improving the Accuracy of Exponential Integrators Can Decrease Their
Computational Cost?, Mathematics,9, 1008 (2021). https://doi.org/10.3390/math909100

9. L. Einkemmer and A. Ostermann, Overcoming order reduction in diffusion-reaction splitting. Part 1:
Dirichlet boundary conditions, SIAM J. Sci. Comput. 37 (3), A1577–A1592 (2015).

10. L. Einkemmer and A. Ostermann, Overcoming order reduction in diffusion-reaction splitting. Part 2:
Oblique boundary conditions, SIAM J. Sci. Comput. 38 A3741–A3757 (2016).

11. E. Faou, A. Ostermann and K. Schratz, Analysis of exponential splitting methods for inhomogeneous
parabolic equations, IMA J. Numer. Anal. 35 (1), pp. 161-178 (2015).

12. E. Hairer and C. Lubich, Solving Ordinary Differential Equations II, Stiff and Differential Algebraic
Problems, Second Revised Ediyion, Springer-Verlag, 1996.

13. M. Hochbruck and A. Ostermann, Explicit exponential Runge-Kutta methods for semilinear parabolic
problems, SIAM J. Num. Anal. 43, pp. 1069-1090 (2005).

14. M. Hochbruck and A. Ostermann, Exponential Runge-Kutta methods for parabolic problems, Appl.
Numer. Math. 53, no. 2-4, pp. 323-339 (2005).

15. M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numerica pp. 209-286 (2010).

16. J. D. Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants,
SIAM J. Numer. Anal. 4 pp. 372-380 (1967).

17. V.T. Luan, A. Ostermann, Explicit exponential Runge-Kutta methods of high order for parabolic prob-
lems, J. Comput. Appl. Math. 262, pp. 361-372 (2014).

18. J. Niesen and W. M. Wright, Algorithm 919: a Krylov subspace algorithm for evaluating the ϕ-
functions appearing in exponential integrators, ACM Trans. Math. Software 38, no. 3, Art. 22 (2012).

19. J. M. Sanz-Serna, Diez lecciones de Cálculo Numérico, Secretariado de Publicaciones e Intercambio
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7 Appendix

7.1 Proof of Theorem 3.1

Using Lemma 3.1 in [3],

v̄n(s) = u(tn)+ sϕ1(sA0)Au(tn), (7.1)
¯̃v(s) = u(tn)+ sAu(tn)+ s2

ϕ2(sA0)A2u(tn),

w̄n,i(s) = esA0 f (tn + cik, K̄n,i),

¯̃wn,i(s) = esA0 [ f (tn + cik, K̄n,i)− f (tn,u(tn))]+ f (tn,u(tn))

+sϕ1(sA0)A f (tn,u(tn)).

Then,

K̄n,i = u(tn)+ cikϕ1(cikA0)Au(tn)+ k
i−1

∑
j=1

ai je(ci−c j)kA0 f (tn + c jk, K̄n, j) (7.2)

= u(tn)+O(k), i = 1, . . . ,s, (7.3)
ūn+1 = u(tn)+ kAu(tn)+ k2

ϕ2(kA0)A2u(tn)

+k
s

∑
i=1

bi

[
e(1−ci)kA0 [ f (tn + cik, K̄n,i)− f (tn,u(tn))]+ f (tn,u(tn))

+(1− ci)kϕ1((1− ci)kA0)A f (tn,u(tn))
]

(7.4)

= u(tn)+ k[Au(tn)+ f (tn,u(tn))]+O(k2) = u(tn)+ ku̇(tn)+O(k2),

where, for the last line, (3.9), (A4) together with (7.3) and the first condition of (2.11)
have been used. From this, the first result on the local error follows.

As for the second result, looking at the term in k2 in ūn+1 and using that u ∈
C3([0,T ],X), we can notice that

A−1
0 ρn+1 = k3(kA0)

−1(ϕ2(kA0)−
1
2

I)A2u(tn)+
k2

2
A−1

0 A2u(tn)

+k2
s

∑
i=1

bi(1− ci)((1− ci)kA0)
−1[e(1−ci)kA0 − I][ f (tn + cik, K̄n,i)− f (tn,u(tn))]

+k
s

∑
i=1

biA−1
0 [ f (tn + cik, K̄n,i)− f (tn,u(tn))] (7.5)

+k3
s

∑
i=1

bi(1− ci)
2((1− ci)kA0)

−1(ϕ1((1− ci)kA0)− I)A f (tn,u(tn))

+k2
s

∑
i=1

bi(1− ci)A−1
0 A f (tn,u(tn))−

k2

2
ü(tn)+O(k3).
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Using (2.7), (7.3), (A4) and (3.9), the first, third and fifth terms are O(k3). As for the
fourth one, considering (7.2), it can be written as

k2
s

∑
i=1

biA−1
0 fu(tn,u(tn))[ciϕ1(cikA0)Au(tn)+

i−1

∑
j=1

ai je(ci−c j)kA0 f (tn + c jk, K̄n, j)]

+k2
s

∑
i=1

biciA−1
0 ft(tn,u(tn))+O(k3)

= k3
s

∑
i=1

biA−1
0 fu(tn,u(tn))A0ci(kA0)

−1[ϕ1(cikA0)− I]Au(tn)

+k2(
s

∑
i=1

bici)A−1
0 fu(tn,u(tn))Au(tn)

+k3
s

∑
i=1

bi

i−1

∑
j=1

ai jA−1
0 fu(tn,u(tn))A0(kA0)

−1[e(ci−c j)kA0 − I] f (tn,u(tn))

+k2
s

∑
i=1

bi

i−1

∑
j=1

ai jA−1
0 fu(tn,u(tn)) f (tn,u(tn))

+k2
s

∑
i=1

biciA−1
0 ft(tn,u(tn))+O(k3)

=
k2

2
A−1

0 [ fu(tn,u(tn))u̇(tn)+ ft(tn,u(tn))]+O(k3),

where, for the last equality, we have used (2.7) again, (3.10), the second condition in
(2.11) and the fact that ∑

s
i=1 bici = 1/2 due to the second order of the Butcher tableau.

Inserting this in (7.5) and simplifying notation,

A−1
0 ρn+1 =

k2

2
A−1

0 [A2u+ fuu̇+ ft +A f − ü]+O(k3) = O(k3),

where the differentiation of (2.1) with respect to time shows that the term in bracket
in the previous expression vanishes.

7.2 Proof of Theorem 3.3

Firstly notice that

en+1,h = [Un+1,h −Ūn+1,h]+ρn+1,h. (7.6)

Then, using (3.6), when considering Dirichlet boundary conditions, in which case
∂Au(tn) and ∂ f (tn,u(tn)) are calculated exactly in terms of data, as Ūn+1,h is the
same as Un+1,h but starting from Phu(tn) instead of Un,h,

Un+1,h −Ūn+1,h = ekAh,0 [Un,h −Phu(tn)]

+k
s

∑
i=1

bie(1−ci)kAh,0 [ f (tn + cik,Kn,h,i)− f (tn + cik, K̄n,h,i)], (7.7)
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where, recursively, for i = 1, . . . ,s,

Kn+1,h,i − K̄n+1,h,i = ecikAh,0 [Un,h −Phu(tn)]

+k
i−1

∑
j=1

ai je(ci−c j)kAh,0 [ f (tn + c jk,Kn,h, j)− f (tn + c jk, K̄n,h, j)]. (7.8)

In such a way, it is inductively proved that Kn+1,h,i − K̄n+1,h,i = O(en,h) and finally,
using (7.7) and (7.6),

en+1,h = ekAh,0en,h +O(ken,h)+ρn+1,h, (7.9)

from what the result follows from Theorem 3.2 by a summation-by-parts argument
and a discrete Gronwall lemma in the same way than the proof of Theorem 22 in [4]
for Strang method.

On the other hand, when considering Robin/Neumann boundary conditions, as,
according to Remark 3.1, ∂ f (tn,u(tn)) is just calculated approximately with an error
which is O(en,h), using (3.6) again,

Un+1,h −Ūn+1,h = ekAh,0en,h + k2
ϕ2(kAh,0)ChO(en,h)

+k
s

∑
i=1

bi

[
e(1−ci)kAh,0 [ f (tn + cik,Kn,h,i)− f (tn + cik, K̄n,h,i)]

+(1− ci)kϕ1((1− ci)kAh,0)ChO(en,h)

]
,

where Kn+1,h,i − K̄n+1,h,i is the same as in (7.8) because ∂u(tn) is given exactly in
terms of data with this type of boundary conditions. Then, using (2.7),

Un+1,h −Ūn+1,h = ekAh,0 en,h + k[ϕ1(kAh,0)− I]A−1
h,0ChO(en,h)

+k
s

∑
i=1

bi

[
e(1−ci)kAh,0O(en,h)+ [e(1−ci)kAh,0 − I]A−1

h,0ChO(en,h)

]
.

Using now (H2c), it follows that Un+1,h −Ūn+1,h = ekAh,0en,h +O(ken,h), from what
(7.9) applies again and the result follows in the same way as above.

7.3 Proof of Theorem 4.3

For the proof, as in Theorem 3.3, we must consider the decomposition (7.6) where
Ūn+1,h is calculated as Un+1,h but starting from Phu(tn) and calculating the boundaries
in (4.2) in an exact way. In contrast, according to Table 4.1, when considering Un+1,h,
the boundaries in (4.2) can just be calculated approximately.

More precisely, with Dirichlet boundary conditions, the terms on the boundary
for the stages in (4.2) can be calculated exactly. However, when calculating Un+1,h,



Avoiding order reduction with Lawson methods 29

∂A2u(tn) and ∂A f (tn,u(tn)) can just be calculated except for O(νh +
en,h
hγ ). Because

of this,

Un+1,h −Ūn+1,h = ekAh,0en,h + k3
ϕ3(kAh,0)ChO(νh +

en,h

hγ
)

+k
s

∑
i=1

bi

[
e(1−ci)kAh,0 [ f (tn + cik,Kn,h,i)− f (tn + cik, K̄n,h,i)]

+(1− ci)
2k2

ϕ2((1− ci)kAh,0)ChO(νh +
en,h

hγ
)

]
,

where Kn,h,i − K̄n,h,i = O(en,h) as in the proof of Theorem 3.3. Therefore, using (2.7)
and (H2c),

Un+1,h −Ūn+1,h = ekAh,0en,h + k2(ϕ2(kAh,0)−
1
2

I)O(νh +
en,h

hγ
)+O(ken,h)

+k2
s

∑
i=1

bi(1− ci)(ϕ1(kAh,0)− I)O(νh +
en,h

hγ
),

from what, using condition (4.4),

en+1,h = ekAh,0en,h +O(ken,h)+O(k2
νh)+ρn+1,h.

The classical argument of convergence and the first part of Theorem 4.2 leads then to
the first result of this theorem for Dirichlet boundary conditions. For the second part,
the second part of Theorem 4.2 must be used, apart from (3.13) and the additional
regularity (4.5).

On the other hand, with Robin/Neumann boundary conditions, there is some error
when approximating the boundaries for both the stages and the numerical solution.
More precisely, using Table 4.1 and (4.2),

Kn,h,i − K̄n,h,i = ecikAh,0en,h + c2
i k2

ϕ2(cikAh,0)ChO(en,h)

+k
i−1

∑
j=1

ai j[O(en,h)+(ci − c j)kϕ1((ci − c j)kAh,0)ChO(en,h)]

= ecikAh,0en,h + cik[ϕ1(cikAh,0)− I]O(en,h)

+k
i−1

∑
j=1

ai j

[
O(en,h)+ [e(ci−c j)kAh,0 − I]O(en,h)

]
= ecikAh,0en,h +O(ken,h) = O(en,h),
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and then

Un+1,h −Ūn+1,h = ekAh,0en,h + k3
ϕ3(kAh,0)ChO(µk,1 +

en,h

k
+νh +

en,h

hγ
)

+k
s

∑
i=1

bi

[
e(1−ci)kAh,0 [ f (tn + cik,Kn,h,i)− f (tn + cik, K̄n,h,i)]

+(1− ci)kϕ1((1− ci)kAh,0)ChO(kµk,1 + en,h)

+(1− ci)
2k2

ϕ2((1− ci)kAh,0)ChO(µk,1 +
en,h

k
+νh +

en,h

hγ
)

]
= ekAh,0en,h + k2[ϕ2(kAh,0)−

1
2

I]O(µk,1 +
en,h

k
+νh +

en,h

hγ
)

+k
s

∑
i=1

bi

[
O(en,h)+ [e(1−ci)kAh,0 − I]O(kµk,1 + en,h)

+(1− ci)k[ϕ1(kAh,0)− I]O(µk,1 +
en,h

k
+νh +

en,h

hγ
)

]
.

From this, under condition (4.4),

en+1,h = ekAh,0en,h +O(ken,h + k2
µk,1 + k2

νh)+ρn+1,h,

so that, using the first part of Theorem 4.2 and the classical argument of convergence,
en,h =O(k2+εh+kνh+kµk,1). Again, under the second set of hypotheses in Theorem
4.2 and using (3.13) and the regularity (4.5), the finer result en,h = O(k3 +kεh +ηh +
kµk,1 + kνh) can be achieved.

7.4 Proof of Theorem 5.3

As in the proof of Theorem 4.3, we must consider the decomposition (7.6) and then
study the difference Uh,n+1 −Ūn+1 taking into account that the boundaries for Uh,n+1
in (5.1) are just calculated approximately with an error which is given through Table
4.1.

More precisely, with Dirichlet boundary conditions,

Un+1,h −Ūn+1,h = ekAh,0en,h + k3
ϕ3(kAh,0)ChO(νh +

en,h

hγ
)

+k4
ϕ4(kAh,0)ChO(νh +

en,h

hγ k
+

µk,1

hγ
)

+k
s

∑
i=1

bi

[
e(1−ci)kAh,0 [ f (tn + cik,Kn,h,i)− f (tn + cik, K̄n,h,i)]

+(1− ci)kϕ1((1− ci)kAh,0)ChO(k2
νh + k2 en,h

hγ
)

+(1− ci)
2k2

ϕ2((1− ci)kAh,0)ChO(νh +
en,h

hγ
+

kµk,1

hγ
)

+(1− ci)
3k3

ϕ3((1− ci)kAh,0)ChO(νh +
en,h

hγ k
+

µk,1

hγ
)

]
, (7.10)
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where

Kn,h,i − K̄n,h,i = ecikAh,0en,h + c3
i k3

ϕ3(kAh,0)ChO(νh +
en,h

hγ
)

+k
i−1

∑
j=1

ai j

[
e(ci−c j)kAh,0 [ f (tn + c jk,Kn,h, j)− f (tn + c jk, K̄n,h, j)]

+(ci − c j)
2k2

ϕ2((ci − c j)kAh,0)ChO(νh +
en,h

hγ
)

]
= O(en,h + k2

νh),

and, for the last equality, (2.7), (H2c) and (4.4) have been used. Inserting this in (7.10)
and using again (2.7), (H2c) and (4.4), it follows that

Un+1,h −Ūn+1,h = ekAh,0en,h +O(k2
νh + ken,h + k2

µk,1).

From here,

en+1,h = ekAh,0en,h +O(ken,h)+O(k2
νh + k2

µk,1)+ρn+1,h,

and using a discrete Gronwall Lemma and the first part of Theorem 5.2, the first
part of the theorem follows for Dirichlet boundary conditions. For the second part,
the second part of Theorem 5.2 must be used, apart from (3.13) and the additional
regularity (5.7).

As for Robin/Neumann boundary conditions, with similar arguments,

Kn,h,i − K̄n,h,i

= ecikAh,0en,h + c2
i k2

ϕ2(kAh,0)ChO(en,h)+ c3
i k3

ϕ3(kAh,0)ChO(µk,1 +
en,h

k
+νh +

en,h

hγ
)

+k
i−1

∑
j=1

ai j

[
e(ci−c j)kAh,0 [ f (tn + c jk,Kn,h, j)− f (tn + c jk, K̄n,h, j)]

+(ci − c j)kϕ1((ci − c j)kAh,0)ChO(en,h + k(µk,1 +
en,h

k
))

+(ci − c j)
2k2

ϕ2((ci − c j)kAh,0)ChO(µk,1 +
en,h

k
+νh +

en,h

hγ
)

]
= ecikAh,0en,h +O(ken,h + k2

µk,1 + k2
νh) = O(en,h + k2

µk,1 + k2
νh),



32 B. Cano, N. Reguera

from what

Un+1,h −Ūn+1,h

= ekAh,0en,h + k2
ϕ2(kAh,0)ChO(en,h)+ k3

ϕ3(kAh,0)ChO(µk,1 +
en,h

k
+νh +

en,h

hγ
)

+k4
ϕ4(kAh,0)ChO(µk,1 +µk,2 +

en,h

k2 +νh +
en,h

khγ
)

+k
s

∑
i=1

bi

[
e(1−ci)kAh,0 [ f (tn + cik,Kn,h,i)− f (tn + cik, K̄n,h,i)]

+(1− ci)kϕ1((1− ci)kAh,0)ChO(ken,h + k2
µk,1 + k2

µk,2 + k2
νh +

k2

hγ
en,h)

+(1− ci)
2k2

ϕ2((1− ci)kAh,0)ChO(kµk,1 + kµk,2 +
en,h

k
+νh +

en,h

hγ
)

+(1− ci)
3k3

ϕ3((1− ci)kAh,0)ChO(µk,1 +µk,2 +
en,h

k2 +νh +
en,h

khγ
)

]
= ekAh,0en,h +O(ken,h + k2

µk,1 + k3
µk,2 + k2

νh).

From this,

en+1,h = ekAh,0en,h +O(ken,h + k2
µk,1 + k3

µk,2 + k2
νh)+ρn+1,h,

so that, using the first part of Theorem 5.2 and the classical argument of convergence,
en,h = O(k3+εh+kνh+kµk,1+k2µk,2). Again, under the second set of hypotheses in
Theorem 5.2 and using (3.13) and the regularity (5.7), the finer result en,h = O(k4 +
kεh +ηh + kµk,1 + k2µk,2 + kνh) is achieved.


