
This is a postprint version of the following published document:  

M. Ferens et al., "Deep Reinforcement Learning Applied to Computa�on Offloading of 
Vehicular Applica�ons: A Comparison," 2022 International Balkan Conference on 
Communications and Networking (BalkanCom), Sarajevo, Bosnia and Herzegovina, 2022, 
pp. 31-35, htps://doi.org/10.1109/BalkanCom55633.2022.9900545  

 

© 2022 IEEE. Personal use of this material is permited. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 
reprin�ng/republishing this material for adver�sing or promo�onal purposes, crea�ng 
new collec�ve works, for resale or redistribu�on to servers or lists, or reuse of any 
copyrighted component of this work in other works. 

https://doi.org/10.1109/BalkanCom55633.2022.9900545


Deep Reinforcement Learning Applied to 
Computation Offloading of Vehicular Applications:  

A Comparison 
Mieszko Ferens  

Universidad de Valladolid and 
Aalborg Universitet 

Valladolid, Spain/Denmark 
mieszko.ferens@ribera.tel.uva.es 

Diego Hortelano 
Universidad Rey Juan Carlos 
and Universidad de Valladolid 

Madrid/Valladolid, Spain 
0000-0001-7776-6862 

Ignacio de Miguel  
Universidad de Valladolid 

Valladolid, Spain 
ignacio.miguel@tel.uva.es 

0000-0002-1084-1159 

Ramón J. Durán Barroso 
Universidad de Valladolid 

Valladolid, Spain 
0000-0003-1423-1646 

Juan Carlos Aguado 
Universidad de Valladolid 

Valladolid, Spain 
0000-0002-2495-0313 

Lidia Ruiz  
Universidad de Valladolid 

Valladolid, Spain 
0000-0001-6241-5998 

Noemí Merayo 
Universidad de Valladolid 

Valladolid, Spain 
0000-0002-6920-0778 

Patricia Fernández 
Universidad de Valladolid 

Valladolid, Spain 
0000-0001-5520-0948 

 Rubén M. Lorenzo 
Universidad de Valladolid 

Valladolid, Spain 
0000-0001-8729-3085 

Evaristo J. Abril 
Universidad de Valladolid 

Valladolid, Spain 
0000-0003-4164-2467 

 

Abstract—An observable trend in recent years is the 
increasing demand for more complex services designed to be 
used with portable or automotive embedded devices. The 
problem is that these devices may lack the computational 
resources necessary to comply with service requirements. To 
solve it, cloud and edge computing, and in particular, the recent 
multi-access edge computing (MEC) paradigm, have been 
proposed. By offloading the processing of computational tasks 
from devices or vehicles to an external network, a larger amount 
of computational resources, placed in different locations, 
becomes accessible. However, this in turn creates the issue of 
deciding where each task should be executed. In this paper, we 
model the problem of computation offloading of vehicular 
applications to solve it using deep reinforcement learning (DRL) 
and evaluate the performance of different DRL algorithms and 
heuristics, showing the advantages of the former methods. 
Moreover, the impact of two scheduling techniques in 
computing nodes and two reward strategies in the DRL methods 
are also analyzed and discussed. 

Keywords—Deep Reinforcement Learning, Vehicular 
Applications, Computation Offloading, Edge Computing 

I. INTRODUCTION 
The popularity of portable devices with computational 

resources and connectivity is ever growing. This trend goes 
parallel to the development of new services for these devices, 
with increasing computational requirements. As the demand 
of these services grows, the design of the devices must include 
more resources, but this can prove difficult, as limitations such 
as physical space, overheating, energy requirements and costs 
become an issue. To face this problem, edge computing, and 
in particular a recent proposal by the European 
Telecommunications Standards Institute (ETSI), the multi-
access edge computing (MEC) paradigm, has become a 
promising solution [1]. Edge computing proposes the 

deployment of computing resources in the edge of the 
network, and thus near the operating devices. Unlike other 
paradigms such as cloud computing, this paradigm ensures 
lower communication delays while still providing strong 
computational resources. 

For vehicular applications, a computing strategy can be 
associated with the development of a hierarchy of network 
elements equipped with computational resources: the vehicle, 
a MEC site, a regional data center (RDC), and the cloud. 
Obviously, additional network resources like wireless access 
points and a wired (typically optical) network between the 
vehicles and the MEC site (and other computing points) are 
also required for connectivity. However, in this paper we 
focus on computing resources and just consider the throughput 
and delay of the networking resources between computing 
nodes. The resulting hierarchy of the computing nodes is such 
that the higher the node in the hierarchy, the more 
computational resources are present (Fig. 1). This comes at the 
cost of higher communication delays when moving up in the 
hierarchy, and so, decisions must be made to select where to 
process each task that the vehicles generate. For this aim, 
different solutions have been proposed, and the use of deep 
reinforcement learning (DRL) is a promising technique for 
decision making accounting for a variety of factors [2]. 

In this paper, we model the problem of computation 
offloading of vehicular applications to solve it by means of 
DRL, and we compare four DRL algorithms together with 
four heuristics, with the aim of determining which type of 
algorithms is preferable for the implementation of controllers 
for these systems. Moreover, two different techniques to 
schedule tasks within computing nodes are analyzed: (i) 
placing the tasks at the end of a queue for each computing 
resource, and (ii) exploiting voids in the scheduling tables of 
those computing resources. 

II. VEHICULAR ENVIRONMENT AND SCHEDULING 
TECHNIQUES IN COMPUTING NODES 

We consider a vehicular environment based on a 
hierarchical network topology with a set of computing 

This work has been supported by Consejería de Educación de la Junta 
de Castilla y León and the European Regional Development Fund (Grant 
VA231P20), and the Spanish Ministry of Science of Innovation and the State 
Research Agency (Grant PID2020-112675RB-C42 funded by 
MCIN/AEI/10.13039/501100011033 and RED2018-102585-T). This work 
has also received funding from the European Union Horizon 2020 research 
and innovation programme under the grant agreement No 856967. 



resources located at different distances from the vehicles (Fig. 
1), as well as a set of applications which are launched at each 
vehicle (Table I).  

In this section, we first define a set of heterogeneous 
applications with different features and computing and delay 
requirements. Then, we describe the network topology and its 
computing resources, as well as two different strategies that 
the computing nodes can use to schedule the execution of 
arriving tasks. 

A. Application set 
We assume that vehicles run a set of heterogeneous 

applications independently. Each application in each vehicle 
generates tasks, i.e., sets of data (data packets) that require to 
be processed in any node of the network or the vehicle. 
Applications are heterogeneous and thus have different 
features in terms of tasks generation (frequency and size) and 
of computing and delay requirements. Thus, based on [3-5], 
five different features have been defined, and a set of six 
different applications has been considered, as shown in Table 
I. The features of the applications are defined as follows:  

1) Processing cost (Ac): CPU cycles necessary to process 
each bit of the task (data packet). 

2) Input data (Ain): Size in bits of the data packet to be 
processed. 

3) Output data (Aout): Size in bits of the data packet to be 
returned to the vehicle after the node processes the task. 

4) Maximum latency (Ad): Maximum tolerable delay in 
milliseconds since the vehicle initiates the task (generates the 
input data packet) until it receives the output of the processing 
(reception of the output data packet). 

5) Average generation period (At): Average time 
between generating consecutive data packets (tasks). 

B. Network elements and scheduling techniques 
For the network topology, we have considered the 

structure shown in Fig. 1, which is based on [6-11]. It consists 
of four types of nodes: vehicle, MEC, RDC and cloud, each 
with increasing computing capabilities. 

 

 
Fig. 1.   Hierachical network topology with computing resources. 

Nodes are characterized by the number of computing 
units, i.e., CPUs (𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛), their processing rate (𝐶𝐶𝐶𝐶𝐾𝐾𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛), and 
the size of their scheduling queues to process pending tasks 
(𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ). Links connecting nodes are characterized by their 
data rate ( 𝑟𝑟𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ) and their propagation delay which also 
includes the delay associated to communication protocols 
(𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ). As we are dealing with vehicles, factors such as 
energy levels are not critical and are omitted. 

As we have just mentioned, each CPU has a scheduling 
queue that determines the order in which computation tasks 
are processed. These tasks are represented by data packets 
generated by the applications initiated in the vehicles, and 
which require processing. A controller (agent) must decide at 
which node (vehicle, MEC, RDC or cloud) to execute that 
processing, and then triggers a reservation process in the 
scheduling queues of the selected node. The reservation 
process is not managed by the agent, but rather by the node 
itself. A review of current CPU scheduling techniques can be 
found in [12]. Based on that reference, and also inspired by 
void filling techniques for resource allocation [13], two 
methods for scheduling reservations are considered and 
analyzed in this paper and shown in Fig. 2: reservations with 
planning and without planning. 

A reservation causes the task to be allocated to a dynamic 
time slot in the scheduling queues of the node based on the 
estimated arrival time of the data packet (𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑒𝑒𝑒𝑒𝑒𝑒) and its 
estimated processing time at that node (𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑒𝑒𝑒𝑒𝑒𝑒). The arrival 
time of the data packet is estimated based on transmission and 
propagation delays from the vehicle to the computing node. 
The processing time is estimated based on the amount of data 
to process (Ain), the processing cost (Ac) associated to the 
application, and the processing rate of the node (𝐶𝐶𝐶𝐶𝐾𝐾𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛).  
Multithreading has not been considered and each task must be 
processed by a single CPU.  

TABLE I.  APPLICATION SET AND  PARAMETERS 

App 
Processing 

cost, Ac 
(CPU 

cycles/bit) 

Input 
data, 
Ain 

(kbits) 

Output 
data, 
Aout 

(kbits) 

Maximum 
latency, 

Ad 
(ms) 

Avg. 
generation 
period, At 

(ms) 
#1 1 700 200 1 100 

#2 400 10 5 4 100 

#3 1000 900 25 500 100 

#4 3000 100000 25000 200000 100 

#5 200 650 500 200 100 

#6 500 40 1 30 100 

 

 
Fig. 2.   Example of reservation with and without planning. 

 



When reservation with planning is used, the allocated slot 
for processing that task will be placed as early as possible 
considering all cores in the node. On the other hand, when 
reservation without planning is used, the same rule applies but 
the slot cannot be placed between others and must be allocated 
at the end of a queue. Thus, in the example shown in Fig. 2, 
when planning is used, the task is scheduled to be processed 
by CPU number 1 (the earliest available slot to process the 
task since its arrival), but when planning is not used, the task 
is assigned to CPU 2 (earliest end of the queues). 

III. DECISION-MAKING ALGORITHMS FOR COMPUTATION 
OFFLOADING 

To determine where to process each task two different 
approaches have been analyzed: the use of deep reinforcement 
learning techniques, and the use of heuristics. 

A. Deep reinforcement learning algorithms 
Reinforcement learning is a subset of machine learning 

whose algorithms are characterized by learning through 
interaction with an environment. An agent observes the state 
of the environment and interacts with it by executing actions. 
Then, the agent receives a reward from the environment, and 
the environment typically evolves to a different state. By 
means of these interactions, the agent can learn to make better 
decisions by trying to maximize the cumulative reward. In 
scenarios where the number of states is huge, approximation 
techniques like deep learning are generally used, thus 
becoming deep reinforcement learning methods.  

We next describe our proposal to define observations, 
rewards, actions and learning procedures in order to solve the 
computation offloading problem by means of DRL.  

As we have just mentioned, to interact with the 
environment, i.e., the network and the vehicular applications, 
the DRL agents receive an observation and a reward. For each 
generated task a request is passed to the DRL agent. This is 
done in the form of an observation, which is a vector (O) with 
multiple elements as described in Eq. (1), 

 𝑂𝑂 = [𝑄𝑄1 , … ,𝑄𝑄𝑋𝑋 ,𝐴𝐴𝑐𝑐,𝐴𝐴𝑖𝑖𝑖𝑖 ,𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 ,𝐴𝐴𝑑𝑑 ,𝐷𝐷1, … ,𝐷𝐷𝐾𝐾 ,𝑉𝑉1, … ,𝑉𝑉𝑀𝑀], (1) 

where K represents the number of candidate nodes to process 
that task (which includes the vehicle generating the task), X is 
the number of candidate CPUs to process that task (i.e., the 
sum of the number of CPUs in each candidate node), and M is 
the number of MEC sites in the network. There are four main 
elements in the observation. The first is a set of values (𝑄𝑄𝑥𝑥), 
which represent the fraction of time that each CPU is currently 
available (i.e., has no reservations). It is calculated as shown 
in Eq. (2), dividing the available time in the scheduling queue 
of the CPU by the limit time for scheduling in the node where 
that CPU is located (𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛),  

 𝑄𝑄𝑥𝑥 = available time for scheduling in queue 𝑥𝑥
𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  . (2) 

The second set of elements, (𝐴𝐴𝑐𝑐,𝐴𝐴𝑖𝑖𝑖𝑖 ,𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 ,𝐴𝐴𝑑𝑑), represents the 
value of those parameters for the corresponding application 
(Table I). However, in the implementation, those values are 
normalized by the maximum value of all defined applications. 
The third is a set of values (𝐷𝐷𝑘𝑘) calculated as shown in Eq. (3), 
which compares the maximum allowed latency with the 

expected delay due to data sending and processing at node k 
(without taking into account the state of the queues),  

 𝐷𝐷𝑘𝑘  =  max �0, 1– 𝑡𝑡𝑇𝑇,𝑒𝑒𝑒𝑒𝑒𝑒
𝑘𝑘

𝐴𝐴𝑑𝑑
�. (3) 

A value of 𝐷𝐷𝑘𝑘 close to 1 indicates that the total estimated delay 
(𝑡𝑡𝑇𝑇,𝑒𝑒𝑒𝑒𝑒𝑒
𝑘𝑘 ) is much lower than the maximum latency (𝐴𝐴𝑑𝑑), while 

a value close to 0 implies that there is not much margin. If the 
calculation produces a value less than 0 (estimated total delay 
greater than maximum latency), it is truncated to 0. A value of 
0 implies that, in principle, the task cannot be processed 
complying with latency requirement. The fourth and final part 
is a set of values (𝑉𝑉𝑚𝑚 ) that represent the MEC sites in the 
network. All these values are 0 except for the MEC associated 
to the base station to which the vehicle generating the task is 
connected, which will be 1. 

With each observation, the environment also provides a 
reward, which is the sum of the rewards associated to the 
successful execution (or not) of the tasks processed since the 
previous step. We have defined and analyzed two different 
types of rewards for each task: the penalty reward (PR) and 
the weighed binary reward (WBR), as shown in (4) and (5), 

 𝑃𝑃𝑃𝑃 = �
−1000, if unable to process

−100 − (𝑡𝑡𝑇𝑇 − 𝐴𝐴𝑑𝑑), if 𝑡𝑡𝑇𝑇 > 𝐴𝐴𝑑𝑑
0, if 𝑡𝑡𝑇𝑇 ≤ 𝐴𝐴𝑑𝑑

  (4) 

 𝑊𝑊𝑊𝑊𝑊𝑊 = �
−𝐴𝐴𝑝𝑝, if 𝑡𝑡𝑇𝑇 > 𝐴𝐴𝑑𝑑 or unable to process
+𝐴𝐴𝑝𝑝, if 𝑡𝑡𝑇𝑇 ≤ 𝐴𝐴𝑑𝑑

 (5) 

where 𝑡𝑡𝑇𝑇 is the total real delay that was required to complete 
the task, and Ap is a weight that can be used to give priority to 
some applications. PR provides a null reward if a task has been 
processed fulfilling latency requirements, and a negative 
reward otherwise. In contrast, WBR provides a constant 
positive reward when a task is processed complying with 
latency requirements, and a constant negative reward 
otherwise. 

The DRL agent performs the action of choosing the node 
that will process each task. Therefore, its action space is equal 
to the number of candidate nodes. In this paper, we consider 
that the candidate nodes are always the cloud node, the RDC 
node, the MEC node to which the vehicle generating the task 
is associated, and the vehicle itself. The policy for decision 
making is updated based on the observations, actions and 
rewards obtained, and for that aim we have employed four 
different DRL algorithms, Double Deep Q-Network (DDQN) 
[14], State-Action-Reward-State-Action (SARSA) [15], 
Persistent Advanced Learning (PAL) [16] and Trust Region 
Policy Optimization (TRPO) [17], with the help of the open-
source Python library ChainerRL [18]. All implemented DRL 
agents use a neural network with one hidden layer of sixty 
neurons, with all neurons activated by a hyperbolic tangent. 
The discount factor is set to 0.995 and the exploration is 
constant with a probability of 20% on each time step. 

B. Heuristics 
For comparison purposes we have also implemented four 

heuristics that select between four possible choices for 
processing (at the vehicle, MEC, RDC, or cloud): 



1) Maximum distance processing (MDP): Delegates the 
processing of tasks as high in the hierarchy as possible, as 
long as an estimate of the total delay (considering 
propagation and computing times) does not exceed the 
maximum allowed latency for the application.  

2) Uniform distribution processing (UDP): Makes 
offloading decisions with equal probably between all nodes 
in the hierarchy. 

3) Cloud processing (CP): Always processes in the 
cloud. 

4) Local processing (LP): Always processes locally, i.e., 
in the vehicle. 

IV. SIMULATION RESULTS 
To test the performance of the different methods, we have 

run simulations in a custom environment implemented using 
the Python library OpenAI Gym [19]. This environment 
simulates the network shown in Fig. 1, with a set of 50 
vehicles running all the applications defined in Table I, and 
assuming that all vehicles are served by a single MEC site. All 
applications have been assumed to have the same priority 
(𝐴𝐴𝑝𝑝 = 1). The interarrival time of the tasks associated with 
each application has been generated according to an 
exponential distribution with average 𝐴𝐴𝑡𝑡, as shown in Table I, 
where the size of the tasks and their computation and latency 
requirements are also indicated. Essentially, each application 
running at each vehicle has its own exponential distribution of 
mean 𝐴𝐴𝑡𝑡, with a maximum precision in the simulator of 10-10 

milliseconds. The interaction of the DRL agent and the 
environment is as described in the previous section.  

For the DRL algorithms, the simulations have consisted of 
three distinct phases: learning, validation and testing. For 
heuristics, only the testing phase has been used, as the others 
are unnecessary. The learning phase consists of 106 time steps 
(requests for task offloading) during which the DRL agents 
update their policies. The validation and testing phases consist 
of 105 time steps during which the DRL agents do not update 
their policies and follow the one they obtained during the 
previous learning phase. All phases have 103 additional time 
steps at the beginning for warming-up the simulator (not 
counted towards metrics). Each DRL agent has been trained 
eight times in each scenario and the performance of the eight 
policies found have been evaluated in a validation phase. 
Then, the best one has been evaluated a second time (test 
phase) to arrive at the final result. During the validation/testing 
phases, we have assessed the average reward obtained, and 
also the success rate, which is defined as the percentage of 
tasks that are executed complying with latency requirements. 
However, we focus on the last metric, as it is directly related 
to network performance. 

Table II shows the success rates of the DRL methods and 
heuristics. Note that heuristics do not use rewards (thus, 
PR/WBR are not used), but computing nodes handle 
reservation queues differently if planning is activated or not 
(independently of which technique is used to make offloading 
decisions). Looking at the results, the use of DRL is 
considerably superior to the heuristics in terms of success 
ratio. However, the heuristics have the advantage of being 
much simpler from a computational point of view. 

In the studied scenario, it is clear that simple solutions such 
as processing locally (LP), in the cloud (CP) or distributing 
the load uniformly (UDP) are not good enough, and 

accounting for the state of the network and the type of 
application is important. The MDP heuristic gets better 
results, as it makes decisions estimating propagation and 
computing delays in the different nodes and considering the 
application requirements in terms of latency. However, 
compared with these methods, the DRL techniques get a 
significant improvement in performance. The agents are able 
to learn how to act in different environments considering 
factors that are hard to consider when designing heuristics 
and, as such, obtain better results. With proper training we 
observe a success rate of up 90.38% and 92.12% for the 
DDQN and PAL agents, respectively. This is considerably 
superior to the best result of MDP, which gets a success rate 
of around 80.32%.  

Regarding the reward strategy, we observe a general 
increase in success rate for every DRL agent when using WBR 
instead of PR. The only exception to this is DDQN when 
planning is not used, as it gets a better success rate with PR. 
That said, DDQN still obtains its best result with WBR (when 
planning is used). As for the difference between reservations 
with or without planning, there are no signs of improvement 
for the heuristics apart from a slight difference for MDP. 
However, the DRL methods tend to perform better with the 
use of planning, that is, the DRL methods generally learn to 
exploit the advantages of the planning strategy adopted by the 
computing nodes, thus translating in an increase of the success 
ratio. 

V. CONCLUSION 
This paper has studied the performance of four DRL 

algorithms, and four heuristics, for computation offloading of 
vehicular applications in an edge computing and 
communication network. For the defined network structure 
with 50 vehicles, each running a set of six different 
applications, the success rate (i.e., the percentage of processed 
tasks with compliance to their maximum latency requirement) 
has been analyzed. 

The results show the superiority of DRL over the use of 
heuristics, which do not have the necessary flexibility to 
account for all relevant factors. Improving the design of these 
heuristics becomes exponentially difficult as the complexity 
of the problem increases, while DRL algorithms can adapt to 
this increase in complexity while utilizing very limited 
information during their training and testing. As seen in the 
defined observation for the agents, they only require simple 
estimates for the state of the network in the form of rough 

TABLE II.  EXPERIMENTAL SUCCESS RATES 

 
With planning Without planning 
PR WBR PR WBR 

H
eu

ris
tic

s 

MDP 80.32% 78.39% 

UDP 30.69% 30.61% 

CP 33.62% 33.17% 

LP 44.57% 44.92% 

D
R

L 
m

et
ho

ds
 DDQN 78.04% 90.38% 88.64% 82.55% 

SARSA 78.27% 84.64% 77.86% 79.09% 

PAL 85.60% 90.36% 78.22% 92.12% 

TRPO 64.14% 80.80% 63.10% 74.50% 

 

 



occupancy of the queues of each core and predefined 
knowledge of the running applications, network nodes and 
delay estimations. Additionally, this paper has shown that a 
correct definition for the reward the agents receive when 
learning is important, as it can improve certain metrics. In this 
case, the proposed WBR method is a good reward strategy for 
maximizing success rates. We have also shown that the 
success rate can be generally improved if WBR is combined 
with a planning strategy in the computing nodes. Finally, we 
have also shown that the DDQN (Double Deep Q-Network) 
and PAL (Persistent Advanced Learning) are the DRL 
algorithms providing the best results. Future work will include 
analyzing more complex scenarios (e.g., with multiple MEC 
locations) and optimizing the underlying neural network or the 
DRL agents. 

REFERENCES 
[1] European Telecommunication Stardards Institute (ETSI), “Multi-

access Edge Computing” [Online]. Available: 
https://www.etsi.org/technologies/multi-access-edge-computing 

[2] A. Shakarami, M. Ghobaei-Arani and A. Shahidinejad, “A survey on 
the Computation Offloading Approaches in Mobile Edge Computing: 
A Machine Learning-Based Perspective”, Computer Networks, vol. 
182, 2020. 

[3] H. Liu, H. Zhao, L. Geng and W. Feng, “A Policy Gradient Based 
Offloading Scheme with Dependency Guarantees for Vehicular 
Networks”, IEEE Globecom Workshops (GCWkshps), pp. 1-6, 2020. 

[4] H. Liu, H. Zhao, L. Geng, Y. Wang and W. Feng, “A Distributed 
Dependency-Aware Offloading Scheme for Vehicular Edge 
Computing Based on Policy Gradient”, 8th IEEE International 
Conference on Cyber Security and Cloud Computing (CSCloud), 7th 
IEEE International Conference on Edge Computing and Scalabe Cloud 
(EdgeCom), pp. 176-181, 2021. 

[5] 5G Automotive Association (5GAA), “C-V2X Use Cases 
Methodology, Examples and Service Level Requirements Whitepaper” 
[Online]. Available: 
https://www.everythingrf.com/whitepapers/details/3617-C-V2X-Use-
Cases-Methodology-Examples-and-Service-Level-Requirements 

[6] M. H. Eiselt and F. Azendorf, “Accurate Measurement of Propagation 
Delay in a Multi-Span Optical Link”, International Topical Meeting on 
Microwave Photonics (MWP), pp.1-3, 2019. 

[7] Wikileaks, “Map of Amazon’s Data Centers” [Online]. Available: 
https://wikileaks.org/amazon-atlas/map/ 

[8] Next Generation Mobile Networks (NGMN) Alliance, “5G WHITE 
PAPER”, February 2015 [Online]. Available: 
https://www.ngmn.org/wp-
content/uploads/NGMN_5G_White_Paper_V1_0.pdf 

[9] E. Coronado, G. Cebrian-Marquez and R. Riggio, “Enabling 
Computation Offloading for Autonomous and Assisted Driving in 5G 
Networks”, IEEE Global Communications Conference 
(GLOBECOM), nº 1-6, 2019. 

[10] Amazon, “Amazon EC2” [Online]. Available: 
https://aws.amazon.com/es/ec2/ 

[11] Intel, “Intel Xeon E Processors” [Online]. Available: 
https://www.intel.es/content/www/es/es/products/details/processors/x
eon/e.html 

[12] N. A. Majedkan, A. J. Ahmed and L. M. Haji, “CPU Scheduling 
Techniques: A Review on Novel Approaches Strategy and 
Performance Assesment”, Journal of Applied Science and Technology 
Trends, vol. 1, no. 2, pp. 48-55, 2020. 

[13] A. Buttaboni, M. De Andrade and M. Tornatore, “A Multi-Threaded 
Dynamic Bandwidth and Wavelength Allocation Scheme With Void 
Filling for Long Reach WDM/TDM PONs,” Journal of Lightwave 
Technology, vol. 31, no. 8, pp. 1149-1157, April 15, 2013. 

[14] H. v. Hasselt, A. Guez and D. Silver, “Deep Reinforcement Learning 
with Double Q-learning”, Proc. of the Thirtieth AAAI Conference on 
Artificial Intelligence, pp. 2094-2100, 2016. 

[15] R. S. Sutton and A. Barto, Reinforcement Learning: An Introduction 
(Second Edition), MA: MIT Press, 2018. 

[16] M. G. Bellemare, G. Ostrovski, A. Guez, P. S. Thomas and R. Munos, 
“Increasing the Action Gap: New Operators for Reinforcement 
Learning”, Proc. of the Thirtieth AAAI Conference on Artificial 
Intelligence, pp. 1476-1483, 2016. 

[17] J. Schulman, S. Levine, P. Moritz, M. I. Jordan and P. Abbeel, “Trust 
Region Policy Optimization”, Proc. of the 31st International Conference 
on Machine Learning (ICML), pp. 1889-1897, 2015. 

[18] Y. Fujita, T. Kataoka, P. Nagarajan and T. Ishikawa, “ChainerRL” 
[Online]. Available: https://github.com/chainer/chainerrl 

[19] OpenAI, “Gym” [Online]. Available: https://github.com/openai/gym 

 


	mferens_Deep__reinforcement_learning_applied_postprint
	mferens_Deep_reinforcement_learning_applied_postprint
	I. Introduction
	II. Vehicular Environment and Scheduling Techniques in Computing Nodes
	A. Application set
	1) Processing cost (Ac): CPU cycles necessary to process each bit of the task (data packet).
	2) Input data (Ain): Size in bits of the data packet to be processed.
	3) Output data (Aout): Size in bits of the data packet to be returned to the vehicle after the node processes the task.
	4) Maximum latency (Ad): Maximum tolerable delay in milliseconds since the vehicle initiates the task (generates the input data packet) until it receives the output of the processing (reception of the output data packet).
	5) Average generation period (At): Average time between generating consecutive data packets (tasks).

	B. Network elements and scheduling techniques

	III. Decision-Making Algorithms for Computation Offloading
	A. Deep reinforcement learning algorithms
	B. Heuristics
	1) Maximum distance processing (MDP): Delegates the processing of tasks as high in the hierarchy as possible, as long as an estimate of the total delay (considering propagation and computing times) does not exceed the maximum allowed latency for the a...
	2) Uniform distribution processing (UDP): Makes offloading decisions with equal probably between all nodes in the hierarchy.
	3) Cloud processing (CP): Always processes in the cloud.
	4) Local processing (LP): Always processes locally, i.e., in the vehicle.


	IV. Simulation Results
	V. Conclusion
	References



