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Investigating gait‑responsive somatosensory 
cueing from a wearable device to improve 
walking in Parkinson’s disease
Dongli Li1, Andre Hallack1, Sophie Gwilym2, Dongcheng Li3, Michele T. Hu4,5 and James Cantley1,6* 

Background
Parkinson’s disease (PD) is a progressive, neurodegenerative disorder that impairs the 
ability to control movement, with an estimated prevalence of 108–257/100,000 [1]. In 
the UK, approximately 145,000 people live with PD, a figure projected to pass 200,000 

Abstract 

Freezing-of-gait (FOG) and impaired walking are common features of Parkinson’s dis-
ease (PD). Provision of external stimuli (cueing) can improve gait, however, many cue-
ing methods are simplistic, increase task loading or have limited utility in a real-world 
setting. Closed-loop (automated) somatosensory cueing systems have the potential 
to deliver personalised, discrete cues at the appropriate time, without requiring user 
input. Further development of cue delivery methods and FOG-detection are required 
to achieve this. In this feasibility study, we aimed to test if FOG-initiated vibration cues 
applied to the lower-leg via wearable devices can improve gait in PD, and to develop 
real-time FOG-detection algorithms. 17 participants with Parkinson’s disease and daily 
FOG were recruited. During 1 h study sessions, participants undertook 4 complex walk-
ing circuits, each with a different intervention: continuous rhythmic vibration cueing 
(CC), responsive cueing (RC; cues initiated by the research team in response to FOG), 
device worn with no cueing (NC), or no device (ND). Study sessions were grouped 
into 3 stages/blocks (A-C), separated by a gap of several weeks, enabling improve-
ments to circuit design and the cueing device to be implemented. Video and onboard 
inertial measurement unit (IMU) data were analyzed for FOG events and gait metrics. 
RC significantly improved circuit completion times demonstrating improved overall 
performance across a range of walking activities. Step frequency was significantly 
enhanced by RC during stages B and C. During stage C, > 10 FOG events were recorded 
in 45% of participants without cueing (NC), which was significantly reduced by RC. 
A machine learning framework achieved 83% sensitivity and 80% specificity for FOG 
detection using IMU data. Together, these data support the feasibility of closed-loop 
cueing approaches coupling real-time FOG detection with responsive somatosensory 
lower-leg cueing to improve gait in PD.

Keywords:  Parkinson’s disease, Freezing of gait, Cueing, Somatosensory, Wearable, 
Vibration, Machine learning, Movement, Festination
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by 2035 [2]. PD is characterised by loss of dopaminergic neurones of the substantia 
nigra pars compacta, and by aggregation of misfolded alpha-synuclein in intracellu-
lar Lewy bodies, resulting in a number of motor pathologies including bradykinesia, 
rigidity, resting tremor, postural instability and gait defects including freezing-of-gait 
(FOG) [1]. FOG is an inability to initiate or maintain normal walking patterns, often 
resulting in a stochastic stop-start gait. FOG affects approximately 38% of PD patients 
and is associated with reduced quality of life and loss of independence [3, 4], whilst 
contributing to the two-fold increased risk of falling (and related injuries) with PD 
[5]. Current strategies to manage FOG include pharmacological interventions, physi-
otherapy, brain surgery (including deep brain stimulation/DBS) and cueing.

FOG transiently improves during the ‘on state’ following antiparkinsonian drug 
administration, yet this effect is diminished in older patients with more advanced 
disease [4], and FOG symptoms persist in many patients in the on state [4, 6], dem-
onstrating that medication alone is insufficient to prevent FOG. Engagement with 
structured exercise programmes and balance training improves gait and stability [7, 
8], although these interventions do not directly address FOG, highlighting the need 
for interventions targeting both postural instability and FOG [9]. Surgical interven-
tions including bilateral deep brain stimulation (DBS) of the subthalamic nucleus can 
improve postural stability, gait and off-period related FOG [10–13]. However, DBS is 
currently used in < 5% of the PD population and alternative approaches to improve 
mobility more widely are urgently needed.

Cueing is defined as ‘using external temporal or spatial stimuli to facilitate gait ini-
tiation and continuation’ [14], and is endorsed by the Royal College of Occupational 
Therapists as a method to facilitate gait and other motor skills. Focusing attention 
on the external cue, rather than spontaneous walking, enables individuals to initiate 
and maintain gait [15, 16]. Visual, auditory and somatosensory cueing modalities have 
been demonstrated to improve gait in PD [17–19]. Visual cues include targets placed/
projected on the floor [20, 21], displays or augmented reality devices [22, 23]. Vis-
ual cueing has been shown to improve walking speed and stride length in PD during 
free [22] or treadmill [21, 24] walking, whilst reducing the need for stabilising sup-
port [20]. However, visual cueing methods may distract or disturb vision, or adversely 
impact posture (looking downward). A systematic review of 50 published studies 
(involving 1892 participants) reported that rhythmic auditory cueing increases walk-
ing speed and stride length whilst reducing cadence [17]. In one study, rhythmic audi-
tory stimulation delivered ahead of a FOG-inducing challenge showed a significant 
and stable reduction in number and duration of freezing episodes [25].

Although most cueing studies have used visual or auditory cues, rhythmic soma-
tosensory cueing is a viable alternative [26]. Application of rhythmic vibration cues 
to the wrist during gait training programmes can increase walking speed and stride 
length, improve balance and reduce FOG severity [14, 27, 28]. Similarly, a small elec-
trical stimulus can improve gait initiation [15]. Whilst the effect of cueing to improve 
gait is clear, the effect on overcoming FOG is inconsistent in the literature, likely due 
to the stochastic nature of this pathology and the large variation in study design, cue 
type and delivery method.
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Closed-loop cueing systems couple cue delivery with a feature of the cued individual, 
requiring both sensor and actuator functions. Demonstrations of closed-loop systems 
include delivery of vibration cues to the wrist at a set point of the gait cycle (biofeed-
back) to reduce FOG [29, 30], coupling augmented reality visual displays to movement 
[23] or triggering audible cues upon deviation from a set cadence [31]. Likewise, another 
study used arm angle/swing to activate wrist vibration cues which improved step length, 
although FOG was not assessed [32]. An advanced closed-loop concept is the provision 
of cues in response to FOG to re-start gait: such systems have the potential to reduce 
task loading for the individual, representing a significant advancement over self-acti-
vated cues. Although devices capable of coupling sound cues with FOG-detection have 
been reported, the impact of this cueing mode on FOG-incidence and gait metrics is 
unclear [33, 34]. Another study delivered single-leg continuous (non-rhythmic) vibration 
stimulation upon FOG during guided straight line walking: this proprioceptive stimulus 
reduced the length of initial FOG events [35]. Key remaining challenges for closed-loop 
systems include improving real-time FOG detection and coupling this with effective and 
unobtrusive cue delivery in a real world setting [19].

In this study we aimed to investigate the feasibility of delivering rhythmic vibration 
cues to the lower leg in response to gait freezing, to improve gait and reduce FOG in 
PD patients during complex walking tasks, and to develop algorithms capable of using 
real-time movement data from lower leg IMU sensors to identify FOG and other gait 
features. This information is critical to establish closed-loop, FOG-responsive rhythmic 
vibration cueing systems.

Results
The study cohort

17 participants diagnosed with PD and self-reporting multiple daily FOG events were 
recruited to the study: baseline participant characteristics are presented in Table 1, and 
pre-study questionnaire responses summarised in Additional file 2: Table S1. Mean age 
was 74.5 years (range 60–84), with mean time since PD diagnosis 9.6 years (range 5–21). 
18% of the cohort were female, 53% of the cohort suffered from festinating gait along-
side FOG, and 29% reported a history of falling. 12 participants returned the optional 
FOG questionnaire (Additional file 2: Table S2), which revealed a mean FOG score of 
15.1 with a range of 9–21 (0 represents no evidence of FOG; 24 represents extremely 
debilitating FOG preventing walking), which indicated we have captured a meaningful 
cross section of people with PD and FOG in our cohort. The pre-study questionnaire 
responses also indicate a range of activity levels, perceived triggers for FOG and tech-
niques currently used to overcome freezing (including ‘none’, ‘internal cueing’, ‘pause 
and restart’ and ‘change in posture’). No serious adverse events and no falling events 
occurred during the study sessions.

Stage A

During stage A the functionality, safety, efficacy and comfort of rhythmic vibration cues 
were assessed, using a device prototyped at the University of Oxford (Additional file 2: 
Fig. S1; Materials and Methods). Participants undertook 4 circuits, receiving a different 
intervention per circuit, with the ordering of interventions systematically varied for each 
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participant (Fig.  1). Interventions were no device (ND); device worn, no cueing (NC); 
device worn, responsive cueing (RC; cues initiated by the research team in response to 
FOG); device worn, continuous cueing (CC). Each circuit consisted of 5 activity seg-
ments (Additional file  2: Fig.  S2a–e). Video data files were fragmented and viewed in 
random order without sound by 3 observers blinded to NC/RC/CC intervention type, 
but not ND: therefore, NC was used as the baseline control during pairwise analysis.

12 participants attended stage A (Fig.  1). Upon commencing the study one partici-
pant (P10) was deemed to have a high fall risk and was withdrawn. The remaining 11 
participants completed all 5 segments of the 4 circuits. Multiple linear regression was 
conducted with step frequency as the dependent variable, and participant [1–11], inter-
vention type (1–4) and intervention circuit position (1–4) as independent variables: of 
these, only ‘intervention type’ contributed significantly to the model (P < 0.05; Table 2). 
Pairwise analysis of step frequency with either RC or CC, relative to the NC control, 
did not identify any statistically significant changes between intervention types (Fig. 2a). 
However, a trend for individuals with a low baseline step frequency (NC < 75 steps/min) 
to increase step frequency with active cueing was observed, whereas participants with 
a higher baseline step frequency (NC > 75 steps/min) showed a tendency to reduce step 
frequency with cueing (Fig.  2a), suggesting that cueing may help to regulate step fre-
quency toward an optimal target.

We next quantified circuit completion time which captures aggregated walking per-
formance throughout a range of complex activities. Pairwise analysis revealed a signifi-
cant reduction in completion time with both RC and CC interventions, relative to the 
NC control, indicating that both forms of cueing improve walking performance (Fig. 2b). 
Next, we analyzed step symmetry (rhythm), which is defined as the difference in tim-
ing between alternating steps. Most participants showed step symmetry between 0 and 

Table 1  Participants’ baseline characteristics

Participant ID Age Gender Years since 
PD diagnosis

Self-reported gait characteristics

Festination Daily Freezing Falls FoG score

P0 75–79 Male 5–9 Yes Yes Yes 9.0

P1 75–79 Male 5–9 Yes Yes 12.5

P2 75–79 Male 10–14 Yes 14.0

P3 75–79 Male 10–14 Yes Yes 10.0

P4 75–79 Male 5–9 Yes Yes

P5 65–69 Male 10–14 Yes Yes 18.0

P6 75–79 Male 10–14 Yes Yes

P7 70–74 Male 5–9 Yes 12.0

P8 80–84 Male 5–9 Yes Yes

P9 75–79 Male 10–14 Yes Yes Yes 21.0

P10 80–84 Male 20–24 Yes Yes

P11 65–69 Female 5–9 Yes 15.0

P12 80–84 Female 10–14 Yes

P13 75–79 Female 5–9 Yes Yes 12.0

P14 65–69 Male 15–19 Yes Yes Yes 21.0

P15 65–69 Male 10–14 Yes 21.0

P16 60–64 Male 5–9 Yes 15.5
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Fig. 1  Study organisation. The study was organized in 3 stages (A-C) separated by short gaps to enable 
data analysis, revision of activity circuits, device servicing/improvement and participant recruitment. Each 
stage consisted of a series of 1 h study sessions, each involving a different participant who undertook 4 
activity circuits. One of the following interventions was applied during each circuit: no device (ND); device 
worn, no cueing (NC); device worn, responsive (FOG-initiated) rhythmic vibration cueing (RC); device worn, 
continuous rhythmic vibration cueing (CC). The ordering of these interventions was systematically alternated 
for each participant as indicated. Each circuit consisted of a series of activity segments: the number of activity 
segments completed per circuit was dependent on the ability of each participant, as indicated

Table 2  Step Frequency Multiple linear regression

Multiple linear regression using step frequency as the dependent variable, and participant ID, intervention type (1–4) and 
intervention circuit position (1–4) as independent variables. *P < 0.05

Fit dF ANOVA P-Value Coefficients (P values)

R2 Residual F Participant Intervention type Intervention 
circuit 
position

Stage A 0.186 3 40 3.043 0.04* 0.053 0.034* 0.466

Stage B 0.32 3 28 5.868 0.003* 0.003* 0.014* 0.927

Stage C 0.268 3 40 1.034 0.388 0.112 0.499 0.954
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0.1 (with zero being perfectly symmetrical), although two participants showed very large 
deviations. Overall, no statistically significant effect of cueing on step symmetry was 
detected (Fig. 2c).
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Fig. 2  Gait metrics from analysis of Stage A video data. Participants in stage A each undertook a 1 h study 
session consisting of 4 activity circuits, with one of the following interventions applied during each circuit: no 
device (ND); device worn, no cueing (NC); device worn, responsive (FOG-initiated) rhythmic vibration cueing 
(RC); device worn, continuous rhythmic vibration cueing (CC). Video data were analyzed by 3 observers 
blinded to intervention (except ND) using GaitAnalyst software and a mean value generated for each metric 
during each circuit. a Mean step frequency (steps/min). b Total time to complete the circuit (seconds). c Step 
symmetry index (0 = perfect symmetry). d Number of freeze events detected per circuit. e cumulative freeze 
time per circuit (seconds). f Cumulative freeze time as a percentage of circuit completion time. Individual 
data points shown represent the mean response for an individual participant (n = 11). A Kolmogorov–
Smirnov test was run to test parametric distribution. Data in (a, b) were normally distributed and analyzed 
using paired t-tests. Data in (c–f) were not normally distributed and were analyzed using Wilcoxon 
matched-pairs signed rank tests. Significant differences indicated by asterisks: P < 0.05*, P < 0.01**
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FOG events were identified from video data which, due to the cross-sectional cohort, 
were highly variable: two participants showed a high FOG rate (> 20 FOG events per cir-
cuit), whereas 3 participants showed no FOG. Due to the low levels of FOG recorded, no 
significant differences were observed in the number of freeze events (Fig. 2d) or cumula-
tive FOG duration (Fig. 2e, f ) across the cohort. However, there were several participants 
who showed a marked reduction in freeze time with responsive or continuous cueing.

Post-study questionnaires (Additional file  2: Table  S3) revealed that 54% of partici-
pants perceived that cueing improved their walking. 75% of participants suggested that 
the vibration should be stronger. 2 participants suggested that vibration strength should 
be variable depending on the situation (‘stronger on a bad day, weaker on a good day’), 1 
participant stated that cue frequency should be ‘tuned to their pace in different environ-
ments’, and another found the cue frequency to be ‘too fast when turning and too slow 
on the straight’. 6 participants showed either no freezing or a single FOG event, with 
one participant remarking that the circuits could be more challenging. All participants 
reported that the device was comfortable, with one stating that it was ‘very light and I 
didn’t notice it’ and another found the cue to be ‘comforting’ and ‘soothing’.

Stage B

Based on participant feedback the device was modified to incorporate more powerful 
vibration motors (amplitude increased from 1.49G to 4.51G), and activity circuits were 
revised to be more challenging but with fewer segments to simplify logistics (Additional 
file 2: Fig. S3). Finally, the IMU device capability was activated to enable onboard collec-
tion of movement data.

8 participants took part in stage B with one participant completing all 4 segments 
of each circuit, and 7 participants completing 1–3 segments (Fig. 1), indicating that 
the revised circuits pose an appropriate walking challenge for our cohort. Multiple 
linear regression of step frequency revealed that both ‘intervention type’ and ‘par-
ticipant’ contributed significantly (P < 0.05) to the model (Table 2). Further analysis 
revealed that step frequency increased significantly with both RC and CC, relative 
to NC (Fig. 3a). In addition, a significant reduction in circuit completion time with 
RC and CC, relative to NC (Fig. 3b), was observed, reproducing the positive effect 
recorded in stage A. Taken together, these data reflect an improvement in walking 
ability within the cohort when assisted with either cueing modality. Interestingly, 
the mean step frequency at baseline (NC) in stage B was 74 steps/min, whereas in 
stage A this was 96 steps/min: this is likely driven by differences in the cohort/par-
ticipants and activity circuits. This may explain in part why for stage A we saw a 
trend for reduced step frequency in individuals with higher baseline step frequency, 
but an increase in step frequency for all participants in stage B where baseline step 
frequency was lower. The step symmetry index was higher in stage B relative to stage 
A, indicating worse step symmetry. There were no significant differences between 
the intervention types (Fig.  3c), although a non-significant trend toward improved 
step symmetry (reduced symmetry index) was observed in 6 participants with RC 
relative to NC. Quantification of FOG events showed substantial variation in the 
cross-sectional cohort: whilst some evidence for FOG was detected in all stage B 
participants, this was highly variable, with two participants showing minimal (1 or 
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Fig. 3  Gait metrics from analysis of Stage B video data. Participants in stage B each undertook a 1 h study 
session consisting of 4 activity circuits, with one of the following interventions applied during each circuit: no 
device (ND); device worn, no cueing (NC); device worn, responsive (FOG-initiated) rhythmic vibration cueing 
(RC); device worn, continuous rhythmic vibration cueing (CC). Video data were analyzed by 3 observers 
blinded to intervention (except ND) using GaitAnalyst software and a mean value generated for each metric 
during each circuit. a Mean step frequency (steps/min). b Total time to complete the circuit (seconds). c Step 
symmetry index (0 = perfect symmetry). d Number of freeze events detected per circuit. e cumulative freeze 
time per circuit (seconds). f Cumulative freeze time as a percentage of circuit completion time. Individual 
data points shown represent the mean response for an individual participant (n = 8). A Kolmogorov–Smirnov 
test was run to test parametric distribution. Data in (a) were normally distributed and analyzed using paired 
t-tests. Data in (b, c-f) were not normally distributed and were analyzed using Wilcoxon matched-pairs signed 
rank tests. Significant differences indicated by asterisks: P < 0.01**
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less) FOG events and three participants showed >10 FOG events. Due to this het-
erogeneity and low levels of FOG in most participants, no significant differences in 
the overall number or duration of FOG episodes were detected (Fig. 3d–f ), although 
some participants did show a reduction with cueing.

Post-study questionnaire responses (Additional file 2: Table S4) revealed that 75% of 
participants perceived that cueing improved their walking, of which 2 participants found 
that cueing helped them concentrate. Only 25% of participants suggested the cue should 
be stronger: one suggested it should be ‘stronger, less diffuse and sharper’ and that ‘the 
cues tended to blend into each other’ whilst another stated that ‘it should be stronger on 
my bad side’ indicating that the ability to vary cue intensity independently on each leg 
could be a useful feature. One participant remarked that they ‘liked having their hands 
free’ during cue delivery, whilst another indicated that they would like the option of a 
manual trigger. All participants said that wearing the device was comfortable. One par-
ticipant said that they had suffered from cramps for several days, and that the rhythmic 
vibration had a ‘soothing effect’. One individual commented that they thought the device 
should be quieter.

Stage C

During stage C, activity circuit segment 3 was updated to increase the walking time 
and complexity of the circuit (Additional file 2: Fig.  S4). The device software was fur-
ther improved with a wider value range of configurable parameters (including vibration 
intensity, duration and frequency) to better personalise the cue for each individual.

11 participants took part in stage C of which 6 completed all 4 circuits (Fig. 1). In con-
trast to prior study stages, none of the independent variables predicted step frequency 
using multiple linear regression (Table 2), perhaps reflecting the high degree of varia-
tion across the cohort. However, pairwise analysis revealed a significant increase in step 
frequency with RC relative to the NC, but not for CC (Fig. 4a). Furthermore, a highly 
significant reduction in circuit completion time was identified for participants receiving 
RC, relative to the NC control (Fig. 4b). CC also reduced completion time, which was 
approaching the threshold for significance (P = 0.054). As in previous study stages, step 
symmetry was highly variable and did not show any statistically significant association 
with cueing, although an improvement was noted in some cued individuals (Fig. 4c). In 
contrast to prior study stages, 5 participants showed > 10 FOG events during baseline 
NC circuits (Fig.  4d), representing a higher FOG incidence. RC significantly reduced 
the overall number of freeze events (Fig. 4d). There was a trend for CC to reduce FOG 
events and freeze time, but this was not significant across the cohort (Fig. 4d–f).

Post-study questionnaires (Additional file  2: Table  S5) revealed that 91% of partici-
pants perceived that cueing improved their walking, with several participants noting 
it helped them to ‘slow down’ their walking pace, to ‘focus’ and ‘concentrate’ (P0, P1, 
P7, P11). One respondent noted that the ‘responsive cue really changed my walking: it 
helped me initiate walking with my right or left leg; usually I lead with my left’, and that 
‘I felt more relaxed and it helped me multitask………giving me more time to judge where 
I’m going and better navigate corners’. The cueing was noted for preventing stride length 
from shortening (P14), both in straight lines and around corners, which is also captured 
in quantitative video and IMU data presented below (Fig.  5). All participants felt the 
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device and cue were comfortable, although 2 noted it should be quieter. Most felt the cue 
intensity and frequency were appropriate, but some suggested cueing could be adjusted 
for different scenarios (e.g., outside vs inside).
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Fig. 4  Gait metrics from analysis of Stage C video data. Participants in stage C each undertook a 1 h study 
session consisting of 4 activity circuits, with one of the following interventions applied during each circuit: no 
device (ND); device worn, no cueing (NC); device worn, responsive (FOG-initiated) rhythmic vibration cueing 
(RC); device worn, continuous rhythmic vibration cueing (CC). Video data were analyzed by 3 observers 
blinded to intervention (except ND) using GaitAnalyst software and a mean value generated for each metric 
during each circuit. a Mean step frequency (steps/min). b Total time to complete the circuit (seconds). c Step 
symmetry index (0 = perfect symmetry). d Number of freeze events detected per circuit. e cumulative freeze 
time per circuit (seconds). f Cumulative freeze time as a percentage of circuit completion time. Individual 
data points shown represent the mean response for an individual participant (n = 11). A Kolmogorov–
Smirnov test was run to test parametric distribution. Data in (a) were normally distributed and analyzed using 
paired t-tests. Data in (b, c-f) were not normally distributed and were analyzed using Wilcoxon matched-pairs 
signed rank tests. Significant differences indicated by asterisks: P < 0.05*, P < 0.001***
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Detection of step frequency and step length from onboard IMU data

During study stages B and C, movement data were captured from onboard IMUs, ena-
bling extraction of step frequency and stride length data, with verification against video 
data. These analyses were undertaken during the TUG segment, as this relatively sim-
ple walking task enabled clear comparisons across participants and between video and 
IMU data, with accurate calibration of distance travelled. The results reveal that step 
frequency calculated from IMU data shows very similar trends to video analysis data 
(Fig. 5), with 6 of the 8 participants in stage B (Fig. 5a), and 9 of the 11 participants in 
stage C (Fig. 5e), showing a reduction in IMU step frequency. However, the reduction in 
step frequency with RC did not reach statistical significance with IMU data (Fig. 5a, e), 
in contrast to video data (Fig. 5b, f ), suggesting that IMU analysis is less sensitive. How-
ever, step length calculated using both IMU and video data was significantly enhanced 
by RC and CC (Fig. 5c, d, g, h).

Development of real time FOG detection and gait analysis algorithms

A key requirement for closed-loop cueing systems is the development of accurate 
FOG-detection and gait analysis algorithms, fast enough to coordinate real-time cue-
ing responses and efficient enough to run on a typical microcontroller in a battery-
powered wearable device. The main limitation for speed is the fast Fourier transform 
(FFT), a critical step for freeze index computation. For the embedded microprocessor 
in the GaitThaw device (Teensy 3.6), the expected computational cycle for a 256 point 
FFT is 114 µs, which yields 342 µs for 3-axis IMU data. This is considerably lower than 
the 10–15 ms IMU acquisition cycle required to obtain walking data [34, 37]. However, 
since this is a sliding window problem (only one of the 256 data points is updated at each 
cycle), Sliding Discrete Fourier Transform [38] was employed, further reducing compu-
tation time. Runtime system evaluation revealed an acquisition rate of 82 Hz while com-
puting gait features and performing FOG detection. The software sketch used a total of 
70kB of program storage and 20kB of dynamic memory, both 7% of the available mem-
ory for Teensy 3.6. Thus, memory usage is not a constraint for the proposed framework 
with these device specifications.

Initial testing of the proposed FOG detection framework was performed using 
published IMU data from the lower leg of n = 10 people with PD performing walking 

Fig. 5  Comparison of gait analysis using IMU and video data. During stages B and C inertial measurement 
unit (IMU) data was collected using the GaitThaw device. Analysis of IMU data during the timed-up-and-go 
(TUG) test (segment 1) enabled comparison with observer analysis of video data during stage B (a-d) 
and stage C (e–h). Interventions analyzed were device worn, no cueing (NC); device worn, responsive 
(FOG-initiated) rhythmic vibration cueing (RC); device worn, continuous rhythmic vibration cueing (CC). a 
Step frequency from IMU data during stage B. b Step frequency from video data during stage B. c Step length 
from IMU data during stage B. d Step length from video data during stage B. e Step frequency from IMU 
data during stage C. f Step frequency from video data during stage C. g Step length from IMU data during 
stage C. h Step length from video data during stage C. Individual data points on graphs represent the mean 
response for an individual participant (a–d, n = 8; e–h, n = 11), with standard deviation indicated (a, b, e, f ). 
A Kolmogorov–Smirnov test was used to test parametric distribution. Data in (a, b, d, f, g, h) were normally 
distributed and analyzed using paired t-tests. Data in (c, e) were not normally distributed and were analyzed 
using Wilcoxon matched-pairs signed rank tests. Significant differences indicated by asterisks: P < 0.05*, 
P < 0.01**

(See figure on next page.)
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tasks in a controlled environment [34]. Importantly, these data have been manu-
ally annotated for FOG events, enabling use as a ground truth for machine learning. 
Leave-one-out cross-validation was used to assess the performance of our proposed 
framework, resulting in an average sensitivity and specificity across all participants of 
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91% and 89%, respectively, comparable to other machine learning experiments using 
this dataset [39, 40]. The FOG detection framework was next applied to IMU data 
from the present study (NC), which contained 694 FOG events scored by an observer. 
A receiver operating characteristic (ROC) curve of the Random Forest Classifier for 
FOG detection was generated (Fig. 6) and leave-one-out cross-validation yielded 83% 
sensitivity and 80% specificity for FOG detection. This is an acceptable level of accu-
racy, especially considering the variation in walking ability and FOG incidence in our 
relatively small cross-sectional cohort, which represents real world variations in FOG 
and gait when performing complex activities. Further improvement in FOG detection 
accuracy may be achieved with larger training data sets, and by clustering subjects 
according to walking quality/characteristics and training separate classifiers for these 
discrete groups.

Discussion
In this study, we investigated the feasibility of delivering rhythmic vibration cues to the 
lower leg in response to gait freezing, to improve gait and reduce FOG. Our study has 
revealed that both responsive (transient cueing triggered remotely by the research team 
in response to FOG) and continuous cue delivery (continuous cueing throughout the 
walking circuit) can improve walking quality, as reflected in several metrics captured 
from video analysis data scored by blinded observers. A key metric is circuit comple-
tion time, as this captures the efficiency with which the individual navigates all activ-
ity segments posed, therefore, capturing the ability to initiate, maintain and coordinate 
gait throughout a range of walking, turning and other challenges. Responsive vibration 
cueing consistently and significantly improved circuit completion times throughout the 
three study stages, demonstrating the acute, positive impact of FOG-responsive (simu-
lated closed-loop) vibration cues on freezing and walking ability throughout a complex 
series of tasks that reflect challenges found in the everyday environment.

Another important gait metric, and primary outcome measure for this study, is step 
frequency, which increased significantly across the cohort when responsive cueing was 
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Fig. 6  Evaluation of automated FOG-detection. We applied our FOG detection machine learning framework 
to IMU data collected during stages B and C, using observer analysis of video data as ground truth. The 
receiver operating characteristic (ROC) curve of the Random Forest Classifier for FOG detection is shown, with 
specificity (X-axis) plotted against sensitivity (Y-axis)
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provided during stages B and C, demonstrating the impact of cue delivery. Interestingly, 
when analysing just the TUG segment, responsive cueing reduced the step frequency 
from the high baseline level recorded during the relatively unhindered straight walking 
of TUG. This suggests that responsive cueing helps to regulate step frequency toward 
the optimal target provided by the rhythmic cue. This is further reinforced by our obser-
vations during stage A where cueing had no significant impact on the higher average 
baseline step frequency observed during the less-challenging activity circuits, relative 
to stages B and C, suggesting no further gains to mean step frequency were provided 
by external cueing in this context. A prior study reported that delivery of continuous 
vibration cues from a waist mounted metronome disrupted gait relative to sound cues, 
and that switching cue confused some participants [41]. In the present study we saw no 
evidence for a disruption of gait by vibration cueing to the lower leg, but rather improve-
ments in step frequency, stride length, circuit completion time and FOG incidence (with 
RC). The increase in stride length observed with both responsive and continuous cueing 
during free walking reproduces previous observations with visual cueing [24]. There was 
no evidence for a placebo effect of simply wearing an inactive device, as no significant 
differences between ND and NC were detected for any of the metrics analyzed.

A key strength of this study is our focus on testing the acute impact of responsive and 
continuous cueing on FOG, in a cross-sectional cohort. FOG is a stochastic event and 
attempting to capture this during a 1 h study session is challenging. Although all partici-
pants reported daily gait freezing upon entry to the study, we observed a high degree of 
heterogeneity during the study sessions: some participants did not freeze at all, whilst 
others had repeated FOG events at baseline. During stages A and B, levels of freezing 
at NC baseline were relatively low: during stage A, only 2 participants had > 10 freeze 
events and > 30 secs total freeze time; during stage B, no participants had > 10 freeze 
events, and 1 participant had a total freeze time of > 30 secs. Therefore, it is not surpris-
ing that cueing did not reduce the already low FOG rate during stages A and B. In con-
trast, participants in stage C demonstrated a higher rate of FOG: 5 individuals had > 10 
FOG events and > 30secs total freeze time at NC baseline. Importantly, the acute provi-
sion of somatosensory cues in response to FOG, but not continuous cues, significantly 
reduced the number of FOG events during stage C, suggesting that provision of respon-
sive cueing reduces the likelihood of future FOG events. However, the duration of total 
FOG events was not altered: one explanation could be that the cued individual is spend-
ing time processing how to respond to the cue [31]. Therefore, future studies may wish 
to incorporate additional cue-response training to test if this reduces total freeze time. 
The lack of a significant impact of continuous cueing on FOG events could be due to 
habituation.

Although many participants had minimal (1 or less) FOG events at NC baseline, and 
other gait metrics were variable across the cohort, the majority of participants perceived 
that cueing improved their walking: 50% (6 out of 12) during stage A; 75% (6 out of 8) 
during stage B; 91% (10 out of 11) during stage C. This increase in the perceived benefits 
of cueing may in part be due to the improvements made to the device between study 
stages, following participant feedback, which included increasing the strength and dura-
tion of vibrations. Another feature that was recommended by multiple participants is 
the ability to vary cue intensity and frequency on the fly: this could, for example, enable 
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a lower frequency to be provided during tight turns, and a higher frequency during open 
walking. Whilst our data indicate that somatosensory cueing to the lower leg can reg-
ulate step frequency, similar to other forms of rhythmic cueing, future studies should 
carefully consider how cue intensity and frequency are controlled during cue delivery in 
different contexts, to better personalise the cue to the individual in a given environment. 
Finally, several participants reported that the cue was ‘comforting’, ‘soothing’ and ‘helped 
me to concentrate’. This reinforces the wider potential benefits of cueing to help support 
confidence in walking, but could also suggest that for some individuals a stronger cue 
may be required.

This study was designed to closely mimic challenges faced by people with PD in the 
real world. First, the study site selected was a ground level physiotherapy clinic, rather 
than a hospital setting. Second, participants navigated a series of walking/activity cir-
cuits, some including additional task loading, rather than straight line walking or use 
of a treadmill: this ensures that we capture cumulative gait performance across a range 
of different challenges. Third, we asked participants not to change their usual medi-
cation routine to capture a cross section of the PD population in their typical state. 
Fourth, our use of lightweight, discrete wearable cueing devices worn discretely on the 
lower legs, with no reported discomfort or evidence for trip hazards or gait impedi-
ment, indicate that this approach is safe and feasible in the everyday environment over 
longer periods of time. This was a feasibility study with a relatively small sample size. 
Although a positive impact on gait was identified which is encouraging, these results 
need to be validated in a larger study. This is particularly important given the person-
to-person variation in gait metrics, FOG incidence and response to cueing observed in 
this study. Whether FOG-responsive or continuous somatosensory cueing can reduce 
fall risk was not tested in this study as we excluded participants with a high fall risk. 
However, the small, but significant reduction in FOG incidence, if extrapolated across 
a larger number of people, would be expected to reduce the risk of falling. Moreover, 
the regulation of step frequency observed during active cueing, along with several ques-
tionnaire comments that the cueing helped people to concentrate, could have a positive 
impact on fall risk [5]. Another limitation of our findings is that only 3 out of 17 par-
ticipants recruited were female: although PD has a higher prevalence in men [42], and 
FOG has a higher prevalence in men with PD [4], this does not explain why only 18% 
of the cohort recruited were female: future research will need to further validate FOG-
responsive cueing in women. Future studies will be required to determine the long-term 
efficacy of FOG-responsive vibration cueing. As cues are delivered only when required, 
this may reduce the potential for habituation or fatigue. Moreover, studies of continuous 
rhythmic cueing during gait training have demonstrated improved walking ability after a 
period of several weeks [27, 43]. Although posture was not assessed in the present study, 
prior reports have used cueing as a form of feedback to improve posture [44, 45]: There-
fore, cueing in and of itself is unlikely to have a detrimental effect on posture. Finally, 
future research will be required to investigate the interaction between FOG-responsive 
cueing, antiparkinsonian medication, PD stage and other features of the disease.

A key component required for successful development of closed-loop cueing is accu-
rate real-time detection of FOG. For example, the current DeFOG trial is testing the 
effect of FOG-triggered auditory cueing and instruction [46]. The accuracy of our 
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machine learning framework was slightly lower when using IMU data from the present 
study compared to using the Bachlin et al. data set [34], probably due to the heterogene-
ity in walking ability and FOG in our cross sectional study: this does, however, provide a 
realistic indication of how the algorithm will behave in an unsupervised real-world set-
ting. Further training/testing of this algorithm using IMU and video data sets gathered 
from larger cohorts of people with PD will be required prior to deployment in studies 
in the home environment where ground truth video data would not be available, and 
where more complex movement patterns may yield less accurate and representative 
features from IMU data [47]. Future developments in FOG detection that adapt to the 
users walking characteristics and cue responses would be an important step towards 
personalised cue delivery. Moreover, a tantalising prospect is identification of pre-FOG 
signatures from IMU data or other sensors, to pre-empt the onset of FOG and deploy 
responsive cueing early to maintain gait. Finally, the use of IMU data to quantify step 
frequency and stride length indicate this could be used to support gait monitoring in the 
everyday environment, providing valuable information for managing PD.

Conclusions
This study reports improvements in gait and FOG with responsive vibration cue-
ing in PD and provides a framework for real-time gait analysis and FOG detection for 
embedded devices. Together, these data demonstrate the feasibility of closed-loop cue-
ing approaches to improve gait and reduce FOG in PD. Future development of variable 
cueing modalities, combined with adaptive gait analysis and FOG detection algorithms, 
would enable personalised closed-loop cueing for people with PD.

Methods
Study design

This feasibility study was conducted in accordance with the Declaration of Helsinki 
and was approved by the UK NHS Health Research Authority Southwest-Frenchay 
Research Ethics Committee (ref. 18/SW/0253). The study was sponsored by the Univer-
sity of Oxford, and funded by a Wellcome Trust Institutional Strategic Support Fund 
Translational Award (ISSF 204826/Z/16/Z). The study was retrospectively registered 
with clinicaltrials.gov (NCT05019469; 23/08/2021). The study sessions were conducted 
between 11th March and 22nd July 2019 at a private physiotherapy studio in Cassington, 
Oxfordshire (The Bosworth Clinic) under a contract with the University of Oxford. Dur-
ing all study sessions, participants were closely supervised and supported by a qualified 
neurophysiotherapist.

The study was organized into three stages, A–C, separated by gaps of a few weeks for 
device development (following participant feedback), revision of study activity circuits, 
data analysis and participant recruitment (Fig. 1). Each stage consisted of a series of 1 h 
study sessions, each attended by a different participant. During each study session, par-
ticipants were instructed to navigate a circuit consisting of a series of walking segments 
(Fig. 1; Additional file 2: Fig. S2–S4), with each segment using a seated start and finish. 
Each participant would attempt the circuit 4 times, with one of the following interven-
tions applied during each circuit: no device (ND); device worn, no cueing (NC); device 
worn, responsive (FOG-initiated) cueing (RC); device worn, continuous cueing (CC). 



Page 17 of 22Li et al. BioMedical Engineering OnLine          (2023) 22:108 	

The cue was a rhythmic vibration applied to the gastrocnemius muscle of both legs: fre-
quency was adjusted to the approximate natural walking pace of each participant, and 
intensity adjusted to ensure each participant could comfortably feel the cue. Ordering of 
interventions was systematically alternated for each participant as they joined the study 
(Fig.  1), to minimise the potential for a training effect or fatigue to influence any one 
intervention. If a participant was judged unlikely to be able to complete all 4 circuits in 
full, then the number of segments per circuit was reduced. Responsive cueing consisted 
of delivery of vibration cues triggered remotely by the research team upon observing 
gait freezing, with cues stopped a few seconds after normal walking resumed, simulating 
closed-loop (automated) cueing. Continuous cueing was provision of left–right vibra-
tion cues throughout the entire circuit. Some participants took part in multiple study 
stages (A–C), some just one (Fig. 1). Participants completed questionnaires before and 
after each study session (Additional file 2: Tables S1–S5). The pre-study questionnaire 
(Additional file  2: Table  S1) was designed to qualitatively assess walking ability, FOG, 
and strategies currently used to manage walking. Completion of an optional pre-study 
FOG questionnaire [48] provided a standardised FOG score (Additional file 2: Table S2). 
The post-study questionnaire (Additional file 2: Tables S3–S5) was designed to qualita-
tively assess participants’ interaction with the device and cue, their perception of their 
walking quality whilst being cued, and how this cueing modality could be improved.

Participants and recruitment

Eligible participants were those diagnosed with PD, aged 18–90 years of age, who suf-
fer from regular gait freezing (several times daily) but are able to walk unassisted for 
short periods. Eligible participants were recruited to the study following distribution of 
the study flyer to PD outpatient clinics at the John Radcliffe Hospital, local Parkinson’s 
UK support groups and private physiotherapy clinics in the Oxfordshire area. Eligible 
participants were required to be willing and able to give informed consent for partici-
pation in the study and to comply with all study requirements, as well as being fluent 
in English, and with a clinical diagnosis of Parkinson’s disease or idiopathic Parkinson’s 
disease. People that were deemed unable to participate safely in the study due to severe 
mental impairment, dementia or psychosis, or any other significant disease or disorder, 
were excluded. Other exclusion criteria included current participation in a clinical drug 
trial, pregnancy or breastfeeding. People with a high frequency of falls (daily), who have 
received DBS, or who have been diagnosed with atypical parkinsonism were excluded. 
We did not mandate that participants attend in the ON or OFF state, but rather asked 
participants to follow their usual medication routine when taking part in the study. 17 
participants were recruited who all provided written informed consent.

Design and construction of the ‘GaitThaw’ movement‑tracking cueing device.

To enable delivery of vibration cues to the lower legs on demand, and the simultaneous 
tracking of participants’ leg movements, the non-invasive wearable ‘GaitThaw’ device 
was prototyped at the University of Oxford. The device consists of two 3D-printed bio-
compatible PLA plastic boxes (approximately the size and weight of a smartphone), 
which are worn around the lower leg using nylon elasticated straps either against the 
skin, or over an item of clothing, with the box against the gastrocnemius muscle 
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(Additional file 2: Fig. S1a). Each box contains a printed circuit board (PCB) powered by 
a 3.7 V Lithium polymer battery, assembled with RoHS-compliant commercial modules 
including accelerometers and gyroscopes (movement tracking with 6 degrees of free-
dom), vibration motors for cue delivery, wireless transceivers, real-time clock, memory 
and basic components (Additional file 2: Fig. S1b, c). Detection of walking metrics from 
lower leg sensors has been reported to be more accurate than knee or waist locations 
[34]. The devices are linked by radio to enable coordinated delivery of vibration cues 
and recording of data. A third unit contains a control button which can be used by the 
research team to remotely configure and trigger cue delivery. Engagement of multiple 
vibration motors enabled cue intensity to be increased for patients with poor sensation. 
During device development members of the research team wore the device for many 
hours without any discomfort or other issues.

Outcomes

Primary objective: to test if FOG-initiated vibration cues, provided at the lower-leg, can 
improve gait in PD patients. The primary outcome measure is step frequency: a statis-
tically significant improvement of active cueing over no-cueing will indicate improved 
gait. Other gait quality measures include frequency of gait freeze events, duration of gait 
freeze events, continuous walking time, left/right rhythm, stride length, up and go time 
(seated to standing to walking). Secondary objective/outcome: to develop algorithms 
capable of identifying gait freeze events in real time using participant movement data, 
with > 80% accuracy.

Video data, observer analysis and software development

All study participants consented to video recording of the study sessions. We devel-
oped custom gait analysis software coded in Python3.3 (‘GaitAnalyst’), to enable indi-
vidual steps and other events/gait features to be marked and time-stamped against 
video recordings using keyboard strokes during video playback, which could be run at 
half and quarter speeds to increase accuracy of feature analysis (Additional file 2). We 
provide open access to the software here: https://​github.​com/​dongc​hengl​i9401​26/​KeyPr​
essed​TimeV​ideoR​ecord. Video recordings were fragmented into individual files for each 
segment (4 per circuit, 16 per 1 h session) and sound removed. Video recordings were 
viewed in random order and scored independently by 3 observers who had been trained 
to recognize the relevant gait features (all video recordings were scored by all 3 observ-
ers). Gait features scored are listed in Fig. 2–4 and the Additional file 1. During video 
analysis, individual keyboard strokes were used to record left and right foot strikes, pro-
viding the data to calculate step frequency (foot strikes per minute) and step symmetry 
(difference in timing between alternating steps with zero being perfectly symmetrical). 
Key strokes were also used to record the start and end of FOG events, enabling the 
number of FOG events and freeze time to be calculated. Each observer could recognize 
the no-device (ND) group, however, they were blinded with regard to the no-cue (NC), 
responsive cue (RC) and continuous cue (CC) interventions. Therefore, during pairwise 
statistical analysis, the active cueing groups (RC and CC) were compared with the device 
no-cue (NC) control, to avoid the potential for observer bias. The percentage coefficient 
of variation (%CV) between observer scores for stage A was 0.65 for step frequency, 0.14 

https://github.com/dongchengli940126/KeyPressedTimeVideoRecord
https://github.com/dongchengli940126/KeyPressedTimeVideoRecord
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for circuit completion time, 17.9 for step symmetry, 18.2 for freeze number, 19.7 for 
freeze time (secs) and 15.6 for freeze time (% completion time).

Automated gait analysis algorithms using inertial measurement unit (IMU) data

Feature extraction from accelerometer data for FOG detection

First, the ‘freeze index’ was calculated, which is the ratio of the power of the freeze band 
(3 and 8 Hz) to the walking band (0.5 and 3 Hz) [49]. Since this ratio can be very high 
when there is little movement (e.g. standing still), a complementary feature, band power, 
was defined as the total power between 0.5 and 8 Hz. Other features that were used were 
variance of acceleration, L1 and L2 norms of acceleration [39] and entropy [40]. All fea-
tures were computed for each accelerometer axis (X, Y, Z) using 256 points windows 
(about 2.5 s of data).

Machine learning for FOG detection

Supervised machine learning was performed using a random forests classifier in Python 
with the Scikit-Learn package. Random forest classification was selected as it is inher-
ently fast, consisting of a sequence of binary classification trees, and is therefore better 
suited to real-time FOG detection than more demanding algorithms such as Support 
Vector Machine. As FOG detection is a highly imbalanced classification problem (i.e., 
the duration of normal walking greatly overwhelms that of FOG), the cost function was 
set to be 10 × greater for false negatives (missed FOG) than false positives (incorrect 
detection of FOG). The random forest was set to have a maximum size of 15, with 25 
trees being trained and pruning enabled. Real-time working principles were applied dur-
ing machine learning.

Calculation of step frequency and stride length from IMU data

Step frequency was estimated by summing steps detected and averaging over the dura-
tion of the circuit. Steps were identified by applying peak detection to gyroscopic data. 
Stride length was computed by extracting horizontal acceleration from IMU data, and 
integrating this for each pair of steps that make up the gait cycle, whilst correcting for 
velocity drift. This method was previously shown to generate < 10% error when estimat-
ing stride length of people with PD [50]. Both stride length and step frequency estima-
tion methods were implemented in Matlab v.2018b (MathWorks Inc. Natick, MA, USA).

Sample size

As this is a feasibility/pilot study, step frequency data were not available in house for 
use in power calculations. Sample size was, therefore, guided using power calculations 
performed on step frequency data reported in a prior treadmill study [26]. This indicated 
that a sample size of n = 10 would be required to detect a 25% change in step frequency 
(alpha 0.05). However, this is based on treadmill walking and, therefore, not representa-
tive of the complex walking circuits in the present study. Therefore, a target of n = 12 
participants per study stage was selected.
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Statistical analysis

Study data were tested for normality using a Kolmogorov–Smirnov test (alpha = 0.05). 
If data were normally distributed, statistical analysis was performed using paired 
2-tailed t-tests. If data failed the normality test, subsequent statistical analysis was 
performed using Wilcoxon matched-pairs signed rank tests. P < 0.05 was regarded as 
statistically significant. Statistical analysis and graphing were performed in Prism9 
(Graphpad Software, San Diego, CA, USA). Multiple linear regression was performed 
in SPSS Statistics v27 (IBM, Armonk, NY, USA).
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