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Abstract—Network Slicing (NS) is a key enabler of the 5G
network ecosystem due to its potential to provide distinct services
over the same physical infrastructure. However, the necessity to
optimally orchestrate resources for heterogeneous demands is
crucial when dealing with resource constraints and Quality-of-
Service (QoS) requirements. We consider a radio access network
scenario providing NS over multiple base stations (BS) with
limited resources, and we design an efficient resource orchestra-
tion technique, based on reinforcement learning, which optimizes
resource utilization among different services while satisfying the
constraints and complying with Service Level Agreement (SLA)
and QoS requirements. The proposed technique makes use of the
Trust Region Method to formulate the orchestration objective
function and satisfy the constraints and is then optimized via
Kronecker Factored Approximate Curvature (K-FAC). Extensive
simulations demonstrate that the proposed technique outper-
forms other Reinforcement Learning (RL) algorithms, reaching
99% of QoS and SLA satisfaction while assuring bandwidth
constraints.

Index Terms—Network Slicing, Resource Orchestration, Rein-
forcement Learning, Constrained Optimization.

I. INTRODUCTION

In 2020, around 190 million 5G consumers were estimated
to be associated with wide-ranging services such as au-
tonomous driving, industry 4.0, virtual and augmented reality,
and the Internet of Things (IoT) [1]. However, such growing
demands of data traffic and heterogeneity require an efficient
utilization and orchestration of resources to meet the needs of
5G users in terms of Quality of Service (QoS) and Service
Level Agreements (SLA) in a cost-efficient way.

This work is part of the IoTalentum project, which has received funding
from the EU H2020 research and innovation programme under the MSCA
grant agreement No 953442. It is also supported by Consejerı́a de Educación
de la Junta de Castilla y León and the European Regional Development
Fund (Grant VA231P20), and the Spanish Ministry of Science of Innovation
and the State Research Agency (Grant PID2020-112675RB-C42 funded by
MCIN/AEI/10.13039/501100011033).

In this work, we propose an intelligent NS resource or-
chestration technique to comply with pre-defined QoS and
SLA requirements while considering bandwidth resource con-
straints. This problem is also considered in [2], [3], but
those studies ignore two crucial features, the consideration
of (1) a distributed Radio Access Network (RAN) scenario
consisting of multiple BSs with resource constraints, and (2)
the continuous dynamicity and fluctuations of network traffic
due to the mobility of users. In contrast with [2], [3], our
proposal addresses these two issues. We use the Actor-Critic-
based RL method and the K-FAC second-order optimizer for
that aim. This makes it possible to reinforce the constraints in
orchestration decisions during learning and to manage the huge
and dynamic network state fluctuations due to user mobility.

The organization of this paper is as follows. Section II
describes the problem statement, including the network model
and associated constraints. Then, Section III describes the
proposed reinforcement learning technique. Finally, the sim-
ulations to assess the performance of the technique, and the
results obtained, are described in Section IV.

II. PROBLEM STATEMENT

Let us consider a Cloud-Radio Access Network (C-RAN),
composed of a set of BSs, and administrated by a centralized
main network orchestrator (MNO). Three basic NS services
are offered, which are Enhanced Mobile Broadband (eMBB),
Ultra-Low Latency Communication (URLLC), and Voice over
Long-Term Evolution (VoLTE). Users of the network may
subscribe to these services, and they are assumed to move
around the network at a specific speed.

The bandwidth is considered a predetermined limited re-
source and thus is a crucial impacting factor on the orchestra-
tion decisions. Thus, the objective is to dynamically distribute
bandwidth in each time slot among the three service slices
according to their QoS and SLA requirements. We consider



two constraints during allocation management, which are cu-
mulative and instantaneous constraints. Cumulative constraints
(total bandwidth) are updated at each scheduling interval, and
it must be ensured that the total aggregated allocation of
the resource does not exceed an imposed limit. In contrast,
instantaneous constraints (data rate and latency) are associated
with every allocation action to ensure they do not exceed the
limit during that scheduling interval. Moreover, we consider
two Key Performance Indicators (KPIs) based on users’ expe-
rience which are Service Satisfaction Ratio (SSR) and Service
Dissatisfaction Ratio (SDR), which will be formally described
in Section IV.

III. PROPOSED TECHNIQUE: EFFICIENT ACTOR-CRITIC
BASED KRONECKER-FACTORED OPTIMIZED TRUST

REGION METHOD

In order to solve the problem described in Section II, a
multi-agent RL technique is used. Each BS in the network has
a learning agent to ascertain the resource allocation governed
by the MNO. Likewise, all the BSs send their current states
(dynamic traffic demands) to the main orchestrator in each
time slot and receive the responses in terms of actions (i.e.,
how to distribute bandwidth) based on the MNO global policy.
Thenceforth, the feedback on the impact of these actions,
either positive or negative, is submitted back to the MNO in
each slot in terms of rewards. The MNO utilizes these rewards
to tune the orchestration policy to an optimal state. All the BSs
work in an independent cooperative manner, which means that
the decision of one BS has an impact on the global policy of
the MNO, which in the long run modifies the actions sent by
the MNO to the BSs.

In particular, we have designed an actor-critic architecture
having trust region-based objective function to deploy efficient
resource orchestration decisions dynamically while consider-
ing the limited system resources as constraints. Moreover, in
order to achieve stable gradient updates when learning the
policy and dealing with large-scale distributed and heteroge-
neous traffic, we have integrated a second-order optimizer to
update the value function (critic), which is K-FAC. K-FAC is
much faster and more efficient when compared to first-order
optimization [4], especially when dealing with a multitude of
environmental parameters.

The resource orchestration problem is defined as an op-
timization problem reflecting the Markov property [5]. To
formulate the problem as a Markov problem for an actor-
critic-based RL environment, we utilized the following key
elements of Constrained Markov Decision Processes (CMDP).
Let S denote the system state, which provides information on
network traffic such as the number of users and traffic demand
in the current time slot. The action space A is described
as a set of orchestration decisions (bandwidth distribution)
in the current time slot. Principally, A is dependent on the
cumulative and instantaneous system constraints (as they must
be satisfied in each orchestration decision). Each reward R is
calculated in each time slot when an action is taken based
on the orchestration decisions. If the action satisfies all the

requirements and constraints, then a higher positive reward
is given; otherwise, it is negative. Also, both cumulative and
instantaneous rewards are stored in terms of total system
SLA (rate and latency) satisfaction. The reward is thus a real
number that depends on the current state, the action taken, and
the following state,

R : S ×A× S 7→ R. (1)

Finally, a cost function is used to model the impact of
bandwidth constraints. It becomes challenging to handle all
of the requests in each time slot. So, facing dissatisfaction
with SLA incurs a cost to the system which is calculated as
a cumulative constraint Cc,

Cc : S ×A× S 7→ R. (2)

A. Objective Function with Cumulative Constraint

Our aim is to get an optimal orchestration policy π, i.e.,
determining which action to take given a network state, while
satisfying the constraints. Such a policy depends on a set of
parameters θ, thus it will be denoted by πθ. The objective
is to find the parameters θ which maximize the discounted
cumulative reward function LC

πθ
c , defined in equation 3,

LC
πθ
c = Eπθ

[ ∞∑
t=0

γtR (st, at, st+1)

]
(3)

where R is the reward and Eπθ
[·] is the trust prediction

generated when using policy πθ. To find the optimal set of
parameters we use the policy gradient method [6], which
aims to maximize the objective function LC

πθ
c by iteratively

updating policy parameters θ ←− θ + α∇θLC
πθ
c , being α

the step size of the update. The policy gradient for objective
function can be expressed as in equation 4.

∇θLC
πθ
c = Eπ

[ ∞∑
t=0

∇θπθ (at | st)Aπθ (st, at)

]
(4)

where Aπθ (st, at) is the advantage function, in short A(t),

A(t) =

k−1∑
i=0

(
γiR (st+i, at+i) + γkV π

ϕ (st+k)
)
− V π

ϕ (st) (5)

where V π
ϕ is value function that approximates the policy π,

and thus ϕ are the parameters of the critic.
Furthermore, to satisfy the constraint in each orchestration

decision we make use of the trust region surrogate function,
rp(θ), given in equation 6, where πθold is the policy of last
time slot.

rp(θ) = Eπ

[
πθ (at | st)
πθold (at | st)

A(t)

]
(6)

Moreover, we use the Kullback-Leibler (KL)-Divergence [7] to
formulate the expectation trajectories of divergence of policies
Eπ [DKL (πθold (at | st) , πθ (· | st))] ≤ δ, where πθold is the
policy of last time slot, δ is step size limitation, and DKL is



TABLE I: RAN Network Model Specifications

Model Specifications eMBB VoLTE URLLC
Initial no.of Users Poisson [Mean=800] Poisson [Mean=1200] Poisson [Mean=400]

Inter-Arrival Time per Subscriber Truncated Pareto [Exponential Para: 1.2] Uniform [Min: 0, Max: 160 ms] Exponential mean [180 ms]
Mean: 6ms, Max:12.5ms

Distribution of Packet Size Truncated Pareto [Exponential Para: 1.2] Constant [40 bytes] Constant [0.3 Mbyte]
Mean: 100 bytes, Max: 250 bytes]

Speed of Users Uniform [Min: 1m/s, Max: 5m/s] Uniform [Min: 1 m/s, Max: 5 m/s] Uniform [Min: 6 m/s, Max: 10 m/s]
SLA (Rate) 100 Mbps 51 kbps 10 Mbps

SLA (Latency) 10 ms 10 ms 1 ms
QoS (Service Availability) >99% >99% >95%

the KL-Divergence. With this, we can reinforce the constraints
into the objective function of the orchestration decision policy.

Finally the main objective function with constrained max-
imization using rp(θ) is formulated as LCLIP(θ) in equation
7.

LCLIP(θ) = Eπθ
[min {r(θ), clip(rp(θ), 1− ϵ, 1 + ϵ)}A(t)](7)

where clip(·) is a clipping function to set rp(θ) between
(1− ϵ, 1 + ϵ). The ϵ parameter is the error bound at step k,
which can be discounted by γ at each step to reduce the policy
π errors and improve the convergence.

The typical gradient updates are performed by equation 4,
which is dependent on θ parameters and which makes the
updates unstable. Thus, to have stable policy updates, we
employ K-FAC, which normalizes the θ parameter updates for
the objective function via the Fisher Information Matrix (FIM),
as given by equation 8. FIM is a local quadratic approximation
of KL-Divergence which approximates the gradient updates of
equation 4 independently of θ.

F = Eπθ
[∇θ log π (at | st) (∇θ log π (at | st))⊤]. (8)

B. Instantaneous Constraint

Since the action initially provided by the policy may not
comply with instantaneous constraints (and thus may be
unfeasible), it is necessary to implement a projection layer
to the actor which will project the infeasible action to the
feasible space. For that aim, the optimization problem shown
in equation 9 is solved, which provides the closest action a to
that initially provided by the policy, but subject to complying
but subject to complying with the constraint (ϵi) [8].

min
a

1

2
∥a− πθ(s)∥2 (9)

s.t. Ci(s, a) ≤ ϵi

C. Actor-Critic Architecture of Proposed Technique

To sum up and clarify the relationship of the previous
equations, the architectural detail of the proposed technique
is given in Figure 1. The proposed actor-critic architecture is
identical for each intelligent agent deployed in each BS. The
actor updates the policy and the critic approximates the value
function. In each BS the instantaneous constraints are handled
via a policy network and we extend the neural network that
approximates that policy with an additional softmax safety
layer (in this way the value of Ci(s, a), given in equation

9, can be learned simultaneously). On the other hand, the
MNO performs the generation of the state and broadcasts the
orchestration policy to each BS based on the rewards given
by each BS.

Fig. 1: Actor-Critic architecture of the proposed technique.

IV. EXPERIMENTS AND SIMULATION SETTINGS

We have implemented the multi-agent RL RAN network
model and the proposed technique in Python to analyze its
performance. An RL agent is placed in each BS and governed
by the MNO. The total bandwidth is set to 1000 Mbps in each
BS. The MNO slices the network into three distinct types of
user-subscribed services, eMBB, URLLC, and VoLTE, whose
SLAs and QoS requirements are obtained from [9] and shown
in Table I. The total number of BS is 19, having 2400
moving users where the arrival and leaving of users are set
via a Poisson distribution. The dynamics of user mobility is
formulated via straight line random bouncing (sLRB) taken
from 3GPP [10] mobility model with the specified speeds.
Initially, the users are distributed uniformly around the cov-
erage area and then start moving circularly around the BS,
eventually bouncing back in a random direction when reaching
the edge of the coverage area. The SLA, QoS, speed, and other
parameters are given in Table I. In each time slot, set to 1



(a) SSR of eMBB Slice

(b) SSR of URLLC Slice

(c) SSR of VoLTE Slice

Fig. 2: Illustration of SSR of eMBB, URLLC, and VoLTE

second (sec), the MNO must re-allocate the bandwidth and
adjust it according to the current traffic demands, and update
its policy. In addition, each BS also performs the slice band
adjustment policy update among each subscriber in a round-
robin scheduling manner every 0.5 ms.

To implement the proposed RL technique, first, we set up
the network model in the OpenAI gym environment together
with the Stable Baselines3 library [11]. Then, we compared
the proposed technique with two other RL algorithms, Ad-
vantage asynchronous actor-critic network (A2C) [12], and
Trust region policy Optimization (TRPO) [7], which are also
implemented via OpenAI gym. All the policy networks of
the baseline and proposed algorithms comprise two fully

(a) SDR of eMBB Slice

(b) SDR of URLLC Slice

(c) SDR of VoLTE Slice

Fig. 3: Illustration of SDR of eMBB, URLLC, and VoLTE

connected layers, with 64 and 32 nodes, respectively. The
hyper-parameters for the proposed technique are set as follows.
The actor learning rate is set to 0.002, the critic learning rate
is 0.01, the discount factor γ is 0.99, the clipping ratio ϵ is set
to 0.2, trust region radius δ is set to 0.001, and a total number
of 10000 episodes are run where each episode is comprised
of 500 timesteps. The evaluation of the proposed technique
with other RL algorithms is performed via the following key
performance indicators (KPIs):

• Service Satisfaction Ratio (SSR): We define SSR as the
ratio of traffic packets receiving required resources in
terms of bandwidth. SSR is cumulatively dependent on
SLA and QoS ranges given in Table I. So, the SSR ranges



from 0 to 1, where 1 is the desired (optimal) ratio. It also
states that if SSR is reaching 99% of the desired ratio then
the user is experiencing satisfactory service availability.

• Service Dissatisfaction Ratio (SDR): SDR is defined as
the cost incurred by the actions of the orchestration
policy while satisfying the constraints at each interval.
If the agent calculates the total bandwidth allocation and
exceeds the constraint, that action (ideally) should not be
executed. Hence, the extended layer of the policy network
takes the outcome of the unconstrained and constrained
actions and computes their difference. Then, actions that
are violating the constraints and have a large difference to
constrained actions are rejected, thus adapting the served
demands to the set of available resources. Due to that,
in some intervals, some requests may not be fulfilled
according to the SLA and QoS criteria and an increased
value in this ratio (optimal SDR ratio is 0) indicates
degraded performance at the user level.

A. Results

Simulation results are shown in terms of SSR and SDR in
Figures 2 and 3, respectively, when the proposed technique,
as well as TRPO and A2C, are used. The figures represent the
average of 10 experiments and the associated variance.

As shown in Figure 2, the proposed technique learns a
policy that leads to values of SSR that are very close to
1 (which is the optimal value), for the three slices, eMBB
(subfigure a), URLLC (subfigure b) and VoLTE (subfigure c).
The SSR obtained with the proposed technique is approxi-
mately equal (for eMBB and VoLTE) or slightly better (for
URLLC) than when TRPO or A2C are used. Moreover, the
proposed technique has two main advantages when compared
with TRPO and A2C. First of all, the figures show that the
proposed technique enables quicker learning of the policy and
thus evolves towards the optimal value of SSR in a lower
number of episodes. Secondly, when analyzing the variance
of the SSR (i.e., the “width” of the shaded area of the plots),
it can be seen that, once the policy has been learned, it is
much lower for the proposed technique than for the other
two methods. Therefore, the proposed technique leads to more
stable and consistent results than the other two methods and
more quickly.

Figure 3 shows the SDR values for the eMBB, URLLC,
and VoLTE slices (subfigures a to c, respectively). In this case,
similar conclusions can be obtained. Again, the proposed tech-
nique learns more rapidly than the other methods a decision
policy with leads to SDR close to 0 (optimal value for this
parameter), and the variance is again lower than with the other
techniques.

Finally, it is worthy to note that for the VoLTE slice, optimal
(or near-optimal) values are obtained from the very beginning,
and consistently for all experiments, in contrast to the other
slices. This is due to the fact that the SLA requirements for
VoLTE in terms of data rate are only 51 kbps, much lower
than that of the other slices, so it is easier to comply with
them.

V. CONCLUSIONS

We have presented an efficient RL-based resource orchestra-
tion technique for service slices (eMBB, VoLTE, and URLLC)
in distributed RANs. The proposed technique involves an
actor-critic architecture with a customized objective function
to reinforce the constraints during orchestration decisions
using trust region policy optimization. Moreover, the efficient
optimization of the proposed technique is achieved by the
K-FAC policy update method.

We have analyzed the performance of the proposal in a
simulated RAN with a set of BSs and moving users request-
ing eMBB, VoLTE, and URLLC services. Simulation results
have shown that the proposed technique outperforms other
baseline RL algorithms (TRPO and A2C). First, the proposed
technique learns a more accurate policy that dynamically
allocates bandwidth to the different network slices fulfilling
their requirements in terms of SLA (rate and latency) and
QoS (service availability), thus translating into near-optimal
values of SSR and SDR. Second, we have demonstrated
that the proposed technique is efficient as it learns a near-
optimal policy quicker than the other methods, which is of
great importance in evolving (i.e., realistic) environments.
Third, it provides more consistent policies, as demonstrated by
the low variance when repeating the simulation experiments.
However, much future work can be done, like improving
spectral efficiency with cumulative rewards.
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