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A B S T R A C T   

Utilities produce and store vast amount of data related to urban wastewater management. Not yet fully exploited, 
proper data analysis would provide relevant process information and represents a great opportunity to improve 
the process performance. In the last years, several statistical tools and benchmarking methods that can extract 
useful information from data have been described to analyse wastewater treatment plant (WWTP) energy effi-
ciency. Improving energy efficiency at WWTPs is however a complex task which involves several actors (both 
internal and external to the water utility), requires an exchange of different types of information which can be 
analysed by a broad selection of methods. Benchmarking method therefore must not only be selected based on 
whether they provide a clear identification of inefficient processes; it must also match the available data and the 
skills of those performing the assessment and objectives of stakeholders interpreting the results. Here, we have 
identified the requirements of the most common benchmarking methods in terms of data, resources, complexity 
of use, and information provided. To do that, inefficiency is decomposed so that the analyst, considering the 
objective of the study and the available data, can link each element to the appropriate method for quantification 
and benchmarking, and relate inefficiency components with root-causes in wastewater treatment. Finally, a 
framework for selecting the most suitable benchmarking method to improve energy efficiency in WWTPs is 
proposed to assist water sector stakeholders. By offering guidelines on how integrates and links data, methods 
and actors in the water sector, the outcomes of this article are expected to move WWTPs towards increasing 
energy efficiency.   

1. Introduction 

Thanks to new developments in the field of information technology, 
cheaper sensors, and increasingly common supervisory control and data 
acquisition system (i.e. SCADA systems), there is a vast amount of data 
on urban wastewater management, which has been not fully exploited 
yet and constitutes a resource to improve the process performance. Some 
of these data are collected and held by water management actors 
including utility operators and different level of environmental au-
thorities for different purposes, without a common format or storage 
method. Overall, large amounts of data from wastewater treatment 
plants (WWTPs) are being generated which need to be properly trans-
formed into knowledge for enhancing their operation (Corominas et al., 
2018). 

In current practice, plant operators often have an overwhelming 
amount of data at their hands, which are very difficult to process and 

analyse in a timely manner. Methods and tools that enable systematic 
extraction of information from data sets would assist in optimising the 
plant, eventually helping to further increase the effluent quality, to 
reduce the consumption of energy and other resources and to foster the 
operator’s knowledge on the plant processes (Yoo et al., 2008). Out of 
the many processes through which data can be transformed in knowl-
edge such as classification, clustering, prediction, neural networks, 
machine learning (Corominas et al., 2018), this work/paper focuses on 
benchmarking techniques as a primary strategy for data management in 
WWTPs and its application to the evaluation of energy efficiency. 

As WWTPs are large energy consumers, energy efficiency is relevant 
for virtually all water utilities. Besides, current regulation imposes en-
ergy efficiency audits in water utilities larger than a certain size. Indeed, 
Directive 2012/27/EU on energy efficiency (European Commission, 
2012) specifies, through its national transpositions, that European large 
companies must be audited in terms of energy efficiency. However, the 
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Directive does not specify important elements such as a clear definition 
of energy efficiency for WWTP (Longo et al., 2019) or the methods to be 
used in the compulsory energy efficiency audits. As discussed later, 
benchmarking methods can be suitable for energy efficiency provided 
that the right method is chosen, and this selection must not only be 
based on whether they provide a clear identification of inefficient pro-
cesses but also on the proper match between the available data and the 
skills as well as objectives of those performing the assessment. 

Energy benchmarking concerns a variety of people, from plant op-
erators, managers, regulators, technology providers, consumers, etc., 
with different capabilities and interests which should be reflected on the 
election of the right tool (Walker et al., 2021). A common characteristic 
of the methods developed for wide standardised benchmarking is their 
simplicity, as they are intended for diverse actors. Examples of such 
methods include the Energy Check developed by DWA in Germany 
(DWA - German Association for Water Wastewater and Waste, 2015), 
the Energy Star sponsored by the Awwa Research Foundation in the USA 
(Carlson and Walburger, 2007) or the Standard CEN/TR 17614 devel-
oped with the support of the H2020 framework programme (Longo 
et al., 2019). The International Benchmarking Network for Water and 
Sanitation Utilities (IBNET, 2022), a World Bank sponsored initiative, 
counts a large number of indicators for benchmarking which, in the case 
of WWTP energy efficiency is based on a single indicator: the energy 
used per unit volume of wastewater, usually reported in kWh/m3 

(Walker et al., 2021). Differently, more detailed analyses (based on data 
envelopment analysis, regression analysis, etc.) by technical actors 
require more sophisticated and data-intensive tools. 

First, a detailed overview of the methods is given in section 2 which 
may be skipped for the experienced reader. Section 3 presents a com-
parison of the methods and how they can provide a decomposition of 
energy inefficiency. Section 4 is devoted to establishing which method is 
suitable for each actor. Lastly, section 5 presents an integrated frame-
work that links data, methods and the main actors involved, describing 
the flow of information leading to decision making from data and hence 
into energy efficiency investments. It is concluded highlighting the 
importance of method selection by each actor for an effective promotion 
and communication of energy efficiency information in the wastewater 
sector. 

2. Overview of benchmarking methods for WWTP energy 
efficiency 

Efficiency is commonly defined as “the relationship between the 
production of a service, good or energy” and its resource demand (Eu-
ropean Commission, 2012). In the case of energy efficiency, the resource 
is the energy demand, including other resources that can be ultimately 
converted into a useful form of energy. Regarding WWTPs, defining the 
service delivered is somewhat more complex. “Cleaning wastewater” or 
“recovering resources” are not readily quantifiable and must therefore 
be decomposed in the different functions of a WWTP which may include, 
among others, “eliminate nitrogen”, “reduce the number of pathogens”, 
“remove phosphorus from the liquid streams”, “produce biogas from 
organic carbon”, etc. depending on the influent, location of discharge 
point and the requirements of the effluent. Therefore, the first step in 
energy benchmarking is specifying the function(s) provided by the 
WWTP and, then, relate them with the energy demand. As covered in 
detail in the following subsections, all the benchmarking methods 
require this definition of energy (or “inputs”) and services provided (or 
“outputs”). 

2.1. Key Performance Indicators and ratios 

Directly based on the definition of efficiency, Key Performance In-
dicators (KPI) are the simplest benchmarking method. A KPI is often a 
ratio of an input and an output, which can be obtained by normalizing 
the energy use based on the unit activity or service provided. Based on 

the definition of KPIs, several WWTPs can then be compared using 
input-output data (Fig. 1). 

Regarding COD, the plant with highest efficiency is the one with the 
lowest ratio of input and output (i.e. WWTP 1), and its efficiency level is 
shown as the dashed line (Fig. 1). For WWTPs, which usually operate 
close to the discharge limits, the inefficiency would be the vertical dis-
tance to the dashed line, i.e., the energy that can be saved while 
removing the same amount of COD. 

The specific energy consumption has been used to roughly charac-
terise the energy efficiency of a WWTP and is reported in large datasets 
such as Mizuta and Shimada (2010, 985 WWTPs in Japan), Yang et al. 
(2010, 599 WWTPs in China), Krampe (2013, 24 WWTPs in Australia), 
Vaccari et al. (2018, 241 WWTPs in Italy), Ganora et al. (2019, 300 
WWTPs in Europe), Luo et al. (2019, 2022 WWTPs in China). However, 
a direct comparison based only on the specific energy consumption 
misses indeed many details in the plant operation and makes compari-
son only possible when the WWTPs are very similar, i.e. similar layout, 
technology, climate, influent, etc. 

The obvious advantage of KPIs is that they are relatively inexpensive 
to obtain, and easy to implement and understand. However, this 
approach is limited in scope as it involves only partial evaluations. As an 
example, Panepinto et al. (2016) in a thorough study on Turin WWTP 
energy efficiency, used four KPIs (energy per person equivalent, per m3 

of water, per kg of COD removed and per kg of N removed) as, in effect, 
one KPI may not fully reflect the purpose of the plant. A WWTP could 
have multiple functions, e.g. removing COD, nitrogen, phosphorus, and 
pathogens, or producing energy or material like biogas and fertilizers. As 
an example, evaluating the efficiency of WWTPs in removing COD and 
nitrogen would require two KPIs. WWTP 1, in Fig. 1, has high efficiency 
in removing COD but low efficiency in removing nitrogen. Conversely, 
WWTP 2 is the most efficient in nitrogen removal but has a poor COD 
removal performance. As both nitrogen and COD are important objec-
tives, WWTP 3 could be preferred as it performs well in both dimensions. 
In this case, weighting between the two plant’s objectives would be 
necessary. 

As a conclusion, partial benchmarks such as simple ratios and KPIs 
often make misleading comparisons and therefore other strategies 
should be recommended for effective energy benchmarking beyond a 
first approximation. In this regard, a proper measure of WWTP energy 
efficiency should reflect a multidimensional concept by considering the 
different functions of the plant. 

Fig. 1. Input-output combinations for several WWTPs. Dotted line and dashed 
line indicate the best performance in nitrogen and COD removal, respectively. 
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2.2. ENERWATER methodology 

With the aim of representing the multifunctional nature of WWTP 
endeavour, a methodology was developed in the framework of the 
ENERWATER Coordination Support Action2 to systematically determine 
the energy efficiency of a particular WWTP. As a result of the application 
of the methodology stems the Water Treatment Energy Index (WTEI), 
which is a composite index stemming from the aggregation of several 
KPIs (Mauricio-Iglesias et al., 2020). 

The full methodology is described in detail elsewhere (Longo et al., 
2019) and briefly summarised here for completeness. The approach 
basically consists of 1) measuring energy use and WWTP outputs in 
terms of flowrate treated, COD and nutrient removal, sludge disposal 
and pathogen load reduction; 2) determining or estimating KPIs that 
represent the efficiency of the different WWTP functions (Table 1) as 
carried out in different stages; 3) expressing the KPIs in a single index (i. 
e. the WTEI) that can be used for benchmarking energy efficiency of 
different WWTPs and 4) assigning a label (A, B, C …) for ease of 
communication to a broad public. 

There are two versions of the methodology that differ mainly on the 
level of detail of the information required:  

i) The Rapid Audit (RA) methodology determines the WTEI for 
benchmarking using routine energy measurement and effluent 
sampling, hence providing a quick benchmarking; 

ii) The Decision Support (DS) methodology requires an intense sam-
pling campaign with analyses of influent and effluent of different 
plant sections. It provides not only the WTEI but also a diagnosis of 
the inefficient spots in a plant allowing the user to propose corrective 
actions. 

The results of applying the RA and the DS methodologies are then 
represented as labels, common in other energy efficiency evaluations, so 
that they can be easily understood as well by a broad public (Fig. 2). 

After having been subjected through the complete revision, update 
and voting process by the members of the European Committee for 
Standardization (CEN) the ENERWATER methodology became the core 
of the new standard CEN/TR 17614 Standard method for assessing and 
improving the energy efficiency of wastewater treatment plans, approved in 
January 2021 as the European standard for defining and measuring 
energy efficiency in wastewater treatment plants. As a CEN standard can 
be subjected to further modifications, the remaining of this discussion 
will refer to the ENERWATER methodology noting that it can be 
partially applicable to the CEN/TR 17614. 

2.3. German standard DWA-A 216 

The German Water Association (DWA) has devoted a considerable 
effort in the last two decades in the development of a standard for energy 
efficiency improvement at WWTPs (Clos et al., 2020). The proposed 
guideline, the German standard DWA-A 216 (2015), consists of a dual 
approach. A first simple assessment called Energy Check (EC) is based on 
the comparison of aggregated energy consumption KPI (i.e. kWh/PE 
year) and quickly screening out plants where energy waste is present, 
hence in need of a more in-depth analysis. This second approach, which 
is called Energy Analysis (EA), consists of breaking down the plant to the 
level of individual equipment and comparing the energy consumption 
versus ideal performance values estimated at medium load for energy- 
consuming equipment such as pumps, blowers, compressors, agitators, 
sludge heating but also “minor” equipment such as rakes, scrapers, etc. 
As the EA requires a lot of operational data as input for the requested 
calculations, the whole process of an EA may last for several months. The 
amount of work depends on reliability of data, the number of machines 
and processes to be evaluated and the number of identified actions. It 
can vary from a few days for a simple pumping station to several weeks 
for a complex wastewater treatment plant (WWTP). Usually a hydraulic 
engineer and an electrical engineer shall be involved in the EA. 

This approach is certainly data-intensive, but it is very well-suited for 
the mechanical revision of the WWTP, proposals for equipment renewal 
and comparison. The main drawback is, perhaps, that the whole-process 
information is not used, e.g. even though a blower is operating opti-
mally, over-aerating by setting the dissolved oxygen setpoint too high is 
a decision that would turn the process inefficient while it would not be 
captured by the equipment-by-equipment analysis. 

2.4. Data envelopment analysis 

Data Envelopment Analysis (DEA) is a multi-factor productivity 
analysis model used for estimating the relative efficiencies of a homo-
geneous set of firms (or decision-making units in the context of the DEA 
literature). In general, DEA applications can be classified in single- and 
two-stage DEA, based on whether efficiency estimation is conducted in i) 
one stage considering only input and output variables, or ii) in two 
stages including a second regression procedure that takes into account 
for the possible effect of exogenous influences on efficiency such as e.g. 
climate or technology. 

2.4.1. Single-stage DEA 
Intuitively, this deterministic technique can be understood as an 

extension of KPI analysis for multiple inputs and multiple outputs, 
thereby representing an attractive tool for performance assessment 
(Cook and Seiford, 2009). Using the example of COD and nitrogen 
removal (Fig. 1), a simple illustration of how DEA estimates efficiency is 
given in Fig. 3. 

From the definition of efficiency, WWTPs are more efficient if they 
use less input for the same output, and/or produce a higher output with 
the same input. We therefore identify the line connecting WWTP E, D 
and C as the efficient frontier; no point on this frontier line can improve 
in one of the efficiency dimensions (or performance dimensions) 
without worsening in the other. The method’s name comes from this 
property as the frontier is said to “envelop” these points. The efficiency 
of WWTPs not on the frontier line can be measured by evaluating the 
distance to the frontier line (Amaral et al., 2022). For example, the in-
efficiency of A can be evaluated by the ratio OP/OA, where OA, the line 
from zero to A, crosses the frontier line at P (Fig. 3). An increase in ef-
ficiency can be achieved that is by reducing inputs or increasing outputs. 
Since amount of pollutants to be removed by the plant is usually fixed by 
the effluent quality requirement and the influent composition, in general 
the only reasonable improvement of a WWTP consists in input mini-
mization. In this case we talk of input-oriented DEA model, in contrast to 
the output oriented where the objective is output maximization. 

Table 1 
Definition of KPIs used in the Rapid Audit methodology.  

Stage KPI KPI units Meaning/function 

Stage 1 KPI1 kWh/m3 Energy for pumping wastewater through 
the WWTP 

Stage 2 KPI2 kWh/kg TSproc Energy for removing solids in primary 
treatment 

Stage 3 KPI3 kWh/kg TPErem
a Energy for removal of COD, nitrogen and 

phosphorus 
Stage 4 KPI4 kWh/ 

(logRed⋅m3) 
Energy for removal of pathogens in tertiary 
treatment 

Stage 5 KPI5 kWh/kg TSproc Energy for treatment of sludge and removal 
of solids  

a Where the total pollution equivalent TPE = COD (kgCOD) + 20 TN (kgTN) +
100 TP (kgTP) as defined by (Benedetti et al., 2008). 

2 https://cordis.europa.eu/project/id/649819. 
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Formally, the efficiency of a set of WWTPs can be estimated by the 
CCR DEA (Charnes et al., 1978). For p inputs, q outputs and n WWTPs, 
we can determine the input-oriented efficiency of the data matrix of 

input and output vectors (X, Y), by solving for each observation the 
following constrained linear programming problem: 

min
θ,λ

θ
subject to θxk ≥ X λ

Yλ ≥ yk
λ ≥ 0.

(1)  

where the index k represents a given observation, X is the matrix of 
inputs, Y is the matrix of outputs, and λ is vector of weights given to each 
observation. Problem (1) can be interpreted as combining WWTPs (by 
weights λ) to produce an output level at least equal to plant k (Yλ ≥ yk) 
and then selecting the combination with the minimum input level 
(θxk ≥ X λ for minimum θ). Solving the linear programming problem (1) 
n times generates the efficiency indices θk, one for each WWTPs. WWTPs 
with efficiency scores θk < 1 are inefficient, since they would be capable 
of reducing their input(s) without affecting the amount of output(s). 
Efficient WWTPs receive efficiency score θk = 1. 

Thanks to its capability to include several inputs and outputs, DEA 
has been very popular in academic research on WWTP efficiency during 
the last years. For example, studying a set of 77 Spanish WWTPs, 
Hernández-Sancho et al. (2011) showed that plant size, COD removed 
and aeration were determinant in energy efficiency; Dong et al. (2017) 
reached similar conclusions analysing 736 Chinese WWTPs, high-
lighting as well the importance of the climate type thanks to the broadly 
distributed sample. With a broader perspective, Amaral et al. (2022) 
studied 120 wastewater service providers (not just WWTPs) in Portugal 

Fig. 2. Representation of energy efficiency information by the WTEI and the ENERWATER methodology (from Longo et al. (2019)).  

Fig. 3. Efficiency as estimated by DEA for two outputs (COD and N removal) 
and one input (energy consumption). 
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finding a general increase of efficiency from 2015 to 2019, in particular 
related to energy consumption. 

The rationale of DEA is that the plant manager knows best the 
preferred objectives for the operation. Therefore, instead of comparing 
several indexes (i.e. KPIs) or estimating the expected energy consump-
tion based on the several outputs to be fulfilled, a plant receives the best 
possible score regarding its performance in each of several plant 
objectives. 

2.4.2. Two-stage DEA 
When applying DEA to WWTP benchmarking, several authors have 

highlighted the importance of accounting for exogenous factors (in 
principle, any factor that is not under the direct control of the man-
agement). Carvalho and Marques (2011) warned on the danger of 
misattribution of efficiency (or inefficiency) to managerial decisions if 
exogenous variables are not taken into account in the water sector, 
including indeed wastewater. Due to the complexity of the analysis of 
exogenous variables, Longo et al. (2018) proposed a systematic method 
to apply DEA specially tailored for the analysis of energy efficiency in 
WWTPs (i.e. two-stage DEA). In this approach, firstly proposed within 
the wastewater sector by Guerrini et al. (2017), the basic idea is to es-
timate efficiency scores in the first stage considering only the space of 
inputs and outputs, ignoring the exogenous factors. Then in the second 
stage, a bootstrap-based algorithm is used to assess the impact of the 
exogenous factors and obtain valid and accurate inference for bias 
correction of the efficiency estimates. The specification used for bias 
correction being: 

θk=β0+βCOUNTRY COUNTRYk+βSECONDARY SECONDARYk

+βTERTIART TERTIARYk+βSIZESIZEk+βLFLFk+βDFDFk+βTEMPTEMPk +εk;
(2)  

where COUNTRY is categorical variable indicating the country location 
of the plant, SECONDARY end TERTIARY are categorical variables 
indicating the type of technology used in the plant as respectively sec-
ondary and tertiary treatment, LF is the natural logarithm of the load 
factor, DF is the natural logarithm of dilution factor, TEMP is the natural 
logarithm of the annual average outdoor temperature, and ε is the 
random term. The results obtained by Longo et al. (2018) confirm that 
apart from the amount of pollutants removed during the wastewater 
treatment, there exist a number of exogenous determinants of the plant 
energy demand that wastewater operators cannot control, e.g. the 
temperature the plant is operated. Energy variation due to those factors 
can be misattributed to changes in efficiency. Adjusting for the effect of 
those factors can lead to substantial changes in efficiency estimates 
depending on the adverse or favourable environmental conditions a 
WWTP is operating. 

2.5. Parametric approaches 

Parametric approaches to benchmarking in the contest of wastewater 
treatment is relatively new in comparison to e.g. KPI and DEA ap-
proaches. The parametric approach consists on statistical analysis that 
based on the technique can be divided in i) simple regression analysis, e. 
g. Ordinary Least Squares (OLS) or Corrected OLS (COLS), and ii) Sto-
chastic Frontier Analysis (SFA). 

2.5.1. Regression analysis 
A linear regression model, such as the very popular ordinary least 

squares (OLS) (Kutner et al., 2005), can be used to estimate the energy 
use of a system. If plant data are available, parameters β can be found 
that relate energy use, E, and a matrix of variables of plant and operation 
characteristic, X, for i = 1… n: 

Ei =Xiβ + εi; ε ∼ N
(
0, σ2). (3) 

The dependent variable (E) is also called the response variable. 

Independent variables (X) are also called explanatory or predictor var-
iables. An OLS model provides the expected average energy use for a 
plant given its operating characteristics such the amount of pollutants 
removed. The result of such estimation, in the simplest case, can be a 
regression function with just one variable (OLS in Fig. 4). 

In contrast with DEA, which establishes an efficient frontier (repre-
senting best performance), the regression function estimated by Eq. (2) 
represents the average performance. The residuals are defined as the 
distance from each data point to the regression line, which can be pos-
itive or negative, if the data points lie, respectively, above or below the 
line. 

The application of OLS to benchmarking is based on comparing the 
performance of a WWTP with the average performance. As the residual 
is the difference between the actual energy use and the predicted energy 
use for a given service (or output), residuals can be treated as measures 
of inefficiency. If the actual energy use of a given WWTP is less than the 
predicted energy use (negative residual), it means that the WWTP uses 
less energy than the average WWTP described by the regression line. 
Therefore, WWTPs with ratings above the average can be considered 
inefficient while those with ratings below are efficient. 

A regression energy demand exponential function is developed in 
Niu et al. (2019). The model is expressed as follows: 

E= eα × Wβ × Yδ × Sω × Mθ × PRin
in × PRout

out (4)  

where E is the electric energy consumption, e is the base of the natural 
logarithm, W is the flow rate, Y is the age of the plant facility, S is the 
wastewater collection area of the pipe network, M is the amount of 
sludge produced and processed, Pin and Pout are COD concentration in 
the influent and effluent, respectively; β, δ, ω, θ, Rin and Rout are all 
regression coefficients; and α captures the impact of categorical vari-
ables including treatment technology, operating conditions, topog-
raphy, and other regional variables. 

The regression approach can be complemented with establishing a 
distribution of residuals, which can assign a performance percentile to 
each WWTP. This approach was followed by the Energy Star method 
(Carlson and Walburger, 2007), launched in the USA in 2007 as part of a 
broader initiative of the Environmental Protection Agency (EPA). This 
method is based on linear regression function developed using data of 
257 WWTPs throughout the USA. The prediction of the average plant 
consumption is done using as inputs the average influent flow rate, the 
influent and effluent BOD concentration, the plant load factor and two 
binary variables accounting for whether the plant presents filtration 
and/or nutrient removal. Then, the actual benchmarking score can be 

Fig. 4. Comparison of the referenced performance: efficient frontiers (SFA, 
COLS) and average performance (OLS). 
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obtained by comparing the difference between the actual consumption 
and the prediction (the residual) with a distribution of residuals. 
Negative residual means that the plant uses less energy than expected 
and vice-versa. Spruston et al. (2014) checked the validity of the Energy 
Star method on 35 Canadian WWTPs concluding that it was a valid 
method for energy benchmarking although it was not fully adapted to 
Canadian specificities and for certain types of WWTPs. 

A consequence of using a parametric approach such as OLS is that the 
residuals are treated as a measure of inefficiency while they can partially 
represent variables not included in the regression function. For example, 
in the Energy Star function, the variation in energy use due to nutrient 
removal is modelled as a categorical variable (either yes or no) when in 
reality it is the amount of nutrients removed that will impact the energy 
demand. Then, much of the variation in efficiency scores may remain 
unexplained by not including the right explanatory variable (the amount 
of nutrient removed). 

An extension of OLS which provides a demand frontier, instead of an 
average performance line, is the Corrected Ordinary Least Squares 
(COLS). This method is a two-stage procedure: i) the regression line is 
first estimated through OLS and ii) then the regression line is shifted 
downwards such that the resulting regression line (called the COLS 
frontier) envelops all data. Hence, all the residuals are positive, except 
for the WWTPs that are found to be efficient (where the residual is zero). 
Therefore, COLS assumes that all residuals are due to inefficiencies 
(Fig. 4). 

While the COLS method has its appeal in terms of simplicity, a more 
realistic view is that not all the differences between the actual data and 
the frontier are due to efficiency. This is especially relevant in waste-
water application where significant data uncertainty may be present 
both in data gathered under either compulsory monitoring or reporting 
requirements under law (Yoshida et al., 2014). Furthermore, as the 
COLS frontier is meant to envelop all the points, it is very sensitive to 
outliers which can move the frontier away from the regular data points. 

2.5.2. Stochastic Frontier Analysis 
The COLS approach implies that the residual is due solely to in-

efficiency. Alternatively, the residual can be considered as composed by 
a random (stochastic) error term and an inefficiency term, which may be 
composed itself of several contributions. The econometric technique 
known as Stochastic Frontier Analysis (SFA) has been developed to 
provide separate estimates of these two components. A general version 
of the stochastic frontier model can be described as: 

Ei = f (Xi; β) + εi; εi = ui + νi, ; νi ∼ N
(
0, σν

2); ui ∼ N+
(
0, σu

2), (5)  

where E is energy use, X is a vector of variables influencing energy use, 
including plant characteristics and external factors, and β includes all 
the parameters to be estimated. Energy use residuals are now captured 
by two random terms, u and ν. The noise term ν in (5) is assumed to be 
normally distributed while the non-negative random term u, which 
represents inefficiency, is generally assumed to follow a half-normal 
(N+) or other positive distributions. It is then possible to estimate pa-
rameters β, σν and σu using maximum likelihood methods (Kumbhakar 
and Lovell, 2003). A comparison of the stochastic frontier, the COLS and 
OLS models is provided in Fig. 4. 

Environmental factors can be represented as a function of some 
observable variables but many relevant aspects that cause heterogeneity 
are unobserved or not known a priori. If panel data are available, that is, 
each unit is observed at several different points of time, part of these 
unobserved heterogeneity can be estimated as it does not change with 
time (Wooldridge, 2010). The simplest SFA model for panel data hence 
can be rewritten as: 

Eit = f (Xit; β)+ εit; εit = νit − ui; ui ≥ 0; i= 1,…N; t= 1,…, T, (6)  

where f(Xit; β) is a linear function of the variables in the vector Xit, index 
t indicates different time points and ui ≥ 0 is the energy term of plant i. 

The model in (6) can be estimated assuming either ui is a fixed parameter 
(the fixed-effects model) or a random variable (the random-effects 
model). This approach no requires distributional assumptions on ui 
and is, thus, labelled as distribution-free (Schmidt and Sickles, 1984). 
Another important advantage of using panel data over cross-section is 
that it is possible to think of the inefficiency term as comprised by two 
components: persistent (i.e. time-invariant) and transient (i.e. 
time-varying) (Filippini and Greene, 2016; Tsionas and Kumbhakar, 
2014). The persistent component corresponds to the presence of struc-
tural problems such as inefficient equipment or design limitations that 
prevent the plant from minimize the use of energy; the transient 
component may be caused by the presence of non-systematic difficulties 
that can be solved in the short term such as adaption of wrong opera-
tional strategies due to e.g. too infrequent sampling. 

To the best of our knowledge, the first application of SFA to effi-
ciency in WWTP was carried out by Longo et al. (2020), who studied 
panel data from 183 Swiss WWTPs during 15 years. The WWTP energy 
demand function for panel data is described as follows: 

ln Eit = α0 + αP ln Pt + αFLOW ln FLOWit +αCAP ln CAPi + αCOD ln CODit

+ αNH4 ln NH4it + αNO3ln NO3it + αTEMP ln TEMPit +
∑6

j=1
αTECHj TECHij

+ αDEW DEWit + νit − ui − τit

(7)  

where E is energy consumption, P is the real price of energy, FLOW is the 
volume of wastewater treated, CAP is the plant capacity expressed as 
design flow rate, COD, NH4 and NO3 are the pollutants concentration 
removed from wastewater, TEMP is the average temperature, TECH 
represents dummy variables to control for the effect of the type of sec-
ondary treatment, DEW is a dummy indicating whether the plant also 
carries out sludge dewatering. 

In this specification, the random error term ε is decomposed as εit =

νit − uit, where uit is the inefficiency and νit is statistical noise. The in-
efficiency part is further decomposed as uit = ui + τit where ui is the 
persistent component and τit is the transient component of inefficiency. 
The former is only plant-specific, while the latter is both plant- and time- 
specific. In addition to that, SFA can be also extended to take into ac-
count for unobserved heterogeneity3 and to include variables that are 
direct determinants of efficiency level such as e.g. the age of the WWTP, 
as previously reported by Castellet-Viciano et al. (2018) and Niu et al. 
(2019). Thanks to that, it is possible to estimate inefficiency related to 
WWTP obsolescence and, therefore, how much energy can be saved 
when a WWTP equipment is renewed. 

The application of SFA to WWTPs whenever panel data is available is 
a novel and promising approach able to distinguish whether inefficiency 
that originates in inefficient equipment or from the inefficient use of (in) 
efficient equipment. Hence, SFA represents a useful tool to deduce en-
ergy diagnosis from common operational data. 

3. Comparison of benchmarking methods 

From the description of the benchmarking methods is easy to infer 
that they differ in complexity, scope, sensitivity to outliers, data 
requirement, efficiency interpretation etc. as summarised in Table 2. It 
becomes clear that no method can provide a universal solution to 
benchmarking, as all of them face their own problems both on the 
theoretical and the practical side. This implies that the final efficiency 
estimates should not be interpreted as being definitive measures of in-
efficiency. Rather, a range of efficiency scores may be developed and act 

3 I.e. those effects that are not easily measurable or quantified such as the 
topography of the serviced area which may require the use of additional 
pumping stations or in general design structural problems. 
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as a signalling driver rather than as a conclusive statement. 
A relevant point highlighted in the method characterisation and 

comparison reported in Table 2 is the capability to handle exogenous 
factors, understood as any factor that is not under the direct control of 
the management, therefore exogenous to the WWTP system, such as 
influent characteristics. Labelling a factor as exogenous might, however, 
be a debatable issue and in fact there is certain controversy around 
which factors are legitimate uncontrollable influences on performance 
and which ones should and/or can be controlled and by whom.4 A factor 
can be uncontrollable for one stakeholder but not for another. An 
example is the plant size. Inefficiency due to scale is exogenous to the 
plant operator but may be endogenous for the water utility manage-
ment, who may decide to merge two close plants in order to operate only 
one bigger plant. Furthermore, there may be factors, such as the load 
factor, that depending on the context may have different interpretations. 
Oversizing may be a solution to seasonal variation in the load entering 
the plant in case of e.g. a plant operating in a touristic area but may also 
be due to erroneous design estimation. In this case, inefficiency due to 
oversizing is beyond the control of an operator but can be eliminated by 
a water utility by e.g. dividing the plant in different treatment lines in 
order to modulate the load. Furthermore, since energy efficiency is only 

a secondary, although important, objective for water utilities that should 
never jeopardize the primary objective to clean water, it may be 
preferred higher energy consumption and a more robust WWTP. In 
practice in the short run, very little may be controllable by plant oper-
ators, whilst in the longer-term inefficiency due to factors such as plant 
size or load factor can be solved. 

The main difference between one method and another is how each 
method highlights differences in energy consumption between DMUs, i. 
e. inefficiencies. Comparing efficiency scores for different DMUs within 
methods provides better indications than comparing efficiency scores 
inter methods. In this regard, relating the inefficiencies between the 
different methods can be particularly useful as it can provide a plausible 
framework for interpretation and driving decisions, which otherwise 
would be difficult when using just benchmarking method. For example, 
despite the popularity in academic circles of tools such as DEA, due to its 
ability to aggregate multiple inputs and outputs in a single efficiency 
measure, it is plausible that, from a managerial point of view, this is a 
weakness, as it distracts attention from the question of where the 
problems actually lie and where one should search for ideas for 
improvement. 

Before thinking about solutions to energy efficiency problems, the 
logical first step is to diagnose where the problem, i.e. the inefficiency, is 
located. Inefficiencies may come from factors beyond the control of the 
management or internally e.g. due to old and inefficient equipment or 
due to an inefficient use of the equipment itself. Within the plant 
boundaries, plant managers may discover that a plant provides aeration 
with an inefficient blower or diffusers. Alternatively, they may discover 
efficiency problems through internal monitoring of their own 

Table 2 
Summary of comparison of different benchmarking methods.   

Advantages Disadvantages 

KPIs  - Simple and already used in the wastewater treatment sector.  
- Can be adapted for different WWTPs and objectives.  
- Minimal data requirements.  

- Being based on KPIs, it implicitly assumes constant return to scale.  
- Does not account for exogenous factors, beyond WWTP control.  
- Difficult interpretation for multiple inputs/outputs.  
- No diagnosis/corrective actions. 

ENERWATER - A composite indicator can summarize the multi-objective pur-
pose of a WWTP.  

- It can be applied to different plant layouts.  
- Being equivalent to percentile it is easily interpretable.  
- Rapid Audit version requires simple and common routine data 

normally available in all water utility.  
- Decision Support can be used to do diagnosis of inefficient 

stages/functions of a WWTP.  

- Being based on KPIs, it implicitly assumes constant return to scale.  
- The database on which the benchmarking system is developed covers mostly WWTPs of 

medium size and located in Europe.  
- Composite indicators cannot directly account for exogenous factors, beyond the WWTP 

control.  
- Decision Support requires detailed energy monitoring and sampling campaign.  
- Not ready for multiple outputs (ready though for biogas production). 

Standard DWA-A 
216  

- Energy Check version used common and widely KPI (kWh/PE).  
- Energy Analysis version is very useful for analysing single 

equipment energy consumption.  

- Energy Check version is limited to plants with similar characteristics (not applicable to 
other countries).  

- Energy Analysis version is very data-intensive (i.e. equipment technical sheets are 
required) and time requiring. 

OLS/COLS  - OLS is intuitive and widely used.  
- Easy to account for exogenous factors.  
- A distribution function of the residuals can be used to assign 

performance percentiles.  

- It provides an average performance as benchmark (OLS).  
- Extremely sensitive to outliers and measurement error (COLS).  
- Does not lead to diagnosis or corrective actions.  
- Cannot be used for multiple outputs. 

DEA  - DEA is easy to extend to multiple outputs and inputs.  
- DEA can be implemented on a relatively small dataset in 

comparison to regression analysis.  
- Once the input and output variables have been selected, DEA is 

quick and straightforward to implement.  
- It doesn’t require assumptions about the frontier function.  
- Two stage DEA can account for factors that are beyond the 

control of the WWTPs.  

- Corrective measures are difficult to identify from DEA outcomes.  
- Efficiency scores are sensitive to the choice of input and output variables.  
- It is very sensitive to outliers which can move the frontier away.  
- For DEA, testing a new WWTP requires solving the model again for the whole set of 

observations.  
- As more inputs and outputs are considered, the number of WWTPs on the frontier 

increases and the discrimination power decreases accordingly. 

SFA  - SFA distinguishes persistent and transient inefficiency; thus, it 
can be used as a diagnosis tool.  

- Using panel data, it can take into account unobserved/ 
unmeasured factors.  

- SFA allows statistical inference about which parameters to 
include in the frontier estimation.  

- Environmental variables can be directly included in the 
regression model as regressors.  

- SFA incorporates the possibility of separate measurement error 
and stochastic factors, being robust to outliers.  

- High data requirements. Panel data required to distinguish between unobserved 
heterogeneity and inefficiency, as well as persistent and transient inefficiency.  

- Requires a priori assumptions, e.g. specifying a functional form and statistical 
distributions for the inefficiency terms.  

- Can be difficult to implement due to the complexity of algorithm required  
- Cannot be used for multiple outputs.  

4 Four stakeholder events were organised during by the project ENERWATER 
in UK, Italy, Germany and Spain, accounting in total 250 attendants. Raising the 
question whether a benchmarking methodology should compensate for exog-
enous factors invariably led to heated arguments between the different 
stakeholders. 
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performance. In this context, efficiency metrics that treat the WWTP as a 
black box have limited utility as they do not pinpoint where to target the 
intervention. Ultimately, in order to identify inefficiencies and, as a 
result, proper improvement strategies, the analyst must be aware of the 
specific methods which are helpful to identify a particular type of in-
efficiency. To do that, inefficiency needs to be decomposed (Fig. 5) so 
that the analyst, considering the objective of the study and the available 
data, can link each element to the appropriate method for efficiency 
quantification and benchmarking. 

The inefficiency decomposition presented in Fig. 5 is then particu-
larly useful for defining better improvement strategies and diagnosis of 
inefficiency. In fact, the application of such mapping of efficiency is 
fundamental to understand what type of inefficiency a plant is affected 
and therefore to design specific improvement strategies. If one does not 
pinpoint the fundamental problem, corrective actions and improve-
ments are not possible. Inefficiency need to be understood and a 
consensus on where exactly it comes from need to be reached before to 
move forward. With the problem identified and the data collected to 
substantiate it, the problem can be traced to its various causes. With this 
analysis completed, it can be prioritized which problems should be 
addressed promptly and in what order considering their costs. 

4. Actor analysis in WWTPs 

Many actors are involved in the wastewater treatment sector, from 
WWTP operators to CEOs, including researchers or policy makers, 
among others, with different working environment, type of decisions to 
confront or to take. Unlike academic researchers, operators typically 
spend a significant part of their time facing unexpected and urgent 
problems. In contrast to policy makers, plant operators have relatively 
limited and weak levers for driving and securing change as their main 
objective is to guarantee the operation of the plant within the existing 
regulatory framework, and communicate with stakeholders at different 
levels, including institutions. In short, with very limited time and ca-
pacity, operators must take informed decisions based on available 
knowledge. 

Selecting a benchmarking method is indeed a complex task that this 
section tries to address by answering the following questions:  

• Who is performing the benchmarking (“actor”)?  
• What is the goal of the benchmarking (“task”)?  
• What method is best suited for both the task and the actor?  
• What is the nature of the available data? 

To guide the selection process to the best benchmarking method to 
be used, the motivations of the involved stakeholders, their interest and 
pressures must be examined (Rieger and Olsson, 2012). A comparison of 
the different objectives to assess energy efficiency for the different 
stakeholders is given in Table 3 and further explained below. 

4.1. Plant manager 

The plant manager’s main goal is to operate the plant within the 
effluent limits; secondly, to ensure that the treatment is carried out 
efficiently with the minimum use of resources. Plant managers are 
usually in charge of monitoring specific processes, which are the object 
of assessment and optimization by the operation managers. They 
therefore use KPIs in order to monitor e.g. the energy consumption for 
the secondary treatment using e.g. kWh/kg TPEremoved. 

4.2. Operations manager 

The operations manager’s main objective is to ensure that the 
treatment is carried out efficiently with the minimum use of resources 
and to translate these objectives into specific tasks for the plant man-
ager. They are in charge for plant wide evaluation and optimization and 

have access to all the plant operational data from different plants. 
Several methodologies can be applied with these objectives. They will 
preferably need quick estimation of energy efficiency (ENERWATER 
RA). Other perspectives can be obtained from the application of the 
ENERWATER DS, where each stage/function of the plant is evaluated 
separately, and efficiency information can be obtained individually. 
Operation managers may wish also to focus on operational efficiency 
excluding the impact of exogenous influences on energy consumption. In 
this case methodologies such as Energy Star or two-stage DEA may be 
also adequate. 

4.3. Engineering manager 

The engineering manager coordinates all capital improvement pro-
grams for the wastewater department of a water utility. The major areas 
of responsibility include maintenance projects that improve and expand 
existing facilities or providing recommendations concerning new treat-
ment processes. As his/her focus rather lies on equipment efficiency 
assessment in order to optimize specific units or to identify equipment 
that needs substitution, the Energy Analysis (equipment per equipment) 
developed by the DWA may be the best instrument. 

4.4. Chief of operations 

Chief of operations have large access to plants operational data from 
different plants. The higher data availability means that they can use 
more complex benchmarking methodologies. The chief of operations’ 
main objective is to make inferences about inefficient equipment, 
operational strategies, sensor failure etc, and to examine the best use of 
utility financing resources to improve the wastewater operations. 
Hence, they can use the SFA approach and panel data to identify 
appropriate energy inefficiency diagnosis. Thanks to the fact that using 
this approach plants inefficiency can be decomposed into a persistent 
and a transient component, associated respectively with structural and 
operational problems, the chief of operations can decide where to allo-
cate efforts to improve wastewater operations. 

4.5. Energy manager 

An important role for a water utility to achieve its energy efficiency 
objectives is played by the energy management department. An energy 
manager has in charge the monitoring of the energy use within the 
company, the compliance of the company with the energy management 
systems such as the ISO 50001 standard and communicating efficiency 
performance to the regulator. The best instrument in this case is repre-
sented by the ENERWATER methodology thanks to the fact that it uses 
standardized information. 

4.6. CEO 

One of the activities of CEOs is the identification of innovative tools 
for financing investments in sustainability projects. For publicly traded 
water utilities, one possible option is the emissions of green bonds in 
order to dispose of funds for financing e.g. new energy efficiency pro-
jects (Hera, 2019). As a CEO needs to illustrate to investors and analysts 
the destination, objectives and results of the resources used within the 
water utility to non-technical public, universally understandable in-
dicators such as the ENERWATER label may be useful to communicate 
utility-level efficiency information. 

4.7. Regulator 

Many efficiency studies are conducted from the perspective of a 
regulator such as OWFAT in the UK (Dassler et al., 2006). The regulator 
is interested in assessing wastewater utilities technical quality and ef-
ficiency using standardized methods, hence the ENERWATER or the 
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DWA method can be preferred. In this context, the WTEI labels can be 
also particular useful when defining minimum levels of 
quality-of-service standards regarding energy efficiency. Regulatory 
institutions are also in charge for designing incentives frameworks. In 
this case, the regulator’s objective is to control for exogenous factors 
before making judgements about the level of effort expended by utilities. 
A limitation for regulators is the availability of data from different 
utilities leading to proper representation of the wastewater treatment 
sector in a given area. Depending on the availability of data and the 
objective of the analysis they can make use of parametric and 
non-parametric for cross-sectional and panel dataset. For example, a 
regulator may be interested in fostering investments in new equipment 
(i.e. reduce permanent inefficiency). Panel data and SFA models would 
be required in this case. 

4.8. Technology providers 

The goal of technology providers is to achieve certain metrics or 
specifications for a piece of equipment such as kWh/kgO2 supplied for a 

blower or kWh/m3 of sludge thickened for a centrifuge. The German 
standard DWA-A 216 characterises the individual process steps which 
can be used by technology providers to show better metrics than their 
competitors. It is worth mentioning automation, monitoring and control 
software providers, whose main goal is to optimize the different pro-
cesses in the plant. On the other side, ENERWATER methodology uses 
KPIs related to what the plant actually does (e.g. kWh/kgCOD removed). 
Therefore, it is suitable for demonstrating the increase in efficiency of a 
given process or the whole WWTP and can be adapted for monitoring 
and control software solutions. 

4.9. Academic researchers 

Researchers use benchmarking methodologies and more in general 
data analysis techniques, to test hypotheses and answer questions. Ex-
amples are testing for relevant and irrelevant variables, understanding 
differences between different groups of plants in terms of efficiency or 
whether efficiency depends on external factors. DEA is often classified as 
a non-statistical or deterministic approach that does not easily allows 

Fig. 5. Inefficiency decomposition by different methods.  

Table 3 
Elements to be taken into account for benchmarking method selection.  

Actor Task Method Data 

Plant manager Process monitoring KPIs Routine analyses 
Operations manager Efficiency evaluation ENERWATER RA Routine analyses 

Process optimization ENERWATER DS Detailed energy monitoring and sampling campaign 
OLS (Energy Star) Routine analyses 

Engineering manager Diagnosis DWA Energy Analysis Equipment technical data sheets 
Chief of operations Planification SFA Panel data 
Energy manager Energy savings verification ENERWATER RA Routine analyses 
CEO Communication with stakeholders ENERWATER RA Routine analyses 
Regulator Control ENERWATER RA Routine analyses 

Designing incentives Two-stage DEA Cross-sectional data 
SFA Panel data 

Academic researcher Testing hypothesis Two-stage DEA Cross-sectional data 
SFA Cross-sectional data 
SFA Panel data 

Technology provider Equipment efficiency verification DWA Energy Analysis Equipment technical data sheets 
Process improvement verification ENERWATER DS Detailed energy monitoring and sampling campaign  
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genuine hypothesis testing (Bogetoft and Otto, 2010) although this 
limitation can be partially overcome by a second stage analysis (Longo 
et al., 2018). On the contrary, SFA and in general parametric approaches 
are much better suited for academic research, thanks to the fact that 

variables can be included in the model allows statistical testing of hy-
potheses concerning the relationship between these factors and effi-
ciency and provide a quantification of inefficiency in terms of energy 
(Longo et al., 2020). 

Fig. 6. Integrated framework for energy efficiency improvement in WWTP.  
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4.10. Investors 

Although financial investment decision making is in general driven 
by business financial performance metrics that display measurable 
values and show progress of the business goals such as the return on 
Assets or the operating Cash Flow, sustainability metrics are always 
more spread among water utilities to report results to investors (Thames 
Water, 2018). Internationally shared and standardized metrics such as 
the energy label of the Standard CEN/TR 17614 can make it easier for an 
investor to evaluate water utility environmental performance resulting 
from funded projects. 

5. Proposed framework for energy efficiency improvement 

It is clear from the previous sections that improving energy efficiency 
at WWTPs is a complex task which involves several actors (both internal 
and external to the water utility), requires an exchange of different types 
of information and can be analysed by a broad selection of methods. 
Furthermore, even though the aforementioned actors may have the 
common aim of improving the energy efficiency at WWTPs, how to 
approach this objective differs in their means and time horizon (short- 
versus long-term). Without an effective framework able to promote the 
right exchange of information between actors, the sustained application 
of any energy efficiency policy might be jeopardized and their objectives 
misaligned. This final section proposes a holistic framework that in-
tegrates and links data, methods and actors (Fig. 6). This framework 
describes the rationale that, starting from data, leads to useful infor-
mation for decision-making. 

The WWPT(s), object of the efficiency improvement process, is rep-
resented at the centre of the framework in the figure. The WWTP(s) is 
the source of data that once processed by the methods described pre-
viously is converted into information and successively, depending on the 
type of data and the method applied, into knowledge for improving 
energy efficiency. 

Energy efficiency analyses are usually done at plant level by opera-
tions managers and/or by an engineering unit. Operations managers are 
interested in improving operational strategies in the short term (e.g. 
implementing more efficient control strategies) while the work of the 
engineering manager is more focused on the long-term strategies (e.g. 
identify inefficient equipment that need substitution). Both types of 
analysis require different types of data and different methods: OLS 
methods such as the Energy Star or the 2 stage-DEA in one case 
(depending on data availability), and per-equipment analysis such as the 
Energy Analysis described in the DWA standard, in the other. 

In order to be implemented, both types of energy saving measures 
require funding (e.g. for implementing automatic control and/or for 
substitution of old and inefficient equipment) being the latter usually 
more costly. Raising investment to support a wastewater utility business 
plan is generally carried out by CEOs which can make use of simple 
metrics to communicate objectives and results to investors. In this 
context the ENERWATER label represents the preferable tool when 
communicating WWTP energy efficiency information as it can be easily 
understood by non-technical stakeholders. Funds raised can be then 
used to finance energy efficiency projects based on the needs of the in-
dividual plants, as identified by more specific analyses. 

The types of projects and the plants more in need of energy efficiency 
investment are identified by the chief of operations. He or she is in 
general a technical profile in charge of monitoring a large sample of 
plants (depending on the area covered by a water utility). This implies 
the need for the chief of operations to use more data intensive methods 
to identify the type of measure to be implemented in each plant, such as 
e.g. SFA. In practice, lack of data or adequate skills for the application of 
such more complex methods may require water utilities to make use of 
external support, from e.g. data scientists, to translate business goals 
into data-driven information. At the end of this process that provides the 
chief of operations with the information about the type of inefficiency 

present in a given plant, i.e. transient or persistent inefficiency or both, 
he/she can finally decide on the type of energy saving measure to be 
financed and to be successively implemented. 

Energy savings resulting by the implementation of energy efficiency 
projects are usually certified by an energy manager and the results 
communicated both internally and externally: withing the utility, to the 
chief of operations as internal energy management procedure for the 
continuous efficiency improvement, externally to the regulator for e.g. 
demonstrating compliance with technical quality and efficiency objec-
tives. National regulation authorities can have positive direct effects on 
energy efficiency. The adoption of measures to support the development 
of circular economies by means of setting energy saving objectives by 
the regulator can constitute a real boost for the promotion of the energy 
efficiency in the wastewater sector (Guerrini and Manca, 2020). Those 
objectives or efficiency targets should be based on universal and stan-
dardized metrics that would be easily represented the energy label as 
proposed in ENERWATER. A relevant challenge in regulation is to obtain 
a proper representation of the wastewater treatment sector in an area. 
For this endeavour, data from different utilities5 are needed which 
would require benchmarking methods of limited complexity and with 
limited data requirements. 

As described along this paper and illustrated in this final section, 
greatly varying objectives and demands of the different actors involved 
at all levels must be taken into consideration in a successful WWTP 
framework for energy efficiency promotion. Goal setting, together with 
detailed and robust analysis and communication among various actors 
can helps everyone in the overall common goal to increase the efficiency 
in the use of energy, hence achieving the object of both economic and 
environmental performance improvement. 

6. Conclusions 

The joint increased availability of data and computer methods has 
opened the door to many techniques to utilize measurements in waste-
water treatment. It was seen that each benchmarking method offers 
different insights on the performance of the WWTP, and the outcomes 
may well have different interpretations. Although the methods discussed 
in this article allow identifying, quantifying and explaining (in) effi-
ciency, decision-making is the outcome of putting together many sour-
ces of information and the proper selection of the benchmarking 
method. Focusing in wastewater treatment, and particularly regarding 
energy efficiency, we have identified the requirements of the most 
common benchmarking methods in terms of data, resources, complexity 
of use, and information provided. This analysis has allowed relating 
each method with different stakeholders in the water sector and 
benchmarking objectives. Furthermore, as the inefficiency estimated by 
each method has a different origin, it was possible to link inefficiency 
components with root-causes in wastewater treatment. Hence, we pro-
posed a framework to assist water sector stakeholders in selecting the 
most suitable benchmarking method to improve energy efficiency in 
WWTPs. 
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