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1 | INTRODUCTION
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Abstract

In this work, 124 samples of slurry from 32 commercial farms of three animal catego-
ries (lactating sows, nursery piglets, and growing pigs) were studied. The samples
were collected in summer and winter over two consecutive years and analyzed for
physicochemical properties, macronutrient and micronutrient, heavy metals, and
major microbiological indicators. The results were found to be influenced by farm
type and to deviate especially markedly in nursery piglets, probably as a consequence
of differences in pig age, diet, and management. The main potential hazards of the
slurries can be expected to arise from their high contents in heavy metals (Cu and
Zn), especially in the nursery piglet group, and from the high proportion of samples
testing positive for Salmonella spp. (66%). Linear and nonlinear predictive equations
were developed for each animal category and the three as a whole. Dry matter,
which was highly correlated with N, CaO, and MgO contents, proved the best predic-
tor of fertilizer value. Using an additional predictor failed to improve the results but
nonlinear and farm-specific equations did. Rapid on-site measurements can improve
the accuracy of fertilizer value estimates and help optimize the use of swine slurry as

aresult.
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However, excessive amounts of slurry can detract from fertilizing

efficiency and pose environmental problems through volatilization of

Pork consumption continues to grow, and so does the number of bred
pigs (OECD/FAO, 2022). According to FAOSTAT (2020), Spain is the
fourth world producer of swine, with more than 34 million heads
(EUROSTAT, 2021). Intensively bred swine are usually held in stables,
where they produce large amounts of slurry containing substantial
amounts of fertilizing nutrients (Penha et al., 2015), as well as organic

matter of use for maintaining soil fertility (Ferreira et al., 2021).

ammonia (Matsunaka et al., 2008), leaching of nitrates or eutrophica-
tion by leached N and P (Sgrensen & Jensen, 2013). Additional
hazards associated to swine slurry can arise from (a) too high contents
in heavy metals accumulating in soil and crops (Drescher et al., 2021;
Tang et al., 2020) or leaching to ground and underground water
(da Rosa Couto et al., 2016) and (b) their containing pathogenic bacte-
ria (Hutchison et al., 2004; Nag et al., 2021) that can survive over long
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periods in slurry—or in soil after application—(Marszatek et al., 2019;
Tran et al, 2020) and cause animal or even human diseases
(Venglovsky et al., 2018). Whether a given slurry has a favorable or
unfavorable impact depends largely on its composition (Antezana
et al., 2016), its application method and rate (Brandao et al., 2020;
Lovanh et al., 2010), and the environmental conditions during and after
application (Carozzi et al., 2013; Maris et al., 2021). Unfortunately,
most farmers do not know the exact composition of the slurries they
use (Department for Environment Food & Rural Affairs, 2021;
Scottish Government, 2022) and tend to ensure that they will meet
the needs of their crops by using too large amounts (Scottish
Government, 2022), thereby increasing the risk of an unfavorable envi-
ronmental impact (Diez et al., 2006; Hernandez et al., 2013).

The composition of slurry can be easy established from laboratory
physicochemical analyses. This, however, is often an unattractive
choice for farmers as it takes time and money (Moral et al., 2005). The
fertilizer value of a slurry can also be rapidly estimated by using instru-
mental techniques such as near infrared spectroscopy (NIRS) (Horf
et al., 2022; Sgrensen et al., 2007), which, however, is only affordable
by specialist laboratories or large agrarian corporations.

Some authors have developed regression equations to estimate
the nutrient contents of swine slurries from easily measured parame-
ters. For example, the P content of a slurry is closely related to its
density (Moral et al., 2005; Singh & Bicudo, 2005; Yang et al., 2006)
and dry matter content (Scotford, Cumby, Han, & Richards, 1998;
Scotford, Cumby, White, et al, 1998; Zhu et al, 2003).
Equations using electrical conductivity as a predictor have also pro-
vided accurate estimates of N and K contents (Antezana et al.,, 2016;
Martinez-Suller et al., 2008; Moral et al., 2005; Yang et al., 2006). The
equations, however, are not applicable to all slurries as their proper-
ties depend on the particular animal species and age, farm facilities,
nutrition regime, and geographical region (Antezana et al, 2016;
Martinez-Suller et al., 2008; Suresh & Choi, 2011).

The primary aims of this work were (a) to extract physical, chemi-
cal, and microbiological information from swine slurry; (b) to examine
the variability of their properties in terms of year season (spring and
autumn) and animal category (growing pigs, lactating sows, and nurs-
ery piglets); and (c) to relate easily measured parameters such as pH,
electrical conductivity, dry matter, and relative density to their fertil-

izer value.

2 | MATERIAL AND METHODS

21 | Sampling

Slurry samples were obtained from 32 farms in Galicia, NW Spain. Of
the 32 farms, 20 were growing pigs (GP, weight > 22 kg), 6 lactating
sows (LS), and another 6 nursery piglets (NP, 6-22 kg).

The selected farms were all representative in size and manage-
ment system of the body of intensive farms in the region. LS, NP, and
GP farms were rearing 400-2000, 6000-10000 and 1500-4000
heads at the time under similar conditions in the three groups.

Each target farm was sampled four times (two in winter and
another two in summer over two consecutive years). Samples
were directly obtained from storage pits after turning over and
homogenization and were held in 1 L tightly closed containers that
were kept in a cool box for transfer to the laboratory. Once there,
they were stirred and split into two portions each. One portion was
used for fresh measurements and the other was freeze-dried for

subsequent analysis.

2.2 | Analyses

Each fresh slurry portion was used to determine dry matter (DM) by
drying to constant weight in a stove at 105°C, relative density
(RD) with a hygrometer after stirring and 15s of stabilization
(Chescheir et al., 1985), pH, and electrical conductivity (EC) by poten-
tiometry in undiluted, unfiltered slurry.

In addition, this fresh portion was used for microbiological ana-
lyses that were carried out less than 24 h after sampling. The tests
were performed from a 10 g aliquot of fresh slurry diluted with 90 mL
of buffered peptone water, followed by further 10-fold serial dilutions
(1 mL previous dilution + 9 mL buffer solution). One milliliter of each
dilution was inoculated in 3 M™ Petrifilm™ E. coli/Coliform Count
Plates to determine (a) colony forming units (CFU) of total coliforms,
after incubation at 30°C for 24 h, according to ISO 4832:2006
(ISO, 2006); (b) CFU of 24-h thermotolerant (fecal) coliforms by incu-
bation at 44°C for 24 h, according to NF V08-060 (04/2009)
(AFNOR, 2009); and (c) CFU of Escherichia coli after incubation at
37°C for 24 h according to I1ISO 16649-2:2001 (ISO, 2001). Aerobic
mesophilic bacteria were determined according to 1ISO 4833:2013
(ISO, 2013) inoculating 1 mL of dilution on agar plates and incubating
them at 30°C for 72 h. Volumes of 100 uL of 10-fold dilutions were
used to determine Enterococcus spp. with Kanamycin Aesculin Azide
Agar Base (Dehydrated) from Thermo Scientific™, after 24 h of incu-
bation at 37°C, using the manufacturer’'s version of the method of
Mossel et al. (1973) and Salmonella spp. according to Leifson (1935)
after 48 h of incubation at 37°C. Thus, the minimum detection limits
resulted in 100 CFU-mL™2 for Salmonella spp. and Enterococcus spp.
and 10 CFU-mL~ for the other bacteria.

Biological oxygen demand after 5 days (BODs) was determined
with BOD System 6 equipment from Velp Scientifica and chemical
oxygen demand (COD) according to APHA (1999).

Each freeze-dried slurry portion was used to determine total C
and N on a LECO 2000 combustion analyzer following grinding to
<1 mm particles and P, K, Ca, Mg, Na, B, Fe, Mn, Cd, Cr, Cu, Hg, Ni,
Pb, and Zn by ICP-MS after microwave-assisted digestion with nitric
acid on an ETHOS 900 Labstation (USEPA, 2007).

2.3 | Statistical analysis

Data were subjected to basic descriptive analysis (minimum and maxi-

mum values, mean, and deviation) with Microsoft Excel® v. 2018 and
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also to statistical analysis with SPSS Statistics v. 25 from IBM Corp.
(Armonk, NY, USA).

Those results exhibiting homoscedastic variances in Levene’s test
were examined for significant differences between farm types by
one-way analysis of variance (ANOVA). In the presence of differences,
data were subjected to Tukey’s post hoc HSD test. Dunnett's T3 test
was used instead with non-homoscedastic variances. Differences
between sampling dates were sought with Student’s t test. Also,
Pearson’s test was used to identify bivariate correlations between
measured parameters and N, P,Os, K,O, CaO, and MgO contents.
Nonlinear and simple and multiple regression equations were used to
identify those variables predicting the previous contents with the
highest accuracy in terms of R? by using pH, EC, DM, and RM as inde-

pendent variables.

3 | RESULTS

3.1 | Slurry composition

As can be seen in Table 1, the mean pH of the slurries was 7.11 and
scarcely variable within groups (CV < 0.5%). There were differences in
pH between types of farm, however, with a mean of 6.02 for nursery
piglets (NP), 7.31 for lactating sows (LS), and 7.37 for growing pigs
(GP). The content in dry matter (DM) averaged at 5.65% but ranged
widely (0.41%-16.97%). This was also the case with the relative den-
sity (RD), which ranged from 0.99 to 1.07 kg-m~2. The electrical con-
ductivity (EC) differed between farm types and was higher for GP
than it was for LS. Student’s t test revealed the absence of significant
differences in DM and EC between the two sampling seasons (winter
and summer).

The mean contents in highly soluble nutrients such as K, Mg, and
Na were highest in the GP group (6.87, 1.08, and 2.34 mg-kg™},
respectively), intermediate in the LS group (6.21, 0.80, and
2.11 mg-kg™?, respectively), and lowest in the NP group (4.43, 0.60,
and 1.37 mg-kg™1, respectively). Also, the mean Ca contents of GP
and LS slurries (2.23 and 2.21 mg-kg™?, respectively) were significantly
higher than was that of NP slurries (1.15 mg-kg™?). There were no sig-
nificant differences in N or P contents between groups. There was
high variability in the contents of macronutrients (particularly P and K,
with CV > 70%).

As regards fertilizer value, GP slurries contained increased
amounts (kgm~3) of N, CaO, and MgO relative to the others.
Although the K,O and P,Os5 contents followed the same trend, they
did not differ significantly between groups. The contents in P,Os5
exhibited the highest variability (4.91 + 6.39 kg-m~3); also, they were
the highest, followed by those of K,O, N, CaO, and MgO (3.52 + 3.18,
3.29 +2.31,1.75 + 1.62, and 1.03 + 1.05 kg-m~3, respectively).

Regarding heavy metals, Cu and Zn were present at very high and
worrying levels in NP slurries (1029 and 4678 mg-kg™!, respec-
tively)—much higher indeed than those of GP slurries (320.6 and
1231 mg-kg ™}, respectively) and LS slurries (121.1 and 847.7 mg-kg ™2,

| Science Journal N/
respectively). All other metals were present at levels below the
tolerated limits set by Regulation (EU) 2019/1009 (2019).

3.2 | Bacteriology

The most abundant bacterial group in the slurries was that of aerobic
mesophiles, with a mean of 7.03 Log CFU-mL™? and no significant
differences between farm types. Also, there was little variability
within and between groups. The mean total coliform level was
4.80 Log CFU-mL™?! and also did not differ between groups. That of
fecal coliforms was 3.88 Log CFU-mL~?! but differed between groups,
with 4.77 £ 0.67, 3.78 + 1.85, and 3.64 + 1.18 Log CFU-mL™ for LS,
GP, and NP, respectively. Escherichia coli levels were also similar
among groups, with 4.61+0.64, 326+193 and 3.38
+1.26 Log CFU-mL~* for LS, NP, and GP, respectively.

Salmonella spp. levels were considerably higher in NP slurries than
they were in GP slurries (3.60 + 1.89 vs. 1.91 + 1.86 Log CFU-mL™?)
but similar to those in LS slurries (3.44 + 1.50 Log CFU-mL™Y). Salmo-
nella spp. were below the minimum detection limit (100 CFU-mL™Y
from 13%, 17%, and 44% of all LS, NP, and GP samples, respectively.

Enterococcus spp. levels averaged at 5.27 * 0.88 Log CFU-mL™!
and differed little among farm types. A Student’s t test was used to
look for differences in bacteria levels for seasons of year (spring or
autumn). The sampling seasons did not cause significant differences
except for slightly higher levels in Enterococcus spp. in winter than in
summer (5.43 vs. 5.11 Log CFU-mL™1).

3.3 | Correlations

Nutrient contents in fresh slurry (kg-m~3) were significantly correlated
with dry matter (DM) and relative density (RD) in all cases, with
greater Pearson’s r values for DM (Table 2). DM and RD were also sig-
nificantly correlated (r = 0.489, p < 0.001; Table 3).

pH was significantly correlated with organic C and also with
metals such as Cu or Zn. However, there were no such correlations
within groups (see Data S1) except for pH and C (r= —0.518,
p < 0.001) and pH and COD (r = —0.223, p < 0.05) in the GP group.
There was thus no direct correlation, but rather common causality
probably due to a proportional effect of the group factor on these
parameters.

Electrical conductivity (EC) exhibited low, but significant, correla-
tion with soluble elements such as N (r=0.210, p <0.05), K
(r=0.242, p<0.01), and Na (r=0.268, p <0.01). Dry matter
(DM) was negatively correlated with the contents in K (r = —0.387,
p < 0.001) and Na (r= —-0.438, p < 0.001), and so was RD with K
(r=—0.201, p < 0.05) and Na (r = —0.220, p < 0.05).

Other correlations worth noting were those between N and Na
(r=0.293), N and K (r = 0.263), Na and K (r = 0.936), and Ca and Mg
(r=0.699). There were additional correlations between microele-
ments (Mn, Cd, Cr, and Zn).
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(Continued)

TABLE 1

All samples

Growing pigs (n = 24)

Nursery piglets (n = 6)

Lactating sows (n = 6)

Max SD Mean SD

Min

SD Mean

Max

Min

SD Mean

Max

Min

Mean

Parameter

Fertilizer value (kg:-m~2)

231

3.29
491
3.52
1.75
1.03

2.52
7.60

12.99
46.80
21.30
9.03
6.15

0.12
0.11
0.27
0.08
0.01

3.75
5.89
404
2.08
1.27

1.78
3.01
1.45
0.60
0.40

6.31

0.46
0.38
0.30
0.13
0.02

ab

3.07
3.40
243
0.94
0.58

1.33
3.09
345
141
0.63

4.93

0.47
0.32
0.14
0.09
0.02

1.99
3.15
2.88
1.45
0.65

6.39
3.18
1.62
1.05

11.56
6.15
2.33
1.45

10.85
15.96
6.51
231

P205
K,O

3.38

1.79
1.20

ab
ab

Cao

MgO

Note: Different letters in each row denote significant differences at p < 0.05.

Abbreviations: BOD, biological oxygen demand; COD, chemical oxygen demand; d.m., dry matter; DM, dry matter; EC, electrical conductivity; RD, relative density.
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As regards bacteria, they were positively correlated with parame-
ters connected to organic matter, as Enterococcus spp. with C
(r = 0.245), total coliforms with COD (r = 0.300), and Enterococcus
spp. with COD (r = 0.379). On the other hand, fecal coliforms, E. coli,
and Enterococcus spp. were negatively correlated with EC
(r=—0.240, r = —0.265, and r = —0.180, respectively), and so were
aerobic mesophilic bacteria, Enterococcus spp., and total coliforms
with Hg (r = —0.309, r = —0.286, and r = —0.197, respectively). All
groups of bacteria exhibited moderate to high correlations with each
other.

The number of variables was reduced by using principal compo-
nent analysis (PCA), the factor matrix thus obtained being subjected
to varimax rotation. The results are summarized in Table 4. Three dif-
ferent principal components were selected that jointly accounted for
45.1% of the overall variance (PCA; for 20.2%, PCA, for 14.8%, and
PCA; for 10.2%). PCA4, which discriminated the NP group (Figure 1),
was correlated positively with Cu, Zn, C, and COD and negatively with
pH, Na, Ca, and K (Figure 2). PCA, accounted for bacteria content,
and PCA3, which accounted for nothing in particular, was positively
correlated with Ca, Mg, Mn, and Cd and negatively correlated with K
and Na. None of the factors discriminated the LS and GP groups.

3.4 | Regression equations

As can be seen in Table 5, dry matter (DM) was the most common
predictor in the regression equations. Only relative density (RD) was a
better predictor for N content in LS and NP slurries. The equations
exhibited close fitting, with R? values up to 0.889. The goodness-
of-fit of some equations was improved by adding a second predictor
(pH or EC), but only slightly (less than 0.05 except when adding EC to
DM to predict the MgO content in NP slurries, which increased R2 by
0.143). The equations for the individual farm type generally exhibited
better goodness-of-fit than the overall model for the three groups.
The improvement amounted to 0.067 and 0.039 R? units with linear
and nonlinear regression equations, respectively.

The nonlinear equations providing the best fit were of the expo-
nential type—by exception, inverse equations performed better with
the N content of LS slurries. In most cases, using nonlinear equations
improved R? by up to 0.095 units by exception, it failed to increase
R? in predicting the K,O and MgO contents of LS slurries and the
MgO contents of GP slurries. As with the linear equations, DM was
the most common predictor for the nonlinear ones, with EC as the
best for estimating K,O in most cases.

Nitrogen was the individual macronutrient exhibiting the best fit-
ting in nondiscriminated samples (R? = 0.845 with linear equations
and R? = 0.870 with exponential equations). This allowed the fertil-
izer value of the slurries to be estimated with a mean error less than
26% and 22%, respectively. With a single mean value (3.29 kg N-m~3),
the error rose to 134%. The mean errors in the P,Os5, K,O, Ca0, and
MgO contents of non-discriminated samples as estimated with linear
equations were 66.2%, 69.4%, 69.4%, and 116%, respectively,
whereas those made with nonlinear equations were 50.6%, 66.2%,
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TABLE 2 Pearson correlation matrix between easily determined parameters and macronutrient contents.

N (kg:-m~2) P05 (kg-m~2)
pH -0.101 0.049
EC (dS-m™Y) —0.045 —-0.156
RD (kg-m~3) 0.502*** 0.392***
DM (%) 0.903*** 0.630***

Abbreviations: DM, dry matter; EC, electrical conductivity; RD, relative density.

*Significant at p < 0.05.
**Significant at p < 0.01.
***Significant at p < 0.001.

38.0%, and 77.0%, respectively. The errors ensuing from the use of a
single mean value were much greater: 257% for P,Os, 119% for K,O,
204% for Ca0, and 518% for MgO.

4 | DISCUSSION

The mean pH of the slurries was lower than previously reported
values (Antezana et al, 2016; Moral et al, 2005; Suresh &
Choi, 2011), possibly, as suggested by Beccaccia et al. (2015), as a
result of the water supply (6.57 £ 0.61) being more acidic than, for
example, those measured by Moral et al. (2005): 7.5-7.9. Water is in
fact a major component of slurries, and we found significant correla-
tion between pH in the water supply and in the slurries (r = 0.357,
p < 0.05).

Electrical conductivity (EC) was slightly lower and spanned a nar-
rower range than those reported elsewhere (Antezana et al., 2016;
Suresh & Choi, 2011; Yague et al., 2012). Also, it was significantly
higher in GP slurries than in the others. These results are consistent
with those of previous studies and were probably a consequence of
increased dietary salt and protein contents (Moral et al., 2005). One
other potentially influential factor was lower dilution of the slurries by
effect of the animals wasting less water (Palhares, 2016. Consistent
with this assumption, GP slurries exhibited the highest contents in
DM; however, the data were so variable that they concealed any
significant differences between groups. In fact, the highest DM
content was 41 times the lowest. Previous studies (Antezana
et al., 2016; Martinez-Suller et al., 2008; Suresh & Choi, 2011; Yague
et al, 2012) revealed similar or even greater variability (up to
60 times). So wide variability in water content resulted in also wide
variability in nutrient contents. Therefore, an accurate knowledge of
the DM content of slurry is crucial with a view to assessing its
fertilizer value.

Dry matter (DM) can be estimated through relative density (RD).
The two were moderately but significantly correlated here. In any
case, RD spanned a wider range (0.990 and 1.070 kg:-m~3) than else-
where, where it never exceeded 1.04 kg-m™2 (Moral et al., 2005;
Suresh et al., 2009; Suresh & Choi, 2011; Zhu et al., 2003).

Overall, the contents in macronutrient and micronutrient, and
those in heavy metals, are consistent with those reported by other
authors (Abubaker et al, 2015; Antezana et al., 2016; Moller &

K,O (kg-m~3) CaO (kg-m—3) MgO (kg-m—3)
0.047 0.120 0.106

0.147 —0.228** -0.141
0.229* 0.406*** 0.428***
0.442*** 0.829*** 0.784***

Stinner, 2009; Moral et al., 2005; Pantelopoulos & Aronsson, 2021).
On the other hand, the P contents are higher than usual for swine
slurries with the sole exception of those reported by Suresh and Choi
(2011). Also, the N contents are lower than usual, whereas the K and
Na contents are slightly higher than previously reported values but
span similar ranges.

NP slurries were markedly different from LS and GP slurries.
PCA; accounted for the differences, explained 20% of the total vari-
ance and discriminated the NP group from the other two. NP slurries
had the highest pH values, probably because of their high contents in
volatile fatty acids (VFA) and/or low contents in ammonia nitrogen
(N-NH,) (Paul & Beauchamp, 1989) In fact, Antezana et al. (2016) pre-
viously found NP slurries to contain increased levels of VFA and
decreased levels of N-NH4. NP slurries had significantly lower con-
tents in K, Ca, and Mg and also in P here. At early growth stages, pigs
are fed mineral-richer diets than lactating sows and growing pigs
(NRC, 2012; Rostagno et al., 2017). However, nutrition efficiency is
much higher in young pigs than it is in adult pigs (Creech et al., 2004;
Fix et al., 2010). This results in an increased proportion of nutrients
being absorbed and a decreased proportion excreted. An identical
conclusion was previously drawn by Antezana et al. (2016). There
were also differences in Cu and Zn levels between slurry groups. Thus,
NP slurries had the highest contents in both metals, which exceeded
the tolerated limit for organic fertilizers set by Regulation
(EU) 2019/1009 (2019) (300 mg-kg™* for Cu and 800 mg-kg~? for Zn)
by a factor of up to 3. Continuous use of slurries with high Cu and
Zn contents can lead to accumulation in soil, and also on plants
growing on it, thereby threatening animal, human, and environment
health (Provolo et al., 2018; Tang et al., 2020). While the Cu and Zn
contents of the studied slurries can be worrisome, they are very
similar to others found in previous work (Antezana et al., 2016;
Moral et al., 2005; Pantelopoulos & Aronsson, 2021). This is due to
addition of Cu and Zn in amounts that exceed their nutritional
requirements, as they are known to promote growth and prevent
diarrhea (Bonetti et al., 2021; Hill et al., 2001). The differences in Cu
and Zn contents between farm types are consistent with the fact
that supplies of these two elements are reduced during fattening
and suppressed from sows’ diets (Hill & Spears, 2000; Reese &
Hill, 2010).

All other heavy metals analyzed were present at levels below the

legally tolerated limits. Such levels decreased in the following
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FERNANDEZ-LABRADA ET AL.

TABLE 4 Pearson correlations between the principal components
for slurry properties, composition, and bacteria concentrations.

PCA; PCA, PCA;
pH —0.820"** 0.176*
EC —0.183*
RD
DM 0.307*** 0.374**
C(d.m.) 0.788*** 0.188*
BODs 0.224**
CoD 0.630*** 0.199* 0.191*
N (d.m.) —0.234** —0.202*
P (d.m.) 0.208*
K (d.m.) —0.504*** —0.644***
Ca(d.m.) —0.346*** 0.799***
Mg (d.m.) 0.844***
Na (d.m.) —0.531** —0.587***
B (d.m.)
Fe (d.m.) 0.168* 0.264**
Mn (d.m.) 0.240** 0.759***
Cd (d.m.) 0.324*** 0.695***
Cu (d-m.) 0.853***
Cr (d.m.) 0.210* 0.385"**
Hg (d.m.) —0.196*
Ni (d.m.)
Pb (d.m.) 0.206*
Zn (d.m.) 0.875***
Aerobic mesophilic 0.748***
Fecal coliforms 0.822*** -0.178*
Total coliforms 0.829***
E. coli —0.244** 0.752***
Enterococcus spp. 0.240** 0.833***
Salmonella spp. 0.226** 0.721***

Abbreviations: BOD, biological oxygen demand; COD, chemical oxygen
demand; d.m., dry matter; DM, dry matter; EC, electrical conductivity; RD,
relative density.

*Significant at p < 0.05.

**Significant at p < 0.01.

***Significant at p < 0.001.

sequence: Cr > Ni > Pb > Cd > Hg. This sequence, and the specific
levels of each metal, is consistent with previous reports (Antezana
et al., 2016; Leclerc & Laurent, 2017; Tang et al., 2020).

Because they were raw slurries, their levels of fecal contamina-
tion indicators were high relative to other organic fertilizers such as
digestates and composts. However, specific populations were similar
in number to those found in other raw slurries. Such was the case
with Salmonella spp. which was present in a considerable proportion
of samples (66%) compared to previous reports (5% to 71%)
(Caballero-Lajarin et al., 2015; Hutchison et al., 2004; Watabe
et al., 2003) although the detection limit of the method used here
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FIGURE 1 Principal component analysis (PCA) scores plot for
different types of farms. GP, growing pigs, LS, lactating sows, NP,
nursery piglets.

was higher than that of other possible methods. European
legislation requires the absence of Salmonella spp. from organic
fertilizers, and E. coli and Enterococcus spp. levels not to exceed
3 Log CFU-mL™? (Regulation [EU] 2019/1009, 2019). Only one of
the 124 samples examined fulfilled all three requirements. Therefore,
in order to use pig slurry as an organic fertilizer in accordance with
this regulation, a sanitization treatment would be necessary in
addition to storage (Skowron et al., 2013). If raw slurry is used, it will
be important to avoid direct contact with the edible organ (for
example, using hanging tubes or injection to the application) and to
ensure safety periods that guarantee its safe consumption (Nicholson
et al,, 2004).

Some authors have found bacterial survival in slurries to decrease
with increasing temperature (Goss et al., 2013; Nicholson et al., 2005;
Tian et al., 2021). In this work, the factor sampling season influenced
the levels of Enterococcus spp.—which were lower in the warm
season—but not those of the other bacteria groups. Electrical conduc-
tivity (EC) was significantly correlated, in a negative manner, with fecal
coliforms, E. coli, and Enterococcus spp. Suresh et al. (2009) previously
found negative correlation between EC and Salmonella spp. in swine
slurry. Elevated salinity is known to adversely affect the survival of
various bacterial groups (Anderson et al., 2005; Bordalo et al., 2002).
Elements such as K and Na, which are primarily found in dissolved
form in slurries (Masse et al., 2005), were also negatively correlated
with aerobic mesophilic bacteria and Enterococcus spp. Because corre-
lations between bacterial groups were all high, it made no sense to
use more than one group as indicator of fecal contamination. In fact,
PCA, gathered all studied bacterial groups in a single variable and
accounted for 14.67% of the total variance.

Dry matter (DM) is usually an accurate indicator of nutrient con-
tents as it accounts for most of the variability due to dilution
(Antezana et al., 2016). However, it takes a long time to measure
because it requires waiting for the slurry to dry. In any case, DM is
easy to measure and requires no skilled staff or dedicated equipment.

Using it as a predictor provided regression equations very closely
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FIGURE 2 Loading plots for different variables on PCA4, PCA,, and PCA3. BOD, biological oxygen demand; COD, chemical oxygen demand;

DM, dry matter; EC, electrical conductivity; RD, relative density.

fitting N contents and closely fitting CaO and MgO contents. The
goodness-of-fit was similar to that obtained in previous studies
(Martinez-Suller et al., 2008; Suresh & Choi, 2011). By contrast, P,O5
contents were poorly predicted, especially if one considers that they
are highly correlated with DM and RD (Moral et al., 2005; Suresh &
Choi, 2011; Yagtie et al., 2012). DM also provided poor predictions of
K50. A good prediction of K,O content was only achieved when EC
was used as the sole predictor of the model. This is because most of

the K is in dissolved form in the slurries (Masse et al., 2005). Moral

et al. (2005) and Yang et al. (2006) also found EC to be the best pre-
dictor for K,O.

As expected, using an additional predictor resulted in improved
fitting; however, the improvement was so small that it does not war-
rant purchase of a second measuring set or the delay in measuring
another variable. Moral et al. (2005), Suresh and Choi (2011), and
Yagtie et al. (2012) also obtained very modest improvements by using
a second predictor, with an increase in R? of only 0.025, 0.06, and

0.076, respectively.

85U80|7 SUOWIWIOD 3RO 8|l (dde au Ag peusenob are Ssolle YO ‘8sn JO'S3|Nn 10} AeiqiT8ul|uO /8|1 UO (SUONIPUOD-PUB-SWBIW0D A8 | 1M ATeIq 1 BUI|UO//:SANY) SUORIPUOD pue swie 1 8y} 89S *[£202Z/0T/TE] Uo Areiqiauluo A8|im ‘episodwiod sp ofienues ap spepsieniun Aq 6v8€T" Be/TTTT 0T/I0p/wWo0 A8 | 1M AIq Ul Uo//SAny Woly papeo|umoq ‘T ‘€202 ‘62600v.T



FERNANDEZ-LABRADA ET AL.

- 110714
[ Science Journal SAA4 LEYy-[2er

TABLE 5 Predictive equations for N, P,Os, K,O, CaO, and MgO contents, all in kg-m~2.

Linear regression equations R?

Lactating sows

N = 0.1031 + 0.4680 DM 0.799***
N = —-81.4164 4 81.7870 RD 0.419***
P,05 = —0.2923 + 0.8220 DM 0.638***
P,0s = 0.406 — 182.7384 DM 0.406**
K20 =0.2117 4 0.6375 DM 0.307**

K20 = —1.7656 + 0.7280 DM + 0.1336 EC 0.329*

CaO = -0.1027 + 0.1808 DM 0.880***
MgO = —-0.1761 + 0.2044 DM 0.860***
Nursery piglets

N = 0.2331 + 0.5016 DM 0.889***
N = —87.4663 + 88.6394 RD 0.471**
K20 = —0.2395 + 0.1937 EC 0.600***
Ca0 =0.1371 + 0.1401 DM 0.681***
CaO = —0.1986 + 0.1244 DM + 0.0286 EC 0.716***
MgO = 0.1092 + 0.085 DM 0.487***
MgO = —0.2531 + 0.0798 DM + 0.0276 EC 0.630***
Growing pigs

N = 0.1876 + 0.5944 DM 0.849***
P,Os = —1.3227 + 1.1809 DM 0.415***
K20 = 2.1038 + 0.2926 DM 0.209***
Ca0O = —1.0906 + 0.5669 DM 0.805***
CaO = -0.2214 + 0.5591 DM — 0.0473 EC 0.821***
MgO = —0.3297 + 0.2621 DM 0.790***
All samples

N = 0.0942 + 0.5708 DM 0.838***
N = —0.5184 + 0.5799 DM -+ 0.0365 EC 0.845***
P,05 = —0.970 + 1.037 DM 0.396***
K>0 = —0.093 + 0.270 DM + 0.118 EC 0.271***
Ca0 = —0.6669 + 0.4406 DM 0.689***
CaO = —5.786 + 0.481 DM + 0.696 pH 0.713***
MgO = —0.2653 + 0.2304 DM 0.659***
MgO = —2.391 + 0.233 DM -+ 0.295 pH 0.709***

Nonlinear regression equations R?

N = 85.8350 — (85.497 RD 1) 0.419**
P,05 = 0.5604 DM11052 0.726***
P,05 = 60.6055 RD%¢%87 0.416**
K0 = 0.7809 DM®¢978 0.245*
CaO = 0.2127 DM*2¢%7 0.865***
MgO = 0.0602 DM15157 0.748***
N = 0.5017 DM10337 0.953***
P,O5 = 0.0.7491 DM©7610 0.368***
K,O = 0.0687 EC1327¢ 0.754***
CaO = 0.1470 DM19475 0.866***
MgO = 0.0507 DM1-321? 0.654***
N = 0.5781 DM*0292 0.880***
P,05 = 0.4607 DM1-25%5 0.741***
K,0 = 1.4206 EC®-53¢ 0.420***
CaO = 0.1917 DM12¢81 0.884***
MgO = 0.0616 DM15157 0.726***
N = 0.5488 DM10213 0.870***
P,0s = 0.5050 DM*-1645 0.682***
K,0 = 1.1417 EC®5¢7> 0.307***
CaO = 0.1882 DM12181 0.827***
MgO = 0.0590 DM14848 0.715***

Abbreviations: DM, dry matter (%); EC, electrical conductivity (dS-m~2); RD, relative density (kg-m~>).

*Significant at p < 0.05.
**Significant at p < 0.01.
***Significant at p < 0.001.

Nonlinear regression has scarcely been used to predict fertilizer
value. In fact, only Suresh et al. (2009) have reported exponential or
polynomial equations with a high goodness-of-fit. Nonlinear predic-
tive models are probably not more difficult to use by farmers than are
linear models as they only require measuring certain parameters and
substituting their values into a simple equation. This can be an effec-
tive way of improving the goodness-of-fit of predictive models and

reducing errors in extreme values.

Likewise, using separate equations for each type of farm might
further improve fitting with no added complications for farmers since
each farm typically raises swine at a single rearing stage. Martinez-
Suller et al. (2008) previously obtained average improvements in R? of
0.115 units; also, they confirmed that using specific equations for
each type of farm led to more accurate predictions of slurry fertilizer
value by effect of their encompassing the variability due to differ-

ences in diet or animal age.
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The wide range of dry matter (DM) content spanned by the studied
slurries resulted in widely variable nutrient levels. The best predictive
models were those based on this parameter, which exhibited high
goodness-of-fit, especially for N, CaO, and MgO. By exception, elec-
trical conductivity (EC) was a better predictor for K,O. P,O5 estimates
were less accurate, but using a predictive model invariably reduced
errors from the mean value. Therefore, a thermobalance in combina-
tion with the proposed models can provide a rapid, accurate method
for estimating the fertilizer value of slurries with a view to adjusting
their application rate.

Slurry composition (K, Ca, and Mg), pH, and EC differed among
farm types (LS, NP, and GP). Using specific equations for each group
can absorb some of the variability observed between groups providing
more accurate estimates of fertilizer value without more effort or
involvement on the part of farmers. So can using non-linear equations
instead of linear equations. On the other hand, the slightly greater
accuracy obtained with an additional predictor does not warrant the
added expenses and delay of using additional equipment for a second
set of measurements.

The main risks in using swine slurries arise from not accurately
knowing which specific nutrients, and in what amounts, are added to
the soil, the typically high contents in Cu and Zn, and a high likelihood

of their containing Salmonella spp.
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