
Rendiconti del Circolo Matematico di Palermo Series 2
https://doi.org/10.1007/s12215-023-00932-1

Nonexistence of solutions to fractional parabolic problem
with general nonlinearities

Lihong Zhang1 · Yuchuan Liu1 · Juan J. Nieto2 · Guotao Wang1

Received: 26 April 2023 / Accepted: 27 June 2023
© The Author(s) 2023

Abstract
In this content, we investigate a class of fractional parabolic equation with general
nonlinearities

∂z(x, t)

∂t
− (� + λ)

β
2 z(x, t) = a(x1) f (z),

where a and f are nondecreasing functions. We first prove that the monotone increasing
property of the positive solutions in x1 direction. Based on this, nonexistence of the solutions
are obtained by using a contradiction argument. We believe these new ideas we introduced
will be applied to solve more fractional parabolic problems.
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1 Introduction

As we all know, the nonexistence of solutions to indefinite elliptic and parabolic problems
have been studied extensively. In [1–3], for the following elliptic problem with nonlinearities
and the regular Laplacian

−�u(x) = a(x1)u
p(x), x ∈ R

n, 1 < p < ∞.

the Liouville theorems were studied. In [4], Chen and Zhu applied the extension method [5]
to transform the problem to a local one. They derived the nonexistence of positive solutions
to the following equation:

(−�)su(x) = x1u
p(x),

where 1
2 < s < 1 and 1 < p < ∞. In [6], Poláčik and Quittner introduced indefinite

parabolic problem with the regular Laplacian as follows,

∂z(x, t)

∂t
− �z(x, t) = a(x1)z

p(x, t), (x, t) ∈ R
n × R,

where x = (x1, x2, · · ·, xN ) ∈ R
n , t ∈ R, a is nondecreasing continuous function. They

received the nonexistence of bounded positive solutions of the above equation. In [7], Chen,
Wu and Wang studied the indefinite fractional parabolic equation

∂u(x, t)

∂t
+ (−�)su(x, t) = x1u

p(x, t), (x, t) ∈ R
n × R,

where 0 < s < 1 and 1 < p < ∞ and they obtained the monotone increasing and
nonexistence of positive bounded solutions. More details can be seen in [8–11].

In 2023, with the aid of the direct method of moving planes, we [12] studied a tempered
fractional Laplacian parabolic equation with logarithmic nonlinearity, asymptotic symmetry
andmonotonicity of radial solution of the parabolic equation were obtained. As a supplement
and continuation of our above research results, in this work, we will study the nonexistence
of solutions for a class of tempered fractional Laplacian parabolic problem with general
nonlinearity, which will further enrich the theory of tempered fractional Laplacian parabolic
problem.

To our knowledge, the nonexistence of solutions to parabolic equation with general
nonlinearity is rarely studied. Here, we mainly focus on the following equation:

∂z(x, t)

∂t
− (� + λ)

β
2 z(x, t) = a(x1) f (z), (1.1)

where a and f are nondecreasing functions and the tempered fractional Laplacian operator
is defined as

(� + λ)
β
2 z(x, t) = −Cn,β,λP.V .

∫
Rn

z(x, t) − z(y, t)

eλ|x−y||x − y|n+β
dy,

where β ∈ (0, 2), λ is a sufficient small positive constant and Cn,β,λ = �( n2 )

2π
n
2 |�(−β)|

. P.V .

presents the cauchy principle value and �(t) = ∫ ∞
0 st−1e−sds is the Gamma function.

Obviously, when z ∈ C1,1
loc

⋂Lβ , (� + λ)
β
2 z(x, t) is well defined, where Lβ = {z(·, t) ∈

L1
loc(R

n)| ∫Rn
|z(x,t)|
1+|x |n+β dx < +∞}.

The fractional Laplacian �
2
β is the generator of the β-stable Lévy process, in which the

second and all higher order moments diverge. It sometimes is referred to as a shortcoming
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when applied to physical processes. So a parameterλ is introduced to temper theLévyprocess.
TemperedLévy process is the scaling limit of the temperedLévyflight, whichmakes the Lévy
flight a more suitable physical model. Moreover, the tempered fractional Laplacian equation
governs the probability distribution function of the position of the particles and some works
on the tempered fractional Laplacian have been done by scholars. For example, in [13],
Zhang, Deng and Fan developed the finite difference schemes for the tempered fractional
Laplacian equation with the generalized Dirichlet type boundary condition. In [14], Zhang,
Deng and Karniadakis established numerical methods in the Riesz basis Galerkin framework
with respect to the tempered fractional Laplacian. In [15], Zhang, Hou, Ahmad and Wang
studied the Choquard equation involving a generalized nonlinear tempered fractional p-
Laplacian operator. In addition, more results on tempered fractional Laplacian operator can
be found in [16–19].

The nonlocal property of the fractional Laplacian operator creates some difficulties to
study it. To overcome this difficulty, an extension method was introduced by Caffarelli and
Slivestre [20], which converts the nonlocal problem into a high dimensional local one. In
addition, the method of moving planes in integral forms also has been widely used to study
the nonlocal problems, please see [21, 22]. However, some nonlocal operators cannot be
solved by the above method. In [23], Chen, Li and Li put forward a novel approach: a direct
method of moving planes method, which is a new idea to solve the fractional Laplacian
problems. By using direct method of moving planes, in [24], Wang and Ren devoted to a
nonlinear Schrödinger equation with the fractional Laplacian and Hardy potential and in
[25], Zhang and Nie studied two nonlinear equations concerning Logarithmic Laplacian.
Recently, in [26], in view of nonlocal parabolic problems, Chen, Wang and Niu developed
the asymptotic method of moving planes and applied it on bounded or unbounded domains.
Numerous results can be seen in [27–29].

In this article, we study parabolic equation involving the general nonlinearity by the direct
method of moving planes. A mass of elliptic equations involving general nonlinearity have
been studied by many authors. Here, we make a new attempt to study parabolic equation
with the general nonlinearity to obtain monotonicity and nonexistence of its solution.

2 Preliminaries

in order for the lemma to work, we introduce the following notations. We define

Tα = {x = (x1, x2, · · ·, xn) ∈ R
n | x1 = α, for ∈ R}

being the moving planes and

	α = {x ∈ R
n | x1 < α}

being the region to the left of Tα .
Also,

xα = (2α − x1, x2, · · ·, xn)
is the reflection of x about Tα . Meanwhile, we denote

zα(x, t) = z(xα, t), Zα(x, t) = zα(x, t) − z(x, t).

In order to continue the proof, we show the following lemma.
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Lemma 2.1 [9] Given any N (t) > 0, there exists a positive constant k0 such that if N (t) ≤
−N (0), then

C

|x1(t) − α|β > k0 > 0, (2.1)

where x(t) = (x1(t), · · ·, xn(t)) is a minimum point of Z̄α(x, t) in 	α for each fixed t.

3 Main results

For this part, our main results are given. The monotonicity of solutions in x1 direction and
the nonexistence of positive solutions are established by Theorem.3.1 and Theorem.3.2
respectively. The main content of Theorems are as follows.

Theorem 3.1 Let z(x, t) ∈ (C1,1
loc (R

n)∩Lβ)×C1(R) be a positive bounded classical solution
of (1.1), assume that (1.1) satisfies the following conditions:

(H1) a(p) ≤ 0, for p ≤ 0;
(H2) a(p) > 0 somewhere for p > 0;
(H2) f is positive and locally Lipschitz continuous.

Then z(x, t) is monotone increasing in x1 direction.

Proof From the equation (1.1), we deduce that

∂Zα(x, t)

∂t
− (� + λ)

β
2 Zα(x, t)

= a(xα
1 ) f (zα) − a(x1) f (z)

= (a(xα
1 ) − a(x1)) f (zα) + a(x1)( f (zα) − f (z))

≥ a(x1)( f (zα) − f (z))

= a(x1)N (α, x)Zα(x, t)

where N (α, x) = f (zα)− f (z)
zα−z . Meanwhile, we impose the condition that N (α, x) is

nonnegative.
Next, we consider the following problem{

∂Zα(x,t)
∂t − (� + λ)

β
2 Zα(x, t) ≥ a(x1)N (α, x)Zα(x, t), (x, t) ∈ 	α × R,

Zα(x, t) = −Zα(xα, t), (x, t) ∈ 	α × R,

(3.1)

Step 1. As usual, we want to show that

Zα(x, t) ≥ 0, (x, t) ∈ 	α × R, for is sufficiently negative. (3.2)

The assumption that z is bounded, which cannot guarantee the minimum of Zα can be
obtained. To overcome this difficulty, we introduce an auxiliary function

Z̄α(x, t) = Zα(x, t)

h(x)
,

where h(x) = |x − (α + 1)e1|o with e1 = (1, 0, · · ·, 0), o is a small positive constant. Based
on above, we know that the sign of Z̄α(x, t) is same as Zα(x, t).
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Letting |x | → +∞, we have

lim|x |→+∞ Z̄α(x, t) → 0. (3.3)

In the following processes, we will consider Z̄α(x, t).
According to (3.3), we deduce that there is x(t), then

Z̄α(x(t), t) = inf
x∈	α

Z̄α(x, t), for arbitrary fixed t ∈ R.

Next, we infer that

if Z̄α(x(t), t) < 0,
∂Z̄α

∂t
(x(t), t) ≥ −C

|x1(t) − α|β Z̄α(x(t), t). (3.4)

In reality, on the basis of a similar calculation as (22) in [9], we have

if Zα(x(t), t) < 0, − (� + λ)
β
2 Zα(x(t), t) ≤ C

|x1(t) − α|β Zα(x(t), t).

Combined with (3.1), then

∂Zα

∂t
(x(t), t) ≥ −C

|x1(t) − α|β Zα(x(t), t).

According to the definition of Z̄α(x, t), we deduce (3.4).
For arbitrary fixed t ∈ R, let

N (t) := Z̄α(x(t), t) = inf
x∈	α

Z̄α(x, t).

Proving (3.2) is equivalent to prove the following (3.5)

N (t) ≥ 0, ∀t ∈ R. (3.5)

Now we proceed with the proof of (3.5).
Suppose that (3.5) is invalid, there is a t

′ ∈ R, then

− N (0) := N (t
′
) = Z̄α(x(t

′
), t

′
) < 0. (3.6)

For arbitrary t̄ < t
′
, we set up a subsolution

m(t) = −R̄e−k0(t−t̄),

here k0 is defined in (2.1) and

−R̄ = inf
	α×R

Z̄α(x, t).

We show that

Z̄α(x, t) ≥ m(t), (x, t) ∈ 	α × [t̄, t′ ]. (3.7)

Think about the function

V (x, t) = Z̄α(x, t) − m(t), (x, t) ∈ 	α × [t̄, t′ ].
From the construction of m(t), we have

V (x, t) = Z̄α(x, t) − m(t) = Z̄α(x, t) − (−R̄) ≥ 0, (x, t) ∈ 	α × {t̄};
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and

V (x, t) = Z̄α(x, t) − m(t) = −m(t) ≥ 0, (x, t) ∈ Tα × [t̄, t′ ].
Assume that (3.7) is not true, there is (x(t̂), t̂) ∈ 	α × (t̄, t

′ ], then
V (x(t̂), t̂) = inf

	α×(t̄,t′ ]
V (x, t) < 0, (3.8)

∂V

∂t
(x(t̂), t̂) ≤ 0. (3.9)

On one hand, in view of the definition of V (x, t), then

Z̄α(x(t̂), t̂) = inf
	α

Z̄α(x, t̂) < m(t̂) < 0.

Hence, from (3.4), one has

∂ Z̄α

∂t
(x(t̂), t̂) ≥ −C

|x1(t̂) − α|β Z̄α(x(t̂), t̂). (3.10)

But on the other, by (3.9), we derive that

V (x(t̂), t̂) ≤ V (x(t
′
), t

′
),

that is

Z̄α(x(t̂), t̂) − Z̄α(x(t
′
), t

′
) ≤ m(t̂) − m(t

′
) ≤ 0

due to monotone increasing property of m(t). As a result,

N (t̂) = Z̄α(x(t̂), t̂) ≤ Z̄α(x(t
′
), t

′
) = N (t

′
) = −N (0). (3.11)

Taking account of Lemma 2.1, by (3.11), then

C

|x1(t̂) − α|β > k0 > 0.

Combined with (3.10), we derive that

∂ Z̄α

∂t
(x(t̂), t̂) ≥ −k0 Z̄α(x(t̂), t̂). (3.12)

Then from (3.9), one has

−k0m(t̂) = ∂m

∂t
(t̂) ≥ ∂ Z̄α

∂t
(x(t̂), t̂) ≥ −k0 Z̄α(x(t̂), t̂),

which concludes that

V (x(t̂), t̂) = Z̄α(x(t̂), t̂) − m(t̂) ≥ 0,

which yields a contradiction to

V (x(t̂), t̂) < 0.

Therefore, we derive that (3.7) holds. It means that

Z̄α(x, t) ≥ m(t), (x, t) ∈ 	α × [t̄, t ′ ].
For any t̄ , the above formula is true. Letting t̄ → −∞, we have m(t) → 0. Consequently,
Z̄α(x, t) ≥ 0, (x, t) ∈ 	α × (−∞, t

′ ], which contradicts to (3.6). Therefore, (3.5) is true
and so does (3.2).
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Remark 3.1 Using a proof similar to Step 1, we deduce that for arbitrary α > 0, Z̄α(x, t) is
a solution to (3.1) and

Z̄α(x(t), t) = inf
x∈	α

Z̄α(x, t) < 0,

it follows that x1(t) > 0. The above will be employed in Step 2.

Step 2. On account of (3.2), we move the Tα as long as the inequality holds. Let

α0 = sup{α|Zν(x, t) ≥ 0, ∀(x, t) ∈ 	ν × R, ν ≤ α}.
Now we verify that

α0 = +∞. (3.13)

We use a contradiction argument. Assume that 0 < α0 < +∞, then in view of the definition
of α0, there is a sequence αk ↘ α0 such that

inf
	αk ×R

Zαk (x, t) < 0.

Let

Z̄αk (x, t) = Zαk (x, t)

h(x)
,

where h(x) is mentioned earlier. Then obviously,

− Nk := inf
	αk ×R

Z̄αk (x, t) < 0. (3.14)

Since t ∈ R, the minimum point of Z̄αk might not be obtained for finite value t . For more

information about
∂ Z̄αk (x,t)

∂t , we pick a sequence tk , and x(tk) and τk ↘ 0, then

Z̄αk (x(tk), tk) = inf
	αk

Z̄αk (·, t) = −Nk + τk Nk . (3.15)

We construct an auxiliary function

Z̃αk (x, t) = Z̄αk (x, t) − τk Nkϑk(t),

here ϑk(t) = ϑ(t − tk), ϑ(t) ∈ C∞
0 (R), |ϑ ′

(t)| ≤ 1 and

ϑ(t) =
{
1 |t | ≤ 1

2 ,

0 |t | ≥ 2.

Next we study the value of Z̃αk (x, t) in 	αk × (tk − 2, tk + 2). In view of the definition of
Z̃αk (x, t), we have

Z̃αk (x(tk), tk) = −Nk .

Otherwise, when |t − tk | ≥ 2,

Z̃αk (x, t) = Z̄αk (x, t) ≥ −Nk .

To sum up, the minimum point of Z̃αk (x, t) is obtained in 	αk × (tk − 2, tk + 2). We denote
it as (x(t̂k), t̂k). That is

Z̃αk (x(t̂k), t̂k) = inf
	αk ×R

(x, t) < 0.
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Hence,

∂ Z̃αk

∂t
(x(t̂k), t̂k) = 0,

which means that

|∂ Z̄αk

∂t
(x(t̂k), t̂k)| = |τk Nk

∂ϑk

∂t
| ≤ τk Nk . (3.16)

Combined the definition of Nk in (3.14) and

Z̃αk (x(t̂k), t̂k) ≤ Z̃αk (x(tk), tk),

we have

− Nk ≤ Z̄αk (x(t̂k), t̂k) ≤ Z̄αk (x(tk), tk) = −Nk + τk Nk . (3.17)

From the definition of Z̃αk (x, t), we have

Z̄αk (x(t̂k), t̂k) = inf
	αk

(x, t̂k) < 0.

According to Remark 3.1, we know that x1(t̂k) > 0. Therefore, we could assume 0 <

x1(t̂k) < α0 + 1. Then by a similar process as (22) in [9], we deduce

− (� + λ)
β
2 Zαk (x(t̂k), t̂k) ≤ C

|x1(t̂k) − αk |β Zαk (x(t̂k), t̂k). (3.18)

Obverse that there is a positive number m1, then

a(x1(t̂k))N (α, x) ≤ m1.

Together with (3.1), (3.18) and Zαk (x(t̂k), t̂k) < 0, we arrive at

∂Zαk

∂t
(x(t̂k), t̂k) + C

|x1(t̂k) − αk |β Zαk (x(t̂k), t̂k)

≥a(x1(t̂k))N (α, x)Zαk (x(t̂k), t̂k)

≥m1Zαk (x(t̂k), t̂k).

(3.19)

For above inequality, we divide h(x(t̂k), t̂k) on both sides. Then we obtain

∂ Z̄αk

∂t
(x(t̂k), t̂k) + C

|x1(t̂k) − αk |β Z̄αk (x(t̂k), t̂k) ≥ m1 Z̄αk (x(t̂k), t̂k). (3.20)

Together with (3.16),(3.17) and (3.20), we divide −Nk on both sides, one can arrive at

C

|x1(t̂k) − αk |β ≤ m1

2
, for øk is small, (3.21)

which concludes that

|x1(t̂k) − αk | ≥ m2 > 0

and

|x1(t̂k) − α0| ≥ m2

2
> 0. (3.22)
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When k is sufficiently large, one has

∂Zαk

∂t
(x(t̂k), t̂k) + C

|x1(t̂k) − αk |β Zαk (x(t̂k), t̂k)

≥(a(xα
1 (t̂k)) − x1(t̂k)) f (Zαk )N (α, x)Zαk (x(t̂k), t̂k)

≥m3 > 0,

(3.23)

where we use the fact that f is locally Lipschitz continuous and

Zαk (x, t) ⇒ Zα0(x, t) ≥ 0.

On account of Zαk (x(t̂k), t̂k), from (3.23), we derive that

∂Zαk

∂t
(x(t̂k), t̂k) ≥ m3 > 0. (3.24)

Next we let

Ẑαk (x, t) = Zαk (x + x(t̂k), t + t̂k),

from (3.24), we arrive at

∂ Ẑαk

∂t
(0, 0) ≥ m3 > 0. (3.25)

In view of [30], we have

‖ Ẑαk ‖1+ε,β(1+ε)
t,x ≤ m4, ∀ (x, t) ∈ � × (−T , T ) ⊂⊂ R

n × R,

it concludes that there is a subsequence of (x(t̂k), t̂k) and when k → +∞,

Ẑαk (x, t) → Ẑα0(x, t),
∂ Ẑαk

∂t
(x, t) → ∂ Ẑα0

∂t
(x, t).

On account of

0 < x1(t̂k) ≤ αk,

and

αk → α0, k → +∞.

Hence, there is a subsequence of x1(t̂k) and 0 ≤ x01 ≤ α0, then

x1(t̂k) → x01 .

Now we think about Ẑα0(x, t). Obviously, one has

Ẑα0(x, t) ≥ 0, (x, t) ∈ 	α0−x01
× R.

Taking account of

Zαk (x(t̂k), t̂k) < 0,

we arrive at

Ẑα0(0, 0) = 0 = inf
	

α0−x01
×R

Ẑα0(x, t).
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Hence

∂ Ẑα0

∂t
(0, 0) = 0.

It contradicts to (3.25). As a result, we have α0 = +∞.
Therefore, z(x, t) is monotone increasing in x1 direction. �

Theorem 3.2 Let z(x, t) ∈ (C1,1
loc (R

n) ∩Lβ) ×C1(R) and satisfy the conditions of Theorem
3.1, then (1.1) has no positive bounded classical solutions.

Proof We will use a contradiction to verify it. Suppose in the contrary, there exists a positive
bounded solution of (1.1), we will obtain a contradiction.

We define λ1 being the first eigenvalue of the following problem{
−(� + λ)

β
2 ϕ(x) = λ1ϕ(x), x ∈ B1(b + 2, 0

′
),

ϕ(x) = 0, x ∈ Bc
1(b + 2, 0

′
),

with 0 ≤ b ∈ R is sufficiently large.
For the sake of integration by parts, we mollify ϕ(x) to

ϕ1(x) = � ∗ ϕ(x) ∈ C∞
0 (Rn).

Consequently,

− (� + λ)
β
2 ϕ1(x) ≤ λ1ϕ1(x), x ∈ R

n, (3.26)

here ∗ stands for convolution, �(x) ∈ C∞
0 (B1(b + 2, 0

′
)) is a mollifier which satisifies∫

Rn �(x)dx = 1.
The above (3.26) will be verified by adopting the idea of ( [7] Lemma A.1).
Suppose that ∫

Rn
ϕ1(x)dx = 1.

Owing to the mollification, the support of ϕ1 is included in B2(b + 2, 0
′
). Let

�b(t) :=
∫
Rn

z(x, t)ϕ1(x)dx =
∫
B2(b+2,0′

)

z(x, t)ϕ1(x)dx .

Together with Jensen inequality and (3.26), we derive that

d

dt
�b(t) = −

∫
Rn

−(� + λ)
β
2 z(x, t)ϕ1(x)dx +

∫
Rn

a(x1) f (z)ϕ1(x)dx

= −
∫
Rn

z(x, t) − (� + λ)
β
2 ϕ1(x)dx +

∫
Rn

a(x1) f (z)ϕ1(x)dx

≥ − λ1

∫
Rn

z(x, t)ϕ1(x)dx + b
∫
Rn

f (z)ϕ1(x)dx

≥ − λ1�b(t) + b f (
∫
Rn

f (z)ϕ1(x)dx)

≥ − λ1�b(t).

(3.27)

In view of the monotone increasing property in x1 by Theorem 3.1, we conclude that for
arbitrary fixed t ∈ R, �b(t) is monotone increasing about b. As a result,

�b(0) ≥ c0 := �0(0), (3.28)
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where we choose c0 to be a number so that −λ1c0 is positive. From (3.27), we have

d

dt
�b(t) ≥ −λ1�b(t).

Combined with (3.28), we get

�b(t) ≥ −λ1c0e
t .

Hence, �b(t) is monotone increasing about t . Letting t → +∞, �b(t) → +∞, which
yields a contradiction to the boundedness of z(x, t). �
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