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Abstract
Rationale  Using a preclinical model based on the Alcohol Deprivation Effect (ADE), we have reported that N-Acetylcysteine 
(NAC) can prevent the relapse-like drinking behaviour in long-term ethanol-experienced male rats.
Objectives  To investigate if chronic ethanol intake and protracted abstinence affect several glutamate transporters and 
whether NAC, administered during the withdrawal period, could restore the ethanol-induced brain potential dysfunctions. 
Furthermore, the antioxidant and anti-inflammatory effects of NAC during abstinence in rats under the ADE paradigm were 
also explored.
Methods  The expression of GLT1, GLAST and xCT in nucleus accumbens (Nacc) and dorsal striatum (DS) of male Wistar 
was analysed after water and chronic ethanol intake. We used the model based on the ADE within another cohort of male 
Wistar rats. During the fourth abstinence period, rats were treated for 9 days with vehicle or NAC (60, 100 mg/kg; s.c.). 
The effects of NAC treatment on (i) glutamate transporters expression in the Nacc and DS, (ii) the oxidative status in the 
hippocampus (Hip) and amygdala (AMG) and (iii) some neuroinflammatory markers in prefrontal cortex (PFC) were tested.
Results  NAC chronic administration during protracted abstinence restored oxidative stress markers (GSSG and GGSH/
GSH) in the Hip. Furthermore, NAC was able to normalize some neuroinflammation markers in PFC without normalizing 
the observed downregulation of GLT1 and GLAST in Nacc.
Conclusions  NAC restores brain oxidative stress and neuroinflammation that we previously observed after protracted ethanol 
abstinence in long-term ethanol-experienced male rats. This NAC effect could be a plausible mechanism for its anti-relapse 
effect. Also, brain oxidative stress and neuroinflammation could represent and identify plausible targets for searching new 
anti-relapse pharmacotherapies.

Keywords  N-acetylcysteine · Protracted abstinence · Glutamate transporters · Oxidative stress · Neuroinflammation · 
Ethanol relapse

Introduction

According to the World Health Organisation “Global Status 
Report on Alcohol and Health” 5,1% of the adult population 
worldwide suffered from alcohol use disorder (AUD) and 
around 3 million persons have died in 2016 due to ethanol 
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misuse (World Health Organization, 2018). Relapse is one of 
the most severe handicaps of this psychopathological condi-
tion since it has been reported that patients can relapse even 
after several months or years of abstinence (Weiss et al. 2001; 
Barrick & Connors, 2002). Unfortunately, nowadays there are 
no completely successful pharmacotherapies to prevent etha-
nol relapse (Spanagel & Vengeliene, 2013; Reilly et al. 2014; 
Cannella et al. 2019). In fact, relapse rates remain high even 
for patients receiving currently available treatments (National 
Institute on Alcohol Abuse and Alcoholism, 2021). Although 
in the last decade a wealth of studies has investigated the neuro-
biological mechanisms involved in the various phases of AUD, 
there are still some gaps lingering in the literature (Gipson 
et al. 2021). Consequently, the literature underlines the need of 
unravelling molecular mechanisms linked to the relapse behav-
ior displayed by vulnerable individuals. These findings would 
have the potential to improve AUD treatments (Cannella et al. 
2019; Zhang et al. 2019). In this context, by using the alcohol 
deprivation effect (ADE) model in male rats, our group recently 
reported biochemical differences between rats that repeatedly 
displayed relapse-like drinking behavior and those who did not. 
Concretely, augmented oxidative stress levels and increased 
expression of immunoinflammatory markers such as IL-1β and 
TNFα were found after a protracted abstinence period (3-week) 
only in rats that repeatedly manifested relapse behavior, pos-
sibly being a key in the induction of the craving that will lead 
to the relapse process (Fernández-Rodríguez et al. 2022). In 
accordance with our results, a recent review stated that the 
development of anti-relapse pharmacotherapies should target 
neuroinflammation and oxidative stress alterations underlying 
AUD (Namba et al. 2021).

N-Acetylcysteine (NAC), a pleiotropic drug associated with 
antioxidant, glutamatergic and anti-inflammatory capabilities 
(Oka et al. 2000; Kupchik et al. 2012; Badisa et al. 2013), has 
shown promising results in preclinical studies as treatment for 
several substance used disorders (SUDs) in the case of etha-
nol (Quintanilla et al. 2016; Lebourgeois et al. 2019), cocaine 
(Ducret et al. 2016; Woodcock et al. 2021), heroin (Hodebourg 
et al. 2019) and nicotine (Quintanilla et al. 2018)). In fact, a 
recent study conducted in our laboratory has also demonstrated 
the ability of NAC to prevent ethanol relapse using the ADE 
model, a high face, predictive and ecological validity model in 
the preclinical setting (Cano-Cebrián et al. 2021). Although 
some studies have analysed the effects of NAC on brain glu-
tamate neurotransmission, oxidative status or inflammatory 
markers, the results are not always coincident and the under-
standing of the molecular mechanisms underlying NAC effects 
in SUD remain incomplete (Smaga et al. 2021). In this paper, 
we wanted to investigate brain glutamate neurotransmission, 
oxidative status or inflammatory markers in a period where 
NAC treatment is efficient to decrease relapse.

A paradoxical result of our previous studies indicated that 
in rats that manifested relapse-like drinking behaviour, ethanol 

re-introduction was able to normalize the altered oxidative 
status and neuroinflammation markers observed after a pro-
tracted (21 days) ethanol abstinence (Fernández-Rodríguez 
et al. 2022). Consequently, we further assessed the underlying 
mechanism of action of NAC in ethanol relapse, analysing its 
neurobiological effects during the abstinence period, in the 
absence of ethanol that potentially interferes in the altered 
neuroimmune and oxidative status and would mask NAC 
effects.

According to the literature, another potential mechanism 
that may underlie the observed anti-relapse effect of NAC 
could be related to the alteration of glutamate homeostasis, 
which is also relevant in drug relapse (Kalivas 2009; Alas-
mari et al. 2018). In fact, it has been shown that astrocytic 
dysfunction in regulating both the basal glutamate levels as 
well as clearance of synaptic glutamate is a primary mecha-
nism whereby cues associated with drugs of abuse can drive 
relapse (Kalivas 2009; Griffin et al. 2015; Scofield et al. 
2016). Moreover, the effects of chronic alcohol consump-
tion and the effect of abstinence on astroglial high affinity 
glutamate transporters and/or the glutamatergic signaling 
machinery is not completely understood so far. It should 
be considered that abstinence represents a critical period 
of vulnerability within the addiction cycle, and the altered 
glutamatergic homeostasis sequelae of protracted ethanol 
abstinence remains poorly known (Namba et al. 2021). To 
date, very few studies have examined how glutamate trans-
porters are altered across a protracted period of abstinence 
compared to chronic ethanol exposure, and if such changes 
are causally linked to relapse-like drinking behaviour (Ding 
et al. 2013). Some studies suggest that pharmacological 
agents acting upstream of glutamate transport systems (e.g., 
GLT-1 and xCT) to influence broader aspects of glial func-
tion also disrupt drug reinstatement and relapse (Kalivas 
2009; Sari et al. 2013), giving a plausible explanation for the 
reported anti-relapse NAC effects. Nonetheless, at present 
the effect of NAC in these transporters during a protracted 
abstinence is not well characterized.

Therefore, the aim of this study was to explore the poten-
tial mechanisms by which NAC could probably exert its 
effects during long-term abstinence (i.e.,, when ethanol is 
not present, avoiding ethanol interferences) to prevent the 
ethanol relapse-like drinking behaviour in the ADE preclini-
cal model. To do so, we treated a cohort of rats under this 
paradigm with vehicle, NAC 60 mg/kg or NAC 100 mg/kg 
during the deprivation period and examined different brain 
areas that are highly affected in AUD (Chefer et al. 2011; 
Elibol-Can et al. 2011; Roberto et al. 2004): neuroinflamma-
tion in prefrontal cortex (PFC) and oxidative stress imbal-
ance in the hippocampus (Hip) and amygdala (AMG). Like-
wise, a further goal of the present research was to examine 
the effect of protracted ethanol withdrawal on two synaptic 
glutamate transporters (GLT-1 and GLAST) and cysteine/
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glutamate antiporter in two areas of the striatum, concretely 
nucleus accumbens (Nacc) and dorsal striatum (DS). We 
will further evaluate whether NAC could act restoring the 
potential alterations. Understanding the mechanistic prop-
erties of NAC to prevent alcohol relapse after a protracted 
period of abstinence could help to optimise the present phar-
macotherapies and to identify future effective treatments.

Experimental procedures

Animals

Thirty male Wistar rats purchased from ENVIGO (Barcelona, 
Spain) were used. These animals were previously used for 
behavioural and some biochemical studies (Fernández-Rod-
ríguez et al. 2022) as explained below. All animals, weighing 
356 ± 27 g at the beginning of the experiment, were housed 
in individual cages in a temperature- and humidity-controlled 
room with a 12-h inverted light/dark cycle (on 22:00, off 10:00). 
All the procedures were performed in accordance with Euro-
pean Council Directive 2010/63/EU for animal experiments, 
Spanish laws (RD 53/2013) and animal protection policies. The 
Animal Care Committee of the University of Valencia and the 
Regional Government approved and authorized all experiments.

Drugs

Ethanol drinking solutions at different concentrations (5, 10 
and 20%) were prepared from 96% ethanol v/v (Scharlau S.A., 

Spain). NAC was purchased from Sigma-Aldrich Quimica, 
S.A. (Spain) and was freshly dissolved before use at 100 mg/ml 
in phosphate buffer 0.4 M (pH was adjusted to 7.2 with NaOH).

Long‑term voluntary alcohol drinking procedure

The experimental design and timeline are illustrated in Fig. 1. All 
animals were individually housed and had free access to standard 
food. As pointed out in our previous paper (Fernández-Rodríguez 
et al. 2022), a cohort of 15 rats was randomly assigned to two 
separate groups: (A) Control group: animals subjected to a long-
term voluntary ethanol drinking procedure, i.e., they had continu-
ous access to tap water (n = 9) and (B) Ethanol group: animals 
that had free access to 4 drinking bottles (tap water and 5%, 10% 
and 20% (v/v) ethanol dilution) (n = 6). After 32 weeks, all rats 
were euthanized to remove their brains. An additional cohort of 
15 rats was subjected to a long-term voluntary ethanol drinking 
procedure but with repeated deprivation phases (ADE model). 
N.B. ADE is a transient increase in the alcohol intake over basal 
values following a period of deprivation which correlates with 
the loss of control associated with the alcohol relapse-like drink-
ing behaviour (Spanagel 2017). During this procedure, animals 
had voluntary continuous access to tap water and 5%, 10% and 
20% (v/v) ethanol solutions and were subjected to four random 
deprivation periods (total duration 32 weeks). This paradigm 
had previously been used and validated by our research group 
(Orrico et al. 2013, 2014; Cano-Cebrián et al. 2021; Fernández-
Rodríguez et al. 2022). Specifically, rats were subjected to four 
drinking (6 ± 2 weeks) and four deprivation (2 ± 1 weeks) peri-
ods. The duration of each period was deliberately irregular to 
avoid behavioural adaptations (Vengeliene et al. 2005) (Fig. 1c). 

Fig. 1   Timeline paradigm depicting the different experimental 
groups. On top, weeks are represented by grey squares while in a, b 
and c water and ethanol consumption periods are represented in white 
and orange, respectively. (a) Animals were chronically exposed to 
water consumption (n = 9) (Control group). (b) Animals were chroni-
cally exposed to ethanol consumption (n = 6) under the four-bottles 

free choice paradigm (Ethanol group). (c) Animals under the ADE 
paradigm (n = 15). During the fourth abstinence period these animals 
were subcutaneously injected for nine consecutive days, once a day, 
with vehicle (Vehicle group), NAC 60 mg/kg (NAC 60 mg/kg group) 
or NAC 100  mg/kg (NAC 100  mg/kg group). After this period, all 
animals were immediately sacrificed to obtain their brains
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Every time bottles were weighed to determine the intake, their 
position was changed to avoid location preferences. The 15 rats 
came from a wider cohort of animals (n = 30) that were character-
ized in our previous research (Fernández-Rodríguez et al. 2022). 
Concretely, all these rats repeatedly displayed the relapse-like 
drinking behaviour. The pharmacological studies with NAC were 
initiated at the end of the fourth alcohol deprivation period as 
detailed in the following.

NAC treatment

Pharmacological treatment was initiated on the 12th day of 
the fourth abstinence period (Fig. 1c). Animals were ran-
domly assigned to three experimental subgroups, which 
were subcutaneously injected with vehicle, NAC 60 mg/
kg or NAC 100 mg/kg (n = 5 per group) once a day for 9 
consecutive days. NAC doses and schedule were selected 
according to those used in our previous paper (Cano-Cebrián 
et al. 2021). Twenty-four hours after the last administration, 
rats were euthanized to remove their brains. Hence, all rats 
included in these three experimental subgroups were sacri-
ficed after a protracted abstinence (3 weeks).

To sum up, five different experimental groups were 
designed and tested according to the different techniques 
described below: Control (n = 9), Ethanol (n = 6), Vehicle 
(n = 5), NAC 60 mg/kg (n = 5) and NAC 100 mg/kg (n = 5) 
(Fig. 1).

Tissue collection

Brains were extracted and immediately frozen and stored 
at − 80 °C. Subsequently, brain regions of interest: Nacc, DS, 
Hip, AMG and PFC were dissected according to the rat brain 
stereotaxic atlas (Paxinos and Watson 2007). Afterwards, 
selected areas were separately stored to analyse the parameters 
of interest by Mass Spectrometry, Western Blot or Reverse 
Transcription PCR (RT-PCR). The present research focuses 
on brain areas that are highly affected by ethanol consumption 
and abstinence-induced damage (Chefer et al. 2011; Elibol-
Can et al. 2011; Roberto et al. 2004; Zhang et al. 2019).

Western blot: determination of GLT‑1, GLAST 
and xCT expression

This technique was used to measure the expression levels 
of GLT-1, GLAST and xCT in Nacc and DS from animals 
belonging to all experimental groups. Samples were homog-
enized with RIPA lysis buffer (SDS 0,1%, Igepal CA-360 
1%, sodium deoxycolate 0,5% and protease inhibitors cock-
tail 1% in PBS). Homogenates were kept on ice for 30 min 
and centrifuged at maximum r.p.m. for 15 min. The super-
natant was collected, and the protein content was quantified 

with Bradford Reagent (Bio-Rad). Protein samples were sep-
arated by 10% SDS-PAGE gels and transferred to nitrocel-
lulose membrane. Transference was performed with a semi-
dry system (Bio-Rad Trans-Blot® TurboTM) for 25 min at 
25 V. Then, membranes were blocked 1 h at room tempera-
ture with blocking solution (5% non-fat milk in TBS contain-
ing 0.1% of Tween-20 (TBS-T)). Primary rabbit antibodies 
were diluted in blocking solution and incubated overnight at 
4 °C: anti-GAPDH (1:2000 #G9545 Sigma-Aldrich), anti-
GLT-1 (1:5000 ab41621 from Abcam), anti-xCT (1:1000 
ab175186 from Abcam), and anti-GLAST (1:2000 NB100-
1869 from NovusBio). Membranes were washed with TBS-T 
and incubated with HRP-conjugated secondary antibody 
diluted in blocking solution (Rabbit 1:1000–1:3000 from 
Bio-Rad) for 1 h at room temperature. TBS-T and TBS were 
used to wash membranes before band detection. Chemilumi-
nescence was visualized using Clarity Max substrate (Bio-
Rad). The intensity of the obtained bands was quantified 
with the α-Ease FC software, version 4.0.0 (Alpha Innotech 
Corporation). Protein levels were normalized with GAPDH 
signal which was used as a loading control. Obtained values 
in the different groups were expressed as percentage of that 
obtained in the control group.

Determination of GSH and GSSG levels by mass 
spectrometry

In our previous study, we analysed the oxidative status in 
control and ethanol rats in the Hip and AMG (Fernández-
Rodríguez et al. 2022). In the present study, we focus on 
the effect of NAC during the abstinence period on the GSH 
and GSSG levels in the same areas (vehicle, NAC 60 mg/
kg and NAC 100 mg/kg groups). After the dissection of 
Hip and AMG, tissues were homogenized in phosphate 
buffered saline (PBS) and 10 mmol/L N-ethylmaleimide 
(NEM) (Sigma-Aldrich, St. Louis, MO, USA) (pH 7.0), 
with a tissue-buffer ratio of 1:4. Then, perchloric acid solu-
tion was added to obtain a final concentration of 4% and 
samples were centrifuged at 11,000 rpm for 15 min at 4 °C. 
Supernatants were injected into the chromatographic system 
(UPLC-MS/MS).

The chromatographic system consisted of a Micromass 
QuatroTM triple-quadrupole mass spectrometer (Micro-
mass, Manchester, UK) equipped with a Zspray electro-
spray ionization source operating in the positive ion mode 
with a LC-10A Shimadzu (Shimadzu, Kyoto, Japan) cou-
pled to the MassLynx 4.1 software for data acquisition 
and processing. Samples were analysed by reversed-phase 
UPLC as previously reported (Fernández-Rodríguez et al. 
2022). Calibration curves were obtained using twelve-point 
(0.01–100  mmol/l) standards (purchased from Sigma-
Aldrich, St. Louis, USA) for each compound. The concentra-
tions of metabolites were expressed as nmol/mg of protein.
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Reverse transcription PCR: determination 
of neuroinflammatory mediators

The gene expression levels of different inflammatory media-
tors, such as TNF-α, IL-6, IL-1β, iNOS, Nfκβ, HMGB1 and 
NLRP3, were determined in the PFC of the rats assigned 
to the following groups: vehicle, NAC 60 mg/kg and NAC 
100 mg/kg, since the determination in control and etha-
nol group had already been performed and reported. RNA 
extraction, cDNA synthesis and RT-PCR conditions used 
had previously been described and reported by our group 
(Fernández-Rodríguez et al. 2022). The relative expression 
ratio of a target/reference gene was calculated according to 
the Pfaffl equation (Pfaffl 2001). Housekeeping cyclophilin 
A (PPIA) was used as an internal control. The sequences of 
primers used in this study are gathered in Table 1.

Fluorescence was recorded in the annealing/elongation 
step in each cycle. To check the specificity of the primers, 
a melting curve analysis was performed at the end of each 
PCR. All these procedures had previously been validated in 
our laboratory (Vallés et al. 2004; Alfonso-Loeches et al. 
2014; Ureña-Peralta et al. 2020).

Statistical analysis

A power analysis was performed that revealed that a sample 
size of N = 4–5/group was determined necessary to detect 
differences in the key variables at an α level of p < 0.05 and 
80% power. All data were tested for normality and homosce-
dasticity. Then, experimental data, i.e. levels of GSH, GSSG, 
GSH/GSSG, and different protein and mRNA expression 
were analysed using two different analysis of variance (one-
way ANOVA). On the one hand, the influence of ethanol 
consumption or ethanol abstinence was studied through the 
comparison among data derived from Control, Ethanol, and 
Vehicle group. On the other hand, the comparison among 
data from Vehicle, NAC 60 mg/kg and NAC 100 mg/kg 
allowed to explore the effect of NAC under abstinence con-
ditions. Post hoc comparisons were performed through the 
application of Tukey’s test when appropriate. The signifi-
cance level was always set at p = 0.05. All data are presented 
as mean ± standard error (SE). All the analysis were carried 

out using GraphPad Prism, version 8.0.1 (GraphPad Soft-
ware Inc).

Results

The rats used in the following experiments repeatedly 
displayed the ADE phenomenon. Concretely, the mean 
basal ethanol intake before the abstinence period was 
1.94 ± 0.15 g/kg/day and rose to 2.90 ± 0.24 g/kg/day after 
ethanol reintroduction.

Glutamate homeostasis

To assess the potential alteration in glutamate homeostasis 
during chronic ethanol exposure as well as during protracted 
abstinence, the expression of the main proteins involved 
in brain glutamate homeostasis, i.e., GLT-1, GLAST and 
xCT, was measured in Nacc and DS. In the case of GLT-1 
in Nacc (Fig. 2c), one-way ANOVA detected statistical dif-
ferences among control, ethanol and vehicle groups (F = 2, 
14 = 9.433; p = 0.0025). The post hoc analysis revealed that 
GLT-1 expression was not altered after chronic ethanol con-
sumption when compared with respect to the control group 
(p = 0.8544). However, interestingly, GLT-1 levels were 
significantly decreased (around 45%) during the abstinence 
period (vehicle group) when compared not only with respect 
to the control (p = 0.0032) but also with the ethanol group 
(p = 0.0087). The downregulation detected during the with-
drawal period was neither reverted by NAC 60 mg/kg nor by 
100 mg/kg treatment, as one-way ANOVA did not detect sta-
tistical differences (F(2,11) = 0.6076; p = 0.5619). Regard-
ing GLAST levels in Nacc (Fig. 2d), one-way ANOVA 
also revealed significant differences (F(2,14) = 9.434; 
p = 0.0025). Thus, although when compared with control 
group, GLAST expression remained invariable after chronic 
ethanol intake (p = 0.6550), a significant reduction of around 
37% was detected under abstinence conditions (p = 0.0018) 
and a nearly significant reduction when compared with the 
ethanol group (p = 0.055). As in the case of GLT-1, the 
administration of NAC was not able to counteract this effect 
during abstinence (F(2,11) = 1.848; p = 2033). Concerning 

Table 1   Primer sequences used Gene Forward primer (5′-3′) Reverse primer (5′-3′)

PPIA TGT​GCC​AGG​GTG​GTG​ACT​TT CGT​TTG​TGT​TTG​GTC​CAG​CAT​
IL1Β CAG​CAG​CAT​CTC​GAC​AAG​AG CAT​CAT​CCC​ACG​AGT​CAC​AG
IL6 TGT​GCA​ATG​GCA​ATT​CTG​AT CGG​AAC​TCC​AGA​AGA​CCA​GAG​
TNFΑ GGT​GGG​CTG​GGT​AAC​AAG​TA AGG​GAC​AAA​CCA​CAA​TAT​AGG​AAA​A
HMGB1 ATC​TAA​ATA​CGG​ATT​GCT​CAG​GAA​ AGG​GAC​AAA​CCA​CAA​TAT​AGG​AAA​A
NFΚΒ CAA​GAG​TGA​CGA​CAG​GGA​GAT​ GCC​AGC​AGC​ATC​TTC​ACA​T
NLRP3 CCC​TCA​TGT​TGC​CTG​TTC​TT TCC​AGT​TCA​GTG​AGG​CTC​TG
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xCT expression in Nacc, no statistical differences were 
detected after chronic ethanol intake or alcohol abstinence 
(F(2,13; = 0.2801; p = 0.7601) (Fig.  2e). In DS, neither 
GLT-1 (F(2,14) = 2.633; p = 0.1070) (Fig. 2f), nor GLAST 
(F(2,14) = 0.8511; p = 0.4479) (Fig. 2g) nor xCT expression 
(F(2,14) = 1.717; p = 0.2154) (Fig. 2h) were altered under 
any experimental conditions in the DS.

Brain oxidative status

We further evaluated the potential ability of NAC, admin-
istered during abstinence, to restore the brain redox imbal-
ance previously detected along this period. For this aim, 
levels of oxidized (GSSG) and reduced (GSH) glutathione 
were measured in two brain regions: Hip and AMG (Fig. 3). 
Although data from control and ethanol groups had previ-
ously been reported (Fernández-Rodríguez et al. 2022), they 
have been plotted together with the present results as well as 
included in the statistical analysis for comparative purposes. 
Considering that the GSSG/GSH ratio is one of the most 

common indices of oxidative stress, it was also calculated. 
The most remarkable results were obtained within the Hip 
(Fig. 3c), where NAC was able to blunt the large rise in the 
GSSG/GSH ratio detected when animals are experiencing 
prolonged abstinence (F(2,9) = 13.500; p = 0.0020). Con-
cretely, the GSSG/GSH ratio observed during abstinence 
rose to 300% and 207% in comparison with the control 
(p = 0.0006) or ethanol (p = 0.0099) groups, respectively. 
This increase in oxidative stress was normalized by both 
NAC 60 mg/kg (p = 0.0038) or NAC 100 mg/kg (p = 0.0026) 
administration during abstinence (Fig. 3c). It is important 
to note that, as can be observed in Fig. 3a, no significant 
changes in GSH levels were detected under any experimen-
tal condition (F(2,15) = 3.823; p = 0.0827). On the contrary, 
statistical analysis showed significant differences in GSSG 
values (F(2,15) = 5.768; p = 0.0139) (see Fig. 3b). From 
the general observation of Fig. 3b and c, it could be noted 
that GSSG levels display similar trends as those observed 
in the GSSG/GSH ratio. Accordingly, during abstinence, 
GSSG values significantly peaked when compared with the 
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Fig. 2   Glutamate transporters expression after (i) chronic ethanol 
intake, (ii) prolonged abstinence and (iii) effect of NAC treatment 
during prolonged abstinence. Representative Western blot images 
obtained in Nacc (a) and DS (b). Protein levels of GLT1 (c), GLAST 
(d) and xCT (e) in Nacc, and protein levels of GLT1 (f) GLAST (g) 
and xCT (h) in DS. Data are represented as % of control group value 
and expressed as mean ± SE. Each graph represents protein levels 
from rats under different conditions: animals exposed to water con-
sumption (control) in grey; animals chronically exposed to ethanol 

consumption (ethanol) in red; and animals under abstinence condi-
tions treated with vehicle (blue framed bar), NAC 60 mg/kg (orange 
framed bar) or NAC 100 mg/kg (brown framed bar). For data analy-
sis, two different one-Way ANOVA followed by Tukey’s post hoc 
were applied. Asterisk (**p < 0.01]) indicates significant differences 
among “control”, “ethanol” or “vehicle” groups. No statistical differ-
ences were detected among “vehicle”, “NAC 60 mg/kg” and “NAC 
100 mg/kg”
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control (p = 0.0156) or ethanol (p = 0.02) group. Importantly, 
the administration of either of the NAC doses assayed in 
abstinent rats rapidly alleviated this rise and restored GSSG 
levels when compared to the vehicle group (p = 0.0091 and 
0.0060, respectively).

Concerning data obtained in the AMG, one-way 
ANOVA did not detect statistical differences when GSH 
(F (2,13) = 1.900, p = 0.1888), GSSG (F (2,14) = 1.325, 
p = 0.2972) or GSSG/GSH ratio (F (2, 12) = 2.254, 
p = 0.1475) were analysed after chronic alcohol exposition or 
ethanol abstinence (Fig. 3d, e and f). Moreover, NAC admin-
istration did not modify neither GSH (F (2,10) = 0.2151, 
p = 0.8101) nor GSSG (F (2,10) = 0.5999, p = 0.5675) nor 
GSSG/GSH ratio (F (2, 10) = 2.254, p = 0.1475).

Overall, these findings suggest that under our experimen-
tal conditions, oxidative status in Hip is altered during absti-
nence and both NAC doses, chronically administered during 
this period, are able to alleviate this imbalance, leading it to 
basal conditions.

Neuroinflammatory status

The neuroinflammatory status in PFC after chronic ethanol 
exposure and during a protracted abstinence in the absence 
or presence of NAC treatment was also explored using our 
preclinical model. For this purpose, mRNA levels of vari-
ous inflammatory modulators/mediators, including HMGB1, 
NfKβ, NLRP3, IL-1Β, TNFα, iNOS and IL-6, in the PFC 
of all animals were analysed. Results derived from the con-
trol and ethanol group were previously reported and dis-
cussed (Fernández-Rodríguez et al. 2022). These data have 
been plotted and included in the statistical analysis of the 
present paper for comparative purposes (Fig. 4). Statisti-
cal analysis only revealed differences in RNA levels in 
the case of IL-1Β (F2,14) = 4.322; p = 0.0345) and TNFα 
(F(2,13) = 4.517; p = 0.0320). As can be observed in Fig. 4e, 
rats under abstinence presented a significant increase in 
the IL-1Β value (around 150%) with respect to the control 
group (p = 0.0287). Treatment with either 60 or 100 mg/
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Fig. 3   Oxidation markers after (i) chronic ethanol intake, (ii) pro-
longed abstinence and (iii) effect of NAC treatment during prolonged 
abstinence. GSSG, GSH levels and GSSH/GSH ratio (a–c) in Hip 
or amygdala (d–f). Data are expressed as nmol/mg of protein and as 
mean ± SE. Each graph represents metabolite levels from rats under 
the different experimental conditions described in Fig. 1. The colour 
legend is the same as the one detailed in Fig.  2. For data analysis, 

two different one-way ANOVA followed by Tukey’s post hoc were 
applied. Asterisks (* p < 0.05; ** p < 0.01; *** p < 0.001) indicates 
significant differences among “control”, “ethanol” or “vehicle” 
groups, and the hash symbol (##p < 0.01) indicates significant dif-
ferences among “vehicle”, “NAC 60  mg/kg” or “NAC 100  mg/kg 
groups
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kg NAC during that period clearly tends to restore IL-1Β 
levels, although statistical analysis was not able to detect 
significant differences when compared to the vehicle group 
(p = 0.1944 and p = 0.2809, respectively) (Fig. 4e). A simi-
lar trend was observed in the case of TNFα, i.e., levels of 
this mediator increased during the abstinence period when 
compared with the control group (p = 0.0260). However, in 
this case, treatment with 100 mg/kg NAC was able to abolish 
the increase (p = 0.0270, with respect to the vehicle group) 
(Fig. 4f). mRNA levels of HMGB1, NfκB, NLRP3, iNOS 
and IL6 remained unaltered in PFC under our experimen-
tal conditions (Fig. 4b, c, d, g and h). Finally, it is worth to 
mention that the NfKβ levels tended to rise during the absti-
nence period and, again, NAC seems to blunt these values. 

Nevertheless, statistical analysis did not detect significant 
differences.

Discussion

The present study provides evidence that neurobiological 
alterations related to brain oxidative stress and neuroinflam-
mation observed after 3 weeks of ethanol abstinence in long-
term ethanol-experienced male rats, can be alleviated by 
chronic NAC administration during abstinence. Conversely, 
NAC does not seem to blunt the modifications observed in 
some astrocytic glutamate transporters (downregulation of 
GLT-1 and GLAST in Nacc) during abstinence under the 

Fig. 4   Neuroinflammatory mediators in prefrontal cortex after (i) 
chronic ethanol intake, (ii) prolonged abstinence and (iii) effect of 
NAC treatment during prolonged abstinence. (a) Schematic repre-
sentation of the potential neuroinflammatory mediators interaction 
in neuron (grey) and glia (orange). mRNA levels (expressed in arbi-
trary units) of HMGB1 (b), NfKβ (c), NLRP3 (d), IL-1β (e), TNFα 
(f), iNOS (g) and IL-6 (h). Each graph represents mRNA levels from 
rats under the different experimental conditions described in Fig.  1. 

The colour legend is the same as the one detailed in Fig.  2. Data 
are represented as mean ± SE. For data analysis, two different one-
way ANOVA followed by Tukey’s post hoc were applied. Asterisk 
(*p < 0.05) indicates significant differences among “control”, “etha-
nol” or “vehicle” groups and the hash symbol (#p < 0.05) indicates 
significant differences among “vehicle”, “NAC 60 mg/kg” or “NAC 
100 mg/kg groups
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same experimental conditions. One of the most outstanding 
aspects of the present study is that our findings show evi-
dence of the mechanism underlying the anti-relapse effects 
of NAC during abstinence in an animal model of high face 
and predictive validity (Bell et al. 2017; Leong et al. 2018).

Effect of chronic ethanol intake and abstinence 
on the glutamate transporters expression

Our results provide evidence of the ethanol actions in the 
glutamate transporters expression and confirm other stud-
ies showing alterations in the GLT-1- and xCT expression 
in different models of chronic ethanol consumption (Sari 
et al. 2013; Alhaddad et al. 2014; Das et al. 2015; Hakami 
et al. 2016; Ezquer et al. 2019). The potential alteration of 
GLAST levels under chronic ethanol intake has been stud-
ied to a lesser extent (Alhaddad et al. 2014; Ezquer et al. 
2019; Hakami et al. 2016). Furthermore, the results found in 
the literature on the effects of alcohol on GLT-1- and xCT 
expression are not fully coincident. The high variability 
and discrepancies reported are probably related to differ-
ent variables such as rat strains, the use of ethanol preferent 
vs naïve animals and, particularly, the ethanol administra-
tion paradigm used (Abulseoud et al. 2014). In relation to 
long term ethanol exposition protocols, intermittent access 
to alcohol (IAA) and relapse-like ethanol drinking seem to 
lead to different adaptations in GLT-1 and xCT in Nacc when 
compared to continuous access to ethanol. Thus, in male P 
rats with continuous access to ethanol in their home cage, a 
downregulation of GLT-1 expression has been consistently 
reported (Sari et al. 2013; Alhaddad et al. 2014; Hakami et al. 
2016)). However, when an IAA paradigm or the paradigm 
that alternates abstinence with ethanol intake phases was 
used, no changes in GLT-1 expression were observed in rats 
and mice (Pati et al. 2016; Stennett et al. 2017; Hammad 
et al. 2021; Das et al. 2022; Griffin et al. 2021; Ezquer et al. 
2022). Similar results were observed in the case of xCT lev-
els (Ding et al. 2013; Hakami et al. 2016). Regarding GLAST 
expression, no changes were observed in male P rats that have 
continuous access to ethanol (Alhaddad et al. 2014; Hakami 
et al. 2016) while reduced expression levels were reported 
when female P rats were used (Ding et al. 2013). Overall, an 
in-depth analysis of the above data shows that chronic ethanol 
intake provokes a decrease or no alteration of expression lev-
els of these Glu transporters. This lack of effect is in accord-
ance with the present findings showing no modification in 
GLT-1, GLAST and xCT levels in Nacc of naïve male rats 
after chronic alcohol exposure. According to the literature 
focused on glutamate homeostasis during the withdrawal 
period, the results are scarce and controversial. For instance, 
early abstinence conditions were reported not to affect GLT-1 
and GLAST expression in Nacc (Melendez et al. 2005; Pati 
et al. 2016), but to downregulate xCT expression (Peana et al. 

2014; Lebourgeois et al. 2019). The only study found analys-
ing the consequences of a 2-week abstinence period, showed 
no alteration in GLT-1 and xCT protein expression, while 
GLAST levels were found to be diminished in Nacc of female 
P rats (Ding et al. 2013). Here, we provide the first evidence 
of how long-term voluntary ethanol drinking with repeated 
deprivation periods affects the expression of GLT-1, GLAST 
and xCT proteins during long-term abstinence. Concretely, 
a significant reduction in GLT-1 levels in Nacc during a pro-
tracted abstinence was found (around 45%) with respect to 
the control and ethanol groups. In the case of GLAST expres-
sion, a decrease was also detected as a consequence of a pro-
tracted abstinence, showing a similar trend to that observed 
in GLT-1. However, no changes in xCT levels were detected 
under any experimental condition. In summary, we observed 
a decrease in some of the glutamate uptake protein levels in 
Nacc that concur with the largest concentration of synaptic 
glutamate levels reported during prolonged abstinence in this 
brain area (Griffin et al. 2015; Pati et al. 2016).

Concerning DS, we selected this area because it is not only 
involved in the progressive development of compulsive drug 
seeking but also in the loss of control over drug intake (Belin 
and Everitt 2008; Vollstädt-Klein et al. 2010). Moreover, 
Ducret et al. reported that cocaine intake induced a decrease 
in GLT-1 expression in this area and NAC was able to reverse 
it (Ducret et al. 2016). In the case of ethanol, glutamate homeo-
stasis has been explored to a lesser extent in DS. According 
to our results, neither chronic ethanol consumption nor pro-
longed abstinence caused any changes in the expression levels 
of any of the assayed glutamate transporters in comparison to 
the control group. These results are partially in accordance 
with the scarce data found in the literature. Thus, Morais-Silva 
et al. demonstrated no changes in xCT expression in the cau-
date area of mice which had received 2 g/kg/day ethanol i.p. 
injections for 13 days (Morais-Silva et al. 2016). Regarding 
the abstinence effect, Abulseoud et al. showed a decrease in 
GLT-1 in total striatum after 7 days of withdrawal (Abulseoud 
et al. 2014). Our results also showed that NAC administration 
was not able to significantly alter the levels of any of the tested 
transporters.

Taken together, the present findings provide new experi-
mental data in the field of altered glutamate homeostasis and 
SUD. Moreover, our data, obtained under a preclinical model 
of voluntary ethanol intake and repeated abstinence, offers a 
more complete view of how repeated ethanol abstinence could 
be affecting glutamate transmission in AUD patients.

Anti‑relapse effect of NAC: evaluating 
the underlying mechanisms of action

The underlying mechanisms involved in the various phases 
of AUD development are not only multiple but also complex. 
Although a wealth of studies has highlighted the role of glutamate 
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homeostasis in relapse (Kalivas 2009) in the last decades, research 
has started to identify alterations in neuroimmune signalling 
associated with addiction-related behaviours, including relapse 
(Knapp et al. 2016; Berríos-Cárcamo et al. 2020; Gipson et al. 
2021; Namba et al. 2021). On the other hand, the duration of 
alcohol exposure and withdrawal are important factors when con-
sidering alcohol-induced changes in the neuroimmune function. 
Oxidative stress and neuroinflammation are tightly connected and 
the existence of a drug-induced brain oxidative stress-neuroin-
flammation vicious cycle, which can start from either one of its 
components or often by both, has been proposed (Berríos-Cár-
camo et al. 2020). Additionally, mounting evidence suggests inter-
actions of neuroimmune mechanisms with known drug-induced 
changes in the glutamate system (see review Gipson et al. 2021). 
These pivotal observations have led to the suggestion of several 
biological molecules and chemical agents to be used as improved 
treatments to reduce drug consumption as well as prevent relapse 
(Berríos-Cárcamo et al. 2020; Gipson et al. 2021; Namba et al. 
2021). Among these compounds, NAC is one of the most studied.

Although there are several studies investigating the poten-
tial mechanism of action of NAC in the prevention of ethanol-
motivational properties, ethanol-seeking or ethanol binge-like 
behaviour (Schneider et al. 2015; Morais-Silva et al. 2016; Quin-
tanilla et al. 2018; Lebourgeois et al. 2019; Israel et al. 2021), 
there is a lack of studies analysing its effect during abstinence 
(i.e., when ethanol cannot interfere). To address this gap, our 
study is focused on the NAC effects on glutamate transporter 
expression, oxidative status parameters and neuroinflammation 
markers that potentially could be altered by ethanol withdrawal.

Effect of NAC treatment during abstinence on glutamate 
transporter expression

NAC capability to upregulate GLT-1 and xCT levels altered by 
cocaine consumption has been repeatedly demonstrated and 
proposed as a potential mechanism of action (Knackstedt et al. 
2010; Reissner et al. 2015; Ducret et al. 2016). Nonetheless, the 
ability of NAC to alter protein expression after chronic ethanol 
intake is less clear. The present results have shown that NAC did 
not have any effect on GLT-1, GLAST nor xCT expression, i.e., 
in our rats, with a long-term drinking history with several dep-
rivation period, NAC treatment during abstinence was not able 
to reverse glutamatergic alterations observed in Nacc. Conse-
quently, our reported anti-relapse effect of NAC (Cano-Cebrián 
et al. 2021) does not seem to be linked with its effect on Glu 
transporters expression. Nonetheless, it is important to highlight 
that our previous data demonstrated an impairment of oxida-
tive stress status during abstinence that, according to the pre-
sent results, is alleviated by NAC treatment. On the other hand, 
the literature indicates that GLT-1, GLAST and system xCT 
activities are altered by oxidant environment (Trotti et al. 1988; 
Lewerenz et al. 2006). Therefore, there is the possibility that the 
anti-relapse effect of NAC be mediated through the alteration 

of the activity of these proteins rather than of the amount of the 
transporter (Stennett et al. 2017; Ezquer et al. 2022). Further 
research is needed to elucidate if the activity or function of GLT-
1, GLAST or xCT is affected in our experimental conditions 
during ethanol abstinence and if NAC could restore it.

Effects of NAC on oxidative status altered by ethanol 
withdrawal

The studies analysing the NAC involvement in protection 
against oxidative damage in brain during abstinence are 
scarce. The current study has tried to address, at least in part, 
this issue by determining the potential beneficial effects of 
chronic NAC treatment during abstinence in oxidative stress 
caused by protracted ethanol withdrawal. It is worth men-
tioning that our recently reported results clearly suggest an 
impairment in oxidative balance during abstinence in Hip but 
not in AMG (Fig. 3) (Fernández-Rodríguez et al. 2022). NAC 
treatment during abstinence at both doses (60 and 100 mg/
kg) was able to restore altered oxidative stress indicators. 
Similarly, Mocellin and collaborators demonstrated that treat-
ment with NAC was able to protect the brain of zebrafish 
from the oxidative damage provoked by ethanol withdrawal 
after repeated exposure (Mocelin et al. 2019). In the same 
line, Akhtar et al. reported that ethanol-induced protein oxi-
dation at 24 h following an episode of ethanol exposure in 
pregnant mice was completely prevented by supplementa-
tion with NAC in both fetal and maternal brain (Akhtar et al. 
2017). Remarkably, our experimental conditions are more 
distant from those used in zebrafish or in pregnant mice, but, 
closer to the clinical setting, i.e., is closer to what occurs 
with alcoholic patients. In fact, the animal model used tries 
to encompass the entire range of the addiction cycle, includ-
ing acquisition and maintenance of drug taking, withdrawal 
and craving during periods of drug abstinence and ultimately 
relapse; processes that were repeated several times (Leong 
et al. 2018). Nonetheless, generally, the results obtained in 
the different studies point in the same direction and underline 
the importance of analysing alterations in oxidative status 
during abstinence, i.e., without the interference of ethanol 
and the role of NAC in preventing them.

Effects of NAC on neuroinflammation markers 
altered by ethanol withdrawal

Oxidative stress and inflammation are tightly related in a 
positive loop (Berríos-Cárcamo et al. 2020). Under our 
experimental conditions, NAC treatment was able to normal-
ize the altered oxidative status determined in rat Hip. In the 
PFC, our results also showed an increase in IL1β and TNFα 
expression during abstinence that is prevented by NAC 
in the case of TNFα. In relation to NfκB, an appreciable 
increase during abstinence can also be observed that seems 
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to be alleviated by NAC, although statistical analysis was not 
able to detect significant differences. All these observations 
suggest that reactive oxygen species (ROS) could directly 
enhance NfKβ activity and promote IL1β and TNFα expres-
sion in PFC during abstinence (Fig. 4), but NAC presence 
prevents the impairment in ROS levels and the subsequent 
increase in proinflammatory markers. To test this possibility, 
it would be very interesting to elucidate if ROS levels are 
also increased in the PFC during abstinence, but the limited 
amount of biological material available impeded us from 
performing both determinations in the same sample. Further 
experiments are warranted to delve into this point.

Overall, our data provide new information about neuro-
inflammatory pathways in PFC of non-preferent rats that 
have experienced several abstinence periods and the NAC 
anti-inflammatory effect under these conditions. Remark-
ably, few studies have attempted to manipulate neuroimmune 
mechanisms experimentally using drug self-administration 
animal models. Hence, our study has made the first steps to 
address a remaining gap in the field in agreement with the 
proposals of other authors (Namba et al. 2021).

NAC treatment during abstinence seems to mimic 
the effects displayed by ethanol re‑introduction 
on oxidative and neuroinflammatory status

An interesting aspect reported in our previous research was 
the role of ethanol re-introduction at several neurobiologi-
cal levels such as oxidative and neuroinflammation status 
(Fernández-Rodríguez et al. 2022). Indeed, when ethanol 
was reintroduced after a protracted deprivation period, it was 
able to restore increased GSSG/GSH levels as well as neu-
roinflammatory markers such as IL-1ß and TNF-α. Remark-
ably, according to the present results, NAC seems to mimic 
some of these ethanol effects. An in-depth analysis of both 
effects, i.e. ethanol re-introduction and NAC administration 
during abstinence, show a similar profile. Hence, as can be 
seen in Table 2, in the case of oxidative status, NAC doses 

provoked a reduction of around 65% in GSSG/GSH levels in 
relation to the abstinence (vehicle) group, whereas ethanol 
reintroduction induced an 89% decrease. Regarding inflam-
matory mediators, the results were qualitatively similar, with 
the percentage of reduction being less marked for both NAC 
and ethanol, than in the case of oxidative stress markers. In 
all cases, ethanol effect is always more pronounced than that 
of NAC. Consequently, it could be hypothesized that during 
abstinence, NAC administration could exert the same role 
than ethanol reintroduction, thus reducing the propensity 
for ethanol consumption relapse. Additionally, our group 
have also demonstrated that NAC, acutely administered, 
was capable to mimic some of the actions in the mesocor-
ticolimbic system provoked by the acute administration of 
ethanol (Fernández-Rodríguez et al. 2021). These striking 
data suggest that further experiments using more mechanis-
tic approaches are needed to decipher the role of NAC to 
prevent neurobiological alterations induced during relapse.

Conclusions

This study provides evidence, by using an animal model of 
high face and predictive validity, that the NAC mechanism 
of action that underlies its anti-relapse effect (Cano-Cebrián 
et al. 2021) is probably related to both its antioxidant and anti-
inflammatory capabilities. Although preclinical findings sug-
gest that the NAC may assist the treatment of SUD through 
direct effects on cysteine/glutamate exchange (Gipson 2016; 
Kalivas and Kalivas 2022), the present data indicate that NAC 
anti-relapse effect, in our preclinical model, does not seem 
to be related to alterations of Glu protein expression levels. 
Further research is needed to deeply elucidate NAC action 
in abstinence. Testing the activity of glutamate transporters 
and system xCT and the analysis of oxidative stress and neu-
roinflammation in the same areas will also provide relevant 
information. These are relevant future research areas which 
would allow the optimisation of existing pharmacotherapies 
and the identification of new targets.

Table 2   Comparative effects 
of NAC (60 or 100 mg/kg) 
and ethanol re-introduction 
on oxidative stress and 
neuroinflammatory markers

(*) Denotes statistical differences with respect to the abstinence group. In the case of NAC treatment, the 
statistical results were obtained from Figs. 3 and 4. In the case of ethanol re-introduction, statistical results 
come from our previous report (Fernández-Rodríguez et al. 2022) (* p < 0.05).

Percentage of reduction in comparison with vehicle (absti-
nence) group

Parameter NAC 60 mg/kg NAC 100 mg/kg Ethanol 
re-intro-
duction

Oxidative stress GSSG 61%* 62%* 89%*
GSSG/GSH 65%* 66%* 84%*

Inflammatory markers IL-1β 53% 42% 79%*
TNF-α 30% 40%* 56%*
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