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Abstract: In this survey we study the relation between the class of groups in

which Sylow permutability is a transitive relation (the PST-groups) and the class

of groups in which every subgroup possesses supergroups of all possible indices, the

so-called Y -groups. The parellelism between these classes in the soluble universe

and the interest of the local study of PST-groups motivates a local study of Y -

groups.

A group G factorised as a product of two subgroups A and B is said to be

a mutually permutable product whenever A permutes with every subgroup of B

and B permutes with every subgroup of A . We present some results concerning

mutually permutable products of groups in the orbit of the above classes.
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Throughout this article, all groups are finite.

The search for interesting families of subgroups in a group and the study of the

way these families are embedded in the group is one of the aims of the theory of

groups. One of the first results in the study of groups is the theorem of Lagrange:
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Theorem 1 (Lagrange). If H is a subgroup of a group G , then |G| = |H| · |G :

H| .

In particular, the order and the index of every subgroup divide the order of the

group. Here we are interested in the converse of the theorem of Lagrange, namely:

Question 2. Assume that d divides |G| . Can we ensure the existence of a

subgroup H of G of order d?

The answer is false in general, because the alternating group of degree 4 does

not have subgroups of order 6. Groups in which this property holds are said to

satisfy the converse of Lagrange’s theorem or simply CLT-groups.

Now let p be a prime and |G|p be the largest power of p dividing |G| . Since

p divides |H| or |G : H| , one may consider the case in which |G|p = |H| . These

subgroups H are known as Sylow p-subgroups of G . A well-known theorem of

Sylow shows that Sylow p -subgroups exist for all primes p dividing the order

of the group. In fact, this theorem can be interpreted as a partial converse to

Lagrange’s theorem, because it implies the following:

Corollary 3. If d is a prime-power dividing |G| , then G has a subgroup of

order d .

McCarthy [23] has shown in 1970 that this partial converse is in some sense

the “best one” by proving the following:

Theorem 4. Let d be any positive integer which is not a prime power. Then

there is a group G such that d divides |G| and G has no subgroups of order d .

Another way to find a converse to Lagrange’s theorem is asking for subgroups

H such that |G : H| = |G|p . Such subgroups are called Sylow p-complements

because if H is one of these subgroups and P is a Sylow p -subgroup of G , then

H is a complement to P in G , that is, G = HP and H ∩ P = 1. Unfortunately,

not every group has Sylow p -complements. For instance, A5 does not have Sylow

2-complements. In fact, Hall [17, 18] proved the following result:

Theorem 5. A group G is soluble if and only if G has Sylow p-complements for

all p .

The theorem of Hall is a nice application of the celebrated paqb -theorem of

Burnside and opens the door to he systematic study of the class of all soluble
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groups. A consequence of this result is that solubility can be characterised by

means of the existence of subgroups whose index and order are coprime: the so-

called Hall subgroups.

The classes of all nilpotent and all supersoluble groups are subclasses of the

class of all soluble groups which admit characterisations by the existence of sub-

groups. Holmes [19] showed that a group G is nilpotent if and only if G contains

a normal subgroup of each possible order. Ore [24] and Zappa [29] obtained a

similar characterisation for supersoluble groups:

Theorem 6. A group G is supersoluble if and only if each subgroup H ≤ G

contains a subgroup of order d for each divisor d of |H| .

This condition does not give supersolubility when the above condition is re-

placed by “G contains a subgroup of every possible order”: There are groups

which satisfy the converse of Lagrange’s theorem but are not supersoluble, like

the symmetric group Σ4 of degree 4.

Of course, we can state Theorem 6 in the following equivalent way, more easily

treated:

Theorem 7. A group G is supersoluble if and only if each subgroup H ≤ G

contains a subgroup of index p for each prime divisor p of |H| .

The condition on a group G given in Theorem 7, namely

for all H ≤ G and for all primes q dividing |H| , there exists a subgroup

K of G such that K ≤ H and |H : K| = q ,

has a dual formulation:

for all H ≤ G and for all primes q dividing |G : H| , there exists a

subgroup K of G such that H ≤ K and |K : H| = q .

Some authors have studied the groups satisfying the latter condition. We will call

them Y -groups, like in [26, Chapter 1, 4].

Since every maximal subgroup of a Y -group has prime index, the class Y is

a subclass of the class of all supersoluble groups. However, the containment is

proper:

Example 8. Let G = 〈x, y, z | x3 = z3 = y2 = (xy)2 = 1, xz = zx, yz = zy〉 .

Then G is the direct product of 〈x, y〉 , which is isomorphic to a symmetric group
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of degree 3, and 〈z〉 , which is a cyclic group of order 3. Consider the subgroup

H = |xz| . Then |G : H| = 6, but G does not contain any subgroup K such

that |K : H| = 2. Therefore G is not a Y -group. However, it is clear that G is

supersoluble.

The class of Y -groups admit quite nice characterisations (see [23]):

Theorem 9. Let G be a group.

1. G ∈ Y if and only if every subgroup of G can be written as an intersection

of subgroups of G of coprime prime-power indices.

2. (Deskins-Venzke) A group G ∈ Y if and only if the nilpotent residual L of

G is a nilpotent Hall subgroup of G and G = LNG(H) for every H ≤ L .

Despite these nice characterisations, the class Y is not closed under taking

subgroups.

Example 10. Let X = 〈a, b, c | a3 = b3 = c3 = 1, [a, b] = c, ca = ac, bc = cb〉 be

the nonabelian group of order 27 of exponent 3. Then X has an automorphism t

of order 2 such that at = a−1 , bt = b−1 , and ct = c . Let G = [X]〈t〉 be the

semidirect product of X by 〈t〉 . Then G has order 54, Φ(G) = Z(G) = 〈c〉 , and

G is a Y -group. Also note that 〈a, t〉 ∼= S3 , so that 〈a, t〉× 〈c〉 is a subgroup of G

which is isomorphic to S3 × C3 and hence is not a Y -group.

The second characterisation shows that the class Y is closely related to the

class of all PST-groups, or groups in which every subnormal subgroup permutes

with all Sylow subgroups.

A subgroup K of G is said to be permutable (respectively, S-permutable) in G

provided KH = HK for all subgroups (respectively, Sylow subgroups) H of G .

A well known result of Ore [24] shows that permutable subgroups are necessarily

subnormal. Kegel [22] generalised this result showing that S -permutable sub-

groups are subnormal. A group G is called a T-group provided normality is a

transitive relation, that is, H normal in K and K normal in G implies that H

is a normal subgroup of G . Similarly, one defines PT-groups and PST-groups

as those groups in which, respectively, permutability and Sylow-permutability are

transitive relations, respectively. As a consequence of the result of Ore (respec-

tively, Kegel), it follows that PT-groups (respectively, PST-groups) are those

groups in which permutability (respectively, Sylow-permutability) coincides with
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subnormality. The classes T, PT, and PST have been extensively investigated

with many characterisations available. Much of these characterisations have been

obtained in the past 10 years.

Let us recall the classical theorem of Agrawal [1]:

Theorem 11. A group G is a soluble PST-group if and only if G has an abelian

normal Hall subgroup N of odd order such that G/N is nilpotent and the elements

of G induce power automorphisms in N .

If we add in this result “G/N nilpotent modular group,” we obtain the char-

acterisation of soluble PT-groups given by Zacher [28], and if we put “G/N

Dedekind,” we get Gaschütz’s characterisation of soluble T-groups [16].

A consequence of the Deskins and Venzke theorem, Theorem 11, Gaschütz’s

characterisation, and Dedekind’s theorem [20, III, 7.12] is:

Theorem 12. Let G be a group.

1. If G is a soluble PST-group, then G is a Y -group.

2. Assume that G ∈ Y . Then G is a soluble PST-group if and only if the

nilpotent residual of G is abelian.

3. Assume that G ∈ Y . Then G is a soluble T-group if and only if all Sylow

subgroups of G are Dedekind.

The classical characterisations show that the classes T, PT, and PST are

subgroup-closed in the soluble universe and also shows that the difference between

them is the Sylow structure. Hence local techniques turn out to be useful in the

study of these classes.

A class of groups A is said to be “local” if it is generalised in a form referring

to a prime, Ap in such a way the original class can be described as the conjunction

of all the local classes for all primes. For instance, p -nilpotence, p -supersolubility,

and p -solubility are the local versions of nilpotency, supersolubility, and solubility,

respectively.

For a prime p , Bryce and Cossey [15] defined the class Tp of all soluble

groups G for which every subnormal p′ -perfect subgroup of G is normal. They

proved:

Theorem 13. A soluble group is a T-group if and only if it is a Tp -group for all

primes p .
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In [3], Alejandre, the first author, and Pedraza-Aguilera introduced in the

soluble universe the class PSTp of all soluble groups G in which every p′ -perfect

subnormal subgroup in G permutes with every Hall p′ -subgroup of G . This

condition is equivalent to G being p -supersoluble and having all its p -chief factors

isomorphic when regarded as modules over G (see [3]). This result not only holds

in the soluble universe, but also in the p -soluble one.

Theorem 14. A soluble group G is a PST-group if and only if G is a PSTp -

group for all primes p .

Beidleman and Heineken defined in [12] the class T′′

p , for a prime p , of all solu-

ble groups G in which every p′ -perfect subnormal subgroup of G is S -permutable

in G and proved:

Theorem 15. A soluble group G is a PST-group if and only if it is a T′′

p -group

for all primes p .

A similar result holds for PT-groups replacing S -permutability by permutabil-

ity. In [9, Theorem A], the following local version of Agrawal’s result was obtained.

For each group X and every prime p , X(p) denotes the p -nilpotent residual of X ,

that is, the smallest normal subgroup N of X such that X/N is p -nilpotent, while

Op′(X) denotes the largest normal p′ -subgroup of X .

Theorem 16. A p-soluble group G is a PSTp -group if, and only if, one of the

following two conditions holds:

1. G is p-nilpotent, or

2. the subgroup G(p)/Op′

(

G(p)
)

is an abelian normal Sylow p-subgroup of the

group G/ Op′

(

G(p)
)

in which the elements of G/ Op′

(

G(p)
)

induce power

automorphisms.

Theorem 11 follows from Theorems 14 and 16, as shown in [9]

Bearing in mind that these local approaches and the relationship between T-

groups and PST-groups, it is natural to ask for local versions of the class of

Y -groups. It was accomplished in [6].

Definition 17. A group G satisfies the property Zp when for every p -subgroup X

of G and for every power of a prime q , qm , dividing |G : XOp′(G)| , there exists

a subgroup K of G containing XOp′(G) such that |K : XOp′(G)| = qm .
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Definition 18. Let G be a group. We say that G satisfies Z ′

p if G satisfies

either of the following conditions:

1. G is p -nilpotent, or

2. G(p)/Op′

(

G(p)
)

is a Sylow p -subgroup of G/ Op′

(

G(p)
)

and for every p -

subgroup H of G(p), we have that G = G(p)NG(H).

Our next result can be regarded as the analogue of Theorem 16:

Theorem 19 ([6, Theorem 13]). Let G be a p-soluble group. Then G satisfies

Zp if and only if G satisfies Z ′

p .

We are now in a position to show that the class Y is a local class:

Theorem 20 ([6, Theorem 15]). A group G satisfies Y if and only if G satisfies

Zp for all primes p .

Assume now that a group G can be factorised as G = G1G2 · · ·Gm which

is a product of some pairwise permutable subgroups. A natural question in this

context is: What can be said about G if some properties of the factors Gi are

known? For instance, a well-known theorem of Kegel and Wielandt [21, 27] says

that a product of two nilpotent groups is soluble. The fact that a product of two

supersoluble groups is not necessarily supersoluble, even if both factors are normal

in the group, but a direct product of supersoluble groups is supersoluble, moti-

vates the restriction of this question to factorised groups in which both factors are

connected by certain permutability properties which are stronger than the simple

permutability between the factors, but weaker than the centralisation of the ele-

ments of the factors in the direct product. The first author and Shaalan introduced

in [5] the notion of mutually permutable product G = AB of two subgroups A and

B : in a mutually permutable product, each factor permutes with every subgroup

of the other factor. In particular, this situation holds when both factors are nor-

mal in the group. Some results about normal products of supersoluble groups

were extended to mutually permutable products in [5], for instance, a mutually

permutable product G = AB of two supersoluble groups A and B is supersoluble

whenever G′ is nilpotent or one of the factors is nilpotent. They also showed that

totally permutable products (that is, products in which every subgroup of each

factor permutes with every subgroup of the other factor) of supersoluble groups

are supersoluble. Of course, central products and direct products are instances
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of totally permutable products. Mutually and totally permutable products have

been considered as well in [2, 8, 10, 11, 13, 14].

As a consequence of the theorem of Agrawal [1], soluble PST-groups are su-

persoluble. Robinson [25] showed that, in the general finite universe, PST-groups

have all their chief factors simple, or, as he says, they are SC-groups. The classi-

fication of finite simple groups and the truth of the Schreier conjecture yield the

following description of SC-groups:

Theorem 21 ([25, Proposition 2.4]). A group G is an SC-group if and only if

there is a perfect normal subgroup D such that G/D is supersoluble, D/Z(D) is

a direct product of G-invariant simple groups, and Z(D) is supersolubly embedded

in G (i.e., there is a G-admissible series of Z(D) with cyclic factors).

The relation between totally and mutually permutable products and SC-groups

has been investigated in [7, 8, 10, 13, 14]. For instance:

Theorem 22 ([8, Theorems 2 and 3]). Assume that G is the mutually per-

mutable product of its subgroups A and B . Then:

1. If G is an SC-group, then A and B are SC-groups.

2. If A and B are SC-groups, then G/ CoreG(A ∩ B) is an SC-group.

In [4] we prove some results on mutually permutable products whose factors

belong to some of the above classes. We start with a localisation of SC-groups.

Definition 23. Let p be a prime number. We say that a group G is an SCp -group

whenever every chief factor of G whose order is divisible by p is simple.

It is clear that G is an SC-group (i.e., all its chief factors are simple) if and

only if G is and SCp -group for all primes p . In what follows, p will denote a fixed

prime number. The proofs of Theorem 22 can be adapted to prove:

Lemma 24 ([4, Lemma 11]). Assume that G is a mutually permutable product

of its subgroups A and B .

1. If G is an SCp -group, then A and B are SCp -groups.

2. If A and B are SCp -groups, then G/ CoreG(A ∩ B) is an SCp -group.

Mutually permutable products of SCp -groups and p -soluble Zp -groups are the

object of the next result:
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Theorem 25 ([4, Theorem 12]). Let G = AB be a mutually permutable product

of its subgroups A and B . Assume that A is an SCp -group and that B is a p-

soluble Zp -group. Then G is an SCp -group.

The following corollaries follow immediately from Theorem 25:

Corollary 26 ([4, Corollary 13]). If G is a mutually permutable product of an

SC-group A and a Y -group B , then G is an SC-group. In particular, if G is

a mutually permutable product of a supersoluble group A and a Y -group B , then

G is supersoluble.

Let X be a class of groups. A class of groups F is called the Fitting core

of X provided that whenever if A ∈ X and B ∈ F , and A and B are normal

subgroups of a group G , then AB ∈ X (see [12]). From Corollary 2 of [12] it

follows that the class of soluble PST-groups belongs to the Fitting core of the

formation of supersoluble groups. In fact from Corollary 26 we obtain a more

general statement, mainly: the class Y is contained in the Fitting core of both the

formation of supersoluble groups and, hence, the formation of SC-groups.

Corollary 27 ([4, Corollary 14]). If G is a mutually permutable product of two

p-soluble Zp -groups, then G is p-supersoluble.

Corollary 28 ([4, Corollary 15]). If G is a mutually permutable product of two

Y -groups, then G is supersoluble.

Corollary 28 admits the following generalisation:

Theorem 29. Let G = G1G2 · · ·Gr be a group such that G1 , G2, . . . , Gr are

pairwise mutually permutable subgroups of G . If all Gi are Y -groups, then G is

supersoluble.

In [14, Theorem 5], the following result is proved:

Theorem 30. Let G = AB be a mutually permutable product of the subgroups A

and B . If G is a PST-group, then A is a PST-group.

Our proof of Theorem 32 depends on the following:

Lemma 31 ([4, Lemma 20]). Let N be a normal subgroup of G such that G/N

satisfies Np . If either N is non-abelian and simple or N is a p′ -group, then G

satisfies Np .
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We conclude with a local version of Theorem 30, from which it follows imme-

diately:

Theorem 32 ([4, Theorem 18]). Let G be a mutually permutable product of its

subgroups A and B . If G is a SC-group and satisfies Np , then A satisfies Np .
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