
Computers & Security 134 (2023) 103425

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Digital forensic analysis of the private mode of browsers on Android ✩

Xosé Fernández-Fuentes ∗, Tomás F. Pena, José C. Cabaleiro

Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, 15782
Santiago de Compostela, Spain

A R T I C L E I N F O A B S T R A C T

Keywords:

Android forensics

Mobile device forensics

Digital forensics

Browsing artifacts

Private browsing

Internet privacy

The smartphone has become an essential electronic device in our daily lives. We carry our most precious and
important data on it, from family videos of the last few years to credit card information so that we can pay
with our phones. In addition, in recent years, mobile devices have become the preferred device for surfing the
web, already representing more than 50% of Internet traffic. As one of the devices we spend the most time with
throughout the day, it is not surprising that we are increasingly demanding a higher level of privacy. One of
the measures introduced to help us protect our data by isolating certain activities on the Internet is the private
mode integrated in most modern browsers. Of course, this feature is not new, and has been available on desktop
platforms for more than a decade. Reviewing the literature, one can find several studies that test the correct
functioning of the private mode on the desktop. However, the number of studies conducted on mobile devices
is incredibly small. And not only is it small, but also most of them perform the tests using various emulators or
virtual machines running obsolete versions of Android. Therefore, in this paper we apply the methodology we
presented in a previous work to Google Chrome, Brave, Mozilla Firefox, and Tor Browser running on a tablet with
Android 13 and on two virtual devices created with Android Emulator. The results confirm that these browsers
do not store information about the browsing performed in private mode in the file system. However, the analysis
of the volatile memory made it possible to recover the username and password used to log in to a website or the
keywords typed in a search engine, even after the devices had been rebooted.
1. Introduction

The smartphone has become a device that does not leave us at any
part of the day: it is ready to wake us up in the morning as well as to
notify us that it is time to go to bed. It helps us on a personal level to
keep in touch with family and friends or to permanently save special
moments in the form of photos or videos. It helps us in a professional
level to organize our calendar and not miss any important meeting or to
be aware of any problem or emergency in our company. And, of course,
it also helps us when we want to “disconnect”, watching a funny video,
reading a book, or listening to music on our favorite streaming service.

Today, more than ever, we perform most activities that require an
Internet connection with a smartphone. In 2021, Internet traffic gener-

ated by mobile devices, whether smartphone or tablet, was over 57%

✩ This work has received financial support from the Consellería de Cultura, Educación e Ordenación Universitaria of the Xunta de Galicia (accreditation 2019-

2022 ED431G-2019/04, reference competitive group 2022-2024, ED431C 2022/16) and the European Regional Development Fund (ERDF), which acknowledges the
CiTIUS-Research Center in Intelligent Technologies of the University of Santiago de Compostela as a Research Center of the Galician University System. This work
was also supported by the Ministry of Economy and Competitiveness, Government of Spain (Grant No. PID2019-104834 GB-I00). X. Fernández-Fuentes is supported
by the Ministerio de Universidades, Spain under the FPU national plan (FPU18/04605).

* Corresponding author.

according to Statcounter (2023). This figure represents a substantial in-

crease considering that in 2016 it was less than 49%, in 2013 it was less
than 21% and, in 2011, it only represented 7%. In terms of the popu-

larity of mobile operating systems, 70% of mobile devices were running
Android in 2021.

Being a device that is with us practically all day long with per-

manent Internet connection, users are increasingly demanding better
guarantees in terms of security and privacy. This call for attention to
privacy and security is thanks to relatively recent scandals such as the
Edward Snowden’s revelations (Greenwald and MacAskill, 2013; Green-

wald, 2013), the Cambridge Analytica scandal (Thorbecke, 2019), or
the big Equifax data breach (Berghel, 2017). Events that make us re-

alize that our data may not be as protected as it should be or that
applications do not keep their word not to collect information about
Available online 15 August 2023
0167-4048/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access

E-mail addresses: xosefernandez.fuentes@usc.es (X. Fernández-Fuentes), tf.pena@

https://doi.org/10.1016/j.cose.2023.103425

Received 25 November 2022; Received in revised form 7 July 2023; Accepted 8 Aug
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

usc.es (T. F. Pena), jc.cabaleiro@usc.es (J.C. Cabaleiro).

ust 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cose
mailto:xosefernandez.fuentes@usc.es
mailto:tf.pena@usc.es
mailto:jc.cabaleiro@usc.es
https://doi.org/10.1016/j.cose.2023.103425
https://doi.org/10.1016/j.cose.2023.103425
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103425&domain=pdf
http://creativecommons.org/licenses/by/4.0/

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro

users. It is thanks to these wake-up calls that most smartphones enable
device encryption by default (Krishnan et al., 2019), the most popular
messaging apps incorporate end-to-end encryption (Afzal et al., 2021;
Endeley, 2018; Keshvadi et al., 2020), the latest versions of Android
and iOS include more granular control when granting permissions to
an app (Almomani and Al Khayer, 2020; Kollnig et al., 2022; Wijesek-

era et al., 2017), the European Parliament introduced the General Data
Protection Regulation (GDPR) (Voigt and Von dem Bussche, 2017) in
2016, the percentage of web pages using HTTPS increased from 25%
in 2014 to more than 80% by 2023 (Let’s Encrypt, 2023), and so on
and so forth. All this thanks to the fact that users are gradually becom-

ing more aware of the problem and are demanding a higher level of
security and privacy. Because we must not forget that, as Glenn Green-

wald said (Miles, 2014), “we all need places where we can go to explore
without the judgmental eyes of other people being cast upon us [...] It’s
really in the private realm where dissent, creativity and personal explo-

ration lie.”

A feature added to browsers aimed at providing a higher level of
privacy is the private mode. This browsing mode promises that no data
related to the navigation performed will be stored on the device. It is
a really useful feature when using a shared computer or to avoid the
collection of browsing habits. In addition, some browsers activate extra
functions when this mode is used, such as blocking known trackers by
default or setting the Do Not Track header. Of course, the private mode
is not a feature that has been added recently to browsers. For example,
Google Chrome incorporated incognito mode more than 10 years ago,
at the end of 2008. This feature seems to have been well received by
users, since according to a study (Habib et al., 2018) published in 2018,
an increasing number of users make use of the private mode, and not
only for privacy reasons, but also for security and practical reasons.
The problem is that, as stated in DuckDuckGo (2017), the protection
provided by this browsing mode is usually overestimated.

Different papers can be found in the literature that test the correct
functioning of the private mode of the different browsers. The vast ma-

jority of them are focused on testing the private mode on the desktop
version of the browsers, while the number of papers focused on the mo-

bile versions is much smaller. Not only is it smaller, but there is no
work that has performed the tests on a real Android device in recent
years. The only work, as far as we know, that did the tests on a real de-

vice was (Al Barghouthy et al., 2013). It was published 10 years ago,
only tested a single browser, did not analyze the contents of the volatile
memory, and the browsing session performed was incredibly small.

The two most recent works (Younis et al., 2021; Thompson, 2022)
did not perform the tests with a real device. One of them used an emula-

tor while the other used a virtual machine. The emulator used by (You-

nis et al., 2021) was Nox (2023). This emulator is focused on running
Android games on a system running Windows or macOS. The modifica-

tions made to the Android system by the Nox company are not public, so
it is very difficult to know the type of optimizations or changes made to
the operating system. This makes it impossible to know whether, from a
security and privacy point of view, it represents a realistic environment
comparable to using a physical device. The other problem with this em-

ulator is that the latest version available is based on Android 9. This
version of Android was first released in August 2018 and is currently
discontinued (endoflife.date, 2023). The test environment used by the
second paper mentioned (Thompson, 2022) was a VirtualBox virtual
machine running Android-x86 (2022). Android-x86 is a community-

driven open source project aimed at enabling Android to run on an
x86 system. The latest version available is 9.0-r2, based on Android 9.
However, this project is currently discontinued. The main problem with
using virtualized environments or emulators is the evidence acquisition
methods used. In this last mentioned work (Thompson, 2022), the au-

thors create an image of the virtual machine disk using a tool (Exterro,
2023) designed to create forensic images of computer data. There is no
equivalent tool for mobile devices. So this scenario is not realistic, since
2

as the authors themselves acknowledge, “achieving results similar to
Computers & Security 134 (2023) 103425

the research findings using physical Android devices may prove chal-

lenging [...] even with root access, it is very difficult to gain a full disk
image that includes unallocated space”.

Another important point to emphasize about these recent works,
apart from the fact that they use an obsolete version of the operating
system, is that both of the solutions used (NoxPlayer and Android-x86)
are neither official nor supported by Google. The main architecture
of Android is ARM64, and there is no official support for x86 proces-

sors (Reidt, 2022). There is not even official support for ARM32, with
Google forcing all apps available in the Play Store to be 64-bit versions
as of August 2021 (Sims, 2021). Not only that, but the latest device
released by Google, the Google Pixel 7, is not even capable of run-

ning 32-bit apps (Wang, 2022). Therefore, one of the points we pursued
when performing the tests is that they were performed on a physical
and current device.

The main objective of this work is to perform a forensic analysis of
the private mode included in the mobile version of the most popular
web browsers. The test environment consisted of a real mobile device
and two virtual devices created with the official Android emulator. In
this way, it was possible to verify to what extent the results can be
extrapolated when running the browsers on two completely different
architectures, a physical one (ARM64) and an emulated one (x86_64).

The starting point of the analysis was to have the device to be stud-

ied unlocked, or if it had some kind of lock configured, it was assumed
that the unlock code was known. This starting point may not seem
feasible. However, referenced below are two scenarios, one of them
happening this 2023, where it is not a problem that the device is locked,
as there are ways to get it in the desired state. The first one is how the
creator of Silk Road was captured. The law enforcement agents had to
obtain the computer the moment the creator logged in as an administra-

tor on the Silk Road website. It did not matter that the device had full
disk encryption or that the creator used really strong passwords. Law
enforcement officers just had to wait for the right situation to snatch
the unlocked computer out of his hands in a library (Mullin, 2015).
In the other scenario, which can be read about this very year (Imran,
2023), the attackers position themselves strategically in a public place,
such as a bar, and watch when the victim unlocks the phone in order to
clearly see the unlock code. Then, the attackers simply steal the device
at the right time. Google has already announced that Android 13 will
include a feature called “Enhanced Pin Privacy” aimed at preventing
this kind of over-the-shoulder attacks (Brinkmann, 2023).

Our goal in this paper is not to show how to capture the device to
be studied, or how to discover the passcode, or to reveal a vulnerability
that allows bypassing the lock screen. Our goal is to show what infor-

mation an analyst, or an attacker, can retrieve from a private browsing
session once the device falls into their hands. In this paper we aim to
evaluate the behavior of private mode and answer questions such as
the following: Is it possible to retrieve information about the navigation
performed in private mode if the browser has been completely closed?
Are there any artifacts left on the device about the browsing done if the
device has been rebooted?

The tests performed are designed in such a way that they can be re-

peated on another device without the need for any specific hardware for
evidence acquisition. It does not matter if the device is fully encrypted,
as our starting point assumes that the passcode is known. Of course,
if the passcode is unknown, and it is assumed that no vulnerability ex-

ists to bypass the lock screen, then the probabilities of recovering useful
information from the device are close to zero. However, although this
type of vulnerability is not very common, just a few months ago Google
fixed a vulnerability in its Pixel phones that allowed the lock screen to
be bypassed completely (Schütz, 2022).

As mentioned above, our test environment consisted of one physi-

cal device and two virtual devices running Android. When choosing the
browsers, we wanted our tests to cover the following points: testing the
most popular browser, testing browsers with different engines, and test-
ing browsers that are focused on user privacy. The first browser selected

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro

was Google Chrome due to having a market share of over 60% accord-

ing to StatCounter. The second browser selected for its growth in recent
years, and for being focused on protecting users’ privacy, is Brave. These
two browsers are based on the free and open-source software project
Chromium, whose engine is Blink and uses V8 as its JavaScript engine.
To include browsers with different engines, and thus add more variety
to the tests, we decided to add Mozilla Firefox and Tor Browser. Mozilla
Firefox uses the Gecko engine and SpiderMonkey as its JavaScript en-

gine. Tor Browser is based on Mozilla Firefox and its main feature is
anonymity, making use of the Tor network to achieve it. The idea be-

hind testing Tor Browser was to determine whether the Tor Project team
had made changes that would make it difficult to obtain evidence in a
forensic analysis.

In order to test the private mode of the selected browsers in a con-

sistent and exhaustive way, we applied the methodology we presented
in a previous work (Fernández-Fuentes et al., 2022). In this paper, a
methodology to perform a forensic analysis was presented and applied
to Mozilla Firefox and Google Chrome browsers running on a Linux ma-

chine and on a virtual machine also running a Linux distribution.

The rest of the paper is structured as follows: Section 2 summa-

rizes previous work related to forensic analysis of the Android operating
system; Section 3 describes the methodology used to analyze the four
browsers mentioned above in the three Android environments; the re-

sults obtained and their discussion are covered in Sections 4 and 5,
respectively; finally, Section 6 contains the closing thoughts.

2. Related work

In the literature, a wide variety of studies can be found that per-

formed digital forensics on different applications running on the An-

droid operating system. For example, there are numerous studies that
analyzed different instant messaging applications such as IMO (Abab-

neh et al., 2017; Tri et al., 2018; Sudozai et al., 2018), WeChat (Zhou et
al., 2015; Wu et al., 2017, 2018; Rathi et al., 2018), Telegram (Satrya
et al., 2016; Rathi et al., 2018), WhatsApp (Shortall and Azhar, 2015;
Rathi et al., 2018), Twitter (Wu et al., 2018), or Viber (Rathi et al.,
2018). There are also works that analyzed email, like (Umar et al.,
2019) and (Chen and Mao, 2016), or other studies, such as (Apos-

tolopoulos et al., 2013), that studied whether it was possible to recover
the authentication credentials of a total of 30 applications by dumping
the memory allocated to those processes.

When it comes to web browser forensics, the number of papers
focusing on mobile platforms, concretely on Android, is quite small,
especially when compared to the number of papers analyzing desktop
platforms. The following paragraphs include, in chronological order,
some of the most relevant and recent studies that perform forensic anal-

ysis of different browsers running on Android.

In 2013, Nedaa Al Barghouthy et al. (2013) tested the Orweb
browser running on a Samsung Galaxy S2 smartphone with Android
2.3.3. Their goal was to determine what information could be retrieved
from the file system after using the browser. The analysis revealed that
it was not possible to recover any artifacts related to browsing on the
stock device due to the lack of permissions to access sensitive folders.
However, with the device rooted, they were able to access the entire
file system, which allowed them to recover some activities performed
with Orweb from the browser profile folder.

In 2014, Nedaa Al Barghouthy and Andrew Marrington (2014) re-

peated their previous experiment using the idea presented by Timothy
Vidas et al. (2011). The problem with many of the commercial tools
that allow physical acquisition of a device is that they require root
privileges. By rooting a device, the system and user partitions are be-

ing modified, which could be destroying important evidence. Therefore,
the approach of Timothy Vidas et al. (2011) was to replace the recov-

ery partition with the necessary tools to obtain the evidence from the
device, thus avoiding modifying the rest of the partitions. With this ap-
3

proach, Nedaa Al Barghouthy et al. first tested the Orweb browser on
Computers & Security 134 (2023) 103425

a stock device, but with the recovery partition modified, and then re-

peated the tests with the device rooted. Their conclusion is that, given
almost identical results, it is preferable not to root the device. However,
they also emphasize that their analysis did not include the acquisition
of the device’s memory, which would have required root privileges.

In 2021, L. B. Younis et al. (2021) tested Google Chrome, Mozilla
Firefox, Dolphin, and Opera running on a rooted Android emulator
called NoxPlayer. Each of the browsers was tested in both normal and
private mode. The browsing session performed consisted of visiting var-

ious websites and accessing Gmail to send and receive various emails.
Evidence collection was limited to creating a memory dump immedi-

ately after the browsing session was completed. The analysis of the evi-

dence with the Autopsy tool revealed that Google Chrome provided the
lowest level of privacy, whereas Mozilla Firefox provided the highest
level. It should be noted that having performed all tests on an emulator,
extrapolation of the results to a real device may not be straightforward.

In 2022, Warren Thompson (2022) focused on determining what
artifacts could be recovered from the file system after using the pri-

vate mode of different browsers on Android. Specifically, the browsers
analyzed were Google Chrome, Mozilla Firefox, DuckDuckGo, and Tor
Browser running on a VirtualBox virtual machine with Android x86
version 9.0-r2. The tests consisted of accessing several web pages (book-

marking some of them), logging into several websites (saving the cre-

dentials in the browsers that allowed it), sending and receiving emails
between two email accounts, and performing several searches in dif-

ferent online search engines. Once the browsing was complete, FTK
Imager was used to create an image of the VM’s hard drive. The analy-

sis of the different images revealed that DuckDuckGo created the most
artifacts, even allowing the recovery of images loaded during naviga-

tion. The best of the four browsers was Mozilla Firefox, as it generated
the fewest artifacts on disk. The author concludes that several of the
artifacts were recovered from unallocated space. Therefore, repeating
this type of analysis on a physical device could be complicated, since
obtaining a complete disk image is not straightforward, even with root
privileges. In addition, it should be noted that Android has been using
full disk encryption for several versions now, which makes it even more
difficult to obtain information from unallocated space.

In the literature there are also different toolkits for Android that
allow acquiring forensic artifacts from different applications in an au-

tomated way. For example, AndroKit (Asim et al., 2019) can be high-

lighted for the case of web browsers. AndroKit extracts from the device’s
file system different artifacts from Google Chrome, Opera, Mozilla Fire-

fox, and Dolphin browsers. Some of the artifacts it is able to obtain are
bookmarks, downloaded files, web history, user credentials, or stored
sessions. In addition, AndroKit can root the device in order to suc-

cessfully access the folders where the browsers store their profiles. A
demonstration of how it works can be seen in (Asim et al., 2019), where
the authors run AndroKit on an Android emulator and on two Samsung
smartphones.

It is important to point out that this type of toolkits do not fo-

cus on testing the private mode or analyzing the contents of memory.
Therefore, the amount of information they can retrieve from a private
browsing session is incredibly small. They would only be able to re-

trieve information about the browsing performed in private mode if the
browser left any artifacts in the file system.

3. Methodology

This section describes the methodology used to perform the tests,
which was presented in detail in (Fernández-Fuentes et al., 2022). The
methodology consists of five phases: environment setup, monitoring
changes, browsing, data acquisition, and analysis. The following sub-

sections describe each of them as well as the adjustments made to adapt

them to the Android operating system.

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro

3.1. Environment setup

This phase is intended to design and deploy the environment where
the browser, or browsers, will be executed. The initial configuration
that needs to be applied to the browser, or browsers, is also included in
this phase.

To get a clearer picture of how the private mode behaves in different
scenarios, the methodology recommends, when possible, the use of mul-

tiple environments in which to test the browsers. Among the possible
environments, some options indicated are 1) selecting multiple operat-

ing systems, 2) using the same operating system but changing different
low-level options (such as kernel parameters), and 3) using a virtualized
and a bare metal system.

In this case, we decided to test the selected browsers in three dif-

ferent environments, one bare metal and two virtualized. For the bare
metal environment we used a Samsung Galaxy Tab S6 Lite LTE (ver-

sion SM-P615) running the factory operating system updated to the
latest version available at the time of testing (Android 13 with kernel
version 4.14.113). For the virtualized environments we decided to use
the Android Emulator version 32.1.11.0 (Android Developers, 2023).
Specifically, we created an Android Virtual Device (AVD) with Android
13 (API 33 and ABI x86_64) and another with Android 9 (API 28 and
ABI x86_64), both using the hardware profile of a Pixel 4. The rea-

son for creating these two particular AVDs is because of the similarities
they have with the Samsung tablet. The Android 13 emulator runs the
same version of Android as the tablet and the Android 9 emulator uses
a kernel version of the same branch as the tablet. Both AVDs were ex-

ecuted on a Windows 11 version 22H2 (OS Build 22621.1413) running
on a computer with the following characteristics: an Intel Core i7-9700K
processor, 32 GB RAM, and a 1 TB Intel NVMe SSD.

Although the use of this type of emulators is not intended to be
used by the end users of the applications, we believe that it provides
a new perspective when analyzing how browsers behave in different
circumstances. It should not be forgotten that the most recent work in
this area (such as Younis et al., 2021 and Thompson, 2022) uses some
sort of emulator. Therefore, adding a bare metal environment in our
experiments allows us to check to what extent the results obtained in
an emulator can be extrapolated to those obtained in a real device.

When preparing a device for testing, the following considerations
should be taken into account:

1. Use a “clean” device. For this it is recommended that the device
has been reset to factory settings. This will ensure that the artifacts
found in the evidence must have been created by the browser being
tested and not by another application or by previous use. Once
reset, install the necessary updates as well as the desired versions
of the browsers to be tested.

2. Disable automatic updates of both the operating system and ap-

plications. The reason for this is to prevent operating system
and browser versions from changing between different executions,
which could lead to inconsistent results.

Once the tablet was updated and configured and the AVDs were
created, the following browsers were installed:

1. Google Chrome 104.0.5112.97

2. Brave 1.49.132

3. Mozilla Firefox 111.1.1

4. Tor Browser 102.2.1-Release (12.0.4)

One thing that is important to point out is that the first three browsers
have a normal browsing mode as well as a private browsing mode.
However, the Tor Browser only allows browsing in private mode. This
is because this browser is designed to anonymize the generated network
traffic (thanks to the use of the Tor network) as well as to ensure that
4

no browsing related information is stored on the device used.
Computers & Security 134 (2023) 103425

Table 1

Login information stored in the keychain of each of the browsers tested.

Web site Username Password

https://www.reddit.com Test9861 oneRandomPassword41+

https://www.reddit.com Test9862 oneRandomPassword42+

https://forums.linuxmint.com Test99172 oneRandomPassword46+

3.1.1. Browser setup

Once the test environment is ready, it is necessary to prepare the se-

lected browsers. The only requirement for applying the methodology is
to add, at least, one username and password to the browser keychain.
The reason for this requirement will become clearer when the prede-

fined browser session is described in Section 3.3.

Of course, the methodology does not restrict the configuration to
be used. For example, to check that the “delete browsing data on ex-

it” function really works correctly, independent runs can be performed
with this option enabled and disabled. Once the runs have been carried
out, taking the appropriate precautions between runs to avoid contami-

nating the evidence, the results can be compared to check if this option
decreases the amount of information that can be retrieved.

In this case, the configuration used in each of the browsers was the
default. The only thing that was changed was to add several usernames
and passwords to the keychain of each of the browsers. Specifically, the
entries that can be seen in Table 1 were stored.

The procedure for inserting the entries differs from browser to
browser. In the case of Google Chrome and Brave it was necessary to
access each of these websites without using the incognito mode and log
in. Once logged in, the browser asked if the credentials should be saved.
From the incognito or private mode, these browsers did not allow in-

formation to be saved to the keychain, which makes sense, since saving
this information would leave a record on the device that the website
was accessed. Mozilla Firefox also asked whether the credentials used
to log in to a website should be stored in the keychain. However, unlike
Google Chrome or Brave, Mozilla Firefox allowed new credentials to be
saved in both normal and private mode. Alternatively, Mozilla Firefox
offers the possibility to manually add entries to the keychain from the
preferences. In the case of the Tor Browser, the only way to save new
credentials was to manually enter them from the preferences, as it did
not ask if the credentials should be saved when logging in to a website.

Once the browsers were configured, the cache, history, and cookies
were deleted from each browser. This step is especially important in the
case of Google Chrome and Brave, since it was necessary to access the
different websites to store the login information.

3.2. Monitoring changes

To capture the artifacts created by the browser, it is necessary to be
able to detect changes in the file system as well as to be able to dump
the device’s RAM. Of course, the tools to be used will vary depending
on the operating system selected.

3.2.1. Dumping the memory

It is very important to select a tool that completely dumps the
volatile memory of the device. It is not valid to use a tool that only
dumps the memory space associated with a certain application. There
are two reasons for this:

1. If only the memory space associated with an application is dumped,
memory areas that were associated with the application but were
freed are not going to be dumped. These regions may not yet have
been overwritten and, therefore, may still contain interesting infor-

mation.

2. With this kind of tools it is not possible to obtain a memory dump
when the application has ended. Therefore, they are not useful for
evaluating which artifacts can be recovered after the browser has

been closed, or after the device has been restarted.

https://www.reddit.com
https://www.reddit.com
https://forums.linuxmint.com

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro

To dump the memory of the tablet intended for testing we used
the Samsung Upload Client (Kerler, 2023) tool developed by B. Kerler.
This tool is based on the work of Artenstein and Goldman (2017), who
discovered that they could execute arbitrary code in the Samsung Boot-

loader and developed a tool (sboot_dump, 2017) to dump the memory
of a Samsung device. The only requirement to use the tool is to en-

able the built-in debugging function called S-Boot Upload Mode on
the device. To do so, it is necessary to dial *#9900# and, in the pop-

up screen, set the Debug Level option to High. Once activated, the
procedure to dump the memory is as follows:

1. Force reset the device by pressing “Power” + “Volume down” but-

tons.1

2. As soon as the screen turns off, press “Power” + “Volume up” until
the device enters the S-Boot Upload Mode.

3. Connect the device to a computer.

4. Run the Samsung Upload Client tool (Kerler, 2023) with the desired
options to start the dump. The dump can be of a specific range, of
specific areas, or of the entire memory.

The main advantage of this method is that it does not require rooting
the device or replacing the kernel. Moreover, once the debugging option
is enabled, the memory dump process can be started with the device
locked. Of course, there are other options for dumping the memory
of an Android device, such as, LiME (Sylve, 2012; Sylve et al., 2012),
AMExtractor (Yang et al., 2016), or AMD (Yang et al., 2017).

LiME is a Loadable Kernel Module that dumps the RAM to a file
when it is loaded. The main difficulty in using it on Android is that it
requires unlocking the device’s bootloader as well as recompiling the
kernel to allow loading modules, as this option is disabled by default.

AMExtractor makes use of the virtual device /dev/kmem, avoiding
the need to load a module in the kernel. Still, it requires root privileges
to be able to access that virtual device. However, the main limitation of
this tool is that the /dev/kmem device is not available on 64-bit ARM
architecture (AArch64). Therefore, this option will be valid depending
on the Android device being used.

The AMD tool takes advantage of the firmware update protocols to
dump the memory of an Android device. The main advantages are that
there is no need to root the device or use a custom kernel, no debugging
options need to be enabled, it works even if the device is locked, and
the dump process can be started without rebooting the device. The only
drawback is the compatibility with different devices, as the tool has
only implemented support for certain Samsung and LG devices.

To dump the memory of the two AVD instances, instead of using
a third-party tool, we made use of the functionality provided by Win-

dows 11 for this task. Specifically, the steps to be performed to obtain
a memory dump of a particular process are as follows: open the Win-

dows Task Manager in the Details tab, find the corresponding process
and select the “Create dump file” option from the context menu. In
this case, the process from which the memory was to be dumped was

qemu-system-x86_64.exe.

3.2.2. Monitoring changes in the file system

When monitoring disk changes, it is recommended to choose a tool
that supports specifying the directories to monitor as well as the events
to capture. The reason for limiting the directories to be monitored is
basically to try to eliminate noise generated by other applications and
thus reduce subsequent analysis tasks.

In this case, the inotifywait for Android (2016) tool was used to
monitor disk changes. This version is based on the inotifywait tool,
which is included in the inotify-tools (2022) package, but adapted for
Android. Its operation and configuration is the same as the original tool.
5

1 The buttons to be pressed may vary from one device to another.
Computers & Security 134 (2023) 103425

Table 2

The path where the user profile is located in the file system for each of the
browsers tested.

Browser Profile path

Google Chrome /data/data/com.android.chrome

Brave /data/data/com.brave.browser

Mozilla Firefox /data/data/org.mozilla.firefox

Tor Browser /data/data/org.torproject.torbrowser

The only required parameter when using inotifywait is to specify
the directory, or directories, to be monitored. In this particular case, the
directories to be watched were the folders where the different browsers
store the user profiles. Specifically, the path monitored for each of the
selected browsers can be seen in Table 2.

Taking advantage of the fact that the tool offers the possibility of
restricting the types of events to be monitored, we decided that only
the following ones would be recorded: creation of files or directories,
modification of files, and deletion of files or directories. Thanks to this
option, the subsequent processing of the log file is simplified by avoid-

ing the recording of “innocuous” events, such as opening a file to read
its contents or closing a file that was open in read-only mode.

With a stock device it is not possible to access the folders mentioned
in Table 2. The problem is that without this access it is not possible to
monitor the changes made by the browsers in the file system. There-

fore, in order to successfully complete this phase, the tablet was rooted
in order to be able to run the aforementioned monitoring tool on the
directories containing the browser profiles. In the case of the AVDs, no
additional modifications were necessary because the AVDs created cor-

respond to the versions without the Play Store, which allow root access
by default.

3.3. Browsing

This phase of the methodology is intended to design a browsing
session that will be subsequently performed in the different browsers
in all deployed environments. Thanks to having a predefined session, it
can be easily repeated while facilitating the subsequent analysis of the
evidence.

The browsing session to be carried out in private mode has to follow
the scheme below:

1. Access a web page that hosts music or videos. Use the search engine
and play one of the elements returned by the search. The reason
behind this point is to answer the following question: Are the words
typed in the search box as well as the element that was reproduced
in the captured evidence?

2. Open a new tab and access a website that hosts at least one cookie
in the browser. The reason for this point is to determine if the
cookies created by the website are in the collected evidence.

3. Open a website that hosts some kind of file that can be previewed
in the browser itself without the need to download it. Is it possible
to recover the preview file in the analysis phase?

The original methodology indicates, for reference, to preview some
PDF available online. However, this type of file is not valid for An-

droid. None of the browsers tested currently allow you to preview
a PDF file. The only option they offer is to download the file and
open it with another application, which is not a valid solution for
this situation. Therefore, in the case of Android it is recommended
to preview another type of file, such as an audio or video file, or
even a photograph.

4. Open a new tab and type a URL in the address bar. Once typed, and
without having visited the site, delete the entered URL. The reason
for this point is to answer the following question: Is the URL typed
in the evidence?

It is important to select a URL that does not generate false pos-
itives. For example, if the URL google .com is selected, it will be

https://www.google.com

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro

easily found in the subsequent analysis because it is one of the
default search engines integrated in the browsers. Therefore, it is
advisable to select a URL that does not return any occurrences prior
to conducting the browsing session.

5. Open a new tab and access the website whose credentials were
stored in the Browser setup phase in the browser keychain. Log in
with the saved credentials. The idea behind this point is to try to
determine if it is possible to recover the complete database of users
and passwords from the memory dumps.

6. Open a new tab and access a web page where login is required.
Obviously this page has to be different from the previous one and
for which no credentials are stored in the browser’s keychain. After
accessing the website, enter the information requested by the page
(username, password...). Is it possible to retrieve the information
typed in the various fields of the login form in the analysis phase?

Following the above scheme, the browser session designed to run in
the three Android environments is as follows:

1. Go to youtube .com and search kernel bugs. Play the video with
the title Syzbot and the Tale of Thousand Kernel Bugs
- Dmitry Vyukov, Google. Pause the video after 15 seconds.

2. Open a new tab and access to github .com.

3. Open a new tab and access to https://file -examples .com /index .
php /sample -audio -files /sample -mp3 -download/. Click on the

“Download sample MP3 file” button corresponding to the 700 KB
option. Pause the audio after 5 seconds.

4. Open a new tab and write myurl .com in the address bar. Without
accessing this website, delete the written URL.

5. Access to reddit .com /login. Log in using the credentials stored in
the browser keychain. Specifically, use the credentials of the user

Test9861. It is important to point out that we only used the first
(of the three) credentials shown in Table 1.

When the Tor Browser was used, this step could not be completed
successfully in any of the runs. This is because it does not allow
the use of the stored credentials. So, when Tor Browser was being
tested, the reddit .com /login website was simply accessed and no
further action was taken.

6. Open a new tab and go to google .com /gmail. Click on Sign in.
Try logging in using virtual112233@gmail.com as username
and @thisis4testing1 as password. The login will fail.

3.4. Data acquisition

This phase is intended for the acquisition of evidence for subsequent
analysis. Specifically, it is necessary to obtain several dumps of the en-

tire memory at certain times as well as all the changes made by the
browser in the file system. The runs where memory is dumped must be
independent of the runs where disk changes are monitored. It is also
important that only one browser is tested in each run.

3.4.1. Memory

To get a more comprehensive view of what information can be re-

trieved from memory at different points in time, it should be dumped
in four different situations. Specifically, the steps to be performed to
obtain each one of them are as follows:

T1. Turn on the device, launch the browser in incognito mode, perform
the browsing session, and dump the RAM.

T2. Turn on the device, launch the browser in incognito mode, perform
the browsing session, close the browser, wait one minute, and dump
the RAM.

T3. Turn on the device, launch the browser in incognito mode, perform
the browsing session, close the browser, restart the device, and dump
6

the RAM.
Computers & Security 134 (2023) 103425

T4. Turn on the device, launch the browser in incognito mode, perform
the browsing session, close the browser, turn off the device, wait 10
seconds, turn on the device, and, once started, dump the RAM.

Each of the above runs must be completely independent. For exam-

ple, it is not valid to create the first and the second dump in the same
run. The reason is simply not to contaminate the results of one run with
the next one.

3.4.2. File system

To obtain the changes made by the browser in the file system, the
following procedure must be followed:

1. Launch the selected monitoring tool.

2. Perform the navigation session presented in Section 3.3.

3. Close the browser and stop the monitoring tool.

3.5. Analysis

This last phase is intended to process all the evidence captured in the
previous phase. On the one hand, the different memory dumps obtained
must be analyzed and, on the other hand, the changes made by the
browser in the file system must be examined.

The task of extracting information from the memory dumps con-

sists of two parts. In the first part, it is searched by a set of keywords
associated with the navigation performed. For this purpose, a hexadec-

imal editor, such as wxHexEditor (2017), can be used or a script can
be developed to automate the search process. In this case, a script was
developed to search for a list of keywords. The output of this script is
a CSV file indicating the number of occurrences found for each of the
search terms in the different dumps.

Given the browsing session described in Section 3.3, the set of key-

words selected was as follows:

1. kernel bugs
2. kernel%20bugs

3. kernel+bugs

4. kernel%2Bbugs

5. Syzbot and the Tale of Thousand Kernel Bugs -
Dmitry Vyukov, Google

6. _gh_sess=

7. _octo=

8. myurl.com

9. Test9861

10. oneRandomPassword41+

11. Test9862

12. oneRandomPassword42+

13. Test99172

14. oneRandomPassword46+

15. virtual112233@gmail.com

16. virtual112233%40gmail.com

17. @thisis4testing1

18. %40thisis4testing1

The first four terms are related to the search performed in youtube .
com. Numbers 2 and 4 are the same as numbers 1 and 3 but replacing,
respectively, the blank space and the + symbol by their corresponding
HTML codes. Number 5 is the full title of the video played. Numbers
6 and 7 correspond to the name of the cookies set by the github .com

website. Item 8 is the URL that was typed into the address bar but
was not accessed. Items 9, 11, and 13 correspond to the usernames
stored in the browser keychain. Items 10, 12, and 14 are the passwords
corresponding to each of the above usernames in the keychain. The
number 15 is the email address entered to log in to google .com /gmail
and 16 is the same address but with the @ replaced by its HTML code.

https://youtube.com/
https://github.com
https://file-examples.com/index.php/sample-audio-files/sample-mp3-download/
https://file-examples.com/index.php/sample-audio-files/sample-mp3-download/
https://myurl.com
https://reddit.com/login
https://reddit.com/login
https://google.com/gmail
https://youtube.com
https://youtube.com
https://github.com
https://google.com/gmail

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro

Item 17 corresponds to the Gmail password entered, and the last item
is the same password but with the @ replaced by its HTML code.

The second part of the analysis of the memory determines whether
it is possible to retrieve various files directly from the dumps. In this
particular instance, the files to be searched were the following: the MP3
file previewed in the browser and the files that store the contents of the
keychain of the different browsers. A possible option to perform this
task is to use the Volatility Framework tool (Volatility, 2016). Another
option, which is the one we actually use, is to implement a program
that, given a file, indicates whether that file is found in its entirety in
the dump or not.

Once the memory analysis has been completed, the last part of this
phase consists of determining whether there are any traces of the ac-

tions carried out in private mode on the disk. The best way to tackle
this task is to develop a script that searches for the aforementioned key-

words in each of the files indicated by the file system monitoring tool
(inotifywait in this case). In addition, it is also advisable to run this
search script on the directories where the browser profiles are stored.

4. Results

Applying the described methodology requires repeating the brows-

ing session several times and capturing evidence at different times in
each run. This implies that it is necessary to take precautions to avoid
contaminating the results of the current run with artifacts left over from
a previous run. There are several ways to avoid this problem, from a
radical and time-consuming solution to a simpler and faster one. The
first solution is the most radical and consists of starting each run with
a completely clean device. To do this, the following steps must be per-

formed before starting a new test:

1. If a physical device is to be used, it must be reset to factory settings.
However, if an emulator is to be used, simply create a new virtual
device.

2. Install and configure the browser to be tested.

3. Turn off the device or emulator completely. If a physical device
is being used, it is important to wait at least one minute before
turning it back on to ensure that the device starts with “clean”
RAM.

4. Turn on the device or emulator and start the corresponding test.

The second solution is to uninstall and reinstall the browser to be
tested. On Android, when an application is uninstalled, it automatically
deletes all user data. Therefore, when it is reinstalled, there is no trace
of the previous configuration. The steps to perform before starting a
new run with this solution are listed below:

1. Uninstall the browser.

2. Reinstall the browser.

3. Configure the browser.

4. Turn off the device or emulator completely. If a physical device
is being used, it is important to wait at least one minute before
turning it back on to ensure that the device starts with “clean”
RAM.

5. Turn on the device or emulator and start the corresponding test.

The third and last option is to use the cleaning options included in
the browsers themselves. This option is the simplest and requires the
least setup time of the three. In this case, the steps to be performed
before a new execution are as follows:

1. Clear the cookies, history and cache using the option available in
the browser preferences. If the browser tested in the previous run is
different from the one to be tested next, this cleaning must be done
7

in both browsers (the previous one and the one to be used next).
Computers & Security 134 (2023) 103425

2. Turn off the device or emulator completely. If a physical device
is being used, it is important to wait at least one minute before
turning it back on to ensure that the device starts with “clean”
RAM.

3. Turn on the device or emulator and start the corresponding test.

After testing the three solutions with the different browsers, we
found no difference in the results obtained. The results presented in
the following subsections are the result of running the same tests sev-

eral times in order to corroborate the results. In order to be as efficient
as possible in setting up the environment, we used a hybrid of two of the
presented solutions. The first solution was used every time we started
testing a new browser. For example, if we had just tested Brave and
we were going to test Tor Browser, then we would restore the devices
completely. However, when we were doing multiple tests of the same
browser, then we used the third option. This means that we would use
the clearing options provided by the browser itself.

4.1. Findings on the memory dumps

Tables 3, 4, and 5 contain the results of processing the dumps
obtained with the browsers tested in scenarios T1, T2, and T3, re-

spectively. The first part of the tables (Keyword searches) contains the
number of matches for each search term described above. The second
part of the tables (File recovery) indicates whether it was possible to re-

cover the previewed MP3 file as well as the files containing the browser
keychains.

The results obtained when analyzing the dumps created after the
device was turned off for 10 seconds (scenario T4) reveal that it was not
possible to recover any artifacts in any of the cases. The only exception
was when running Google Chrome on the emulator with Android 9. In
this case, 2 matches were found for each of the usernames stored in
the browser keychain. In other words, 2 occurrences of Test9861, 2 of

Test9862, and another 2 of Test99172 were found.

4.2. Findings from file system analysis

After examining all the files indicated by the selected monitoring
tool, and also after repeating the searches in the directories where the
browsers store the user profiles, no artifacts were found that revealed
the actions performed in private mode.

One detail that caught our attention when processing the directories
with the browser profiles is that both Google Chrome and Brave leave
the usernames (not the passwords) stored in the browser’s keychain in
clear text on disk. Specifically, in the file Login Data located in the
directory containing the user profile. However, repeating these searches
in the Mozilla Firefox and Tor Browser directories yielded no results.
This point is not related to the operation of the private mode, but it
is a difference that was found when analyzing the changes in the file
system.

5. Discussion

In this section we discuss in detail the results obtained with the four
browsers in the different situations. To facilitate the discussion, we will
first focus on the memory analysis and then on the file system.

5.1. Memory

The analysis of memory dumps revealed numerous artifacts that
made it possible to recover, in some situations, all the activities per-

formed in private browsing mode. The following subsections discuss
the information that was possible to retrieve from the memory dumps

according to when they were created.

Computers & Security 134 (2023) 103425X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro

Table 3

Summary of the analysis of the memory dumps created with the browser still running (T1). The first part of the table (Keyword searches) shows the number of
matches for each of the search terms. The second part (File recovery) shows whether the files containing the browser keychain and the MP3 file were found intact.
To facilitate the reading of the table, instead of using a zero in cases where no match was found for that search term, a hyphen was used instead.

T1

Chrome Brave Firefox Tor

Browser

S
a
m

su
n

g

A
n

d
ro

id
9

A
n

d
ro

id
1

3

S
a
m

su
n

g

A
n

d
ro

id
9

A
n

d
ro

id
1

3

S
a
m

su
n

g

A
n

d
ro

id
9

A
n

d
ro

id
1

3

S
a
m

su
n

g

A
n

d
ro

id
9

A
n

d
ro

id
1

3

Keyword searches

kernel bugs 14 18 10 9 11 23 14 15 12 13 13 11

kernel%20bugs 4 4 - 6 - 11 5 5 5 5 - 5

kernel+bugs 40 42 130 35 31 46 15 14 11 15 23 18

kernel%2Bbugs 47 49 99 64 46 48 34 33 28 24 20 22

Syzbot and the Tale of... 27 26 23 24 25 27 16 13 14 14 14 13

_gh_sess= - 1 1 - 1 3 2 2 2 2 2 2

_octo= 6 5 6 7 5 5 4 3 2 4 3 2

myurl.com 8 6 23 3 4 19 4 - 19 3 - 21

Test9861 39 38 44 29 74 73 27 34 44 - - -

oneRandomPassword41+ 1 1 1 - 1 1 2 5 6 - - -

Test9862 2 2 2 2 2 2 4 9 17 - - -

oneRandomPassword42+ - - - - - - 5 5 4 - - -

Test99172 2 2 2 2 2 2 - - - - - -

oneRandomPassword46+ - - - - - - - - - - - -

virtual112233@gmail.com 59 52 68 46 48 86 59 14 24 35 10 31

virtual112233%40gmail.com 6 5 6 5 7 7 9 9 12 10 9 10

@thisis4testing1 6 9 6 9 12 9 22 25 23 15 18 19

%40thisis4testing1 2 5 5 5 8 3 3 1 1 3 2 1

File recovery

Browser keychain Yes No No No No No No No No No No No

file.mp3 No No No Yes No No Yes Yes Yes Yes Yes Yes

Table 4

Summary of the analysis of the memory dumps created one minute after closing the browser (T2). The first part of the table (Keyword searches) shows the number
of matches for each of the search terms. The second part (File recovery) shows whether the files containing the browser keychain and the MP3 file were found intact.
To facilitate the reading of the table, instead of using a zero in cases where no match was found for that search term, a hyphen was used instead.

T2

Chrome Brave Firefox Tor

Browser

S
a
m

su
n

g

A
n

d
ro

id
9

A
n

d
ro

id
1

3

S
a
m

su
n

g

A
n

d
ro

id
9

A
n

d
ro

id
1

3

S
a
m

su
n

g

A
n

d
ro

id
9

A
n

d
ro

id
1

3

S
a
m

su
n

g

A
n

d
ro

id
9

A
n

d
ro

id
1

3

Keyword searches

kernel bugs 9 13 18 7 12 10 12 11 3 12 12 13

kernel%20bugs 4 - 1 6 - - 1 1 1 2 2 5

kernel+bugs 53 36 30 25 27 39 11 6 8 9 12 34

kernel%2Bbugs 56 51 43 69 49 51 28 18 15 7 8 20

Syzbot and the Tale of... 25 26 21 19 26 24 14 10 2 13 9 14

_gh_sess= - - - - - 1 - - - 1 1 2

_octo= 3 5 3 5 6 6 2 1 1 2 2 2

myurl.com 7 3 18 3 - 19 3 - 19 3 - 21

Test9861 37 42 43 65 39 49 8 6 26 - - -

oneRandomPassword41+ 1 1 1 - 1 1 2 1 2 - - -

Test9862 2 2 2 2 2 2 7 2 2 - - -

oneRandomPassword42+ - - - - - - 2 2 2 - - -

Test99172 2 2 2 2 2 2 - - - - - -

oneRandomPassword46+ - - - - - - - - - - - -

virtual112233@gmail.com 51 27 27 18 65 42 56 9 4 18 4 11

virtual112233%40gmail.com 3 1 1 12 9 7 3 2 2 7 1 5

@thisis4testing1 10 4 - 9 10 4 13 9 1 11 16 7

%40thisis4testing1 4 2 2 5 4 6 2 1 - 2 1 -

File recovery

Browser keychain Yes No No No No No No No No No No No

file.mp3 No No No Yes No No No No No No No Yes
5.1.1. Memory dumps created in T1

In the T1 situation, the dumps are created after the entire browsing
session has been completed and while the browser is still running. These
8

dumps allow to establish a starting point with which to compare the
rest of the dumps, which are created when the browser is no longer
running. In other words, the dumps created in T1 represent the best
scenario when it comes to recovering the actions performed in private

mode.

Computers & Security 134 (2023) 103425X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro

Table 5

Summary of the analysis of the memory dumps created after the device has been rebooted (T3). The first part of the table (Keyword searches) shows the number of
matches for each of the search terms. The second part (File recovery) shows whether the files containing the browser keychain and the MP3 file were found intact.
To facilitate the reading of the table, instead of using a zero in cases where no match was found for that search term, a hyphen was used instead.

T3

Chrome Brave Firefox Tor

Browser

S
a
m

su
n

g

A
n

d
ro

id
9

A
n

d
ro

id
1

3

S
a
m

su
n

g

A
n

d
ro

id
9

A
n

d
ro

id
1

3

S
a
m

su
n

g

A
n

d
ro

id
9

A
n

d
ro

id
1

3

S
a
m

su
n

g

A
n

d
ro

id
9

A
n

d
ro

id
1

3

Keyword searches

kernel bugs 2 5 - - 5 - 2 2 - - 3 -

kernel%20bugs 1 4 - 3 4 - - - - - - -

kernel+bugs 3 20 1 2 16 - - 2 1 - - -

kernel%2Bbugs 1 24 2 1 15 1 1 5 - - 1 -

Syzbot and the Tale of... 7 5 - - 6 - - 1 - - 1 -

_gh_sess= - - - - 1 - - - - - - -

_octo= 1 - - - 1 - - - - - - -

myurl.com 2 - - - - - - - - - - -

Test9861 9 8 - 1 4 - 2 5 - - - -

oneRandomPassword41+ - 1 - - - - - 2 - - - -

Test9862 - 4 - - 2 - 1 1 - - - -

oneRandomPassword42+ - - - - - - - 1 - - - -

Test99172 - 4 - - 2 - - - - - - -

oneRandomPassword46+ - - - - - - - - - - - -

virtual112233@gmail.com 1 2 - 3 - - 2 - - 1 1 -

virtual112233%40gmail.com - - - - 5 - 2 - - 4 - -

@thisis4testing1 1 - - - - - 4 2 - - 1 -

%40thisis4testing1 - - - - - - - - - - - -

File recovery

Browser keychain No No No No No No No No No No No No

file.mp3 No No No No No No No No No No No No
The first activity performed was to access YouTube and watch a
video. Regardless of the browser used, it was possible to retrieve the
keywords typed into the search box as well as the full title of the video
played. When designing the browsing session, it was decided to use
the YouTube website. However, this test indicates that it is possible to
retrieve the terms typed into a search box as well as to determine which
result was selected, regardless of the website visited.

The second activity was to access github .com for the purpose of sub-

sequently attempting to retrieve the cookies it stored in the browser.
Specifically, when github .com is accessed, it creates three cookies:

_gh_sess, _octo, and logged_in. In the analysis phase it was de-

cided to search only for the first two cookies. The problem with the
third cookie is the name. It is very generic and produces numerous false
positives when searching by that name. This does not mean that the
value of the third cookie is not in the dump, it would simply require a
more targeted analysis, using regular expressions to retrieve the value,
for example. Regarding the first cookie, it was not possible to recover
it when using Google Chrome or Brave on the tablet, but it was possi-

ble to recover it in all other cases. Regarding the second cookie, it was
possible to retrieve it in all situations.

The third activity consisted of listening to a MP3 file directly in the
browser. As can be seen in Table 3, it was possible to retrieve the file
when using Mozilla Firefox or Tor Browser. With Google Chrome, the
file was not intact in the dumps obtained and, with Brave, it was only
possible to recover it undamaged when running on the tablet, not on
the emulators. Although a MP3 file was used for this case, this test
demonstrates that it is possible to recover, in some cases, files pre-

viewed directly in the browser that were not written to disk.

The fourth activity was typing a URL in the address bar but not ac-

cessing it. Interestingly, it was possible to retrieve this URL in all cases
except when Mozilla Firefox and Tor Browser were executed in the em-

ulator with Android 9. One potential reason why, in some situations, it
could be possible to retrieve this URL is that the browser constructs the
entire URL in the background, for example, by appending https://.
9

Another possible explanation could be that the browser constructs the
URL necessary to use the words entered as search terms in a search
engine. For example, in the case of Google Chrome, one of the re-

sults obtained when searching for myurl .com in the dump was the URL
that the browser built to search for that word in the Google search en-

gine: https://www .google .com /search ?q =myurl .com &client =chrome -
mobile &sourceid =chrome -mobile &ie =UTF -8.

The next step performed with the browsers was to access reddit .com

and log in with the credentials that had been saved in the keychains. As
previously mentioned, Tor Browser does not allow the use of the saved
credentials, which is perfectly reflected in the results, where it was not
possible to retrieve any of the credentials stored in the browser. As indi-

cated in Table 1, three credentials were stored in the keychain of each of
the browsers, two for reddit .com (Test9861 and Test9862) and one for
forums .linuxmint .com (Test99172). With the other three browsers that
do allow use of the keychain, the credentials of user Test9861 were
used to log in to reddit .com. In the case of Google Chrome, it was pos-

sible to retrieve all three usernames stored in the keychain but only
the password for user Test9861 was found in clear text. In the case
of Brave, it was also possible to recover the usernames. However, it
was only possible to recover the password of the logged-in user when
Brave was running in the emulators. Lastly, for Mozilla Firefox, the
saved usernames and passwords for the reddit .com website were re-

covered from the dumps, but neither the username nor the password
for the forums .linuxmint .com website was found. Therefore, it appears
that Mozilla Firefox decrypts from the keychain all the credentials as-

sociated with a particular website, even if only one of them is actually
used.

Continuing with the recovery of credentials, the next part of the
analysis consisted of determining whether it was possible to recover the
file that stores the browser’s keychain. In the case of Google Chrome, it
was possible to recover the entire file (Login Data) when it was run-

ning on the tablet. Looking at the source code of Chromium (2022)

(the open-source project on which Google Chrome is based), it can
be seen that, in the case of Android, all the credentials stored in the

keychain are encrypted using the AES 128-bit algorithm in CBC mode,

https://github.com
https://github.com
https://myurl.com
https://www.google.com/search?q=myurl.com&client=chrome-mobile&sourceid=chrome-mobile&ie=UTF-8
https://www.google.com/search?q=myurl.com&client=chrome-mobile&sourceid=chrome-mobile&ie=UTF-8
https://reddit.com
https://reddit.com
https://forums.linuxmint.com
https://reddit.com
https://reddit.com
https://forums.linuxmint.com

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro

using peanuts as password and saltysalt as salt. Therefore, in the
case of Google Chrome, having access only to the memory dump, we
were able to recover all the credentials stored in the keychain, includ-

ing the two passwords, the other one for reddit .com and the one for
forums .linuxmint .com, which were not in clear text in the dump. Brave
is also based on Chromium, so if the Login Data file had been recov-

ered intact in any of the environments, it would also have been possible
to obtain all stored credentials in the same way as in Google Chrome.
In the case of Mozilla Firefox and Tor Browser, the file containing the
keychain (logins2.sqlite) was not complete in any of the memory
dumps, so obtaining all the information stored in the browser’s key-

chain was not possible in this case either.

The last activity of the designed browsing session consisted of log-

ging into Gmail. Regardless of the environment and the browser used,
it was possible to recover both the username and password entered.
Although we have specifically used Gmail, this test indicates that it is
possible to retrieve the login information entered on any website.

5.1.2. Memory dumps created in T2

These dumps were created one minute after closing the browser.
Comparing the results obtained at T1 (Table 3) with those obtained at
T2 (Table 4), there are no major differences, being possible to recover
practically all the browsing session performed.

Regardless of the environment and the browser, it was possible to
retrieve, as in T1, the words typed in the YouTube search field as well as
the title of the video played. When it comes to retrieving the cookies set
by the github .com website, there are indeed differences in the results. In
T2 only the first cookie (_gh_sess) could be retrieved when running
Brave on the Android 13 emulator and in all Tor Browser runs in the
different environments. However, the second cookie could be retrieved
in all cases. Regarding the URL written in the address bar but not ac-

cessed (myurl .com), this one could be retrieved in the same cases as in
T1 except that in this situation it was not possible to retrieve it when
using Brave in the emulator with Android 9. The results obtained after
searching for the usernames and passwords stored in the browser key-

chains after logging in to reddit .com are exactly the same as in T1. And
the same is true when retrieving the login information entered in Gmail,
it was possible to retrieve it in all cases. Finally, regarding file recov-

ery, the result of recovering the files containing the browser keychain
is identical to T1. However, when it comes to recovering the previewed
MP3 file, it could only be found in the following two situations: when
running Brave on the tablet and when using Tor Browser in the Android
13 emulator.

5.1.3. Memory dumps created in T3

As might be expected, the amount of information that could be re-

covered from the dumps created after rebooting the device (Table 5)
is significantly less than in the previous cases, but it is by no means
negligible.

The words typed in the YouTube search field could be retrieved in
all cases except when Tor Browser was running on the tablet or on the
emulator with Android 13. The title of the played video could only be
retrieved in the following cases: with Google Chrome running on the
tablet or on the Android 9 emulator and with Brave, Mozilla Firefox,
and Tor Browser running on the Android 9 emulator. The first cookie
set by github .com could only be retrieved when using Brave on the An-

droid 9 emulator and, the second cookie, when browsing with Google
Chrome on the tablet and with Brave on the Android 9 emulator. The
URL typed in the address bar but not accessed could only be retrieved
in the case of Google Chrome running on the tablet. The username used
to log into reddit .com (Test9861) could be retrieved in the same cases
as in T2, except that in T3 it was not possible to retrieve it in any
of the runs with the Android 13 emulator. The password for this Red-

dit user could only be retrieved when using the Google Chrome and
Mozilla Firefox browsers running on the Android 9 emulator. The name
10

of the other Reddit user stored in the keychain (Test9862) could be
Computers & Security 134 (2023) 103425

recovered when using Google Chrome, Brave and Mozilla Firefox in
Android 9 emulator and with Mozilla Firefox running on the tablet.
And, Test99172’s password could only be retrieved when running
Mozilla Firefox on the Android 9 emulator. Regarding the third user
stored in the keychain for the forums .linuxmint .com site, it could only
be retrieved with Google Chrome and Brave running on the Android 9
emulator. And, Test99172’s password was not found in any scenario,
just like in T1 and T2. Regarding the email address used to log in to
Gmail, it could not be retrieved in the following cases: when using the
Android 13 emulator and when running Mozilla Firefox on the Android
9 emulator. And, the password entered could only be retrieved when
using the tablet with Google Chrome and Mozilla Firefox and when
running the Android 9 emulator with Mozilla Firefox and Tor Browser.
Finally, and unlike T1 and T2, in T3 no files could be recovered in any
of the environments.

5.1.4. Memory dumps created in T4

As mentioned in Section 4, after having the device or emulator
turned off for 10 seconds, the only situation where it was possible to
retrieve anything was when running Google Chrome on the emulator
with Android 9. This information does not provide any hints of the ac-

tivities performed in private mode and is not particularly useful either,
as this information is stored in clear text on disk.

5.2. File system

The main purpose of this work was to determine what information
can be retrieved from an Android device after using a browser in pri-

vate mode. The results show that none of the browsers tested wrote any
browsing-related information to the file system. One point that is impor-

tant to mention is that we cannot guarantee that the browsers have not
actually stored anything related to the browsing performed, since there
is a remote possibility that the browsers have stored some data using an
encoding that we are unaware of. What we can state is that the only in-

formation we found were the usernames (not the passwords) stored in
the keychains of the Google Chrome and Brave browsers. Mozilla Fire-

fox and Tor Browser did not store usernames in clear text, so searching
their directories did not yield any results.

Continuing with the keychains integrated in the browsers tested, it
is worth noting the different behavior of each one of them. In the case
of Google Chrome and Brave, they do not allow you to manually add
passwords to the password manager. To save the login information for
a particular site, it is necessary to log in to that site without using the
incognito mode. After logging in, these browsers will ask if you want to
save the login information. If you repeat these steps in incognito mode,
the browsers will not allow the credentials to be stored in the keychain.
This is the expected behavior, because if they allowed saving this infor-

mation from incognito mode, it would leave a permanent record on disk
that this website was visited. Another measure that Google Chrome and
Brave include is that they do not allow passwords to be displayed in
clear text in the password manager if the device does not have a screen
lock mechanism.

The Mozilla Firefox browser allows you to manually add login in-

formation from the browser’s preferences. It also allows you to add
information to the keychain at the time of logging in to a website.
The problem is that Mozilla Firefox asks if the login information should
be saved to the keychain from both normal mode and private mode.
Although Mozilla’s support page (Mozilla, 2023) clearly indicates that
“New passwords and bookmarks you create while using Private Brows-

ing will be saved”, perhaps Mozilla could add an informative message
in Mozilla Firefox stating that storing such information from the private
mode may be compromising the user’s privacy. It must be taken into ac-

count that the main purpose of the private mode is that no trace of the
browsing done is left on the device. If it allows saving login information,
it creates a record on the hard disk that indicates that this website was

visited. In addition, Mozilla Firefox allows you to view saved passwords

https://reddit.com
https://forums.linuxmint.com
https://github.com
https://myurl.com
https://reddit.com
https://github.com
https://reddit.com
https://forums.linuxmint.com

X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro

without having to configure a screen lock mechanism. When there is
no PIN or unlock password configured, Mozilla Firefox displays a warn-

ing and advises you to configure it to prevent anyone from viewing the
passwords. The only problem is that this message only appears the first
time the password manager is accessed.

Tor Browser, like Mozilla Firefox, allows you to manually add login
information from the browser preferences. However, it is not possible
to use such information to log in when accessing the corresponding
website. It also does not offer the possibility to save the login informa-

tion when logging into a website. We have verified this behavior on the
desktop version of Tor Browser using a PC running both Windows and
Linux. On both operating systems, we discovered that it does not al-

low to manually add entries to the browser keychain and also does not
ask if the login information should be saved when logging in to a web-

site. In other words, in the desktop version, the Tor Browser keychain
is completely disabled. So, it’s a bit confusing that it allows to manu-

ally add entries to the keychain in the Android version, if they are not
going to be usable. Finally, when no locking mechanism is configured
and the keychain is accessed to view the passwords, Tor Browser dis-

plays the same warning as Mozilla Firefox, indicating that one should
be configured to prevent anyone from viewing the passwords.

To conclude this section, it is of interest to note that the memory
analysis was the one that actually allowed to retrieve information about
the activity performed in private mode. And, in the particular case of
the tablet used for testing, this means that it is not necessary to modify
or alter the system by rooting it, since thanks to the debugging functions
included, it is really easy to dump the memory content, as described in
Section 3.2.1. This makes these results applicable “to everyday life”,
where it is not common for users to use their devices rooted or with a
customized OS version.

6. Conclusion

This paper presents the results of conducting a forensic analysis of
the private mode integrated in four different browsers running on three
separate Android environments. The environments used consisted of
an emulator running Android 13, a tablet with Android 13, and an
emulator running Android 9. To perform this analysis, we apply the
methodology presented in (Fernández-Fuentes et al., 2022), making mi-

nor adjustments to carry it out on a mobile platform.

The browsers tested were Google Chrome, Brave, Mozilla Firefox,
and Tor Browser. The memory and file system were analyzed for any
artifacts that would reveal the activities performed using the respective
private mode of each of these browsers. All of them kept their word
that no activity performed in private mode would be stored in the file
system. However, memory analysis allowed retrieval of all or virtually
all the browsing session, with sensitive information (such as usernames,
email addresses, and passwords) being retrieved even after the devices
were rebooted. Therefore, the only way to ensure that no artifacts re-

main in memory is to completely power off the device and wait some
time before restarting it, as this was the only scenario in which it was
not possible to recover any activity performed in private mode.

The analysis also included the retrieval of files previewed during
the browsing session, the acquisition of the complete keychain content
integrated in the browsers, as well as different tests that revealed the
different behavior of the keychains themselves.

Of the four browsers tested, it can be highlighted that Mozilla Fire-

fox and Tor Browser were the ones that left the fewest artifacts in
memory, with Google Chrome being the one that allowed the great-

est amount of information to be retrieved. As for the environments,
the Android 13 emulator was the one from which the highest number
of artifacts could be obtained, being the Android 9 emulator the most
“private” environment. This also shows that the use of emulators for
performing forensic analysis to Android apps might not be the best en-
11

vironment, as it may give a false sense of privacy or, on the contrary,
Computers & Security 134 (2023) 103425

reflect that much more information can be obtained than is actually
possible on a real device.

As a future work it can be highlighted to apply the methodology to
more browsers to have a broader picture of how each of them manage
the private mode. Another possible line would be to repeat all the tests
performed here but on different Android devices or even test different
ROMs to compare the results. And, to complete the analysis of the most
widely used mobile operating systems globally, the methodology would
have to be applied to iOS devices.

CRediT authorship contribution statement

Xosé Fernández-Fuentes: Conceptualization, Investigation, Me-

thodology, Writing – original draft. Tomás F. Pena: Conceptualization,
Methodology, Writing – review & editing. José C. Cabaleiro: Concep-

tualization, Methodology, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

Ababneh, Ahmad, Awwad, Mohammad Abu, Al-Saleh, Mohammed I., 2017. IMO forensics
in Android and Windows systems. In: 2017 8th International Conference on Informa-

tion, Intelligence, Systems & Applications (IISA). IEEE, pp. 1–6.

Afzal, Asmara, Hussain, Mehdi, Saleem, Shahzad, Shahzad, M. Khuram, Ho, Anthony T.S.,
Jung, Ki-Hyun, 2021. Encrypted network traffic analysis of secure instant messaging
application: a case study of Signal messenger app. Applied Sciences 11 (17), 7789.

Al Barghouthy, Nedaa, Marrington, Andrew, 2014. A comparison of forensic acquisi-

tion techniques for Android devices: a case study investigation of Orweb browsing
sessions. In: 2014 6th International Conference on New Technologies, Mobility and
Security (NTMS). IEEE, pp. 1–4.

Al Barghouthy, Nedaa, Marrington, Andrew, Baggili, Ibrahim, 2013. The forensic investi-

gation of Android private browsing sessions using Orweb. In: 2013 5th International
Conference on Computer Science and Information Technology. IEEE, pp. 33–37.

Almomani, Iman M., Al Khayer, Aala, 2020. A comprehensive analysis of the Android
permissions system. IEEE Access 8, 216671–216688.

Android-x86, 2022. Run Android on your PC. https://www .android -x86 .org. (Accessed 17
April 2023).

Android Developers, 2023. Run apps on the Android Emulator. https://developer .android .
com /studio /run /emulator. (Accessed 17 April 2023).

Apostolopoulos, Dimitris, Marinakis, Giannis, Ntantogian, Christoforos, Xenakis, Chris-

tos, 2013. Discovering authentication credentials in volatile memory of Android
mobile devices. In: Conference on e-Business, e-Services and e-Society. Springer,
pp. 178–185.

Artenstein, Nitay, Goldman, Gilad, 2017. Exploiting Android S-Boot: getting arbitrary
code exec in the Samsung bootloader. https://hexdetective .blogspot .com /2017 /02 /
exploiting -android -s -boot -getting .html. (Accessed 17 April 2023).

Asim, Muhammad, Amjad, Muhammad Faisal, Iqbal, Waseem, Afzal, Hammad, Abbas,
Haider, Zhang, Yin, 2019. Androkit: a toolkit for forensics analysis of web browsers
on Android platform. Future Generation Computer Systems 94, 781–794.

Berghel, Hal, 2017. Equifax and the latest round of identity theft roulette. Computer 50
(12), 72–76.

Brinkmann, Martin, 2023. Android 13’s upcoming Enhanced Pin Privacy feature
explained. https://www .ghacks .net /2023 /03 /31 /android -13s -upcoming -enhanced -
pin -privacy -feature -explained. (Accessed 17 April 2023).

Chen, Long, Mao, Yue, 2016. Forensic analysis of email on Android volatile memory. In:
2016 IEEE Trustcom/BigDataSE/ISPA. IEEE, pp. 945–951.

Chromium, 2022. Source code of the GetEncryptionKey function of
the Chromium project. https://source .chromium .org /chromium /
chromium /src /+ /main :components /os _crypt /os _crypt _posix .cc ;l =44 -45 ;drc =
c497cafe09858c478aa9daa3061e345f0683e61d. (Accessed 17 April 2023).

DuckDuckGo, 2017. A study on private browsing: consumer usage, knowledge, and
thoughts. https://duckduckgo .com /download /Private _Browsing .pdf. (Accessed 17
April 2023).

Endeley, Robert E., 2018. End-to-end encryption in messaging services and national
security—case of WhatsApp messenger. Journal of Information Security 9 (01),

95–99.

http://refhub.elsevier.com/S0167-4048(23)00335-8/bib6606CDB60B23888F55B5AB951FEE7CDDs1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib6606CDB60B23888F55B5AB951FEE7CDDs1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib6606CDB60B23888F55B5AB951FEE7CDDs1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib0CC519C670F687CA479F7D7F7A573BE1s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib0CC519C670F687CA479F7D7F7A573BE1s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib0CC519C670F687CA479F7D7F7A573BE1s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib8A33BB372E0AC21889EFDDAC54D86DBBs1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib8A33BB372E0AC21889EFDDAC54D86DBBs1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib8A33BB372E0AC21889EFDDAC54D86DBBs1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib8A33BB372E0AC21889EFDDAC54D86DBBs1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib655C2C9B08B6100D7B637F4D3FFFBD32s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib655C2C9B08B6100D7B637F4D3FFFBD32s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib655C2C9B08B6100D7B637F4D3FFFBD32s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibB01F88F8F3F4A77317EA27B3E0CFA21Bs1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibB01F88F8F3F4A77317EA27B3E0CFA21Bs1
https://www.android-x86.org
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibE6C3EF7915A2DE693B160F2E92C3E264s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibE6C3EF7915A2DE693B160F2E92C3E264s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibE6C3EF7915A2DE693B160F2E92C3E264s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibE6C3EF7915A2DE693B160F2E92C3E264s1
https://hexdetective.blogspot.com/2017/02/exploiting-android-s-boot-getting.html
https://hexdetective.blogspot.com/2017/02/exploiting-android-s-boot-getting.html
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib1B0D1F691536ED6B09EFD8DE2FA94175s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib1B0D1F691536ED6B09EFD8DE2FA94175s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib1B0D1F691536ED6B09EFD8DE2FA94175s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib27E0F8BBF027A8B7D1A5D24E1EA0D8A7s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib27E0F8BBF027A8B7D1A5D24E1EA0D8A7s1
https://www.ghacks.net/2023/03/31/android-13s-upcoming-enhanced-pin-privacy-feature-explained
https://www.ghacks.net/2023/03/31/android-13s-upcoming-enhanced-pin-privacy-feature-explained
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib535B3333D02596CDF5E36C3668147966s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib535B3333D02596CDF5E36C3668147966s1
https://source.chromium.org/chromium/chromium/src/+/main:components/os_crypt/os_crypt_posix.cc;l=44-45;drc=c497cafe09858c478aa9daa3061e345f0683e61d
https://source.chromium.org/chromium/chromium/src/+/main:components/os_crypt/os_crypt_posix.cc;l=44-45;drc=c497cafe09858c478aa9daa3061e345f0683e61d
https://source.chromium.org/chromium/chromium/src/+/main:components/os_crypt/os_crypt_posix.cc;l=44-45;drc=c497cafe09858c478aa9daa3061e345f0683e61d
https://duckduckgo.com/download/Private_Browsing.pdf
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib8F6695947E61BE171C33942691ECD0C3s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib8F6695947E61BE171C33942691ECD0C3s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib8F6695947E61BE171C33942691ECD0C3s1

Computers & Security 134 (2023) 103425X. Fernández-Fuentes, T. F. Pena and J.C. Cabaleiro

endoflife.date, 2023. Support schedule for Android OS. https://endoflife .date /android.
(Accessed 17 April 2023).

Exterro, 2023. FTK Imager. https://www .exterro .com /ftk -imager. (Accessed 17 April
2023).

Fernández-Fuentes, Xosé, Pena, Tomás F., Cabaleiro, José C., 2022. Digital forensic anal-

ysis methodology for private browsing: Firefox and Chrome on Linux as a case study.
Computers & Security, 102626.

Greenwald, Glenn, 2013. NSA collecting phone records of millions of Verizon customers
daily. The Guardian. https://www .theguardian .com /world /2013 /jun /06 /nsa -phone -
records -verizon -court -order. (Accessed 17 April 2023).

Greenwald, Glenn, MacAskill, Ewen, 2013. NSA Prism program taps in to user data of Ap-

ple, Google and others. The Guardian. https://www .theguardian .com /world /2013 /
jun /06 /us -tech -giants -nsa -data. (Accessed 17 April 2023).

Habib, Hana, Colnago, Jessica, Gopalakrishnan, Vidya, Pearman, Sarah, Thomas, Jeremy,
Acquisti, Alessandro, Christin, Nicolas, Cranor, Lorrie Faith, 2018. Away from prying
eyes: analyzing usage and understanding of private browsing. In: Fourteenth Sympo-

sium on Usable Privacy and Security (SOUPS 2018), pp. 159–175.

Imran, Shujaa, 2023. Should you be worried about thieves stealing your iPhone passcode?
https://www .makeuseof .com /thieves -stealing -iphone -passcode -worry. (Accessed 17
April 2023).

inotify-tools, 2022. inotify-tools. https://github .com /inotify -tools /inotify -tools. (Ac-

cessed 17 April 2023).

inotifywait for Android, 2016. inotifywait for Android. https://github .com /dstmath /
inotifywait -for -Android. (Accessed 17 April 2023).

Kerler, B., 2023. Samsung Upload Client. https://github .com /bkerler /sboot _dump. (Ac-

cessed 17 April 2023).

Keshvadi, Sina, Karamollahi, Mehdi, Williamson, Carey, 2020. Traffic characterization of
instant messaging apps: a campus-level view. In: 2020 IEEE 45th Conference on Local
Computer Networks (LCN). IEEE, pp. 225–232.

Kollnig, Konrad, Shuba, Anastasia, Van Kleek, Max, Binns, Reuben, Shadbolt, Nigel, 2022.
Goodbye tracking? Impact of iOS app tracking transparency and privacy labels. arXiv
preprint. arXiv :2204 .03556.

Krishnan, Sundar, Zhou, Bing, An, Min Kyung, 2019. Smartphone forensic challenges.
International Journal of Computer Science and Security 13 (5), 183–200.

Let’s Encrypt, 2023. Let’s Encrypt stats. Percentage of web pages loaded by Firefox us-

ing HTTPS (data source: Firefox telemetry). https://letsencrypt .org /stats /#percent -
pageloads. (Accessed 17 April 2023).

Miles, Kathleen, 2014. Glenn Greenwald on why privacy is vital, even if you ‘have noth-

ing to hide’. https://www .huffpost .com /entry /glenn -greenwald -privacy _n _5509704.
(Accessed 17 April 2023).

Mozilla, 2023. Private Browsing - Use Firefox without saving history. https://support .
mozilla .org /en -US /kb /private -browsing -use -firefox -without -history. (Accessed 17
April 2023).

Mullin, Joe, 2015. “I have secrets”: Ross Ulbricht’s private journal shows
Silk Road’s birth. https://arstechnica .com /tech -policy /2015 /01 /silk -road -trial -fbi -
reveals -whats -on -ross -ulbrichts -computer -in -open -court. (Accessed 17 April 2023).

Nox, 2023. NoxPlayer official website. https://www .bignox .com/. (Accessed 17 April
2023).

Rathi, Khushboo, Karabiyik, Umit, Aderibigbe, Temilola, Chi, Hongmei, 2018. Forensic
analysis of encrypted instant messaging applications on Android. In: 2018 6th Inter-

national Symposium on Digital Forensic and Security (ISDFS). IEEE, pp. 1–6.

Reidt, Teresa, 2022. Android x86: How to choose the right Android OS for x86 systems.
https://emteria .com /blog /android -x86. (Accessed 17 April 2023).

Satrya, Gandeva B., Daely, Philip T., Shin, Soo Young, 2016. Android forensics analy-

sis: private chat on social messenger. In: 2016 Eighth International Conference on
Ubiquitous and Future Networks (ICUFN). IEEE, pp. 430–435.

sboot_dump, 2017. sboot_dump. https://github .com /nitayart /sboot _dump. (Accessed 17
April 2023).

Schütz, David, 2022. Accidental $70k Google Pixel lock screen bypass. https://bugs .
xdavidhu .me /google /2022 /11 /10 /accidental -70k -google -pixel -lock -screen -bypass.
(Accessed 17 April 2023).

Shortall, Adam, Azhar, M.A. Hannan Bin, 2015. Forensic acquisitions of WhatsApp data
on popular mobile platforms. In: 2015 Sixth International Conference on Emerging
Security Technologies (EST). IEEE, pp. 13–17.

Sims, Gary, 2021. 32-bits is dead: here’s what it means for Android, Apple,
and more. https://www .androidauthority .com /arm -32 -vs -64 -bit -explained -1232065.
(Accessed 17 April 2023).

Statcounter, 2023. Statcounter Global Stats. https://gs .statcounter .com. (Accessed 17
April 2023).

Sudozai, M.A.K., Saleem, Shahzad, Buchanan, William J., Habib, Nisar, Zia, Haleemah,
2018. Forensics study of IMO call and chat app. Digital investigation 25, 5–23.

Sylve, Joe, 2012. LiME-Linux memory extractor. In: Proceedings of the 7th ShmooCon
Conference. https://github .com /504ensicsLabs /LiME. (Accessed 17 April 2023).

Sylve, Joe, Case, Andrew, Marziale, Lodovico, Richard, Golden G., 2012. Acquisition
and analysis of volatile memory from Android devices. Digital Investigation 8 (3–4),
175–184.

Thompson, Warren, 2022. A forensic analysis of Android mobile private browsing arti-

facts. White paper. SANS Institute. (Accessed 17 April 2023).

Thorbecke, Catherine, 2019. Facebook agrees to pay UK fine over Cambridge Analyt-

ica scandal while admitting no liability. https://abcnews .go .com /Business /facebook -
agrees -pay -uk -fine -cambridge -analytica -scandal /story ?id =66635145. (Accessed 17
April 2023).

Tri, Muchamad Kukuh, Riadi, Imam, Prayudi, Yudi, 2018. Forensics acquisition and anal-

ysis method of IMO messenger. International Journal of Computer Applications 179
(47), 9–14.

Umar, Rusydi, Riadi, Imam, Muthohirin, Bashor Fauzan, 2019. Live forensics of tools on
Android devices for email forensics. TELKOMNIKA (Telecommunication Computing
Electronics and Control) 17 (4), 1803–1809.

Vidas, Timothy, Zhang, Chengye, Christin, Nicolas, 2011. Toward a general collection
methodology for Android devices. Digital Investigation 8, S14–S24.

Voigt, Paul, Von dem Bussche, Axel, 2017. The EU General Data Protection Regulation
(GDPR). A Practical Guide, vol. 10(3152676), 1st ed. Springer International Publish-

ing, Cham, pp. 10–5555.

Volatility, 2016. Android Volatility Framework. https://github .com /volatilityfoundation /
volatility /wiki /Android. (Accessed 17 April 2023).

Wang, Jules, 2022. Google explains the Pixel 7 is 64-bit only, says 32-bit apps still
have roles to play. https://www .androidpolice .com /google -pixel -7 -pro -64 -bit -info.
(Accessed 17 April 2023).

Wijesekera, Primal, Baokar, Arjun, Tsai, Lynn, Reardon, Joel, Egelman, Serge, Wagner,
David, Beznosov, Konstantin, 2017. The feasibility of dynamically granted permis-

sions: aligning mobile privacy with user preferences. In: 2017 IEEE Symposium on
Security and Privacy (SP). IEEE, pp. 1077–1093.

Wu, Songyang, Zhang, Yong, Wang, Xupeng, Xiong, Xiong, Du, Lin, 2017. Forensic anal-

ysis of WeChat on Android smartphones. Digital investigation 21, 3–10.

Wu, Songyang, Sun, Wenqi, Liu, Xin, Zhang, Yong, 2018. Forensics on Twitter and
WeChat using a customised Android emulator. In: 2018 IEEE 4th International Con-

ference on Computer and Communications (ICCC). IEEE, pp. 602–608.

wxHexEditor, 2017. wxHexEditor. https://www .wxhexeditor .org. (Accessed 17 April
2023).

Yang, Haiyu, Zhuge, Jianwei, Liu, Huiming, Liu, Wei, 2016. A tool for volatile memory
acquisition from Android devices. In: IFIP International Conference on Digital Foren-

sics. Springer, pp. 365–378.

Yang, Seung Jei, Choi, Jung Ho, Kim, Ki Bom, Bhatia, Rohit, Saltaformaggio, Brendan, Xu,
Dongyan, 2017. Live acquisition of main memory data from Android smartphones
and smartwatches. Digital Investigation 23, 50–62.

Younis, Lojin Bani, Sweda, Safa, Alzu’bi, Ahmad, 2021. Forensics analysis of private web
browsing using Android memory acquisition. In: 2021 12th International Conference
on Information and Communication Systems (ICICS). IEEE, pp. 273–278.

Zhou, Fan, Yang, Yitao, Ding, Zhaokun, Sun, Guozi, 2015. Dump and analysis of Android
volatile memory on Wechat. In: 2015 IEEE International Conference on Communica-

tions (ICC). IEEE, pp. 7151–7156.
12

https://endoflife.date/android
https://www.exterro.com/ftk-imager
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib4C36C783805F22539FA59B85FCB23669s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib4C36C783805F22539FA59B85FCB23669s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib4C36C783805F22539FA59B85FCB23669s1
https://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order
https://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibFDDC23A35A43C2008D29A63FA015ABDEs1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibFDDC23A35A43C2008D29A63FA015ABDEs1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibFDDC23A35A43C2008D29A63FA015ABDEs1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibFDDC23A35A43C2008D29A63FA015ABDEs1
https://www.makeuseof.com/thieves-stealing-iphone-passcode-worry
https://github.com/inotify-tools/inotify-tools
https://github.com/dstmath/inotifywait-for-Android
https://github.com/dstmath/inotifywait-for-Android
https://github.com/bkerler/sboot_dump
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibA7E120E05CD064A92881D6EB8D03FEC4s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibA7E120E05CD064A92881D6EB8D03FEC4s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibA7E120E05CD064A92881D6EB8D03FEC4s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib380FE65315EFF8F7A1477A9C3643D4D1s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib380FE65315EFF8F7A1477A9C3643D4D1s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib380FE65315EFF8F7A1477A9C3643D4D1s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib24D5AAC3167ED3C6FC1C2F2C165B9D78s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib24D5AAC3167ED3C6FC1C2F2C165B9D78s1
https://letsencrypt.org/stats/#percent-pageloads
https://letsencrypt.org/stats/#percent-pageloads
https://www.huffpost.com/entry/glenn-greenwald-privacy_n_5509704
https://support.mozilla.org/en-US/kb/private-browsing-use-firefox-without-history
https://support.mozilla.org/en-US/kb/private-browsing-use-firefox-without-history
https://arstechnica.com/tech-policy/2015/01/silk-road-trial-fbi-reveals-whats-on-ross-ulbrichts-computer-in-open-court
https://arstechnica.com/tech-policy/2015/01/silk-road-trial-fbi-reveals-whats-on-ross-ulbrichts-computer-in-open-court
https://www.bignox.com/
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibDC1A301EF817F65A8607F3F80E3BCE64s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibDC1A301EF817F65A8607F3F80E3BCE64s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibDC1A301EF817F65A8607F3F80E3BCE64s1
https://emteria.com/blog/android-x86
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibFC09A55C84BDD811ADA704CBF5A0DC61s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibFC09A55C84BDD811ADA704CBF5A0DC61s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibFC09A55C84BDD811ADA704CBF5A0DC61s1
https://github.com/nitayart/sboot_dump
https://bugs.xdavidhu.me/google/2022/11/10/accidental-70k-google-pixel-lock-screen-bypass
https://bugs.xdavidhu.me/google/2022/11/10/accidental-70k-google-pixel-lock-screen-bypass
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibEBA2ED9657F575EF071A3ABBC18394F2s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibEBA2ED9657F575EF071A3ABBC18394F2s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibEBA2ED9657F575EF071A3ABBC18394F2s1
https://www.androidauthority.com/arm-32-vs-64-bit-explained-1232065
https://gs.statcounter.com
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibBE7B2207B35C3B34B4BC2D48B051BC2Bs1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibBE7B2207B35C3B34B4BC2D48B051BC2Bs1
https://github.com/504ensicsLabs/LiME
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibC4CE6A9D3FC977B978366CB15727958Ds1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibC4CE6A9D3FC977B978366CB15727958Ds1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibC4CE6A9D3FC977B978366CB15727958Ds1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibD156F28CE235C6B9B052197B70F5F5E4s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibD156F28CE235C6B9B052197B70F5F5E4s1
https://abcnews.go.com/Business/facebook-agrees-pay-uk-fine-cambridge-analytica-scandal/story?id=66635145
https://abcnews.go.com/Business/facebook-agrees-pay-uk-fine-cambridge-analytica-scandal/story?id=66635145
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib327F2F0D0B527023198673913EED5569s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib327F2F0D0B527023198673913EED5569s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib327F2F0D0B527023198673913EED5569s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibEB56926A0355FB4AA2E98E643A716352s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibEB56926A0355FB4AA2E98E643A716352s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibEB56926A0355FB4AA2E98E643A716352s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib836440FB20CC0782892851CA79B5C302s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib836440FB20CC0782892851CA79B5C302s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibF42D0C7BE6FFD4AC8E79352DE1042AF8s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibF42D0C7BE6FFD4AC8E79352DE1042AF8s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibF42D0C7BE6FFD4AC8E79352DE1042AF8s1
https://github.com/volatilityfoundation/volatility/wiki/Android
https://github.com/volatilityfoundation/volatility/wiki/Android
https://www.androidpolice.com/google-pixel-7-pro-64-bit-info
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib3F51C382BC18F1DEBBE659DFD715637As1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib3F51C382BC18F1DEBBE659DFD715637As1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib3F51C382BC18F1DEBBE659DFD715637As1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib3F51C382BC18F1DEBBE659DFD715637As1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib81A67B39D304B7FE3B00159E67DFA818s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib81A67B39D304B7FE3B00159E67DFA818s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib20CD276DAF65226B87A9F65350AA4916s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib20CD276DAF65226B87A9F65350AA4916s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib20CD276DAF65226B87A9F65350AA4916s1
https://www.wxhexeditor.org
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib0743C95B7642EE0B17AE24814F065C48s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib0743C95B7642EE0B17AE24814F065C48s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib0743C95B7642EE0B17AE24814F065C48s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibB26ACA095197F39D4AE4D6B074B378A9s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibB26ACA095197F39D4AE4D6B074B378A9s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibB26ACA095197F39D4AE4D6B074B378A9s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib8DDB7D18D5ACAE5A833DBDEFD707DA89s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib8DDB7D18D5ACAE5A833DBDEFD707DA89s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bib8DDB7D18D5ACAE5A833DBDEFD707DA89s1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibE0C4BC0B289661C920F1E0BFF305BF2As1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibE0C4BC0B289661C920F1E0BFF305BF2As1
http://refhub.elsevier.com/S0167-4048(23)00335-8/bibE0C4BC0B289661C920F1E0BFF305BF2As1

	Digital forensic analysis of the private mode of browsers on Android
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Environment setup
	3.1.1 Browser setup

	3.2 Monitoring changes
	3.2.1 Dumping the memory
	3.2.2 Monitoring changes in the file system

	3.3 Browsing
	3.4 Data acquisition
	3.4.1 Memory
	3.4.2 File system

	3.5 Analysis

	4 Results
	4.1 Findings on the memory dumps
	4.2 Findings from file system analysis

	5 Discussion
	5.1 Memory
	5.1.1 Memory dumps created in T1
	5.1.2 Memory dumps created in T2
	5.1.3 Memory dumps created in T3
	5.1.4 Memory dumps created in T4

	5.2 File system

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

