PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

COMPARACIÓN TÉCNICA Y ECONÓMICA ENTRE EDIFICACIONES DE ADOBE CONFINADO Y ADOBE REFORZADO CON CAÑAS

Tesis para obtener el título profesional de Ingeniera Civil AUTORA:

Wendy Jhasmin Meza Castillo

Tesis para obtener el título profesional de Ingeniero Civil AUTOR:

Erick Franz Manrique Huamancaja

ASESOR:

Daniel Roberto Quiun Wong

Lima, Agosto, 2023

Declaración jurada de autenticidad

Yo, Daniel Roberto Quiun Wong, docente de la Facultad de Ciencias e Ingeniería de la Pontificia Universidad Católica del Perú, asesor(a) de la tesis/el trabajo de investigación titulado "Comparación técnica y económica entre edificaciones de adobe confinado y adobe reforzado con cañas" del/de la autor(a)/ de los(as) autores(as):

Wendy Jhasmin Meza Castillo

Erick Franz Manrique Huamancaja

dejo constancia de lo siguiente:

- El mencionado documento tiene un índice de puntuación de similitud de 19%. Así lo consigna el reporte de similitud emitido por el software *Turnitin* el 19/04/2023.
- He revisado con detalle dicho reporte y confirmo que cada una de las coincidencias detectadas no constituyen plagio alguno.
- Las citas a otros autores y sus respectivas referencias cumplen con las pautas académicas.

Lugar y fecha: Lima, 19/04/2023

Apellidos y nombres del asesor / de la asesora: Quiun Wong, Daniel Roberto			
DNI: 07800490	Firma		
ORCID: 0000-0001-8906-6783	Dalowi		

A mi madre por guiarme al cumplimiento de mis metas y ser el pilar de mi vida

A mi primo por sus concejos y apoyo incondicional

A mi abuelita que con sus oraciones bendice mi éxito profesional

Agradezco a mi familia por impulsarme cada día

A mi asesor por la orientación y confianza

Y, finalmente, agradezco a las enseñanzas de mis docentes y amigos

Erick Franz Manrique Huamancaja

A mi madre por ser la mayor motivación y el impulso a lograr mis objetivos

A mi padre por enseñarme que el éxito se logra con dedicación

A mi hermana por ser mi compañera de grandes batallas

A mi asesor por el apoyo brindado y compromiso

Wendy Jhasmin Meza Castillo

Resumen

En el Perú, se registra un porcentaje considerable de viviendas que tienen como material predominante el adobe en sus paredes exteriores. Este material, específicamente en áreas rurales del país, constituye una alternativa económicamente viable para la construcción de viviendas. El adobe se caracteriza por ser un material práctico, manejable y sustentable. Sin embargo, una limitante de este material es que el proceso de fabricación se realiza de manera artesanal con múltiples factores que afectan sus características y propiedades. Esto debido a que los sistemas y técnicas de construcción son aplicados con conocimiento empírico sin criterios sismorresistentes.

Actualmente, se han desarrollado técnicas constructivas con métodos de reforzamiento que aumenta la resistencia de las estructuras y reduce el riesgo ante eventos sísmicos. Sin embargo, algunos de estos métodos no son aceptados por la Norma E.080, como el adobe confinado con elementos del concreto armado.

Como respuesta a dicho contexto, la presente tesis tiene como objetivo realizar la comparación técnica y económica entre edificaciones diseñadas con adobe reforzado con cañas aceptado por la norma E.080 y el adobe confinado con elementos de concreto. Para ello, las edificaciones de estudio se ubican en los distritos de Orcopampa y Pampacolca del departamento de Arequipa. Para realizar el análisis, se diseña ambas edificaciones con ambos métodos de reforzamiento y se elabora el presupuesto estimado en su construcción. La comparación técnica abarca la sobreresistencia que tiene cada edificación, mientras que la comparación económica es influenciada por el análisis de precios unitarios.

Los resultados revelan que las estructuras de adobe confinado presentan mayor sobreresistencia. Asimismo, la evaluación de costos evidencia que la propuesta más económica es la edificación diseñada con adobe reforzada con cañas alrededor del 20% aproximadamente del costo directo. Sin embargo, tratándose de edificaciones esenciales e importantes las analizadas en la presente tesis, se concluye que la propuesta de construcción más adecuada es la del adobe confinado con elementos de concreto armado debido a que se debe privilegiar la resistencia.

Abstract

In Peru, there is a considerable percentage of buildings to have adobe as the predominant material on their walls. This material, specifically in rural areas of the country, constitutes an economically viable alternative for housing construction. Adobe is characterized by being a practical, manageable and sustainable material. However, one limitation of this material is the manufacturing process. It's carried out in handmade way with multiple factors that deteriorate its characteristics and properties. This is because the construction systems and techniques are applied with empirical knowledge without earthquake resistant criteria.

Currently, construction techniques have been developed with reinforcement methods that increase the resistance of structures and reduce the risk of seismic events. However, some of these methods aren't accepted by Standard E.080, such as confined adobe with reinforced concrete elements.

In response to this context, this thesis aims to make a technical and economic comparison between buildings designed with adobe reinforced with canes accepted by the E.080 standard and adobe confined with concrete elements. To do this, the study buildings are located in towns of Orcopampa and Pampacolca from the department of Arequipa. To carry out the analysis, buildings are designed with both reinforcement methods and the estimated budget for their construction is prepared. The technical comparison covers the over-resistance that each buildings has, while the economic comparison is influenced by the unit price analysis.

The results reveal that the confined adobe structures present greater over-resistance. Also, the cost evaluation shows that the most economical proposal is the building designed with adobe reinforced with reeds, approximately 20% of the direct cost. However, in the case of essential and important buildings analyzed in this thesis, it's concluded that the most appropriate construction proposal is that of adobe confined with reinforced concrete elements because resistance must be privileged.

Índice

Capítulo 1.	Generalidades	1
1.1. In	ntroducción	1
1.2. A	Antecedentes	2
1.3. Ju	ustificación	3
1.4. C	Objetivos	4
1.5. H	Hipótesis	5
1.6. N	Metodología	5
Capítulo 2.	Marco Teórico	6
2.1.	Generalidades del adobe	6
2.2. T	Cipos de reforzamiento de viviendas de adobe	7
2.2.1.	Mallas de drizas	7
2.2.2.	Mallas electrosoldadas	9
2.2.3.	Mallas de fibra de maguey	10
2.3. E	Edificación de adobe confinado	
2.3.1.	Materiales de construcción	10
2.3.2.	Actividades preliminares al proceso constructivo	11
2.3.3.	Proceso constructivo	11
2.4. E	Edificación de adobe reforzado con cañas	13
2.4.1.	Materiales de construcción	13
2.4.2.	Actividades preliminares al proceso constructivo	13
2.4.3.	Proceso constructivo	14
Capítulo 3.	Caracterización de las propiedades de los materiales	16
3.1. E	Ensayos de control	16
3.1.1.	Adobes	16
3.1.2.	Pilas de adobe	18

3.1.3.	Muretes de adobe	. 19
3.1.4.	Concreto	. 20
3.1.5.	Acero de refuerzo	. 21
3.1.6.	Resistencia a la tracción de la caña	. 21
Capítulo 4	. Descripción de la arquitectura y diseño de las estructuras	. 23
4.1.	Aspectos generales	. 23
4.1.1.	Edificación 1: Local Comunal – Orcopampa	. 23
4.1.2.	Edificación 2: Puesto de Salud - Pampacolca	. 24
4.2.	Características del sistema estructural	. 26
4.2.1.	Edificación de adobe reforzado con elementos de concreto armado	. 26
4.2.2.	Edificación de adobe reforzado con cañas	. 27
4.3.	Cimentación y sobrecimiento	. 28
	Techos	
	Viga soleras o collar de madera	
4.4.2.	Diseño de Viguetas de techo	. 36
4.5.	Muros	. 41
4.5.1.	Criterio de diseño de muros basado en la estabilidad	. 41
4.5.2.	Criterios de diseño de muros basado en esfuerzos admisibles	. 44
4.5.3.	Criterio de diseño de muros basado en el desempeño	. 57
4.6.	Refuerzo de caña	. 58
4.7.	Columna	. 61
4.7.1.	Diseño de muro de corte	. 62
4.7.2.	Diseño de columnas de confinamiento	. 70
4.7.3.	Diseño de muros de flexión	. 77
4.8.	Vigas	. 82
4.8.1.	Diseño de vigas soleras	. 82
4.8.2.	Diseño de vigas soleras para cargas perpendiculares al plano del muro	. 86

Capítulo 5.	Evaluación técnica	90
5.1. C	Comparación técnica	90
5.1.1.	Edificación 1: Local Comunal – Orcopampa	90
5.1.2.	Edificación 2: Puesto de Salud – Pampacolca	92
Capítulo 6.	Evaluación de costos y presupuesto	94
6.1. N	Metrado	94
6.2. P	resupuesto de Obra	94
6.2.1.	Edificación 1: Local Comunal – Orcopampa	95
	Edificación 2: Puesto de Salud – Pampacolca	
6.3. C	Comparación económica	98
6.3.1.	Edificación 1: Local Comunal – Orcopampa	99
6.3.2.	Edificación 2: Puesto de Salud – Pampacolca	99
	Conclusiones	
-	Recomendaciones	
Capítulo 9.	Referencias Bibliográficas	103
Anexo A		107
Anexo B		120
Anexo C		127

Índice de Tablas

Tabla 2.1 Composición granulométrica del suelo para la fabricación de adobes
según CRATERRE y CEET Y DES6
Tabla 2.2 Materiales de construcción en viviendas de adobe confinado11
Tabla 2.3 Materiales de construcción en viviendas de adobe reforzado con cañas13
Tabla 4.1 Esfuerzos admisibles según la norma de Madera E.010
Tabla 4.2 Resultados del diseño de vigas de madera en el tijeral central35
Tabla 4.3 Resultados de diseño de viguetas de techo
Tabla 4.4 Detalles geométricos arquitectónicos de la edificación de Orcopampa42
Tabla 4.5 Detalles geométricos arquitectónicos de la edificación de Pampacolca42
Tabla 4.6 Verificación de los límites geométricos de muros y vanos - Orcopampa43
Tabla 4.7 Verificación de los límites geométricos de muros y vanos - Pampacolca44
Tabla 4.8 Cargas de gravedad
Tabla 4.9 Cargas totales de la estructura
Tabla 4.10 Fuerzas horizontales sísmicas
Tabla 4.11 Esfuerzo en compresión para edificio Orcopampa
Tabla 4.12 Esfuerzo en compresión para edificio Pampacolca
Tabla 4.13 Valores de coeficiente de momentos y dimensión critica (Norma Albañilería, N.070) 52
Tabla 4.14 Esfuerzo por flexión y cortante para edificio Orcopampa54
Tabla 4.15 Esfuerzo por flexión y cortante para edificio Pampacolca55
Tabla 4.16 Verificación de esfuerzo admisible en tracción y esfuerzo ultimo a cortante
para edificio Orcopampa56
Tabla 4.17 Verificación de esfuerzo admisible en tracción y cortante para edificio
Pampacolca
Tabla 4.18 Verificación de fuerza a tracción en la caña para edificio Orcopampa60
Tabla 4.19 Verificación de fuerza a tracción en la caña para edificio Pampacolca61
Tabla 4.20 Carga de gravedad acumulada – Local comunal Orcopampa66

Tabla 4.21 Carga de gravedad acumulada – Puesto de salud Pampacolca67
Tabla 4.22 Valores de VR en los muros del Local Comunal - Orcopampa68
Tabla 4.23 Valores de VR en los muros del Centro de Salud - Pampacolca
Tabla 4.24 Ecuaciones para determinar las fuerzas internas en las columnas (San
Bartolomé)69
Tabla 4.25 Área de concreto y acero en columnas - Local comunal Orcopampa71
Tabla 4.26 Área de concreto y acero en columnas – Puesto de salud Pampacolca72
Tabla 4.27 Valores de Fuerza cortante y Momento flector – Local comunal Orcopampa
Tabla 4.28 Valores de Fuerza cortante y Momento flector – Puesto de Salud Pampacolca
Tabla 4.29 Área de acero longitudinal en las columnas - Local comunal Orcopampa.76
Tabla 4.30 Área de acero longitudinal en las columnas - Puesto de salud Pampacolca76
Tabla 4.31 Valores de coeficiente de momentos y dimensión critica
Tabla 4.32 Momento flector distribuido por unidad de longitud – Local comunal de
Orcopampa
Tabla 4.33 Momento flector distribuido por unidad de longitud – Puesto de Salud de
Pampacolca
Tabla 4.34 Verificación de los esfuerzos – Local comunal de Orcopampa81
Tabla 4.35 Verificación de los esfuerzos – Puesto de Salud de Pampacolca81
Tabla 4.36 Carga de gravedad acumulada en vigas soleras – Local comunal Orcopampa
82
Tabla 4.37 Carga de gravedad acumulada en vigas soleras – Puesto de salud Pampacolca
83
Tabla 4.38 Valores de VR en las vigas del Local Comunal - Orcopampa83
Tabla 4.39 Valores de VR en las vigas del Puesto de salud- Pampacolca
Tabla 4.40 Área de acero longitudinal en las vigas soleras del Local Comunal -
Orcopampa85
Tabla 4.41 Área de acero longitudinal en las vigas soleras del Puesto de Salud -
Pampacolca85

Tabla 4.42 Cargas actuantes en las soleras – Local Comunal de Orcopampa
Tabla 4.43 Cargas actuantes en las soleras – Puesto de Salud de Pampacolca
Tabla 4.44 Área de acero longitudinal en las vigas soleras del Local Comunal -
Orcopampa
Tabla 4.45 Área de acero longitudinal en las vigas soleras del Puesto – Orcopampa89
Tabla 5.1 Sobreresistencia utilizando adobe reforzado con cañas – Orcopampa91
Tabla 5.2 Sobreresistencia utilizando adobe confinado con elementos de concreto
armado – Orcopampa91
Tabla 5.3 Sobreresistencia utilizando adobe reforzado con cañas – Pampacolca92
Tabla 5.4 Sobreresistencia utilizando adobe confinado con elementos de concreto
armado – Pampacolca93
Tabla 6.1 Presupuesto con adobe reforzado con cañas - Edificación de Orcopampa95
Tabla 6.2 Presupuesto con adobe confinado - Edificación de Orcopampa96
Tabla 6.3 Presupuesto con adobe reforzado con cañas - Edificación de Pampacolca97
Tabla 6.4 Presupuesto con adobe confinado – Edificación de Pampacolca98
Tabla 6.5 Comparación de presupuesto de obra para Local Comunal-Orcopampa99
Tabla 6.6 Precio por m ² para el Local Comunal- Orcopampa
Tabla 6.7 Comparación de presupuesto de obra para Puesto de Salud-Pampacolca 100
Tabla 6.8 Precio por m ² para el Puesto de Salud- Pampacolca

Índice de Figuras

Figura 2.1 Esquemas de refuerzo vertical con sogas sintéticas (drizas)	7
Figura 2.2 Esquemas de refuerzo horizontal con sogas sintéticas (drizas)	8
Figura 2.3 Técnica de refuerzo con sogas sintéticas (drizas)	8
Figura 2.4 Técnica de refuerzo con malla electrosoldada	9
Figura 2.5 Tarrajeo de muro reforzado con malla de maguey	10
Figura 2.6 Vivienda de adobe confinado con elementos de concreto armado	13
Figura 2.7 Contrafuertes de refuerzo con cañas	
Figura 3.1 Ensayo de variabilidad dimensional	16
Figura 3.2 Ensayo de alabeo	
Figura 3.3 Ensayo a compresión del adobe	18
Figura 3.4 Ensayo de compresión a muro de adobe	19
Figura 3.5 Ensayo de muretes a compresión diagonal	
Figura 3.6 Ensayo a compresión de probetas de concreto	20
Figura 3.7 Ensayo a compresión de probetas de concreto	21
Figura 3.8 Ensayo a tracción de cañas	22
Figura 4.1 Planta de edificación del local comunal de Orcopampa	23
Figura 4.2 Elevación de la edificación - corte A-A - Orcopampa	24
Figura 4.3 Elevación principal – Orcopampa	24
Figura 4.4 Planta de edificación del puesto de salud de Pampacolca	25
Figura 4.5 Elevación de la edificación - corte A-A - Pampacolca	26
Figura 4.6 Elevación principal - Pampacolca	26
Figura 4.7 Esquemas de refuerzo con cañas para adobe	27
Figura 4.8 Geología de Orcopampa	28
Figura 4.9 Geología de Pampacolca	28
Figura 4.10 Promedio de precipitación en la región Arequipa	30
Figura 4.11 Detalles de viga collar	31

Figura 4.12	Detalles de viga collar en dinteles
Figura 4.13	Ubicación de armado de vigas de madera en edificación de Orcopampa32
Figura 4.14	Ubicación de armado de vigas de madera en edificación de Pampacolca.32
Figura 4.15	Tijeral de la cumbrera del techo de local comunal de Orcopampa32
Figura 4.16	Tijeral de la cumbrera del techo de puesto de saludo de Pampacolca32
Figura 4.17	Fuerzas internas en centro de la armadura de madera
Figura 4.18	Plano de viguetas de techo en la edificación de Orcopampa36
Figura 4.19	Plano de viguetas de techo en la edificación de Pampacolca37
Figura 4.20	Detalle de armado de vigas y viguetas de techo40
Figura 4.21	Límites Geométricos de muros y vanos
Figura 4.22	Distribución de muros para edificación Orcopampa47
Figura 4.23	Distribución de muros para edificación Pampacolca
Figura 4.24	Distribución de cargas en muros de adobe
Figura 4.25	Línea de influencia del muro de adobe
Figura 4.26	Esfuerzo normal en la sección transversal de la base del muro56
Figura 4.27	Equivalencia de esfuerzos en tracción
Figura 4.28	Distribución de muros en el Local Comunal - Orcopampa64
Figura 4.29	Distribución de muros para en el Puesto de Salud - Pampacolca64
Figura 4.30	Esquema de fuerzas internas en el muro
Figura 4.31	Diagrama de fuerza cortante y momento flector - Local Comunal
Orcopampa	74
Figura 4.32	Distribución de cargas para el diseño de soleras86

Capítulo 1. Generalidades

1.1. Introducción

Durante los terremotos ocurridos en Arequipa y Pisco en los años 2001 y 2007 respectivamente, el Instituto Nacional de Defensa Civil reveló una gran cantidad de viviendas afectadas y destruidas, de las cuales las edificaciones de adobe presentaron mayores daños (Tavera, 2014). Uno de los motivos de los daños fue la fragilidad del material y la baja adherencia entre el mortero y los bloques de adobe. Esto provoca que disminuya la resistencia y por ende sea más vulnerable ante movimientos sísmicos. Otro factor fue el peligro sísmico de la zona afectada. Según la Norma Sismorresistente E.030 del 2018, la aceleración máxima en un suelo rígido con probabilidad de excedencia del 10% en ser excedida en 50 años es de 0.45g de peligro sísmico (Ministerio de Vivienda Construcción y Saneamiento, 2018). Asimismo, la construcción de viviendas con adobe no requiere mano de obra calificada y por ello existe un gran desconocimiento de los tipos de refuerzo que contempla la norma E.080 como el refuerzo de adobe con cañas y con mallas electrosoldadas.

A pesar de estos motivos, muchas personas del sector rural optan por construir sus viviendas con adobe. Este material es fácil de conseguir, debido a que su fabricación es artesanal y no requiere de conocimientos técnicos. Los insumos que se requieren en su fabricación son propios de la zona, por consiguiente, no se requiere gastos de transporte. Además, estos materiales tienen un gran aislamiento térmico, de esa mmanera se pueden realizar casas muy acogedoras especialmente en las zonas alto andinas del Perú. Sin embargo, el desconocimiento de las técnicas de construcción como el uso de refuerzos provoca mayor vulnerabilidad y ocasiona mayores daños.

Actualmente, la norma E.080 del 2017 acepta el reforzamiento con cañas en viviendas de adobe como método constructivo para reducir los daños ocasionados por movimientos sísmicos (Ministerio de Vivienda Construcción y Saneamiento, 2017). Aunque, existen diversos estudios que proponen el diseño de edificaciones de adobe con elementos de concreto armado como solución adicional de refuerzo a los métodos aceptados en la norma E.080 de 1999. De esta manera, es importante realizar un estudio sobre viviendas de adobe confinado para evaluar la vulnerabilidad y costos que implica el proceso constructivo y compararla con otras viviendas similares de adobe reforzadas con caña. Por ello, se realizan las siguientes

preguntas, ¿De qué manera las edificaciones con adobe confinado presentan mayor sobreresistencia que las edificaciones con adobe reforzado con cañas establecido por la norma E. 080? y ¿En qué medida el costo de construcción de las edificaciones con adobe con cañas sea menor en comparación con las edificaciones con adobe confinado?

1.2. Antecedentes

Al ser un material más económico respecto a los demás materiales, el adobe es un material muy utilizado en la construcción de viviendas. En el censo nacional de viviendas del 2017, el Instituto Nacional de Estadística e Informática informó que el 27.9% de las viviendas peruanas predomina el adobe en sus paredes exteriores(INEI, 2018). Debido a que los insumos para la fabricación del adobe son propios de la zona y no requiere mano calificada y transporte, se logra construir viviendas de bajo costo. Sin embargo, los terremotos de Arequipa y Pisco en el 2001 y 2007 respectivamente revelan daños severos en la estructura.

Por ello, en las últimas décadas, se realizaron estudios sobre diferentes métodos de reforzamiento para mejorar el comportamiento ante los sismos. Algunas de estas alternativas es el reforzamiento de los muros de adobe con mallas que pueden ser de materiales metálicos, vegetales o sintéticos; por ejemplo, las mallas electro soldadas (Zegarra Ciquero et al., 2004) y mallas de drizas (Blondet et al., 2015). En el cual se demostró que usar mallas permite atenuar efectos destructivos ante sismos severos; es decir, evita el colapso de la estructura en conjunto (Tarque et al., 2022). Además, el estudio elaborado por el ingeniero San Bartolomé en el 2007 reveló que una vivienda hecha de adobe confinado con concreto de baja cuantía y baja resistencia mejoró el comportamiento sísmico para viviendas de 1 piso (San Bartolomé, 2007). Por otro lado, la condición de refuerzo horizontal cada cinco hiladas sobre una junta horizontal hecha con mortero de cemento, elevo la resistencia a la fuerza cortante y su conectividad con las columnas de concreto incluso ante sismos catastróficos para viviendas de 2 pisos, obteniendo fisuras finas y ningún adobe triturado (Delgado, 2006).

En el artículo "Ensayo de simulación sísmica en un módulo de adobe confinado por elementos de concreto armado" se demostró que existe una buena adherencia entre el concreto pobre y el adobe, sin importar el tipo de conexión que tiene un elemento de concreto simple y un muro de adobe (dentada o al ras) (Matos et al., 1997). Esta condición permite tener una respuesta satisfactoria ante una simulación sísmica muy fuerte, ocasionando pequeñas fisuras. Asimismo, se comprueba que el muro de adobe aporta rigidez y resistencia a la estructura en conjunto y la viga collar rigidiza el techo, formando un diafragma rígido y funcionando como

elemento de arriostre horizontal, para evitar movimientos perpendiculares al muro de adobe. Sin embargo, estos estudios no brindan comparaciones técnicas y económicas entre los métodos de reforzamiento aceptados por la norma (Matos et al., 1997).

En edificaciones de adobe reforzado con caña, se demostró que dicho refuerzo aumenta en 60% la resistencia en comparación a un adobe tradicional, mientras que la capacidad de absorción del agua tiene una disminución del 9% (Mamani, 2020). Asimismo, la norma E.080 de 1999 brinda recomendaciones para el diseño de albañilería de adobe reforzado con caña, con mallas de alambre y con columnas y vigas de concreto armado. Por un lado, una vivienda de adobe confinado está compuesto por columnas y vigas de concreto armado que limitan con los muros de adobe, también puede incluirse refuerzo horizontal (mecha) cada cinco hiladas que permite la transmisión de esfuerzos entre la columna y el muro, lo cual mejora la resistencia de la edificación. Por otro lado, la caña anclada a la cimentación y fijada a la solera superior refuerza verticalmente, mientras que el refuerzo horizontal serán tiras colocadas cada cierto número de hiladas entre el arreglo de las unidades de adobe. Estos, de acuerdo a la Norma E. 080 (1999), se unen mediante amarres en los encuentros y esquineros de los muros.

Actualmente la norma E.080 del 2017 no contempla el diseño de viviendas de adobe confinado, a pesar que existen estudios de investigación (Torres, 2012), ensayos experimentales (Delgado, 2006) y una propuesta de diseño de adobe confinado publicada en la Jornada Sudamericana de Ingeniería Estructural (San Bartolomé & Quiun, 2012). Por ello, se requiere realizar un estudio comparativo con un método aceptado por la norma E.080 del 2017 con la finalidad de ser incluida en futuras actualizaciones de la norma. Es decir, comparar el adobe confinado con el adobe reforzado con cañas.

1.3. Justificación

Actualmente, el adobe constituye una técnica de construcción elaborada a base de tierra muy empleado en las edificaciones de viviendas debido a sus ventajas técnicas, económicas y su fácil acceso. En el Perú, específicamente en el área rural, el adobe como material de construcción representa una alternativa viable para resolver el problema del incremento del 8.4% de la demanda de viviendas (INEI, 2018). Los resultados del Censo Nacional realizado en octubre de 2017, indicaron que, del total de viviendas particulares en el área rural, el 69.5% de estas tienen como material predominante en las paredes exteriores el adobe o tapial (INEI, 2018).

En los lugares donde la accesibilidad es muy limitada, existe la tradición de construir viviendas con adobe porque es práctico, manejable y fácil de elaborar. Los materiales e insumos para su fabricación son abundantes y propios de la zona por lo que resulta económico. A diferencia de los materiales industriales, el adobe representa un ahorro de energía, es un material que posee un efectivo aislamiento térmico y acústico, resistentes al fuego y hacen posible la autoconstrucción (Moscoso, 2010). Además, el uso del adobe se ha caracterizado por estar relacionado con los recursos naturales locales, lo cual lo convierte en un material de mayor sustentabilidad y 100 % reciclables que no genera un impacto ambiental (Guerrero, 2014).

Sin embargo, una limitante del adobe como material de construcción es que el uso de los materiales, sistemas y técnicas tradicionales de construcción son resultados de un conocimiento empírico. El proceso de fabricación del adobe se realiza de manera artesanal con múltiples factores que afectan las características y propiedades del material. Además, estas técnicas tradicionales de construcción no consideran los criterios sismorresistentes, lo cual conlleva a tener viviendas vulnerables a eventos sísmicos.

No obstante, existen técnicas constructivas de sencillo desarrollo que permiten a este tipo de edificios ser resistentes a estos fenómenos naturales. Para Rudolf Giese (2019), es importante que la tecnología se incorpore en el proceso de fabricación de este material de manera que se obtenga un producto cuyas propiedades y atributos se encuentren dentro de la normativa.

Por ello, se plantea un modelo económico de diseño de edificaciones de adobe con elementos de concreto armado que busca incrementar la sobreresistencia de la estructura ante cargas laterales de un sismo y reducir los riesgos en la seguridad de las personas. La implementación de este modelo constructivo evitaría el colapso de las viviendas ante movimientos sísmicos severos.

1.4. Objetivos

Objetivo general

 Realizar una comparación técnica y económica en edificaciones reforzadas con adobe confinado y reforzadas con cañas.

Objetivos específicos

 Diseñar dos pares de edificaciones de 1 piso con adobe confinado con elementos de concreto armado y con adobe reforzado con caña según la norma E 080.

- Determinar las propiedades mecánicas de los materiales utilizados, de acuerdo a investigaciones anteriores, para el diseño de las edificaciones.
- Comparar la sobreresistencia de las edificaciones de adobe confinado y reforzado con cañas.
- Analizar y comparar los costos que implica la construcción de cada tipo de edificación.

1.5. Hipótesis

- Se espera que las edificaciones con adobe confinado presentan mayor sobreresistencia que las edificaciones con adobe reforzado con cañas establecido por la norma E. 080.
- Se espera que el costo de construcción de las edificaciones con adobe con cañas sea menor en comparación con las edificaciones con adobe confinado.

1.6. Metodología

Para evaluar la comparación técnica, se realizarán dos etapas. En la primera etapa, en base a investigaciones anteriores y la norma E.080 del 2017, se obtendrán como datos las propiedades mecánicas de los materiales que será de utilidad para el diseño estructural de las edificaciones. En la segunda etapa, se diseñarán dos edificaciones de 1 piso ubicadas en el departamento de Arequipa. Cada edificación se diseñará como una estructura de adobe confinado y adobe reforzado con cañas según la norma E 080; de esta manera, se tendrán cuatro edificaciones diseñadas en total. Posteriormente, se realizará un análisis y comparación técnica entre las edificaciones de adobe con elementos estructurales y reforzado con cañas.

En el caso de la comparación económica, se realizará el metrado de todas las edificaciones. Posteriormente, con los datos obtenidos se obtendrá el presupuesto para la construcción de los módulos de adobe confinado con elementos de concreto armado y reforzada con cañas. Finalmente, con el presupuesto se realizará una comparación económica entre ambas técnicas en una misma edificación.

Capítulo 2. Marco Teórico

En este capítulo se explica el método de fabricación del adobe y los procesos constructivos de edificaciones de adobe con elementos de concreto armado y edificaciones de adobe reforzado con cañas.

2.1. Generalidades del adobe

Antes de la fabricación de adobe, se debe verificar que el suelo donde se moldea los adobes no sea demasiado arcilloso, debido a que contrae demasiado y se fractura al secar los adobes. La tierra utilizada no debe tener piedras ni materias orgánicas; por ello, es recomendable tamizar con mallas de 3/8 de pulgada según ASTM C-33. Asimismo, según estudios realizados por CRATERRE y CEET Y DES, recomiendan distintas composiciones granulométricas del suelo para la construcción de adobes como se observa en la tabla 2.1 (Tejada, 2001).

Tabla 2.1 Composición granulométrica del suelo para la fabricación de adobes según CRATERRE y CEET Y DES

DIÁMETRO DE LOS GRANOS EN MM	CLASIFICACIÓN	PORCENTAJES CRATERRE	PORCENTAJES CEET Y DES
2 <d<20< td=""><td>Grava</td><td>0-15</td><td>5-20</td></d<20<>	Grava	0-15	5-20
0.006 <d<2< td=""><td>Arena</td><td>40-50</td><td>40-65</td></d<2<>	Arena	40-50	40-65
0.002 <d<0.06< td=""><td>Limo</td><td>20-35</td><td>15-25</td></d<0.06<>	Limo	20-35	15-25
d<0.002	Arcilla	15-25	10-30

Fuente: Urbano Tejada, 2001

El agua se debe echar al suelo hasta formar barro y removerlo con una lampa. Una vez dejado un día para que la arcilla se humedezca, se debe agregar paja para que controle la fisuración por secado (Silva et al., 2012). La masa de barro y paja se lleva a un molde y se deja secar por tres días. Estas unidades deben estar protegidas ante la lluvia porque después de 28 días podrán ser utilizadas para la construcción de viviendas. La verificación de la calidad in situ del adobe se realiza mediante la observación de grietas en las unidades pasadas 4 semanas desde su fabricación y probar su resistencia al someterse con el peso de un hombre (Morales et al., 1993).

2.2. Tipos de reforzamiento de viviendas de adobe

2.2.1. Mallas de drizas

Esta técnica de reforzamiento estructural de los muros de adobe es una manera efectiva de prevenir el colapso de las estructuras de adobe sometidas a movimientos de sismo severo. Para el refuerzo de los muros de adobe se utilizan mallas externas de drizas (sogas sintéticas), las cuales son compatibles con el material tierra y de fácil acceso en las zonas rurales(Blondet et al., 2015).

La Norma E.080 Diseño y construcción con tierra reforzada (2017) establece que los muros de adobe deben ser envueltos con mallas de sogas sintéticas en ambas caras del muro mediante lazos tanto verticales como horizontales, estas mallas son unidas mediante drizas conectoras que atraviesan el muro. Por un lado, como se observa en la figura 2.1, cada lazo vertical debe sujetar el fondo o base del sobrecimiento y la viga collar, de ser necesario, el lazo debe pasar por la junta (mortero) vertical. Luego de envolver los muros con los lazos verticales estos deben ser tensados y anudados en los extremos de las sogas sintéticas.

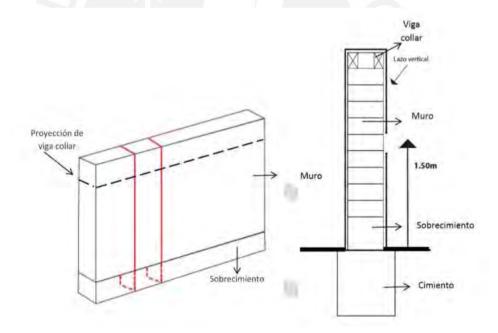


Figura 2.1 Esquemas de refuerzo vertical con sogas sintéticas (drizas)

Fuente: N.T.E. E.080 Diseño y Construcción con tierra reforzada, 2017

Por otro lado, una vez tensado y anudado cada una de las drizas verticales del muro, se prosigue con envolver el muro mediante lazos horizontales, estos deben pasar por un orificio realizados al muro. A diferencia del refuerzo vertical, en este caso, el lazo horizontal debe pasar por la mitad de las unidades de adobe. Luego de envolver los muros con los lazos horizontales estos deben ser tensados y anudados en los extremos de las sogas sintéticas, como se visualiza en la figura 2.2.

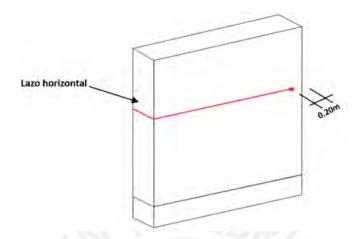


Figura 2.2 Esquemas de refuerzo horizontal con sogas sintéticas (drizas)

Fuente: N.T.E. E.080 Diseño y Construcción con tierra reforzada, 2017

De acuerdo al Artículo "Refuerzo sísmico de mallas de sogas sintéticas para construcciones de adobe" publicado en el Seminario Iberoamericano de Arquitectura y Construcción con Tierra SIACOT 2015 en Cuenca (Ecuador), se demuestra que el sistema de reforzamiento de muros de adobes mediante drizas (sogas sintéticas) brindan integridad estructural y estabilidad a las estructuras debido a que las mallas evitan el colapso parcial de los bloques de adobe ante fuerzas sísmicas severas (Blondet et al., 2015). A modo de ejemplo, una estructura de adobe reforzado con sogas sintéticas real se observa en la figura 2.3.

Figura 2.3 Técnica de refuerzo con sogas sintéticas (drizas)

Fuente: ArchDaily, 2017

2.2.2. Mallas electrosoldadas

Las mallas electrosoldadas son un tipo de refuerzo que fue aplicado en viviendas existentes en 1998 en el Perú (San Bartolomé & Quiun, 2015). Este tipo de refuerzos en muros de adobe consiste en adicionar mallas electrosoldadas tanto esquineras como longitudinales sobre los muros, las cuales simulan vigas y columnas de confinamiento

Las mallas de acero están conformadas de aceros longitudinales y transversales soldados en sus puntos de intersección. Estas son diseñadas para soportar acciones sísmicas transversales al plano de los muros de adobe (San Bartolomé & Quiun, 2015).

Los tamaños de los paneles, el espaciado, el diámetro de las varillas y el acabado de las mallas depende de las especificaciones de cada proyecto. El principal funcionamiento de las mallas electrosoldadas que cubren ambas caras del muro de adobe es el de integrar los muros transversales entre sí, de modo que, ante las fuerzas de sismos, se evite la separación de estos muros (San Bartolomé & Quiun, 2015).

Para que las mallas funcionen integralmente con el muro durante el sismo, es importante que estos dos elementos se encuentren interconectados. Para ello, generalmente se utiliza alambre delgado, el cual atraviesan los muros a través de perforaciones en los extremos(San Bartolomé & Quiun, 2015) .Esta técnica de reforzamiento se observa en la figura 2.4.

De acuerdo a los ensayos realizados, el reforzamiento de paredes de adobe con mallas electrosoldadas en ambas caras presenta mayor capacidad de carga y ductilidad en una vivienda de adobe (Quiroz & Tena, 2021).

Figura 2.4 Técnica de refuerzo con malla electrosoldada

Fuente: Torres Gilles & Jorquera Silva, 2018

2.2.3. Mallas de fibra de maguey

Las mallas de fibra de maguey, como refuerzo de muros en viviendas de adobe, es una propuesta sostenible y económica a base de fibras naturales de maguey, los cuales mejora la resistencia de los esfuerzos generados en los muros durante los movimientos sísmicos (Aliaga & Gonzales, 2020).

Estas mallas son productos artesanales elaboradas con los hilos largos extraídos de las fibras del maguey formando así tejidos de cuerdas. Estas cuerdas se colocan de manera vertical y horizontal creando una malla cuadrada unidas, en cada intersección, mediante nudos.

Además, esta técnica de refuerzo consiste en colocar las mallas de fibra de maguey en ambas caras del muro como se observa en la figura 2.5, de tal forma los muros de adobe se encuentren revestidos de forma interna y externamente ancladas en el cimiento en la parte inferior y, en la viga collar en la parte superior del muro. Estas mallas se unen a la mampostería de adobe mediante cuerdas que atraviesan los muros y colocadas en las juntas de mortero (Aliaga & Gonzales, 2020).

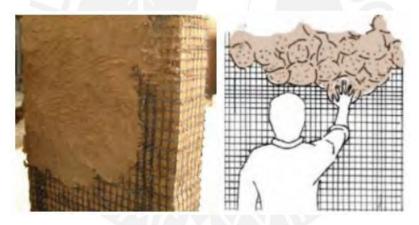


Figura 2.5 Tarrajeo de muro reforzado con malla de maguey

Fuente: Aliaga & Gonzales, 2020

2.3. Edificación de adobe confinado

2.3.1. Materiales de construcción

Los materiales utilizados para la construcción de viviendas de adobe confinado se encuentran detallado en la tabla 2.2.

Tabla 2.2 Materiales de construcción en viviendas de adobe confinado

MATERIALES DE CONSTRUCCIÓN DE VIVIENDAS DE ADOBE CONFINADO

- Adobe
- Concreto f'c = 100 kgf/cm^2
- Acero fy = 4200 kgf/cm^2
- Vigas de madera
- Tejas
- Materiales y herramientas

2.3.2. Actividades preliminares al proceso constructivo

El área de trabajo debe estar marcada las zonas donde irán los cimientos de las columnas y muros. El cimiento deberá ser por lo menos de 60 cm de profundidad y el sobrecimiento debe sobresalir por encima de 30 cm del nivel natural del terreno. El adobe utilizado debe estar listo y secado por más de 28 días. El almacén debe ser un terreno plano y limpio, en el cual la superficie debe estar cubierta por arena fina para que las unidades de adobe no queden pegado al suelo.

2.3.3. Proceso constructivo

El proceso constructivo de las viviendas de adobe confinado es similar a la albañilería confinada. En la cimentación se utiliza un solado de 10 cm de espesor de concreto pobre y al día siguiente se instala el refuerzo de columna y zapata, amarrando los tirantes con alambres para movimientos entre aceros. Por otro lado, el sobrecimiento debe estar 30 cm por encima del nivel natural del terreno con un ancho de 30 cm de concreto ciclópeo y la superficie debe estar rayada para mejorar la adherencia de las unidades en su asentado.

El muro de adobe debe ser asentado con el escantillón (regla graduada con la altura de cada hilada). Esta regla debe estar colocada verticalmente en los extremos del muro controlando el grosor de la junta. El cordel sirve para la continuidad longitudinal de los adobes y la plomada para la verticalidad. Asimismo, el nivel sirve para nivelar horizontalmente el

asentado y el fraguador como encofrado del mortero de barro de acuerdo con la Norma E.080 (2017).

Según Silva W, San Bartolomé y Ramírez el proceso constructivo se realiza de la siguiente manera (Silva et al., 2012).

En el proceso del asentado de adobes, se debe limpiar y humedecer la superficie del sobrecimiento y cada unidad de adobe debe sumergirse en agua por un segundo para evitar que absorba humedad del mortero. La junta vertical de muro de adobe y la columna puede ser al ras, dentada o con mechas. En este estudio se analizará la junta al ras y con mechas cada 5 hiladas. Estas mechas son varillas horizontales de 1/4" de diámetro que interceptan el muro de adobe. Cabe resaltar que el asentado del muro se debe realizar hasta la mitad del muro en la primera jornada, esto evita que el mortero se aplaste y desalinear las unidades de adobe.

El encofrado y vaciado del concreto en las columnas se realiza una vez culminado el asentado del muro de adobe. En este estudio se utilizará un concreto pobre de resistencia f'c=100kgf/cm². El concreto debe ser fluido y lo suficientemente trabajable para evitar cangrejeras que perjudiquen la resistencia del elemento.

Antes de colocar la canastilla de encofrado de las vigas soleras, se deben ubicar dados de mortero y arena sobre el muro. Seguidamente, los aceros de refuerzo son armados sobre la canastilla de encofrado. El vaciado de concreto tiene resistencia f'c=100kgf/cm² suficientemente fluido y trabajable para evitar cangrejeras. Al día siguiente del vaciado de concreto se puede desencofrar y ser curado por dos días consecutivos. Los cubos que sostenían el encofrado de la viga son retirados y el muro es completado hasta el nivel de la viga solera.

Para evitar la caída a dos aguas de las viviendas, se debe colocar dos tijeras de madera y viguetas de madera sobre las diagonales del tijeral. Esto ayudará a colocar un cielo raso en caso de ser necesario. Finalmente, se puede utilizar como cobertura las tejas industriales o artesanales, así como calaminas. y proceder al tarrajeo con mortero de cemento en caso de ser necesario. Las instalaciones de tuberías o cables deberán ser colocadas externamente de los muros, en ningún caso deberá aplicarse a la pared del adobe. La figura 2.6 muestra un caso real de una edificación construida con adobe confinado.

Figura 2.6 Vivienda de adobe confinado con elementos de concreto armado

Fuente: Torres, 2012

2.4. Edificación de adobe reforzado con cañas

2.4.1. Materiales de construcción

El material utilizado para la construcción de una edificación de adobe reforzado con cañas se encuentra detallado en la tabla 2.3.

Tabla 2.3 Materiales de construcción en viviendas de adobe reforzado con cañas

MATERIALES DE CONSTRUCCIÓN DE ADOBE REFORZADO CON CAÑAS

- Adobe
- Cañas
- Vigas de madera
- Tejas
- Materiales y herramientas

2.4.2. Actividades preliminares al proceso constructivo

Previo a la construcción de la vivienda de adobe, se debe preparar el terreno donde se va a cimentar. Es importante que la zona de trabajo esté limpia de piedras, escombros, materiales orgánicos y basura. Asimismo, se debe realizar el movimiento de tierras el cual va permitir eliminar el material excedente y nivelar el terreno en el caso de que existan montones de tierra o algún otro material. Finalmente, se debe realizar el trazado y la excavación del terreno de

acuerdo a las dimensiones indicadas en los planos para la construcción de cimientos y sobrecimientos.

2.4.3. Proceso constructivo

Antes de todo proceso de construcción, se deben preparar los moldes para la elaboración de adobes. En este caso, el molde debe dejar un espacio en el adobe para pasar las cañas verticales de refuerzo. Las dimensiones recomendables son de 0.4x0.4 m en los lados y 8 cm de altura (Instituto Nacional de Defensa Civil, 2018). Para el secado de los bloques de adobe, se debe utilizar una superficie horizontal, limpia y libre de impurezas.

Los cimientos y sobrecimientos para los muros de adobe siguen el mismo proceso constructivo que se realiza para una cimentación convencional. Por un lado, para la construcción del cimiento se excava una zanja a una profundidad mínima de 0.60 m. medida a partir del terreno natural y un ancho mínimo de 0.60 m. Para el relleno se puede utilizar piedra grande tipo pirca compactada, concreto ciclópeo o albañilería de piedra con mortero de cemento. Por otro lado, cuando se alcance el nivel del terreno, se procederá con la construcción del sobrecimiento. La norma E. 080 (2017) establece que, este debe tener una altura mínima de 0.3 m sobre el nivel del terreno. Para su relleno se puede utilizar albañilería de piedras con mortero de cemento o concreto ciclópeo.

Según la norma, para el refuerzo del muro se utilizan cañas de 25 mm de diámetro aproximado como refuerzo vertical, las cuales deben anclarse en la cimentación y como refuerzo horizontal. Es importante utilizar refuerzos en ambas direcciones (horizontal y vertical) para lograr controlar los desplazamientos y evitar sufrir colapsos.

Una vez colocados los refuerzos de cañas verticales, se procede al asentado de los bloques de adobe. En el caso de muro reforzado con cañas, se utilizan adobes con orificios específicamente para un mejor acoplamiento con la caña utilizada como refuerzo vertical. Las unidades de adobe deberán estar secas antes de su utilización, pero humedecidas para lograr una mayor cohesión con el mortero al momento de disponerlas en hiladas sucesivas. Según la norma E. 080, se recomienda colocar refuerzos de cañas horizontales cada cuatro hiladas en el tercio inferior de la altura del muro, cada tres hiladas en el tercio central y cada dos hiladas en el tercio superior como se muestra en la figura 2.7.

Terminada la construcción de los muros, se construye la viga collar con maderas. Para ello, se colocan dos largueros sobre los muros y se unen con pequeñas piezas de la misma madera, llamadas travesaños. Estos mantienen una distancia constante entre los largueros, lo que garantiza un comportamiento conjunto (Instituto Nacional de Defensa Civil, 2018). La viga solera va permitir fijar los extremos superiores de las cañas colocadas verticalmente sobre el cimiento, esto ayudará al confinamiento de los muros de adobe.

Finalmente, para construir el techo se recomienda que estos sean livianos. Por ello, se pueden utilizar tijerales de madera a una o dos aguas, según donde esté ubicada la vivienda. Según la norma E.080 En algunos casos el techo se hace mediante entramados de madera, cañas o fibra de vegetales. Se puede utilizar tejas o calaminas como cubierta de los techos. Luego, se procede a realizar los acabados e instalaciones de las viviendas.

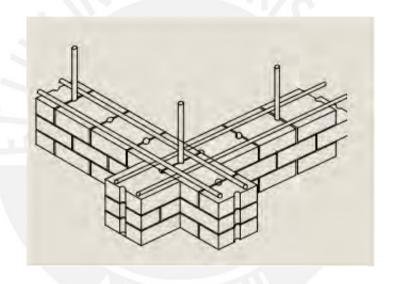


Figura 2.7 Contrafuertes de refuerzo con cañas

Fuente: Instituto Nacional de Defensa Civil, 2018

Capítulo 3. Caracterización de las propiedades de los materiales

En este capítulo se explican los procedimientos de las pruebas que se realizan a los materiales para obtener sus propiedades mecánicas. Asimismo, se obtienen como datos los resultados obtenidos en otras investigaciones. Estos datos son de utilidad para el diseño de las edificaciones de adobe confinado y reforzado con cañas.

3.1. Ensayos de control

3.1.1. Adobes

3.1.1.1. Variabilidad dimensional

En este ensayo se mide las variaciones de las dimensiones del adobe. Para ello, como se muestra en la figura 3.1, se miden el espesor, longitud y altura de cada unidad. Estas medidas se realizan con una regla métrica, pie de rey y un bloque de apoyo. Para la precisión de las medidas de las unidades, se toman 4 medidas entre los puntos medios de cada cara para 11 especímenes. De esta manera, se saca el promedio de las medidas y se halla la variación con las dimensiones nominales. Esta variabilidad dimensional se debe a la contracción por secado y asentamiento del material durante su fabricación.

Figura 3.1 Ensayo de variabilidad dimensional

Fuente: Torres, 2012

3.1.1.2. Alabeo

La prueba consiste en medir con una regla metálica los extremos diagonales opuestos del espécimen tal como se muestra en la figura 3.2. Durante cada regla puesta se coloca una cuña metálica graduada en el punto de alabeo. Este procedimiento se realiza en cada cara del adobe y como resultado se reporta el promedio de los valores máximos obtenidos. Las causas del

alabeo se deben mayormente al momento de desmoldar el adobe sobre un tendal plano libre de elementos extraños (Matos et al., 1997).

Figura 3.2 Ensayo de alabeo

Fuente: Torres, 2012

3.1.1.3. Resistencia a compresión

En este ensayo se permite obtener la resistencia a compresión de las unidades de adobe. Según la norma E.080, deberá ser por lo menos igual a 12 kgf/cm². Antes de iniciar el ensayo, se registran las dimensiones de las probetas y se colocan capping, los cuales funcionan como capa que cubre la probeta para tener una superficie lisa y uniforme que donde se aplicará la fuerza de compresión. El material utilizado para el capping no debe aportar suficiente resistencia para evitar variabilidad durante el ensayo, por ejemplo, el yeso, la pasta de cemento, etc.

Una vez colocado el capping en el adobe, se somete a una carga en compresión lentamente e incremental en por una Máquina Universal como se observa en la figura 3.3. La velocidad recomendable para realizar la carga es de 1 tonf/min. La resistencia a compresión se obtiene dividiendo la carga de rotura entre el área bruta de cada espécimen. El resultado final de la resistencia a la compresión (f'b) se obtiene con la diferencia del valor promedio y la desviación estándar.

Figura 3.3 Ensayo a compresión del adobe

Fuente: Torres, 2012

3.1.2. Pilas de adobe

El ensayo de pilas de adobe permite calcular la resistencia a la compresión del muro de adobe (fm). En el artículo 8.4 de la norma E.080 del 2017, se detalla el procedimiento del ensayo. Este consiste en pilar un muro de adobe a una altura igual a tres veces la menor dimensión de la base. Estas pilas deben encontrarse verticalmente estables, por ello se utiliza una plomada para controlar la verticalidad. Luego de 15 días de secado, se procede a colocar el capping de yeso-cemento en la parte superior e inferior de la pila para evitar deslizamientos con el cabezal del equipo de ensayo compresora y producir una fuerza distribuida uniformemente a una velocidad de 3 tonf/min como se observa en la figura 3.4 (Torres, 2012).

La resistencia a la compresión ultima (fm) se obtiene con promedio de las muestras. En el cual se promedian cuatro mejores muestras de seis pilas ensayadas. Sin embargo, la norma E.080 del 2017 estima como esfuerzo ultimo a compresión de 6.12 kgf/cm² cuando no se realiza ensayos este ensayo muros. Asimismo, de acuerdo a esta norma, la resistencia admisible a la compresión se obtiene de la siguiente expresión si se realiza el ensayo.

$$f'm = 0.40 * fm$$

Donde:

- f'm: Resistencia admisible a la compresión

- fm: Resistencia ultima a la compresión axial

Figura 3.4 Ensayo de compresión a muro de adobe

Fuente: Tantaleán, 2018

3.1.3. Muretes de adobe

El acápite 8.4 de la norma E.080 (2017) indica que la resistencia al corte de la albañilería de adobe indica que se puede realizar ensayos de muertes en compresión diagonal. En esta prueba se construyen por lo menos 3 muretes de 0.80 x 0.8 m con juntas de 2 cm de grosor (Delgado, 2006). La verticalidad se verifica al igual que al ensayo de las pilas. Estos muretes son ensayados después de haber secado 28 días de su construcción y para proceder a aplicar las cargas, se coloca un camping. La carga de compresión es aplicada diagonalmente para tener el esfuerzo cortante del muro como se observa en la figura 3.5. Los resultados de los esfuerzos de cada murete son promediados. La resistencia cortante característica (V'm) se halla con la diferencia entre el promedio del esfuerzo cortante y la desviación estándar. La norma E.080 indica que, al no realizar un ensayo de muertes, el esfuerzo admisible a corte se puede estimar como 0.25 kgf/cm².

Figura 3.5 Ensayo de muretes a compresión diagonal

Fuente: Tantaleán, 2018

3.1.4. Concreto

Para construcciones de adobe de hasta dos pisos, en el diseño de las columnas y vigas se emplea un concreto pobre de baja calidad y escaso refuerzo (San Bartolomé & Quiun, 2012). Los ensayos realizados al concreto brindan información sobre su calidad y durabilidad de las estructuras construidas con este material. El valor que se utiliza como indicador de la calidad del concreto es el valor de f'c, resistencia especificada a la compresión del concreto.

Los requisitos para f'c del concreto se basan en ensayos de probetas cilíndricas fabricadas y curadas de acuerdo a lo especificado en la norma NTP 339.033 y ensayadas de acuerdo con la NTP 339.034. En este ensayo, se elaboran probetas de 15 cm de diámetro y 30 cm de altura. Una vez endurecidas, se realiza el proceso de curado para que el concreto maximice su hidratación y alcance una resistencia óptima. Posteriormente, las probetas son ensayadas en la máquina de ensayo a compresión aplicando una carga axial de manera constante y continua hasta que la probeta se fracture como se observa en la figura 3.6. La norma E.060 (2019) indica que el valor de f'c de las probetas cilíndricas deben basarse en los resultados de ensayos realizados a los 28 días porque el concreto alcanza su máxima resistencia (Ministerio de Vivienda, 2020).

Un ensayo de resistencia debe ser el promedio de las resistencias de dos probetas cilíndricas confeccionadas de la misma muestra de concreto y ensayadas a los 28 días o a la edad de ensayo establecida para la determinación del f'c.

Figura 3.6 Ensayo a compresión de probetas de concreto

Fuente: Torres, 2012

3.1.5. Acero de refuerzo

La norma E.060 (2019) de concreto indica que el acero de refuerzo utilizado debe ser corrugado. Estas deben cumplir con los requisitos especificados en la norma NTP, por lo cual se deben realizar ensayos de control.

Para determinar las propiedades mecánicas del acero, se realiza el ensayo de tracción en barras de acero. En dicho ensayo, los aceros que serán utilizados como refuerzos de las columnas y vigas son sometidos a fuerzas de tracción mediante una Máquina Universal de Ensayos. Esta máquina aplica cargas axiales al espécimen hasta alcanzar la carga de rotura de la barra de acero como muestra la figura 3.7. La operación automática sistematizada de la máquina universal, permite registrar y archivar, con precisión, los parámetros de la muestra y los datos del ensayo. Con los resultados obtenidos, se verifica si dichos ensayos cumplen con los requerimientos especificados en la ASTM y la Norma Técnica Peruana.

Figura 3.7 Ensayo a compresión de probetas de concreto

Fuente: Torres, 2012

3.1.6. Resistencia a la tracción de la caña

Los ensayos de tensión en la caña se realizan su fibra. Para ello, se utilizan muestras ahusadas de 70 cm de largo, ancho de 1 cm y el espesor de la pared de la caña. En los extremos es recomendable elaboran agarres que consistes como tubos metálicos con una abrazadera adheridas a las fibras de caña con epóxico para anclajes de Sika (Córdova, 2014), como se observa en la figura 3.8.

De esta manera, se sujetan las abrazaderas y se aplica tensión para obtener las lecturas de carga y deformaciones en una celda de carga. Este procedimiento se repite con todas las fibras de la sección de la caña. Para un resultado más certero se recomienda realizar este ensayo en las fibras de tres muestras de caña. Por otro lado, la norma E.080 recomienda una resistencia última en carrizo de 40 MPa (408 kgf/cm²) y caña brava sea de 100 MPa (1020 kgf/cm²).

Figura 3.8 Ensayo a tracción de cañas

Fuente: Córdova, 2014

Capítulo 4. Descripción de la arquitectura y diseño de las estructuras

En este capítulo se explica la arquitectura de dos edificaciones de adobe proyectadas para la construcción en el departamento de Arequipa. Asimismo, los planos de ambas edificaciones fueron proporcionados por SENCICO y elaborados en el año 2003, estos planos serán de ayuda para el diseño de las edificaciones con adobe confinado y reforzado con cañas.

4.1. Aspectos generales

4.1.1. Edificación 1: Local Comunal – Orcopampa

Los planos arquitectónicos de la edificación de un piso en el distrito de Orcopampa, provincia de Castilla del departamento de Arequipa. El área que cuenta es de 95.122 m² con un perímetro de 39.82 m.

La edificación se muestra en la figura 4.1 y será destinada a un local comunal. Este cuenta con un salón de usos múltiples (SUM), un baño y un patio. El acceso al interior del local se hace mediante una puerta principal que conduce al SUM.

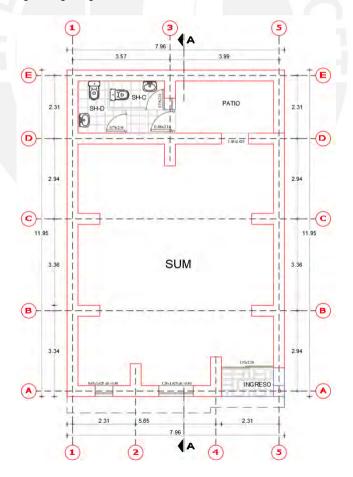


Figura 4.1 Planta de edificación del local comunal de Orcopampa

Asimismo, se muestra en las figuras 4.2 y 4.3 las elevaciones de la arquitectura. En el corte AA, permite hallar las alturas de los muros y detalles de los techos. En la edificación a diseñar, los techos tendrán un único sentido y serán de tejas acompañados con un cielorraso de arpillera.



Figura 4.2 Elevación de la edificación - corte A-A - Orcopampa

En la elevación principal, se muestran los detalles de las ventanas y una varilla de madera que ayudará con el sostenimiento del techo de la puerta.

Figura 4.3 Elevación principal – Orcopampa

4.1.2. Edificación 2: Puesto de Salud - Pampacolca

Los planos de arquitectura de la edificación de un piso en piso en el distrito de Pampacolca, provincia de Castilla, departamento de Arequipa. Este cuenta con un área de 138.851 m² y un perímetro de 48.56 m.

En la figura 4.4, se muestra que la edificación está constituida por un piso, el cual será destinado a un puesto de salud. Este cuenta con cinco ambientes: un consultorio de medicina, un consultorio del niño, un consultorio de nutrición, una sala de espera y hall. El acceso al interior del puesto de salud se da mediante una puerta que conduce al hall y sala de espera en ambos lados.

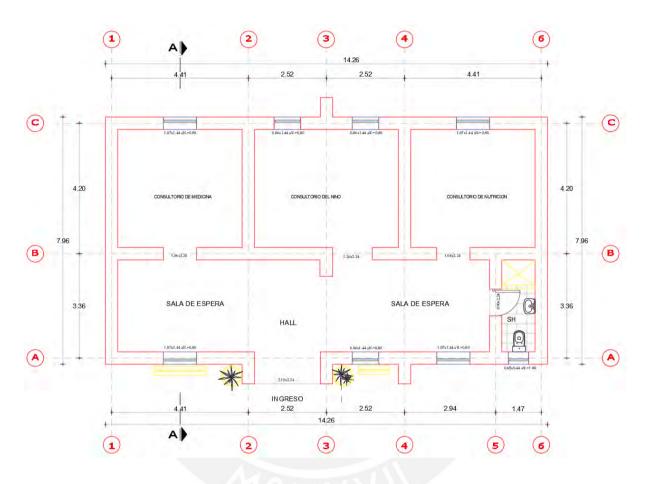


Figura 4.4 Planta de edificación del puesto de salud de Pampacolca

Asimismo, en la figura 4.5 se muestra la vista de elevación de la arquitectura. Se observa que los muros tienen diferentes alturas, por ello se considera un valor promedio para el realizar el análisis de estos.

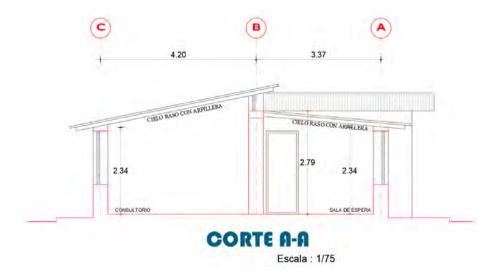


Figura 4.5 Elevación de la edificación - corte A-A - Pampacolca

Finalmente, la figura 4.6 se muestra la elevación principal de la edificación, en la cual se observa los detalles de las ventanas y la puerta principal por donde se accede a los consultorios del puesto de salud.

Figura 4.6 Elevación principal - Pampacolca

4.2. Características del sistema estructural

La edificación 1 y la edificación 2, se diseñarán con adobe confinado y adobe reforzado con cañas, por ello, se realizarán modificaciones en la estructura para el diseño.

4.2.1. Edificación de adobe reforzado con elementos de concreto armado

Los muros tienen espesores de 40 cm. Para el arriostramiento, se utilizarán columnas de 40x40 cm con una resistencia de f'c = 100 kgf/cm². Estas serán ubicadas en los lugares donde se ubican los contrafuertes. De acuerdo a un estudio de comportamiento sísmico de un módulo

de adobe de dos pisos con refuerzo horizontal y confinamientos de concreto armado en el 2006, las columnas serán conectadas a los muros con refuerzo horizontal de acero de 8mm y serán ubicadas cada cinco hiladas sobre una junta de mortero de cemento para tener una adecuada transmisión de esfuerzos entre la columna y el muro (Delgado, 2006). Este refuerzo tendrá un f'y = 4200 kgf/cm² y un recubrimiento de 3 cm. Los adobes tendrán una dimensión de 40x40cm para obtener el espesor del muro.

4.2.2. Edificación de adobe reforzado con cañas

Para la construcción de los muros se utilizarán bloques de adobe de 18x40x10 cm. El sistema de aparejo que se emplea es el establecido en la normativa peruana, como se muestra en la figura 4.7. Los bloques serán unidos con mortero de espesor de 40 mm y 20 mm según lo mostrado en el aparejo correspondiente.

Para el refuerzo vertical de los muros se utilizarán cañas de carrizo de 25 mm aproximadamente, las cuales se colocarán cada 0.35 metros a lo largo del muro. Con respecto al refuerzo horizontal, las cañas tipo carrizo se colocarán cada cuatro hiladas en el tercio inferior de la altura del muro, cada tres hiladas en el tercio central y cada dos hiladas en el tercio superior, tal como lo recomienda la norma E.080 (2017). La resistencia última que tendrán los refuerzos de cañas de carrizo será de 408 kgf/cm².

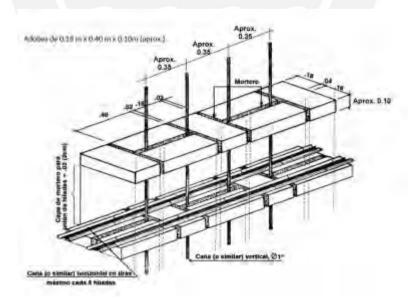


Figura 4.7 Esquemas de refuerzo con cañas para adobe

Fuente: N.T.E. E.080 Diseño y Construcción con tierra reforzada, 2017

4.3. Cimentación y sobrecimiento

Los cimientos deben garantizar la transmisión de cargas hasta un suelo firme y evitar humedad filtrada de la tierra hacia los muros. La cimentación debería tener un estudio de suelo, para ver el tipo, las características del suelo para tomar decisiones durante la construcción de los cimientos. Sin embargo, por motivos económicos para la población que utiliza este material de construcción, no es muy empleado. Según INGEMMET, el suelo de Orcopampa-Arequipa contiene acumulación de grava, arena, limo y arcilla con clastos subangulosos a angulosos de diferente composición y el suelo de Pampacolca-Arequipa contiene intercalaciones de areniscas grises de grano medio a grano con delgados niveles de lanimbritas. Estos datos se observan en las figuras 4.8 y 4.9 respectivamente. Estos suelos son estables y óptimos para las cimentaciones, ya que no contienen suelos orgánicos ni blandos.

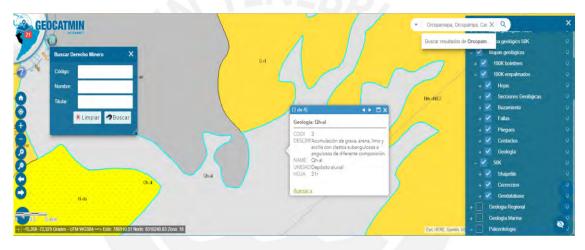


Figura 4.8 Geología de Orcopampa

Fuente: GEOCATMIN - Instituto Geológico, Minero y Metalúrgico, 2012

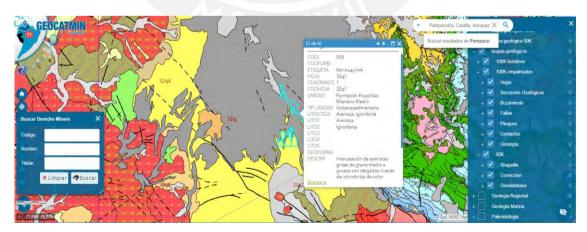


Figura 4.9 Geología de Pampacolca

Fuente: GEOCATMIN - Instituto Geológico, Minero y Metalúrgico, 2012

El artículo 7.1 de la norma E.080 del 2017, recomienda una profundidad y ancho mínimo del cimiento de 0.60 metros. Además, de acuerdo con el artículo 22 de la norma E.070 (2017), se considera que un muro confinado debe estar enmarcado en sus cuatro lados. Por ello, en el primer piso, la cimentación del adobe confinado debe ser de concreto ciclópeo, ya que funciona como elemento de confinamiento horizontal. Asimismo, en la base de las columnas, la cimentación estará acompañada de un solado de 1cm de espesor para la colocación adecuada de los aceros longitudinales. Por otro lado, la cimentación de las edificaciones con adobe reforzado con cañas también será de concreto ciclópeo a profundidad y ancho mínimos que establece la norma E.080 (2017), ya que se quiere garantizar las mismas condiciones de cimentación en ambas técnicas de reforzamiento de edificaciones con adobe.

Por otro lado, el sobrecimiento debe proteger el muro ante erosiones o ascensión capilar de agua. Estas tendrán una altura de 0.30 m de altura desde el nivel natural del terreno y un espesor de 0.40 m. El material de construcción será de concreto ciclópeo para ambas técnicas de edificaciones de adobe. Asimismo, es necesario colocar un zócalo de lajas de piedras en el exterior de la vivienda para proteger el sobrecimiento. Para evitar empozamientos de agua provocados por las precipitaciones, se recomienda dejar el borde exterior del terreno con pendiente o construir veredas perimetrales con pendiente hacia el exterior.

4.4. Techos

La norma E.080 (2017), en su artículo 7, en la sección 7.4, indica que los techos de las viviendas de adobe deben ser livianos de manera que su carga se distribuya uniformemente y en la mayor cantidad posible de muros con la finalidad de evitar concentraciones de esfuerzos. Por ello, para las edificaciones se ha propuesto construir el techo de madera fijado adecuadamente al muro mediante la viga collar para evitar su desprendimiento durante el sismo. El techo tendrá una cobertura de cañas, barro y tejas de arcilla con cielo raso de arpillera.

Asimismo, la norma E. 080 indica que el techo puede ser inclinado de una o varias aguas. En este caso, para determinar la configuración de los techos de las edificaciones propuestas, se analizará los datos meteorológicos de la región Arequipa.

Según los datos estadísticos del Servicio Nacional de Meteorología e Hidrología del Perú, en el 2020, la región Arequipa registró una mayor intensidad de precipitación solo en el mes de febrero llegando a un valor de 27.59 mm/mes (Servicio Nacional de Meteorología e

Hidrología del Perú, 2020). En la figura 4.10, se muestra el promedio mensual de precipitación y temperatura de Arequipa durante el año 2020.

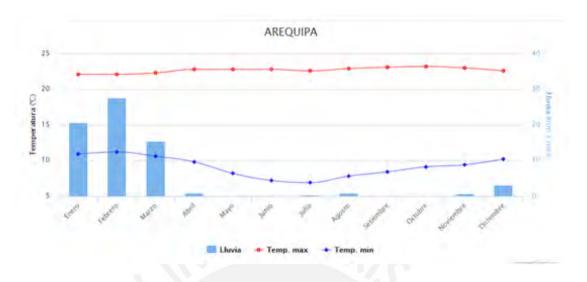


Figura 4.10 Promedio de precipitación en la región Arequipa

Fuente: SENAMHI – Servicio Nacional de Meteorología e Hidrología del Perú, 2020

En base a los datos de precipitación, se establece que las edificaciones se construirán con techos de un agua debido a que esta región no registra intensas precipitaciones durante el año. Asimismo, esta configuración permitirá ganar altura en la fachada posterior.

4.4.1. Viga soleras o collar de madera

Las vigas soleras o collar se colocan encima del muro de adobe. Este elemento sirve como arriostre y aumenta la rigidez del muro de adobe. Asimismo, los muros de la edificación están mejor conectados, permitiendo una transmisión uniforme de las cargas de los techos. Esto evita posibles fallas de puzonamiento que se produce cuando las cargas están más concentradas en un sector del muro (Tejada, 2001, p.63).

Estas vigas serán utilizadas en las edificaciones reforzadas con cañas, ya que las cañas se encuentran mejor ancladas desde la cimentación hasta la viga collar, confinando a los muros.

El diseño de las vigas soleras de madera consiste en la colocación de dos largueros, que mantienen una distancia entre ellos por medio de pequeñas piezas de madera llamado separadores, el cual forma una especie de escalera. Asimismo, los largueros son amarrados con alambres y anclados dos hiladas debajo de las vigas collar como se muestra en la figura 4.11

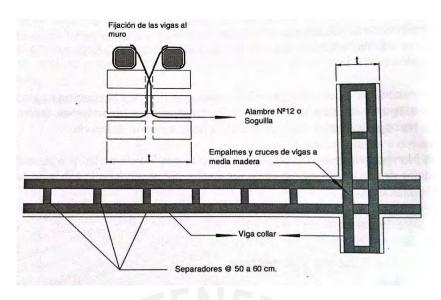


Figura 4.11 Detalles de viga collar

Fuente: Buena Tierra, apuntes para el diseño y construcción con adobe – Urbano Tejada Schimidt, 2001

Cabe resaltar que este diseño también es utilizado para los dinteles sobre los vanos de las ventanas y puertas. Pero para un comportamiento en conjunto se suele conectar con piezas de madera el dintel y la viga collar, como se muestra en la figura 4.12.

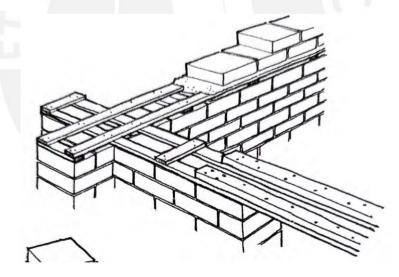


Figura 4.12 Detalles de viga collar en dinteles

Fuente: Buena Tierra, apuntes para el diseño y construcción con adobe – Urbano Tejada Schimidt, 2001

4.4.1.1. Diseño de vigas de madera en las cumbreras del techo

La arquitectura de ambas edificaciones muestra una cumbrera desfasada, ya que en estas se encuentran ventanas. Para ello, el diseño se propone como un armado de dos vigas de madera separadas por puntales de madera. Estos armados se encuentran en el eje B de las edificaciones de Orcopampa y Pampacolca como se observa en la figura 4.13 y 4.14.

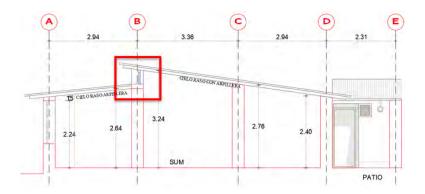


Figura 4.13 Ubicación de armado de vigas de madera en edificación de Orcopampa

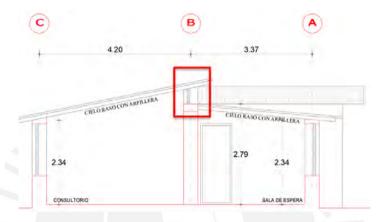


Figura 4.14 Ubicación de armado de vigas de madera en edificación de Pampacolca

En las figuras 4.15 y 4.16 se detalla un bosquejo del armado en la cumbrera del techo para ambas edificaciones. Además, los diseños de las vigas de madera se realizan de acuerdo a la norma E. 010 de madera del 2021.

Figura 4.15 Tijeral de la cumbrera del techo de local comunal de Orcopampa

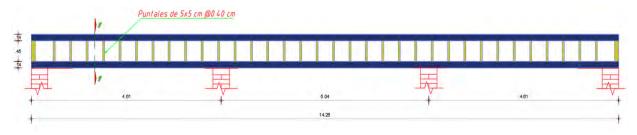


Figura 4.16 Tijeral de la cumbrera del techo de puesto de saludo de Pampacolca

A modo de ejemplo se tomará como calculo típico a la edificación de Orcopampa. Estos cálculos se realizan de la siguiente manera:

Se considera como viga a un listón de madera de sección cuadrada de 9x14 cm de Grupo C, cuyo peso es de 11.34 kgf/m. Asimismo, el ancho tributario que se considera, se halla en base a áreas tributarias, cuyo ancho tributario es de 3.15 m. De esta manera, se tiene los siguientes pesos:

Carga muerta:

$$w_{pp} = 0.0113 \frac{tonf}{m}$$

$$w_{techo} = 3.15 * 0.09 = 0.284 \frac{tonf}{m}$$

Carga viva:

$$w_{s/c} = 3.15 * 0.03 = 0.095 \frac{tonf}{m}$$

Carga total en servicio:

$$w_u = 0.295 + 0.095 = 0.39 \frac{tonf}{m}$$

Se considera condiciones de contorno como simplemente apoyado en los extremos de la viga. Esto permite que el momento generado en la parte central de la viga, se ejerza compresión y tracción de la viga superior e inferior respectivamente, como se observa en la figura 4.17.

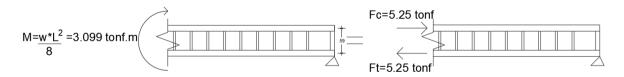


Figura 4.17 Fuerzas internas en centro de la armadura de madera

$$M_u = \frac{w_u * L^2}{8} = 0.39 * \frac{7.98^2}{8} = 3.099 \text{ tonf .m}$$

$$h = 0.59 \text{ cm}$$

$$Nc_{actuante} = \frac{M_u}{h} = \frac{3.099}{0.59} = 5.25 \ tonf$$

$$Nt_{actuante} = Nc_{actuante} = 5.25 tonf = 5252.82 kgf$$

$$ft_{actuante} = fc_{actuante} = \frac{Nc_{actuante}}{Area} = \frac{5252.82}{9*14} = 41.69 \frac{kgf}{cm^2}$$

Seguidamente, la norma de madera E.010 (2021) considera los esfuerzos admisibles de acuerdo a la tabla 4.1.

ESFUERZOS ADMISIBLES (kgf / cm²)										
GRUPO	Flexión	Tracción Paralela	Compresión paralela	Comprensión perpendicular	Corte paralelo					
A	210	145	145	40	15					
В	150	105	110	28	13					
С	100	75	80	15	8					

Tabla 4.1 Esfuerzos admisibles según la norma de Madera E.010

Sin embargo, la viga superior de la sección es un elemento sometido a compresión paralela. Por ello, debe diseñarse como una columna de madera. Es decir, se toma en cuenta su longitud efectiva "lef" y la clasificación del tipo de columna. Estos datos se hallan de la siguiente manera:

$$lef = 60cm$$

d = 9 cm (menor dimension de la seccion)

$$\lambda = \frac{lef}{d} = \frac{60}{9} = 6.67 < 10 \rightarrow \text{Columnas corta}$$

De acuerdo a la esbeltez, la viga analizada se considera como columna corta. Por ello, la fuerza a compresión admisible no es alterada por algún factor.

$$Nc_{adm} = fc_{adm} * Area = 80 * 9 * 14 = 10 080 \ kgf$$

$$Nc_{adm} > Nc_{actuante} \rightarrow OK$$

Asimismo, es necesario verificar el esfuerzo cortante que se genera en los extremos de la viga. Este esfuerzo se halla de la siguiente manera:

$$V_{actuante} = \frac{w_u * L}{2} = 1.55 ton$$

$$\tau_{act} = \frac{V_{actuante}}{Area total} = \frac{1553.47}{2 * (9 * 14)} = 6.16 \frac{kgf}{cm^2}$$

$$\tau_{adm} = \frac{8 \, kgf}{cm^2} > \tau_{act} = 6.16 \frac{kgf}{cm^2} \to 0K$$

Finalmente se tiene la siguiente tabla 4.2 de resultados:

Tabla 4.2 Resultados del diseño de vigas de madera en el tijeral central.

	Local Comunal Orcopampa	Puesto de Salud Pampacolca
B (cm)	9	6.5
h (cm)	14	14
L (m)	7.98	5
Ancho tributario (m)	3.15	3.78
Peso propio (kgf/m)	11.34	8.19
Peso cobertura (kgf/m)	283.5	340.2
Sobrecarga (kgf/m)	30	30
M máx. (kgf.m)	3099.17	1277.00
Nc actuante (kgf)	5253	2076
Esf. Compresión actuante en bridas (kgf/cm²)	41.69	22.82
lef (cm)	60	60
d (cm)	9	6.5
Esbeltez λ	6.67	9.23
Tipo de elementos en compresión	Columna Corta	Columna Corta
Nc admisible (kgf)	10080	7280
Esfuerzo cortante (kgf/cm²)	6.16	6.34

4.4.2. Diseño de Viguetas de techo

Las viguetas de techo de ambas edificaciones se apoyan en vigas de madera, que estas estarán apoyadas en vigas soleras. Estos servirán para armar y soportar la carga de la cobertura, el cual se basa en tejas cóncavas artesanales con asientos de mortero con cabios y entablado con cubierta de barro con una sobrecarga de 30 kgf/m². Para tener una mejor visualización grafica se detallan su ubicación en las figuras 4.18 y 4.19.

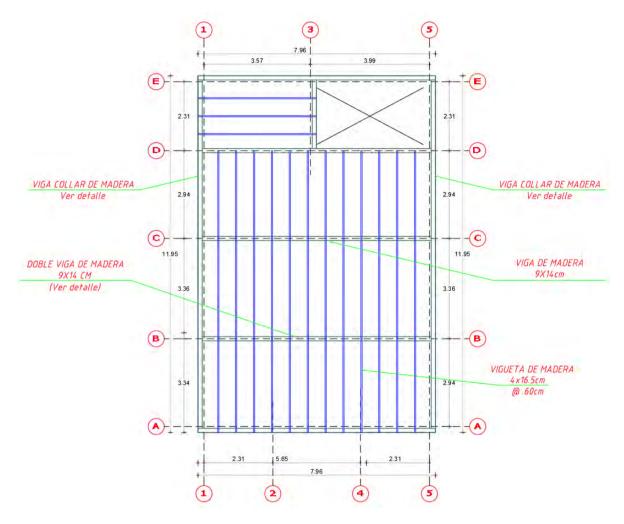


Figura 4.18 Plano de viguetas de techo en la edificación de Orcopampa

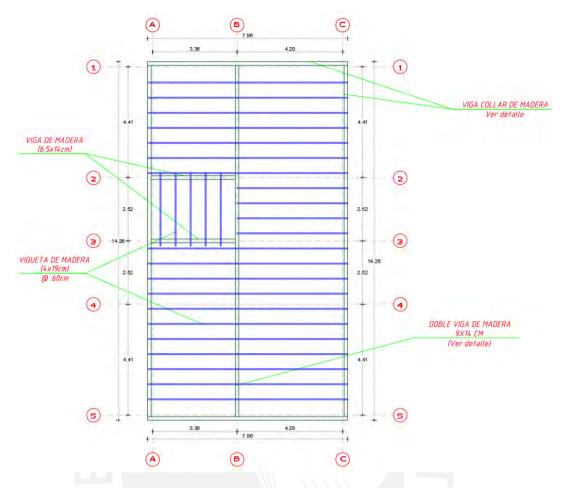


Figura 4.19 Plano de viguetas de techo en la edificación de Pampacolca

Para el caso de la edificación del Local Comunal ubicado en Orcopampa, se ha supuesto utilizar viguetas de 4x16.5 cm espaciadas a sesenta centímetros (s = 0.6 m) para la evaluación de las cargas de peso propio. La vigueta será analizada como simplemente apoyada con una longitud de 3.36m, la luz de cálculo será la luz libre igual a L=2.96 m. La madera que se usará es del Grupo C, en estado seco.

Se procede a determinar el metrado de carga muerta y sobrecarga:

Peso propio: 9.9 kgf/m²

Peso muerto: 80 kgf/m²

Sobrecarga: 30 kgf/m²

 $P.Propio + P.muerto (Wd) = 9.9 + 80 = 89.9 kgf/m^2$

Sobrecarga (Wl) = 30 kgf/m^2

Carga total $(W) = Wd + Wl = 89.9 + 30 = 119.9 \, kgf/m^2$

Carga total repartida por vigueta = $s * W = 0.6 * 119.9 = 71.94 \, kgf/m$

Carga muerta repartida por vigueta $= s * Wd = 0.6 * 89.9 = 53.94 \, kgf/m$ Sobrecarga repartida por vigueta $= s * Wl = 0.6 * 30 = 18.0 \, kgf/m$

Se calcula el momento y cortante máximo mediante las siguientes ecuaciones:

Momento máximo (Mmax) =
$$\frac{W*L^2}{8} = \frac{71.94*2.96^2}{8} = 78.79 \text{ kgf.m}$$

Cortante máximo (Vmax) = $\frac{W*L}{2} = \frac{71.94*2.96}{2} = 106.47 \text{ kgf}$

A continuación, para la madera del grupo C, se emplea la norma técnica de madera E.010 para determinar los esfuerzos admisibles (flexión, corte paralelo y compresión perpendicular) y módulo de elasticidad.

- Módulo de Elasticidad: $E \ prom = 90000 \ kgf/cm^2$

- Esfuerzo admisible a flexión: $fm = 100 kfg/cm^2$

- Esfuerzo admisible a corte: $fv = 8 kgf/cm^2$

- Esfuerzo admisible a compresión: $fcb = 15 \, kgf/cm^2$

4.4.2.1. Verificación de momento de inercia I y módulo de sección Z

Posteriormente, se determina el momento de inercia I necesario por deflexiones. Para una viga simplemente apoyada se calcula mediante la siguiente ecuación:

$$I = \frac{5wL^3K}{384E}$$

La Norma E.010 (2021) establece que para estimar las deformaciones diferidas se deberá considerar que las deformaciones producidas por las cargas de aplicación permanente se incrementan en un 80 % (Ministerio de Vivienda Construcción y Saneamiento, 2020a). La carga equivalente será la siguiente.

$$We quivalent e = 1.8*Wd + Wl$$

$$We quivalent e = 1.8*53.94 + 18 = 115.09 \ kgf/m$$

Para la carga total

$$K = 250$$

$$I = \frac{5 * 115.092 * 296^3 * 250}{384 * 100 * 90000} = 1079.58 \text{ cm}^4$$

Para la sobrecarga

$$K = 350$$

$$I = \frac{5 * 18 * 296^3 * 350}{384 * 100 * 90000} = 236.38 \, cm^4$$

Para determinar el momento de inercia necesario, se escoge el mayor de los resultados.

El módulo de sección Z necesario por resistencia se calcula de la siguiente manera:

$$Z = \frac{M}{fm} = \frac{78.79 * 100}{100} = 78.79 cm^3$$

Con las dimensiones de la vigueta planteada inicialmente, se verifica si cumplen con el momento de inercia y la sección requerida.

$$I_{requerido} = 1079.58 \text{ cm}^4 < I_{(4 \text{ x } 16.5)} = 1497.38 \text{ cm}^4$$
 (OK)

$$Z_{requerido} = 78.79 \text{ cm}^3 < I_{(4 \text{ x } 16.5)} = 181.50 \text{ cm}^3$$
 (OK)

Como se observa, los valores de I y Z cumplen con los valores necesarios calculados, que garantizan el control de deflexiones y resistencia.

4.4.2.2. Verificación del esfuerzo cortante

Se considera el esfuerzo cortante en la sección crítica a una distancia h del apoyo.

$$Vh = 106.47 - \frac{71.94 * 16.5}{100} = 94.60 \, kgf$$

El esfuerzo cortante será:

$$\tau = \frac{1.5 * Vh}{bh} = \frac{1.5 * 94.60}{4 * 16.5} = 2.15 \, kgf < fv = 8kgf$$

Este valor de $\tau = 2.15 \, kgf$ es menor que fv = 8kgf por lo que se verifica el esfuerzo cortante.

4.4.2.3. Estabilidad

La norma de madera E.010 (2021) establece que, para asegurar arriostramiento adecuado, se evalúa el cociente de las dimensiones en la sección. Cabe resaltar que una sección de madera 4x16.5cm se encuentra comercialmente como 2"x7".

$$\frac{h}{b} = \frac{7}{2} = 3.5$$

Para este cociente la norma indica que es necesario restringir el desplazamiento lateral de los apoyos y el borde en compresión mediante correas, cuyo espaciamiento será de 30cm, como se observa en la figura 4.20.

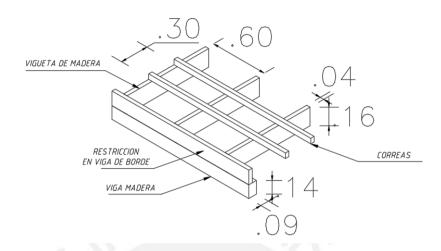


Figura 4.20 Detalle de armado de vigas y viguetas de techo

Siguiendo el mismo procedimiento se realiza el diseño de viguetas para la edificación del Puesto de Salud ubicado en Pampacolca. En la tabla 4.3, se muestran los datos de diseño obtenidos en ambas edificaciones.

Tabla 4.3 Resultados de diseño de viguetas de techo

	Local Comunal Orcopampa	Puesto de Salud Pampacolca
B (cm)	4.0	4.0
h (cm)	16.5	19.0
s (cm)	60	60
L (m)	3.0	3.5
Peso propio (kgf/m²)	9.9	11.4
Peso cobertura (kgf/m²)	80.0	80.0
Sobrecarga (kgf/m²)	30.0	30.0
M máx. (kgf.m)	78.8	111.5
V máx. (kgf)	106.5	127.5
I requerido	1079.6	1809.9
Z requerido	78.8	111.5
I sección	1497.4	2286.3
Z sección	181.5	240.7
Vh (kgf)	94.6	113.6
Esfuerzo cortante (kgf/cm²)	2.2	2.2

4.5. Muros

Los muros deben aportar resistencia y estabilidad ante cargas sísmicas. Por ello, el diseño se realiza según criterios basados en resistencia, estabilidad y desempeño. De esta manera se analizan los criterios para el diseño de los muros de adobe.

4.5.1. Criterio de diseño de muros basado en la estabilidad

En este caso, para ambas edificaciones (reforzado con cañas y confinado con elementos de concreto armado) se tienen muros de 0.4m, el cual cumple con el espesor mínimo de muros establecida en la norma. Además, los muros de adobe, cuentan con arriostres verticales (contrafuertes) en el exterior y con arriostres horizontales conformadas por el techo.

La norma E080 (2017) establece los límites geométricos que la edificación debe cumplir mostrados en la figura 4.21. De esta manera, el espesor (e), densidad y altura libre de los muros (H), la distancia entre arriostres verticales (L), el ancho de vanos (a) y la longitud interior de los muros (b) van a delimitar los muros, vanos y contrafuertes. Esto debido al uso de cuatro ecuaciones establecidas en la norma.

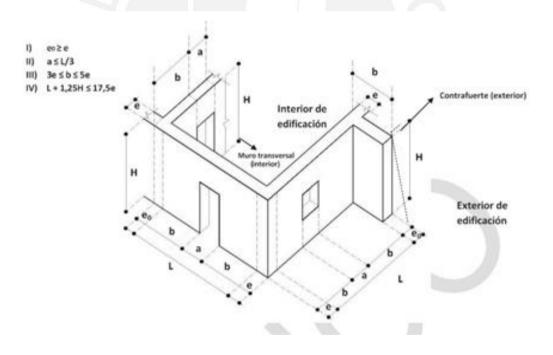


Figura 4.21 Límites Geométricos de muros y vanos

Fuente: N.T.E. E.080 Diseño y Construcción con tierra reforzada, 2017

Para evaluar estos los limites geométricos, es necesario tomar como dato las dimensiones de los muros, vanos y contrafuertes. Esto se muestra en las tablas 4.4 y 4.5 para la edificación de Orcopampa y Pampacolca respectivamente.

Tabla 4.4 Detalles geométricos arquitectónicos de la edificación de Orcopampa

DESCRIPCIÓN	MURO	e0 (m)	e (m)	a (m)	L (m)	b (m)	H (m)
	EJE A -12	0.4	0.4	0.65	2.71	1.26	2.40
MUROS CON	EJE A -24	0.4	0.4	1.28	3.34	1.28	2.40
VANOS	EJE D - 35	0.4	0.4	1.00	2.71	1.31	2.40
	EJE 3 - DE	0.4	0.4	0.80	2.71	1.45	2.40
	EJE 1 - AB	0.4	0.4	-	2.54	-	2.40
	EJE 1 - BC	0.4	0.4	-	2.96	-	2.40
	EJE 1 - CD	0.4	0.4	-	2.54	-	2.40
	EJE 1 - DE	0.4	0.4	-	1.91	-	2.40
MIDO	EJE 5 - AB	0.4	0.4	-	2.54	-	2.40
MURO GENERAL	EJE 5 - BC	0.4	0.4	-	2.96	-	2.40
GENERAL	EJE 5 - CD	0.4	0.4	-	2.54	-	2.40
	EJE 5 - DE	0.4	0.4	2	1.91	-	2.40
	EJE D - 13	0.4	0.4	M	3.20	-	2.40
-	EJE E - 13	0.4	0.4	14	3.20	-	2.40
	EJE E - 35	0.4	0.4	-/-	3.60	-	2.40
CONTRAFI	JERTE	0.4	0.4	-	(F)	1.20	2.40

Tabla 4.5 Detalles geométricos arquitectónicos de la edificación de Pampacolca

DESCRIPCIÓN	MURO	e0 (m)	e (m)	a (m)	L (m)	b (m)	H (m)
	EJE A - 12	0.40	0.40	1.07	4.00	1.87	2.30
	EJE A - 34	0.40	0.40	0.86	2.12	2.00	2.30
	EJE A - 45	0.40	0.40	1.00	2.54	1.24	2.30
	EJE A - 56	0.40	0.40	0.65	1.07	1.22	2.30
	EJE B - 12	0.40	0.40	1.06	4.00	1.87	2.30
MUROS CON	EJE B - 34	0.40	0.40	1.00	2.12	1.52	2.30
VANOS	EJE B - 46	0.40	0.40	1.00	2.54	1.24	2.30
	EJE C - 12	0.40	0.40	1.07	4.00	1.87	2.30
	EJE C - 23	0.40	0.40	0.86	2.12	2.00	2.30
	EJE C - 34	0.40	0.40	0.86	2.12	2.00	2.30
	EJE C - 46	0.40	0.40	1.07	4.00	1.87	2.30
	EJE 5 - AB	0.40	0.40	0.90	2.96	1.56	2.30
	EJE 1 - AB	0.40	0.40	-	2.96	-	2.30
	EJE 1 - BC	0.40	0.40	-	3.80	-	2.30
MURO	EJE 2 - BC	0.40	0.40	-	3.80	-	2.30
GENERAL	EJE 4 - BC	0.40	0.40	-	3.80	-	2.30
	EJE 5 - AB	0.40	0.40	-	2.96	-	2.30
	EJE 5 - BC	0.40	0.40	-	3.80	-	2.30
CONTRAF	JERTE	0.40	0.40	-	-	1.20	2.40

4.5.1.1. Edificación 1: Local comunal - Orcopampa

De acuerdo con las dimensiones halladas en la tabla 4.4 del plano arquitectónico, se verifican los límites geométricos para la edificación 1. En la tabla 4.6, se muestran los resultados de dicha verificación para todos los muros que tiene el local comunal de Orcopampa. De esta manera, se observa que todos los muros con vanos, muros sin vanos y contrafuertes cumplen con las restricciones de la norma E.080 (2017).

Tabla 4.6 Verificación de los límites geométricos de muros y vanos - Orcopampa

DESCRIPCIÓN	MURO	e0>e	a <l 3<="" th=""><th>3e<b<5e< th=""><th>L+1.25H<17.5e</th><th>Esbeltez vertical</th><th>Esbeltez horizontal</th><th>ΔV<6</th><th>ΔH<10</th></b<5e<></th></l>	3e <b<5e< th=""><th>L+1.25H<17.5e</th><th>Esbeltez vertical</th><th>Esbeltez horizontal</th><th>ΔV<6</th><th>ΔH<10</th></b<5e<>	L+1.25H<17.5e	Esbeltez vertical	Esbeltez horizontal	ΔV<6	ΔH<10
	EJE A -12	CUMPLE	CUMPLE	CUMPLE	CUMPLE	6.00	6.78	CUMPLE	CUMPLE
MUROS CON	EJE A -24	CUMPLE	CUMPLE	CUMPLE	CUMPLE	6.00	8.35	CUMPLE	CUMPLE
VANOS	EJE D - 35	CUMPLE	CUMPLE	CUMPLE	CUMPLE	6.00	6.78	CUMPLE	CUMPLE
	EJE 3 - DE	CUMPLE	CUMPLE	CUMPLE	CUMPLE	6.00	6.78	CUMPLE	CUMPLE
	EJE 1 - AB	CUMPLE		ı	CUMPLE	6.00	6.35	CUMPLE	CUMPLE
	EJE 1 - BC	CUMPLE	-	-	CUMPLE	6.00	7.40	CUMPLE	CUMPLE
	EJE 1 - CD	CUMPLE			CUMPLE	6.00	6.35	CUMPLE	CUMPLE
	EJE 1 - DE	CUMPLE	1	1	CUMPLE	6.00	4.78	CUMPLE	CUMPLE
MIDO	EJE 5 - AB	CUMPLE	-	-	CUMPLE	6.00	6.35	CUMPLE	CUMPLE
MURO GENERAL	EJE 5 - BC	CUMPLE	ı	1	CUMPLE	6.00	7.40	CUMPLE	CUMPLE
GEIVEIGIE	EJE 5 - CD	CUMPLE	ı	-	CUMPLE	6.00	6.35	CUMPLE	CUMPLE
	EJE 5 - DE	CUMPLE			CUMPLE	6.00	4.78	CUMPLE	CUMPLE
	EJE D - 13	CUMPLE	I		CUMPLE	6.00	8.00	CUMPLE	CUMPLE
	EJE E - 13	CUMPLE		A 19	CUMPLE	6.00	8.00	CUMPLE	CUMPLE
	EJE E - 35	CUMPLE			CUMPLE	6.00	9.00	CUMPLE	CUMPLE
CONTRAF	JERTE	CUMPLE		CUMPLE	CUMPLE	6.00	-	CUMPLE	-

4.5.1.2. Edificación 2: Puesto de salud Pampacolca

Las dimensiones halladas en la tabla 4.5 del plano arquitectónico en edificación 2, se utiliza para verifican los límites geométricos 2. Por ello, en la tabla 4.7, se muestran los resultados de dicha verificación para todos los muros que tiene el local comunal de Pampacolca. En el cual, se observa que todos los muros con vanos, muros sin vanos y contrafuertes cumplen con las restricciones de la norma E.080 (2017).

Tabla 4.7 Verificación de los límites geométricos de muros y vanos - Pampacolca

DESCRIPCIÓN	MURO	e0>e	a <l 3<="" th=""><th>3e<b<5e< th=""><th>L+1.25H<17.5e</th><th>Esbeltez vertical</th><th>Esbeltez horizontal</th><th>ΔV<6</th><th>ΔH<10</th></b<5e<></th></l>	3e <b<5e< th=""><th>L+1.25H<17.5e</th><th>Esbeltez vertical</th><th>Esbeltez horizontal</th><th>ΔV<6</th><th>ΔH<10</th></b<5e<>	L+1.25H<17.5e	Esbeltez vertical	Esbeltez horizontal	ΔV<6	ΔH<10
	EJE A - 12	CUMPLE	CUMPLE	CUMPLE	CUMPLE	5.75	10.00	CUMPLE	CUMPLE
	EJE A - 34	CUMPLE	CUMPLE	CUMPLE	CUMPLE	5.75	5.30	CUMPLE	CUMPLE
	EJE A - 45	CUMPLE	CUMPLE	CUMPLE	CUMPLE	5.75	6.35	CUMPLE	CUMPLE
	EJE A - 56	CUMPLE	CUMPLE	CUMPLE	CUMPLE	5.75	2.68	CUMPLE	CUMPLE
	EJE B - 12	CUMPLE	CUMPLE	CUMPLE	CUMPLE	5.75	10.00	CUMPLE	CUMPLE
MUROS CON	EJE B - 34	CUMPLE	CUMPLE	CUMPLE	CUMPLE	5.75	5.30	CUMPLE	CUMPLE
VANOS	EJE B - 46	CUMPLE	CUMPLE	CUMPLE	CUMPLE	5.75	6.35	CUMPLE	CUMPLE
	EJE C - 12	CUMPLE	CUMPLE	CUMPLE	CUMPLE	5.75	10.00	CUMPLE	CUMPLE
	EJE C - 23	CUMPLE	CUMPLE	CUMPLE	CUMPLE	5.75	5.30	CUMPLE	CUMPLE
	EJE C - 34	CUMPLE	CUMPLE	CUMPLE	CUMPLE	5.75	5.30	CUMPLE	CUMPLE
	EJE C - 46	CUMPLE	CUMPLE	CUMPLE	CUMPLE	5.75	10.00	CUMPLE	CUMPLE
	EJE 5 - AB	CUMPLE	CUMPLE	CUMPLE	CUMPLE	5.75	7.40	CUMPLE	CUMPLE
	EJE 1 - AB	CUMPLE	1.0	1 -1	CUMPLE	5.75	7.40	CUMPLE	CUMPLE
	EJE 1 - BC	CUMPLE	11-1	-	CUMPLE	5.75	9.50	CUMPLE	CUMPLE
MURO	EJE 2 - BC	CUMPLE	7/	-	CUMPLE	5.75	9.50	CUMPLE	CUMPLE
GENERAL	EJE 4 - BC	CUMPLE	7 - 1	-	CUMPLE	5.75	9.50	CUMPLE	CUMPLE
	EJE 5 - AB	CUMPLE	$-\lambda V$	- /-	CUMPLE	5.75	7.40	CUMPLE	CUMPLE
	EJE 5 - BC	CUMPLE	-/ \	-	CUMPLE	5.75	9.50	CUMPLE	CUMPLE
CONTRAFU	JERTE	CUMPLE	-	CUMPLE	-	6.00	-	CUMPLE	-

4.5.2. Criterios de diseño de muros basado en esfuerzos admisibles

Este criterio analiza los esfuerzos producidos por las cargas sísmicas y de gravedad. Por ello, se evalúa dichos esfuerzos de compresión, corte y tracción por flexión sean menores que las admisibles halladas en ensayos de laboratorio o recomendaciones de la norma E.080. Sin embargo, la norma E.080 del 2017 tiene las siguientes consideraciones para el diseño que simplifican los cálculos:

- Debido a que no cuentan con diafragmas horizontales rígidos, los desplazamientos entre cada muro son independientes.
- Es necesario calcular áreas tributarias asociadas a cada muro para hallar las fuerzas horizontales de diseño y verificar si no sobrepasan al esfuerzo admisible por cortante.
- Para el área transversal del muro, se puede añadir una fracción de los muros perpendiculares o arriostres verticales, en encuentros "L" o "T" para cada extremo del muro. Esta no debe exceder en al 20% del área del muro.

- En el diseño sísmico del muro en dirección perpendicular a su plano, se asume un comportamiento elástico del material. Esto ayuda a calcular el esfuerzo de tracción por flexión generado por fuerzas sísmicas perpendiculares al plano del muro.
- La viga collar no se considera como apoyo para edificaciones de un piso, solo sirve para que los muros estén conectados entre sí durante un sismo.

Cabe resaltar que esta tesis no cuenta con un estudio de propiedades del material ensayadas en laboratorio, los esfuerzos admisibles se obtienen como dato de las recomendaciones de la norma E.080 del 2017 e investigaciones pasadas.

Cargas de gravedad

De acuerdo con la norma E. 020 (2006), para obtener los esfuerzos generados por las cargas de gravedad y sísmicas en las viviendas se considera los siguientes pesos específicos detallados en la tabla 4.8.

Tabla 4.8 Cargas de gravedad

	Material	Peso específico
	Unidades de adobe	1600 kgf/m^2
Carga muerta	Concreto armado	2400 kgf/m ³
Carga mucrta	Peso de teja asentada sobre mortero de	89.9 kgf/m ²
	barro y viguetas de madera	69.9 kgi/ili
Carga viva	Sobrecarga del techo	30 kgf/m^2

Fuente: (Ministerio de Vivienda Construcción y Saneamiento, 2020b)

De esta manera, se puede obtener la carga total para cada edificación amplificando en 50% la carga viva. La tabla 4.9 muestra estos resultados.

Tabla 4.9 Cargas totales de la estructura

	Orcop	oampa	Pampacolca			
Peso (tonf)	Adobe confinado	Adobe reforzado	Adobe confinado	Adobe reforzado		
CM (Tonf)	88.53	89.47	121.84	120.08		
CV (Tonf)	30.40	30.40	45.31	45.31		
P=CM+0.5CV (Tonf)	103.72	104.66	144.49	142.74		

Fuerza horizontal sísmica

La fuerza horizontal sísmica de la edificación se halla, según los parámetros de la Norma Tierra Reforzada E.080 del 2017. Estos parámetros son los siguientes:

• Factor de zona (Z):

Los distritos de Orcopampa y Pampacolca, pertenecen a la provincia de Castilla del departamento de Arequipa, el cual está contenida en la zona sísmica **Z3** según el mapa de sismicidad de la Norma Sismorresistente E.030 del 2018.

• Factor de suelo (S):

Asumimos que el suelo de ambas edificaciones es intermedio para fines prácticos. De esta manera, el factor de suelo es **S=1.4**.

• Factor de uso (U):

Como la edificación de Orcopampa es destinada a un local comunal y la edificación de Pampacolca es destinada a un puesto de salud, el factor de uso es **U=1.4** con densidad de muro de 15% (requerido por tabla N°2 de la Norma E.080).

• Coeficiente sísmico:

Como la zona sísmica es 3, entonces el coeficiente sísmico será de C=0.20 (requerido por tabla N°3 de la Norma E.080).

Peso total de la edificación:

Este peso debe incluir la carga muerta y el 50% de la carga viva. Esto se muestra en la tabla 4.9.

Con todos los parámetros, se calcula la fuerza sísmica horizontal de acuerdo a la siguiente expresión propuesta en la Norma Tierra Reforzada E.080 del 2017.

H=S.U.C. P

Donde:

S= Factor de suelo

U= Factor de uso

C= Coeficiente sísmico

P= Peso total

Obteniéndose:

$$H=1.4 \times 1.4 \times 0.2 \times P = 0.392 \times P$$

Reemplazando la expresión con los pesos totales de cada edificación se obtiene la fuerza sísmica en la tabla 4.10.

Fuerza	Огсор	oampa	Pampacolca			
	Adobe confinado	Adobe reforzado	Adobe confinado	Adobe reforzado		
H (tonf)	40.66	41.03	56.64	55.95		

Tabla 4.10 Fuerzas horizontales sísmicas

Esfuerzos admisibles

Para calcular los esfuerzos y compararlos con los admisibles de la norma de tierra reforzada E.080 (2017), se distribuye los muros de la estructura en función a la intervención de resistencia con las cargas de gravedad y la fuerza sísmica horizontal. Esta distribución se observa en las figuras 4.22 y 4.23.

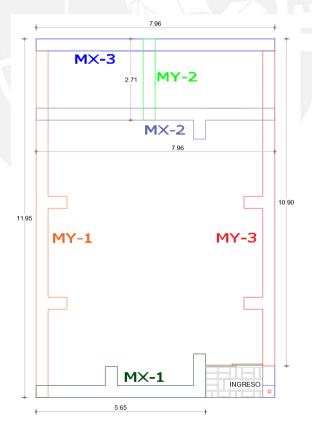


Figura 4.22 Distribución de muros para edificación Orcopampa

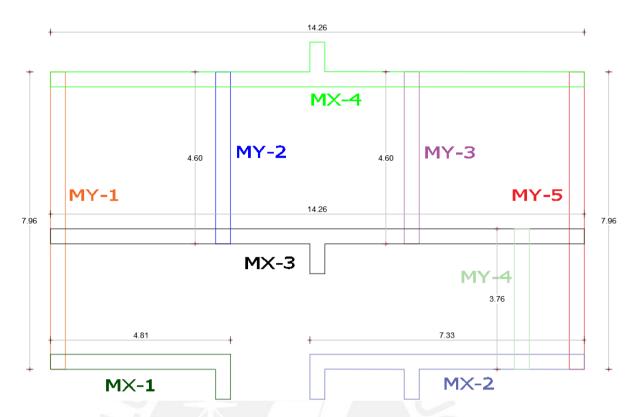


Figura 4.23 Distribución de muros para edificación Pampacolca

a) Verificación de esfuerzo en compresión por cargas verticales:

Se calcula el peso total incluyendo el peso del techo en servicio, es decir, sin ninguna combinación de cargas. Seguidamente, al ser dividida entre el área del muro, será evaluada con el esfuerzo admisible a compresión de 2 kgf/cm².

A modo de ejemplo, para el caso del local comunal de Orcopampa, se realiza el procedimiento de cálculo para hallar el esfuerzo a compresión del paño ubicada entre los ejes 1 y A-B del muro vertical 1 (MY-1) de la siguiente manera:

$$Area\ tributaria = 6.07\ m^2$$

$$Peso\ propio\ del\ muro = 2.54\ m * 0.40\ m\ x\ 2.45\ m\ x1.60\frac{tonf}{m^3} = 3.98\ tonf$$

$$Peso\ propio\ del\ techo = 6.07\ m^2 * \left(0.09\frac{tonf}{m^2}\right) = 0.55\ tonf$$

$$Peso\ de\ la\ sobrecarga\ de\ techo\ = 6.07\ m^2 * \left(0.03\frac{tonf}{m^2}\right) = 0.18\ tonf$$

$$Peso\ de\ total\ = 3.98 + 0.55 + 0.18 = 4.71\ tonf$$

$$\sigma = \frac{Peso\ propio + Peso\ techo}{Area\ planta} = \frac{3.98 + 0.55}{2.54 * 0.4} = 4.64 \frac{tonf}{m^2}$$

$$\sigma = 4.64 \frac{tonf}{m^2} < 20 \frac{tonf}{m^2} = Esfuerzo\ admisible\ en\ compresion$$

Se observa que cumple con el esfuerzo admisible. Por ello, el predimensionamiento del muro satisface en compresión por cargas de gravedad en servicio. De esta manera, se obtienen los resultados en las tablas 4.11 y 4.12 para los demás muros de la edificación Orcopampa y Pampacolca respectivamente.

Tabla 4.11 Esfuerzo en compresión para edificio Orcopampa

Muro					Peso	Área	Peso	Peso	Peso	Esfuerzo ac compr		
		L (m)	t (m)	h (m)	propio (tonf)	tributaria (m²)	techo (tonf)	carga viva (tonf)	total (tonf)	σ (tonf/m²)	σ < 20 (tonf/m²)	
	EJE 1	EJE A-B	2.54	0.40	2.45	3.98	6.07	0.55	0.18	4.71	4.64	OK
MY-1	EJE 1	EJE B-C	2.96	0.40	2.70	5.11	12.03	1.08	0.36	6.38	5.39	OK
IVI I -1	EJE 1	EJE C-D	2.54	0.40	2.60	4.23	6.07	0.55	0.18	4.86	4.79	OK
	EJE 1	EJE D-E	1.91	0.40	2.40	2.93	0.92	0.08	0.03	3.03	3.97	OK
MY-2	EJE 3	EJE D-E	1.91	0.40	2.40	2.93	0.92	0.08	0.03	3.03	3.97	OK
	EJE 5	EJE A-B	2.54	0.40	2.45	3.98	6.07	0.55	0.18	4.62	4.55	OK
MY-3	EJE 5	EJE B-C	2.96	0.40	2.70	5.11	12.03	1.08	0.36	6.38	5.39	OK
WI 1 -3	EJE 5	EJE C-D	2.54	0.40	2.60	4.23	6.07	0.55	0.18	4.86	4.79	OK
	EJE 5	EJE D-E	1.91	0.40	2.40	2.93	0.00	0.00	0.00	2.93	3.84	OK
MX-1	EJE A	EJE 1-2	1.91	0.40	2.40	2.93	1.87	0.17	0.06	3.13	4.10	OK
IVIA-1	EJE A	EJE 2-4	2.54	0.40	2.40	3.90	5.60	0.50	0.17	4.49	4.42	OK
MV 2	EJE D	EJE 1-3	3.17	0.40	2.40	4.87	5.62	0.51	0.17	5.46	4.30	OK
MX-2	EJE D	EJE 3-5	3.59	0.40	2.40	5.51	4.00	0.36	0.12	5.93	4.13	OK
MX-3	EJE E	EJE 1-3	3.17	0.40	2.40	4.87	2.12	0.19	0.06	5.09	4.02	OK
IVIA-3	EJE E	EJE 3-5	3.59	0.40	2.40	5.51	0.00	0.00	0.00	5.51	3.84	OK

Tabla 4.12 Esfuerzo en compresión para edificio Pampacolca

						f	ъ	ъ		Esfuerzo a compr		
	Muro		L (m)	t (m)	h (m)	Peso propio (tonf)	Área tributaria (m²)	Peso techo (tonf)	Peso carga viva (tonf)	Peso total (tonf)	σ (tonf/m²)	σ < 20 (tonf/m²)
MY-1	EJE 1	EJE A-B	2.96	0.40	2.60	4.93	2.20	0.20	0.07	5.19	4.39	OK
101 1 -1	EJE 1	EJE B-C	3.80	0.40	2.60	6.32	3.60	0.33	0.11	6.76	4.45	OK
MY-2	EJE 2	EJE B-C	3.80	0.40	2.60	6.32	7.20	0.66	0.22	7.20	4.74	OK
MY-3	EJE 4	EJE B-C	3.80	0.40	2.60	6.32	7.20	0.66	0.22	7.20	4.74	OK
MY-4	EJE 5	EJE A-B	2.96	0.40	2.60	4.93	3.50	0.32	0.11	5.35	4.52	OK
MY-5	EJE 6	EJE A-B	3.80	0.40	2.60	6.32	3.60	0.33	0.11	6.76	4.45	OK
IVI I -3	EJE 6	EJE B-C	2.96	0.40	2.60	4.93	1.30	0.12	0.04	5.08	4.29	OK
MX-1	EJE A	EJE 1-2	4.01	0.40	2.40	6.16	7.00	0.64	0.21	7.01	4.37	OK
	EJE A	EJE 3-4	2.12	0.40	2.40	3.26	5.60	0.51	0.17	3.94	4.64	OK
MX-2	EJE A	EJE 4-5	2.54	0.40	2.40	3.90	2.95	0.27	0.09	4.26	4.19	OK
	EJE A	EJE 5-6	1.07	0.40	2.40	1.64	0.30	0.03	0.01	1.68	3.93	OK
	EJE B	EJE 1-2	4.01	0.40	2.80	7.19	9.13	0.83	0.27	8.29	5.17	OK
	EJE B	EJE 2-3	2.11	0.40	2.80	3.78	6.30	0.58	0.19	4.55	5.39	OK
MX-3	EJE B	EJE 3-4	2.12	0.40	2.80	3.80	6.30	0.58	0.19	4.56	5.38	OK
	EJE B	EJE 4-5	2.54	0.40	2.80	4.55	6.20	0.57	0.19	5.30	5.22	OK
	EJE B	EJE 5-6	1.07	0.40	2.80	1.92	1.10	0.10	0.03	2.05	4.79	OK
	EJE C	EJE 1-2	4.01	0.40	2.40	6.16	4.00	0.37	0.12	6.64	4.14	OK
MX-3	EJE C	EJE 2-3	2.11	0.40	2.40	3.24	2.60	0.24	0.08	3.56	4.21	OK
IVIA-3	EJE C	EJE 3-4	2.12	0.40	2.40	3.26	2.60	0.24	0.08	3.57	4.21	OK
	EJE C	EJE 4-6	4.01	0.40	2.40	6.16	4.00	0.37	0.12	6.64	4.14	OK

b) Verificación de esfuerzo en flexión y corte por cargas horizontales y verticales:

El esfuerzo a flexión y corte es evaluado con las cargas de gravedad (cargas coplanares al muro) y la fuerza horizontal sísmica en servicio (**carga perpendicular al muro**). Asimismo, el diseño en muros sometidos a fuerzas de perpendiculares a su plano tiene los siguientes lineamientos:

- La fuerza horizontal del sismo (carga perpendicular al muro) es repartida uniformemente en el área del muro.
- La viga collar de madera colocada en la parte superior del muro solo sirve para que los muros estén conectados entre sí mas no de apoyo. Por lo que se idealiza como un muro arriostrado en los contrafuertes y la base.

 El momento máximo se obtendrá de acuerdo a coeficientes de momentos según la norma de albañilería E.070 (2020), el cual se basa en teorías elásticas y líneas potenciales de falla. De esta manera, para un muro arriostrado en sus tres lados el momento se produce a la mitad superior del paño.

En la figura 4.24, se muestra una sección típica del muro a analizar, en el cual se observan las cargas que actúan sobre el muro y los sus arriostres.

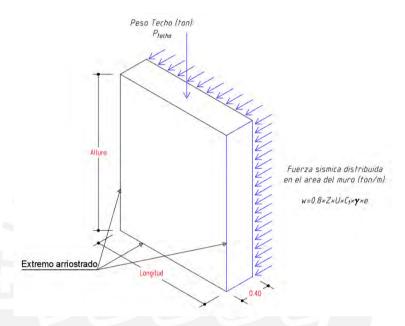


Figura 4.24 Distribución de cargas en muros de adobe

La carga sísmica perpendicular al plano se obtiene según los parámetros de la norma Sismorresistente E.030 y la magnitud de esta carga se calcula de la siguiente expresión:

$$w_{muro} = 0.8*Z*U*C_1*\gamma*e$$

Donde:

Z = Factor de zona = 0.35

U = Factor de uso = 1.5

 C_1 = Coeficiente sísmico = 1.3 (Para muros que pueden precipitarse al exterior)

e = Espesor bruto del muro en metros = 0.4 m

 γ = Peso volumetrico de la albañileria de adobe = 1.6 tonf/m³

De esta manera, la carga distribuida seria lo siguiente:

$$w_{muro} = 0.8 * 0.35 * 1.5 * 1.3 * 1.6 * 0.4 = 0.35 \frac{tonf}{m^2}$$

El momento flector máximo por unidad de longitud para un muro arriostrado en sus tres lados se halla en base a los parámetros de la tabla 4.13 y la expresión para hallar el momento es de la siguiente manera:

$$M = m * w_{muro} * a^2$$

Donde:

m = Coeficiente de momento (adicional) indicado en la tabla 16

a = Dimensión critica del paño de albañilería en metros indicado en la tabla 4.13

Tabla 4.13 Valores de coeficiente de momentos y dimensión critica (Norma Albañilería, N.070)

Valores de coeficiente de momentos "m" y dimensión critica "a" en Muros con 3 bordes arriostrados.												
a = Lor	a = Longitud del borde libre											
b/a =	0.5	0.6	0.7	0.8	0.9	1.0	1.5	2.0	∞			
m =	0.060	0.074	0.087	0.097	0.106	0.112	0.128	0.132	0.133			

Los esfuerzos ultimo a tracción por flexión y cortante del muro es $ft = 1.42 \frac{kgf}{cm^2}$ y $vm = 0.25 \frac{kgf}{cm^2}$, de acuerdo al artículo 8.5 y 8.6 respectivamente de la norma E.080 del 2017. Sin embargo, ambas edificaciones fueron diseñadas en el 2003. Por ello, el esfuerzo cortante admisible se evaluará según el artículo 8 de la norma E.080 de 1999, donde dicho esfuerzo es de $0.25 \frac{kgf}{cm^2}$.

El esfuerzo admisible a tracción por flexión se calcula con un factor de seguridad de 3, ya que no se realizaron ensayos. De esta manera, se tiene los siguientes esfuerzos admisibles a tracción por flexión y cortante:

$$ft_{adm} = \frac{1.42}{3} = 0.47 \frac{kgf}{cm^2}$$
$$vm_{adm} = 0.25 \frac{kgf}{cm^2}$$

Debido a que el momento máximo se produce en la parte central superior del muro y nulo en la base, el esfuerzo a tracción por flexión se evalúa en esta zona y por unidad de longitud. De esta manera, el esfuerzo a tracción solo es afectada por el esfuerzo a compresión ejercida por el peso del techo. Por otro lado, el esfuerzo cortante se calcula en base a los parámetros de la norma E.080, ya que se evalúa la fuerza símica estática de la estructura (H).

Las expresiones para hallar los esfuerzos actuantes en el muro son los siguientes:

$$\sigma = \pm \frac{M * y}{I}$$

$$H = S * U * C * P_{total}$$

$$\tau_{total} = \frac{H}{L * b}$$

 $\sigma_{total\ compresión} = \sigma_{compresión\ pura} + \sigma_{compresión\ por\ flexion}$

 $\sigma_{total\ tracción} = \sigma_{compresión\ pura} + \sigma_{tracción\ por\ flexion}$

Donde:

H: Fuerza horizontal sísmica según norma E.080 (2017)

M: Momento máximo del muro arriostrado en sus tres lados

Y: Brazo de palanca a la fibra más alejada de la sección del muro

I: Inercia por unidad de longitud

L: Longitud total del muro

b: Espesor del muro

 σ : Esfuerzo normal

 τ : Esfuerzo cortante

Para un cálculo típico, se analizará los esfuerzos en el paño ubicada entre los ejes 1 y A-B del muro vertical 1 (MY-1) en la edificación de Orcopampa. Estos cálculos son los siguientes:

$$a = 2.54 m$$
 $b = 2.45 m$
 $\frac{b}{a} = 0.96$
 $m (interpolando) = 0.110$
 $w_{muro} = 0.35 tonf/m^2$
 $M = 0.110 * 0.35 * 2.96^2 = 0.25 tonf.m/m$

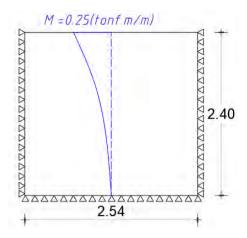


Figura 4.25 Línea de influencia del muro de adobe

Como se observa en la figura 4.25, este momento se localiza en la parte superior del muro y para un metro lineal. De esta manera, asumiendo linealidad del material se obtiene los esfuerzos detallados en la tabla 4.14 y 4.15, el cual se halla de la siguiente manera:

$$I = \frac{1 * t^3}{12} = \frac{1 * 0.4^3}{12} = 0.0053 \, m^4 / m$$
$$y = \frac{t}{2} = \frac{0.4}{2} = 0.20 \, m$$
$$\sigma = \pm \frac{0.25 * 0.2}{0.0053} = \pm 9.29 \, tonf / m^2$$

Tabla 4.14 Esfuerzo por flexión y cortante para edificio Orcopampa

	Muro		b/a	m	w	M	I	y	Esfuerzos por Momento (tonf/m²)		
IVIUIO			D/ a	111	(tonf/m ²)	(tonf.m/m)	(m ⁴ /m)	(m)	Compresión	Tracción	
	EJE 1	EJE A-B	0.96	0.110	0.35	0.25	0.0053	0.20	9.29	-9.29	
M37. 1	EJE 1	ЕЈЕ В-С	0.91	0.107	0.35	0.33	0.0053	0.20	12.25	-12.25	
MY-1	EJE 1	EJE C-D	1.02	0.113	0.35	0.25	0.0053	0.20	9.53	-9.53	
	EJE 1	EJE D-E	1.26	0.120	0.35	0.15	0.0053	0.20	5.75	-5.75	
MY-2	EJE 3	EJE D-E	1.26	0.120	0.35	0.15	0.0053	0.20	5.75	-5.75	
	EJE 5	EJE A-B	0.96	0.110	0.35	0.25	0.0053	0.20	9.29	-9.29	
1477.2	EJE 5	EJE B-C	0.91	0.107	0.35	0.33	0.0053	0.20	12.25	-12.25	
MY-3	EJE 5	EJE C-D	1.02	0.113	0.35	0.25	0.0053	0.20	9.53	-9.53	
	EJE 5	EJE D-E	1.26	0.120	0.35	0.15	0.0053	0.20	5.75	-5.75	
) / (V 1	EJE A	EJE 1-2	1.26	0.120	0.35	0.15	0.0053	0.20	5.75	-5.75	
MX-1	EJE A	EJE 2-4	0.94	0.109	0.35	0.25	0.0053	0.20	9.19	-9.19	
107.0	EJE D	EJE 1-3	0.76	0.093	0.35	0.33	0.0053	0.20	12.21	-12.21	
MX-2	EJE D	EJE 3-5	0.67	0.083	0.35	0.37	0.0053	0.20	14.00	-14.00	
) AV 2	EJE E	EJE 1-3	0.76	0.093	0.35	0.33	0.0053	0.20	12.21	-12.21	
MX-3	EJE E	EJE 3-5	0.67	0.083	0.35	0.37	0.0053	0.20	14.00	-14.00	

Tabla 4.15 Esfuerzo por flexión y cortante para edificio Pampacolca

			.,		w	M	I	v	Esfuerzos por l	Momento (tonf/m²)
Muro		b/a	m (tonf/m ²)		(tonf.m/m)	(m ⁴ /m)	(m)	Compresión	Tracción	
N 437, 1	EJE 1	EJE A-B	0.88	0.104	0.35	0.32	0.0053	0.20	11.95	-11.95
MY-1	EJE 1	ЕЈЕ В-С	0.68	0.085	0.35	0.43	0.0053	0.20	16.07	-16.07
MY-2	EJE 2	ЕЈЕ В-С	0.68	0.085	0.35	0.43	0.0053	0.20	16.07	-16.07
MY-3	EJE 4	ЕЈЕ В-С	0.68	0.085	0.35	0.43	0.0053	0.20	16.07	-16.07
MY-4	EJE 5	EJE A-B	0.88	0.104	0.35	0.32	0.0053	0.20	11.95	-11.95
MW 5	EJE 6	EJE A-B	0.68	0.085	0.35	0.43	0.0053	0.20	16.07	-16.07
MY-5	EJE 6	ЕЈЕ В-С	0.88	0.104	0.35	0.32	0.0053	0.20	11.95	-11.95
MX-1	EJE A	EJE 1-2	0.60	0.074	0.35	0.41	0.0053	0.20	15.55	-15.55
) (N) (A)	EJE A	EJE 3-4	1.13	0.116	0.35	0.18	0.0053	0.20	6.85	-6.85
MX-2	EJE A	EJE 4-5	0.94	0.109	0.35	0.25	0.0053	0.20	9.19	-9.19
	EJE A	EJE 5-6	2.24	0.133	0.35	0.05	0.0053	0.20	2.00	-2.00
	EJE B	EJE 1-2	0.70	0.087	0.35	0.49	0.0053	0.20	18.30	-18.30
	EJE B	EJE 2-3	1.33	0.122	0.35	0.19	0.0053	0.20	7.14	-7.14
MX-3	EJE B	EJE 3-4	1.32	0.122	0.35	0.19	0.0053	0.20	7.20	-7.20
	EJE B	EJE 4-5	1.10	0.115	0.35	0.26	0.0053	0.20	9.75	-9.75
	EJE B	EJE 5-6	2.62	0.133	0.35	0.05	0.0053	0.20	2.00	-2.00
	EJE C	EJE 1-2	0.60	0.074	0.35	0.41	0.0053	0.20	15.55	-15.55
MV	EJE C	EJE 2-3	1.14	0.116	0.35	0.18	0.0053	0.20	6.79	-6.79
MX-4	EJE C	EJE 3-4	1.13	0.116	0.35	0.18	0.0053	0.20	6.85	-6.85
	EJE C	EJE 4-6	0.60	0.074	0.35	0.41	0.0053	0.20	15.55	-15.55

Además, el esfuerzo a compresión en la parte superior se debe al peso y sobrecarga del techo, el cual es 1.82 tonf/m². De esta manera, se tiene los siguientes esfuerzos totales normales:

$$\sigma_{total\; compresión} = 9.29 + 1.82 = 11.11\; \frac{tonf}{m^2}$$

$$\sigma_{total\ tracción} = 9.29 + (-1.82) = -7.47 \frac{tonf}{m^2}$$

Como se observa, el esfuerzo a tracción es mayor al admisible de 4.7 tonf/m², se requiere refuerzo, el cual será la caña. Además, se verificará el esfuerzo cortante de la siguiente manera:

$$H = 1.4 * 1.4 * 0.2 * 4.71 = 1.81 tonf$$

$$\tau_{total} = \frac{(1.81)}{2.54 * 0.4} = 1.78 \frac{tonf}{m^2}$$

Se verifica que el esfuerzo cortante es menor al esfuerzo admisible a corte de 2.5 tonf/m². Asimismo, en la figura 4.26, se grafica la sección de la parte superior media del muro de adobe con la distribución de esfuerzos.

Esfuerzo normal en sección (Tonf / m²)

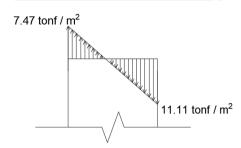


Figura 4.26 Esfuerzo normal en la sección transversal de la base del muro

Este procedimiento se repite para los demás muros obteniendo los esfuerzos axiales y cortantes totales. Seguidamente, se tiene las siguientes verificaciones de esfuerzos en las tablas 4.16 y 4.17 para todos los muros analizados en la edificación de Orcopampa y Pampacolca respectivamente. En el cual se analiza si el muro requiere de refuerzo vertical o no es necesario utilizarla.

Tabla 4.16 Verificación de esfuerzo admisible en tracción y esfuerzo ultimo a cortante para edificio Orcopampa

Muro			σ comp techo	Esfuerzos totales (tonf/m²)			dmisible a ción	Н	Esfuerzo admisible a corte	
			(tonf/m2)	Compresión	Tracción	<4.7 tonf/m²	¿Requiere refuerzo?	(tonf)	τ (tonf/m²)	< 2.5 tonf/m2
	EJE 1	EJE A-B	1.82	11.11	-7.47	No cumple	Si requiere	1.81	1.78	OK
N 637, 1	EJE 1	EJE B-C	3.61	15.86	-8.65	No cumple	Si requiere	2.50	2.11	OK
MY-1	EJE 1	EJE C-D	1.82	11.35	-7.71	No cumple	Si requiere	1.91	1.88	OK
	EJE 1	EJE D-E	0.28	6.02	-5.47	No cumple	Si requiere	1.19	1.55	OK
MY-2	EJE 3	EJE D-E	0.28	6.02	-5.47	No cumple	Si requiere	1.19	1.55	OK
	EJE 5	EJE A-B	1.82	11.11	-7.47	No cumple	Si requiere	1.81	1.78	OK
N 677 2	EJE 5	EJE B-C	3.61	15.86	-8.65	No cumple	Si requiere	2.50	2.11	OK
MY-3	EJE 5	EJE C-D	1.82	11.35	-7.71	No cumple	Si requiere	1.91	1.88	OK
	EJE 5	EJE D-E	0.00	5.75	-5.75	No cumple	Si requiere	1.15	1.51	OK
3.637.1	EJE A	EJE 1-2	0.56	6.31	-5.19	No cumple	Si requiere	1.23	1.61	OK
MX-1	EJE A	EJE 2-4	1.68	10.87	-7.51	No cumple	Si requiere	1.76	1.73	OK
) (IV 2)	EJE D	EJE 1-3	1.68	13.89	-10.52	No cumple	Si requiere	2.14	1.69	OK
MX-2	EJE D	EJE 3-5	1.20	15.20	-12.80	No cumple	Si requiere	2.33	1.62	OK
) (TV 2)	EJE E	EJE 1-3	0.64	12.84	-11.57	No cumple	Si requiere	2.00	1.57	OK
MX-3	EJE E	EJE 3-5	0.00	14.00	-14.00	No cumple	Si requiere	2.16	1.51	OK

Tabla 4.17 Verificación de esfuerzo admisible en tracción y cortante para edificio Pampacolca

Muro			σ comp techo	Esfuerzos (tonf/i			dmisible a	Н	Esfuerzo admisible a corte	
			(tonf/m2)	Compresión	Tracción	<4.7 tonf/m²	¿Requiere refuerzo?	(tonf)	τ (tonf/m²)	<2.5 tonf/m ²
3.637.1	EJE 1	EJE A-B	0.67	12.61	-11.28	No cumple	Si requiere	2.02	1.71	OK
MY-1	EJE 1	ЕЈЕ В-С	1.09	17.17	-14.98	No cumple	Si requiere	2.63	1.73	OK
MY-2	EJE 2	ЕЈЕ В-С	2.19	18.26	-13.89	No cumple	Si requiere	2.78	1.83	OK
MY-3	EJE 4	EJE B-C	2.19	18.26	-13.89	No cumple	Si requiere	2.78	1.83	OK
MY-4	EJE 5	EJE A-B	1.06	13.01	-10.88	No cumple	Si requiere	2.08	1.75	OK
MW 5	EJE 6	EJE A-B	1.09	17.17	-14.98	No cumple	Si requiere	2.63	1.73	OK
MY-5	EJE 6	EJE B-C	0.39	12.34	-11.55	No cumple	Si requiere	1.98	1.68	OK
MX-1	EJE A	EJE 1-2	2.12	17.67	-13.42	No cumple	Si requiere	2.71	1.69	OK
	EJE A	EJE 3-4	1.70	8.54	-5.15	No cumple	Si requiere	1.51	1.78	OK
MX-2	EJE A	EJE 4-5	0.90	10.08	-8.29	No cumple	Si requiere	1.65	1.63	OK
WIX-2	EJE A	EJE 5-6	0.09	2.09	-1.90	OK	No es necesario	0.66	1.53	OK
	EJE B	EJE 1-2	2.77	21.07	-15.52	No cumple	Si requiere	3.20	1.99	OK
	EJE B	EJE 2-3	1.91	9.06	-5.23	No cumple	Si requiere	1.74	2.07	OK
MX-3	EJE B	EJE 3-4	1.91	9.11	-5.29	No cumple	Si requiere	1.75	2.07	OK
IVIX-3	EJE B	EJE 4-5	1.88	11.63	-7.86	No cumple	Si requiere	2.04	2.01	OK
	EJE B	EJE 5-6	0.33	2.33	-1.66	OK	No es necesario	0.80	1.86	ОК
	EJE C	EJE 1-2	1.21	16.77	-14.34	No cumple	Si requiere	2.58	1.61	OK
1477.4	EJE C	EJE 2-3	0.79	7.58	-6.00	No cumple	Si requiere	1.38	1.63	OK
MX-4	EJE C	EJE 3-4	0.79	7.63	-6.06	No cumple	Si requiere	1.38	1.63	OK
	EJE C	EJE 4-6	1.21	16.76	-14.33	No cumple	Si requiere	2.58	1.61	OK

Como se observa, el esfuerzo a tracción por flexión no satisface al admisible. Por lo tanto, requiere de un refuerzo vertical. En este diseño se optará el uso de carrizo de caña como refuerzo. El cual tiene una resistencia última de 408 kgf/cm² según la Norma Tierra Reforzada E.080 del 2017. Por otra parte, el cortante hallado satisface con el esfuerzo cortante admisible. De esta manera, no se requiere aumentar la sección de muro.

4.5.3. Criterio de diseño de muros basado en el desempeño

De acuerdo con la norma E.080 (2017), los refuerzos en los muros deben tener las siguientes consideraciones:

- Todos los muros y contrafuertes deben tener refuerzos. En las edificaciones, se considera como refuerzo al carrizo de las cañas. Asimismo, estos deben colocarse horizontal y verticalmente para controlar desplazamientos que causen colapsos parciales.
- Para la instalación de techo, estas deben estar fijados en vigas collares.
- El refuerzo vertical y horizontal será caña carrizo de 25 mm de diámetro aproximadamente.
- El refuerzo horizontal se colocará cada cuatro hiladas en el tercio inferior, cada tres hiladas en el tercio central y cada dos hiladas en el tercio superior.

4.6. Refuerzo de caña

Debido a que el muro de adobe no soporta los esfuerzos a tracción, se emplea el reforzamiento de caña. Para ello, se verifica si la caña es capaz de soportar la demanda. La caña a emplear como refuerzo del muro es carrizo separada verticalmente cada 35 cm, el cual tiene una resistencia última de 408 kgf/cm². Además, este material tiene una falla frágil a tracción, ya que no tiene ductilidad y la rotura se produce en el esfuerzo último (Córdova, 2014).

A modo de observar el análisis empleado, se grafica en la figura 4.27 una equivalencia de esfuerzo en la base del muro con el fin de hallar la fuerza a tracción actuante y verificar que no supere al valor de la fuerza a tracción ultima de la caña.

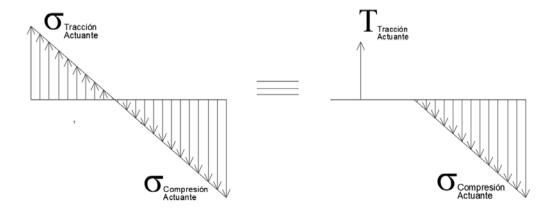


Figura 4.27 Equivalencia de esfuerzos en tracción

$$t = \frac{e}{1 + \frac{\sigma_{compresión}}{\sigma_{tracción}}}$$

$$T_{atuante} = (\sigma_{tracción} * \frac{t}{2}) * L$$

$$T_{\acute{\text{U}}ltimo\;ca\~{\text{n}}a} = \sigma_{\acute{\text{U}}ltimo\;ca\~{\text{n}}a} * A_{ca\~{\text{n}}a} * \frac{L}{S}$$

Verificar: $T_{atuante} \leq T_{\text{\'ultimo ca\~na}}$

Donde:

T: Fuerza en tracción

L: Longitud del muro

e: Espesor del Muro

t : Espesor de sección en tracción.

 σ : Esfuerzo en tracción

S: Separación de las cañas

A: Área de la sección de caña de 25mm de diámetro

De esta manera, para realizar un cálculo típico, se evalúa las fuerzas a tracción para 1 metro lineal del muro MY-1 del local comunal en Orcopampa de la siguiente manera:

$$t = \frac{0.4}{1 + \frac{11.11}{7.47}} = 0.16 m$$

$$L_{muro} = 1 m$$

$$T_{atuante} = 7.47 * 1 * \frac{0.16}{2} = 0.60 \ tonf$$

De acuerdo a los requerimientos establecidos para caña se halla la fuerza última a tracción.

$$\sigma_{ultimo~ca\|a} = 4080.00 \frac{tonf}{m^2}$$

$$A_{caña} = \pi * \frac{2.5^2}{4} = 4.91 \ cm^2$$

$$S = 35 cm$$

$$T_{ultimo} = 4080 * 0.000491 * \frac{1}{0.35} = 5.72 \ tonf$$

Como se puede observar, $T_{atuante} = 0.60 \ tonf < T_{ultimo} = 5.72 \ tonf$, se puede afirmar que la caña contribuye en soportar esfuerzos en tracción del muro de adobe. De la

misma manera, se realizan para los demás muros de adobe, obteniéndose los resultados en la tabla 4.18 y 4.19.

Tabla 4.18 Verificación de fuerza a tracción en la caña para edificio Orcopampa

	Muro		Longitud (m)	Espesor del muro (m)	Espesor de la sección en tracción "t" (m)	Esfuerzo a tracción actuante (tonf/m²)	Fuerza a tracción actuante (tonf)	Fuerza Ultima a tracción en caña (tonf/m)	T _{actuante} ≤ T _{ultima caña}
	EJE 1	EJE A-B	1	0.40	0.16	7.47	0.60	5.72	OK
MY-1	EJE 1	EJE B-C	1	0.40	0.14	8.65	0.61	5.72	OK
IVI Y - I	EJE 1	EJE C-D	1	0.40	0.16	7.71	0.62	5.72	OK
	EJE 1	EJE D-E	1	0.40	0.19	5.47	0.52	5.72	OK
MY-2	EJE 3	EJE D-E	1	0.40	0.19	5.47	0.52	5.72	OK
	EJE 5	EJE A-B	1	0.40	0.16	7.47	0.60	5.72	OK
107.2	EJE 5	ЕЈЕ В-С	1	0.40	0.14	8.65	0.61	5.72	OK
MY-3	EJE 5	EJE C-D	1	0.40	0.16	7.71	0.62	5.72	OK
	EJE 5	EJE D-E	-1	0.40	0.20	5.75	0.57	5.72	OK
107.1	EJE A	EJE 1-2	D /	0.40	0.18	5.19	0.47	5.72	OK
MX-1	EJE A	EJE 2-4	1/	0.40	0.16	7.51	0.61	5.72	OK
) (IV 2)	EJE D	EJE 1-3	1	0.40	0.17	10.52	0.91	5.72	OK
MX-2	EJE D	EJE 3-5	1	0.40	0.18	12.80	1.17	5.72	OK
MW 2	EJE E	EJE 1-3	1	0.40	0.19	11.57	1.10	5.72	OK
MX-3	EJE E	EJE 3-5	1	0.40	0.20	14.00	1.40	5.72	OK

Tabla 4.19 Verificación de fuerza a tracción en la caña para edificio Pampacolca

	Murc)	Longitud (m)	Espesor del muro (m)	Espesor de la sección en tracción "t" (m)	Esfuerzo a tracción actuante (tonf/m²)	Fuerza a tracción actuante (tonf)	Fuerza Ultima a tracción en caña (tonf/m)	T _{actuante} ≤ T _{ultima caña}
MY-1	EJE 1	EJE A-B	2.96	0.40	0.19	11.28	3.15	16.94	OK
	EJE 1	EJE B-C	3.8	0.40	0.19	14.98	5.31	21.74	OK
MY-2	EJE 2	EJE B-C	3.8	0.40	0.17	13.89	4.56	21.74	OK
MY-3	EJE 4	ЕЈЕ В-С	3.8	0.40	0.17	13.89	4.56	21.74	OK
MY-4	EJE 5	EJE A-B	2.96	0.40	0.18	10.88	2.94	16.94	OK
MY-5	EJE 6	EJE A-B	3.8	0.40	0.19	14.98	5.31	21.74	OK
	EJE 6	ЕЈЕ В-С	2.96	0.40	0.19	11.55	3.31	16.94	OK
MX-1	EJE A	EJE 1-2	4.01	0.40	0.17	13.42	4.65	22.95	OK
MX-2	EJE A	EJE 3-4	2.12	0.40	0.15	5.15	0.82	12.13	OK
	EJE A	EJE 4-5	2.54	0.40	0.18	8.29	1.90	14.53	OK
	EJE A	EJE 5-6	1.07	0.40	0.19	1.90	0.19	6.12	OK
MX-3	EJE B	EJE 1-2	4.01	0.40	0.17	15.52	5.28	22.95	OK
	EJE B	EJE 2-3	2.11	0.40	0.15	5.23	0.81	12.07	OK
	EJE B	EJE 3-4	2.12	0.40	0.15	5.29	0.82	12.13	OK
	EJE B	EJE 4-5	2.54	0.40	0.16	7.86	1.61	14.53	OK
	EJE B	EJE 5-6	1.07	0.40	0.17	1.66	0.15	6.12	OK
MX-4	EJE C	EJE 1-2	4.01	0.40	0.18	14.34	5.30	22.95	OK
	EJE C	EJE 2-3	2.11	0.40	0.18	6.00	1.12	12.07	OK
	EJE C	EJE 3-4	2.12	0.40	0.18	6.06	1.14	12.13	OK
	EJE C	EJE 4-6	4.01	0.40	0.18	14.33	5.30	22.95	OK

4.7. Columna

La NTE E.080 de 1999, en su artículo 6, indica que las columnas de concreto pueden utilizarse como elementos de arriostre vertical en viviendas de adobe para mejorar la conexión en los encuentros de muros. De esta manera, para que los muros de adobe sean considerados arriostrados, las columnas de confinamiento deben tener suficiente adherencia o anclaje a los muros con la finalidad de garantizar la transferencia de esfuerzos.

En este caso, para las edificaciones del puesto de salud y el local comunal construidos con adobe reforzado con columnas de concreto, se utilizará un tipo de conexión columna-adobe a ras, esto debido a que, de acuerdo a San Bartolomé, A. y Pehovaz, R. es conveniente emplear este tipo de conexión para que los dientes de adobe no se fracturen durante la etapa de vaciado

y compactación del concreto en las columnas (San Bartolomé & Pehovaz, 2005). Asimismo, con la finalidad de conseguir una adecuada transmisión de esfuerzos entre la columna y el muro, se considera colocar varillas de acero de 8mm cada cinco hiladas. Para que estas mechas puedan anclar en el muro, se utilizará mortero que contenga cemento (Delgado, 2006). De acuerdo a la clasificación de morteros según la norma E.080, se utilizará el mortero tipo II, el cual es una mezcla en base a tierra con algún aglomerante; en este caso, cemento.

De acuerdo a la propuesta de diseño brindada por San Bartolomé, A., el diseño sísmico de los muros de adobe confinado ante acciones coplanares debe cumplir con las especificaciones de la propuesta a la norma E.080.

4.7.1. Diseño de muro de corte

De acuerdo a la Norma E.070 de albañilería (2017) se tiene que la resistencia al corte (Vm) de los muros de albañilería, específicamente con unidades de arcilla y concreto, se calculan en cada entrepiso mediante la siguiente expresión: $Vm = 0.5 * V'm * \alpha * L + 0.23 Pg$, donde V'm es la resistencia característica a corte de la albañilería; α el factor de reducción de resistencia al corte por efecto de esbeltez; t, espesor efectivos del muro; L, la longitud total del muro; y Pg, la carga gravitacional de servicio (Ministerio de Vivienda Construcción y Saneamiento, 2020d).

Para este caso, en las edificaciones confinadas con elementos de concreto armado, para determinar la resistencia a corte (VR) de los muros de adobe se utilizará la expresión proveniente de la norma citada: $VR = 0.5 * V'm * \alpha * L + 0.23 Pg$, donde, de acuerdo a los ensayos realizado por San Bartolomé A. y Pehovaz, R., donde "v'm" es la resistencia característica a compresión y el valor del factor de reducción de resistencia al corte por efectos de esbeltez es igual a 1 "a=1".

El estudio del comportamiento a carga lateral cíclica de muros en adobes confinados, realizado por San Bartolomé A. y Pehovaz, R, se basa en los ensayos de comprensión diagonal de muretes cuadrados de unidades de adobe, el cual permite obtener el valor de la resistencia característica a compresión diagonal V'm; y el ensayo de carga cíclica, el cual consiste en aplicar cargas laterales cíclica a los muros de adobe controlando el desplazamiento horizontal de la solera (Do) (San Bartolomé & Pehovaz, 2005).

Resistencia a corte (VR)

La resistencia a fuerza cortante para el caso de adobes asentados con mortero de barro en condición de rotura se determina mediante la siguiente ecuación:

$$VR = 0.5 L t + 0.2 P$$

Donde:

L: Longitud total del muro (incluyendo columnas)

t: Espesor del muro sin tarrajeo

P: Carga de gravedad acumulada

Para determinar el valor de VR para los muros de corte de la edificación del Local comunal (Orcopampa) y Puesto de Salud (Pampacolca) se seguirá el siguiente procedimiento: distribución e identificación de muros en el eje "X" e "Y en ambas edificaciones, cálculo de la carga de gravedad para cada muro y determinación de las dimensiones de longitud y espesor.

En primer lugar, se distribuye los muros de la estructura en función a la intervención de resistencia con las cargas de gravedad y la fuerza sísmica horizontal. Para el caso del local comunal, se tiene dos muros en la dirección "Y" y tres muros en la dirección "X". Para el puesto de salud Pampacolca, se tiene cinco muros en la dirección "Y" y nueve muros en la dirección "X". Estas distribuciones se muestran en las figuras 4.28 y 4.29, respectivamente.

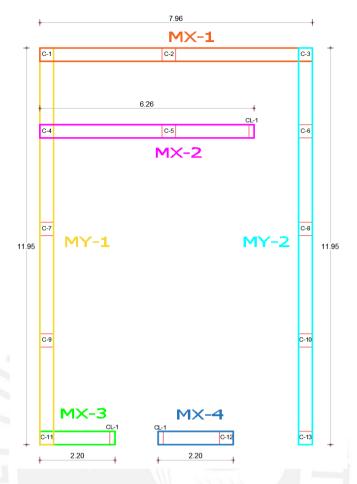


Figura 4.28 Distribución de muros en el Local Comunal - Orcopampa

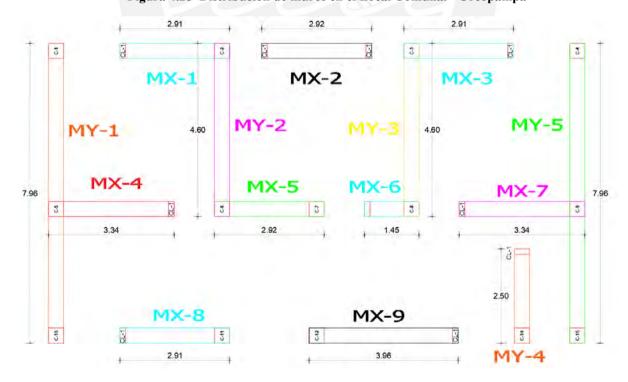


Figura 4.29 Distribución de muros para en el Puesto de Salud - Pampacolca

En segundo lugar, se calcula la carga de gravedad acumulada para cada muro. Se considera los siguientes pesos específicos: Concreto armado 2.4 tonf/m³, Unidades de adobe 1.6 tonf/m³, Peso de teja asentada sobre mortero de barro y viguetas de madera (techo) 0.089 tonf/m² y Sobrecarga del techo 0.03 tonf/m².

A modo de ejemplo, se analizará el muro MY-1 del local comunal de Orcopampa. A continuación, se detalla las dimensiones de dicho muro.

$$L = 11.95 m$$
, $t = 0.4 m$ y $H = 2.29 m$

Se prosigue a calcular los pesos que soporta el muro MY-1

Peso propio de muro =
$$(11.95 - 0.4 * 3 - 0.15 * 2) * 1.6 * 0.4 * 2.29 = 15.32 tonf$$

Peso de columna =
$$2.4 * 2.29 * ((0.4^2 * 3) + (0.4 * 0.15 * 2)) = 3.30 tonf$$

Área p/peso de techo =
$$25.08 m^2$$

Área p/peso de viga =
$$3.98 m^2$$

Área p/peso de viga =
$$3.98 \, m^2$$

Peso propio de techo = $25.08 \, m^2 * 0.089 \, \frac{tonf}{m^2} = 2.25 \, tonf$

Peso de viga =
$$3.98 \ m2 * 2.4 \frac{tonf}{m^3} * 0.1m = 0.96 \ tonf$$

Peso de sobrecarga (S/C) = 25.08 m2 * 0.03
$$\frac{ton}{m^2}$$
 = 0.75 $tonf$

$$Peso\ de\ total = 15.32 + 3.30 + 2.25 + 0.96 + 0.75 = 22.58\ tonf$$

$$P CM (solo del muro) = 15.32 + 3.30 + 0.96 = 19.57 tonf$$

Una vez calculado los pesos, usando la siguiente fórmula se determina el valor de Pt, el cual se refiere a la carga vertical tributaria proveniente del muro transversal a la columna.

$$Pt = Py (B/Ly)$$

Donde:

Pt = carga vertical tributaria proveniente del muro transversal a la columna.

Py = Carga vertical del muro transversal a la columna

Ly = Longitud del muro transversal a la columna

B= Longitud equivalente a Ly/4 ó 6t, el que sea mayor

Para el caso de la columna C-1 ubicado en el muro MY-1 del local Orcopampa, el muro transversal a dicha columna es el muro MX-1, el cual tiene una longitud Ly=7.96 m y una carga tributaria de Py=13.01 tonf. Con ello se determina el valor de Pt.

$$B = \frac{Ly}{4} = \frac{7.96}{4} = 1.99 m$$

$$B = 6 * t = 6 * 0.4 = 2.40 m$$

$$Bmayor = 2.40 m$$

$$Pt = Py\left(\frac{B}{Ly}\right) = 13.01 \ tonf * \left(\frac{2.40 \ m}{7.96 \ m}\right) = 3.92 \ tonf$$

De esta manera, se obtiene la carga de gravedad acumulada total para cada edificación. El análisis y los valores obtenidos de cargas de gravedad para las edificaciones del local comunal y puesto de salud se muestran en las tablas 4.20 y 4.21 respectivamente.

Tabla 4.20 Carga de gravedad acumulada - Local comunal Orcopampa

Muro	L (m)	t (m)	H(m)	Peso propio muro (tonf)	Peso de columna (tonf)	Peso de techo (tonf)	Peso de viga (tonf)	P S/C (tonf)	P total (tonf)	P CM (tonf) solo del muro	Ly (m)	B=Ly/4 (m)	B=6t (m)	B mayor (m)	Py (tonf)	Pt (tonf)
MY-1	11.95	0.4	2.29	15.32	3.30	2.25	0.96	0.75	22.58	19.57	7.96	1.99	2.40	2.40	13.01	3.92
MY-2	11.95	0.4	2.29	15.32	3.30	2.17	1.11	0.73	22.62	19.72	7.96	1.99	2.40	2.40	13.01	3.92
MX-1	7.96	0.4	2.24	9.69	2.58	0.23	0.74	0.08	13.32	13.01	4.62	1.16	2.40	2.40	7.57	3.93
MX-2	6.26	0.4	2.40	8.16	2.19	0.88	0.66	0.30	12.19	11.01	5.25	1.31	2.40	2.40	8.60	3.93
MX-3	2.20	0.4	2.39	2.52	1.26	0.20	0.22	0.07	4.28	4.00	2.94	0.74	2.40	2.40	4.81	3.93
MX-4	2.20	0.4	2.39	2.52	1.26	0.43	0.31	0.14	4.66	4.10	0.00	0.00	2.40	2.40	0.00	0.00

Tabla 4.21 Carga de gravedad acumulada - Puesto de salud Pampacolca

Muro	L (m)	t (m)	H(m)	Peso propio muro (tonf)	Peso de columna (tonf)	Peso de techo (tonf)	Peso de viga (tonf)	P S/C (tonf)	P total (tonf)	P CM (tonf) solo del muro	Ly (m)	B=Ly/4 (m)	B=6t (m)	B mayor (m)	Py (tonf)	Pt (tonf)
MY-1	7.96	0.4	2.34	10.12	2.70	0.57	0.79	0.19	14.37	13.61	3.34	0.84	2.40	2.40	6.77	4.87
MY-2	4.60	0.4	2.34	5.69	1.80	0.65	0.36	0.22	8.72	7.85	2.92	0.73	2.40	2.40	6.88	5.66
MY-3	4.60	0.4	2.34	5.69	1.80	0.65	0.36	0.22	8.72	7.85	2.91	0.73	2.40	2.40	5.11	4.21
MY-4	2.50	0.4	2.34	2.92	1.24	0.32	0.33	0.11	4.92	4.49	0.00	0.00	2.40	2.40	0.00	0.00
MY-5	7.96	0.4	2.34	10.12	2.70	0.48	0.79	0.16	14.25	13.61	3.34	0.84	2.40	2.40	6.81	4.90
MX-1	2.91	0.4	2.34	3.53	1.24	0.34	0.34	0.11	5.57	5.11	4.60	1.15	2.40	2.40	7.85	4.10
MX-2	2.92	0.4	2.34	3.92	0.25	0.45	0.33	0.15	5.11	4.51	0.00	0.00	2.40	2.40	0.00	0.00
MX-3	2.91	0.4	2.34	3.53	1.24	0.34	0.34	0.11	5.57	5.11	4.60	1.15	2.40	2.40	7.85	4.10
MX-4	3.34	0.4	2.79	4.98	1.47	0.67	0.32	0.22	7.67	6.77	4.60	1.15	2.40	2.40	7.87	4.10
MX-5	2.92	0.4	2.79	5.11	1.47	0.94	0.30	0.31	8.14	6.88	4.60	1.15	2.40	2.40	7.85	4.10
MX-6	1.45	0.4	2.79	1.61	1.47	0.46	0.19	0.15	3.88	3.27	4.60	1.15	2.40	2.40	7.85	4.10
MX-7	3.34	0.4	2.79	4.98	1.47	0.56	0.36	0.19	7.56	6.81	1.93	0.48	2.40	2.40	7.87	9.78
MX-8	2.78	0.4	2.34	3.71	0.67	0.60	0.40	0.20	5.59	4.79	0.00	0.00	2.40	2.40	0.00	0.00
MX-9	3.84	0.4	2.34	5.30	0.67	0.76	0.52	0.25	7.50	6.50	0.00	0.00	2.40	2.40	0.00	0.00

Finalmente, se determina las dimensiones de longitud y espesor para cada muro de las dos edificaciones. Con ello, se procede a calcular la resistencia al corte (VR) de cada muro. A manera de ejemplo, se tomará el muro MY-1 del local comunal de Orcopampa.

Las dimensiones del muro MY-1 de análisis son los siguientes:

$$L=1195\ cm$$
 ; (incluyendo columnas)
$$t=40\ cm$$

$$P=22575\ kgf$$

$$VR=0.5\ (1195)(40)+0.2\ (22575)=28415\ kgf$$

Con los datos, se obtiene un valor de $VR = 28415 \ kg$. Este valor será utilizado para el diseño de las columnas. En las tablas 4.22 y 4.23, se muestra los valores de VR de los muros en la dirección X e Y para cada edificación.

Tabla 4.22 Valores de VR en los muros del Local Comunal - Orcopampa

MURO	P total (Kgf)	L (cm)	t (cm)	VR (Kgf)
MY-1	22575	1195	40	28415
MY-2	22620	1195	40	28424
MX-1	13321	796	40	18584
MX-2	12190	626	40	14958
MX-3	4278	220	40	5256
MX-4	4665	220	40	5333

Tabla 4.23 Valores de VR en los muros del Centro de Salud - Pampacolca

MURO	P total (Kgf)	L (cm)	t (cm)	VR (Kgf)
MY-1	14374	796	40	18795
MY-2	8718	460	40	10944
MY-3	8718	460	40	10944
MY-4	4916	250	40	5983
MY-5	14251	796	40	18770
MX-1	5567	291	40	6933
MX-2	5112	292	40	6862
MX-3	5565	291	40	6933
MX-4	7669	334	40	8214
MX-5	8137	292	40	7467
MX-6	3883	145	40	3677
MX-7	7561	334	40	8192
MX-8	5592	278	40	6678
MX-9	7505	384	40	9181

Determinación de las fuerzas internas en los confinamientos

Para el diseño de los elementos de confinamiento verticales, se tomarán en cuenta solo dos fuerzas internas: Tracción (T) y Fuerza Cortante (Vc). La fuerza de Compresión (C) es despreciable debido a que los muros de las edificaciones propuestas son de baja altura y la dimensión mínima de la columna es capaz de absorber esta compresión (San Bartolomé, 2007).

Las fuerzas internas (cortante y tracción) se calculan con las expresiones descritas en la tabla 4.24.

Tabla 4.24 Ecuaciones para determinar las fuerzas internas en las columnas (San Bartolomé)

Fuerzas internas en las columnas									
Columna Vc (fuerza cortante) T (tracción)									
Interior	$\frac{VR.Lm}{L(Nc+1)}$	$VR\frac{h}{L}-Pi$							
Extrema	$1.5*\frac{VR.Lm}{L(Nc+1)}$	F-Pi							

Donde:

F = M / L = fuerza axial en las columnas extremas producidas por "M"

M = Mu (VR1 / Vu) = momento flector asociado al agrietamiento del muro

Lm = longitud del paño mayor o 0.5L, lo que sea mayor

L = longitud total del muro (incluyendo columnas)

Nc = número total de columnas en el muro en análisis

h = altura del entrepiso en análisis

Pt = carga vertical tributaria proveniente del muro transversal a la columna

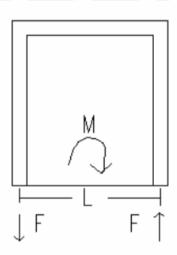


Figura 4.30 Esquema de fuerzas internas en el muro

Fuente: Delgado, 2006

4.7.2. Diseño de columnas de confinamiento

- Fuerza cortante

Una vez determinado el valor de VR del muro analizado, se continuará calculando el valor de fuerza cortante (Vc). Por tratarse de una columna extrema se utilizará la siguiente ecuación.

$$Vc = 1.5 * \frac{VR.Lm}{L(Nc+1)}$$

El muro MY-1 tiene una longitud total (incluyendo columnas) de 11.95 m, y cuenta con 5 columnas a lo largo de su longitud. Asimismo, se determina como Lm= 597.5 cm, el cual representa el valor mayor entre la longitud del paño mayor o 0.5L. Tomando en cuenta estos datos y reemplazando en la ecuación se obtiene un valor de fuerza cortante.

$$Vc = 1.5 * \frac{28415 * 597.5}{1195 (5 + 1)}$$

 $Vc = 3552 \, kgf$

Luego, determinamos el área de concreto (Ac) y el refuerzo vertical (As), mediante las siguientes ecuaciones.

$$Ac = \frac{Vc}{0.2 * f'c * \emptyset} \ge 10 * t (cm^2)$$

$$Asf = \frac{Vc}{fy * \mu * \emptyset}$$

Donde:

 $\varphi = 0.85$

μ = Coeficiente de fricción concreto-concreto = 0.8

Ac: Área de concreto por corte –fricción

Asf: Área de acero requerida por corte-fricción

f'c: Resistencia nominal a compresión del concreto = 100 kgf/cm²

f'y: Resistencia a la fluencia del acero = 4200 kgf/cm²

Considerando el valor de la fuerza cortante (Vc), se calcula el área de concreto y el acero requerido.

$$Ac = \frac{3552}{0.2 * 100 * 0.85} = 209 cm^{2}$$
$$Asf = \frac{3552}{4200 * 0.8 * 0.85} = 1.24 cm^{2}$$

Reemplazando en la ecuación, se obtiene que se requiere un área de concreto $AC = 209 \text{ cm}^2 < 400 \text{ cm}^2 = (10 * t)$. Esta área es menor al valor mínimo de área de concreto establecido en la propuesta de diseño en adobe confinado hecha por San Bartolomé. Como el espesor del muro de adobe es de 40cm, una de las dimensiones de la columna debe ser cercana a esta. Por eso, se propone una sección de 40x15 cm. Asimismo, en cuanto al área de acero, se obtiene $Asf = 1.24 \text{ cm}^2$.

Siguiendo el mismo procedimiento, se determinó el área de concreto y acero para cada columna de confinamiento de ambas edificaciones en las tablas 4.25 y 4.26.

Tabla 4.25 Área de concreto y acero en columnas - Local comunal Orcopampa

MURO	P total (kgf)	L (cm)	Lm (cm)	t (cm)	VR (kgf)	Vc (kgf)	Ac (cm²)	Ac utilizado (cm²)	Asf (cm ²)
MY-1	22575	1195	597.5	40	28415	3552	400	600	1.24
MY-2	22620	1195	597.5	40	28424	3553	400	600	1.24
MX-1	13321	796	439	40	18584	3844	400	1600	1.35
MX-2	12190	626	397	40	14958	3557	400	600	1.25
MX-3	4278	220	220	40	5256	2628	400	600	0.92
MX-4	4665	220	220	40	5333	2666	400	600	0.93

Tabla 4.26 Área de concreto y acero en columnas - Puesto de salud Pampacolca

MURO	P total (kgf)	L (cm)	Lm (cm)	t (cm)	VR (kgf)	Vc (kgf)	Ac (cm²)	Ac utilizado (cm²)	Asf (cm ²)
MY-1	14374	796	460	40	18795	4073	400	1600	0.71
MY-2	8718	460	460	40	10944	5472	400	1600	0.96
MY-3	8718	460	460	40	10944	5472	400	1600	0.96
MY-4	4916	250	250	40	5983	2992	400	600	0.52
MY-5	14251	796	460	40	18770	4068	400	1600	0.71
MX-1	5567	291	291	40	6933	3467	400	600	0.61
MX-2	5112	292	292	40	6862	3431	400	600	0.60
MX-3	5565	291	291	40	6933	3467	400	600	0.61
MX-4	7669	334	334	40	8214	4107	400	600	0.72
MX-5	8137	292	292	40	7467	3734	400	600	0.65
MX-6	3883	145	145	40	3677	1838	400	600	0.32
MX-7	7561	334	334	40	8192	4096	400	600	0.72
MX-8	5592	278	291	40	6678	3495	400	600	0.61
MX-9	7505	384	396	40	9181	4734	400	600	0.83

- Fuerza Tracción

La fuerza a tracción y el área de acero requerido se va determinar mediante las siguientes ecuaciones.

$$T = F - Pi$$

$$Ast = \frac{T}{fy * \emptyset}$$

Donde:

F= M / L: Fuerza axial en las columnas extremas producidas por "M"

M = Mu (VR / Vu): Momento flector asociado al agrietamiento del muro

 $\emptyset = 0.85$

fy: Esfuerzo de fluencia del acero= 4200 kg/cm²

Pt: Carga vertical tributaria de los muros transversales en el muro de análisis.

Para el muro MY-1 de la edificación del Local comunal - Orcopampa, se determina los diagramas de fuerza cortante (DFC) y momento flector (DMF). Se calcula la fuerza sísmica

horizontal en la base de las edificaciones de tierra reforzada de acuerdo a la Norma E.080 (2017), con todos los parámetros y mediante la siguiente expresión.

$$H = SUCP$$

Donde:

H: Fuerza sísmica horizontal

S: Factor de suelo (1.4 para suelos intermedios o blandos)

U: Factor de uso (1.4 para Servicios comunales y Salud)

C: Coeficiente sísmico (0.2 para la zona sísmica 3)

P: Peso total de la edificación

De acuerdo a la Norma E.080 (2017), se obtiene como fuerza sísmica horizontal el siguiente valor.

$$H = SUCP = 1.4 * 1.4 * 0.2 * P = 0.392P$$

Para el caso del muro analizado (muro MY-1), se tiene los siguientes datos:

$$P = 22.58 tonf$$
 $h = 2.29 m$
 $H = 0.392 * P = 0.392 * 22.58 = 8.85 tonf$
 $M = H * h = 8.85 * 2.29 = 20.27 tonf.m$

Reemplazando la expresión con los pesos totales de cada edificación se obtiene la fuerza cortante de ambas edificaciones y con ello se obtiene también el momento flector perpendicular al muro. Estos valores se muestran en las tablas 4.27 y 4.28.

Tabla 4.27 Valores de Fuerza cortante y Momento flector – Local comunal Orcopampa

Muro	\mathbf{V}	P total (tonf)	Vu (tonf)	Vu (kgf)	h(m)	Mu (tonf.m)
MY-1	0.392*P	22.58	8.85	8850	2.29	20.27
MY-2	0.392*P	22.62	8.87	8867	2.29	20.31
MX-1	0.392*P	13.32	5.22	5222	2.24	11.70
MX-2	0.392*P	12.19	4.78	4778	2.40	11.47
MX-3	0.392*P	4.28	1.68	1677	2.39	4.01
MX-4	0.392*P	4.66	1.83	1829	2.39	4.37

Tabla 4.28 Valores de Fuerza cortante y Momento flector - Puesto de Salud Pampacolca

Muro	V	P total (tonf)	Vu (tonf)	Vu (kgf)	h(m)	Mu (tonf.m)
MY-1	0.392*P	14.37	5.63	5635	2.34	13.19
MY-2	0.392*P	8.72	3.42	3418	2.34	8.00
MY-3	0.392*P	8.72	3.42	3418	2.34	8.00
MY-4	0.392*P	4.92	1.93	1927	2.34	4.51
MY-5	0.392*P	14.25	5.59	5586	2.34	13.07
MX-1	0.392*P	5.57	2.18	2182	2.34	5.11
MX-2	0.392*P	5.11	2.00	2004	2.34	4.69
MX-3	0.392*P	5.57	2.18	2182	2.34	5.10
MX-4	0.392*P	7.67	3.01	3006	2.79	8.39
MX-5	0.392*P	8.14	3.19	3190	2.79	8.90
MX-6	0.392*P	3.88	1.52	1522	2.79	4.25
MX-7	0.392*P	7.56	2.96	2964	2.79	8.27
MX-8	0.392*P	5.59	2.19	2192	2.34	5.13
MX-9	0.392*P	7.50	2.94	2942	2.34	6.88

Con los valores obtenidos de fuerza cortante, se determina los diagramas de fuerza cortante (DFC) y momento flector (DMF) de ambas edificaciones. A modo de ejemplo, se determina los diagramas del muro analizado (muro M Y-1) del local comunal Orcopampa en la figura 4.31.

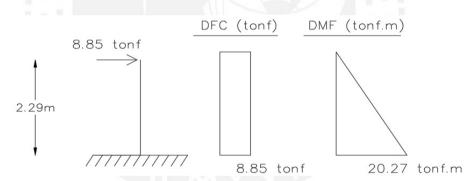


Figura 4.31 Diagrama de fuerza cortante y momento flector – Local Comunal Orcopampa

A continuación, se realizará el análisis para el muro MY-1 de la edificación del Local comunal. Del diagrama de fuerza cortante y momento flector de la figura 4.31, se obtienen los valores de Mu=20.27 tonf.m y Vu=8.85 tonf. Para calcular el momento flector asociado al agrietamiento del muro, se utiliza la siguiente expresión.

$$M = \frac{Mu * VR}{Vu}$$

$$M = \frac{20.27 * 28.42}{8.85} = 65.07 tonf. m$$

Con ello y mediante la siguiente fórmula, se determina el valor de fuerza axial en las columnas extremas producidas por el momento. Asimismo, se tiene como longitud entre columnas L=11.95 m.

$$F = \frac{M}{L}$$

$$F = \frac{65.07 \ tonf.m}{11.95 \ m} * 1000 = 5445 \ kgf$$

Con el valor de carga vertical tributaria Pt= 3924 kgf proveniente del muro MX-1 transversal al muro analizado, se obtiene la fuerza de tracción en las columnas.

$$T = F - Pt$$

 $T = 5445 - 3924 = 1522 \, kgf$

Posteriormente, se determina el área de acero por tracción.

$$(\emptyset = 0.85)$$

$$Ast = \frac{T}{fy * \emptyset}$$

$$Ast = \frac{1522}{4200 * 0.85} = 0.43 \text{ cm}^2$$

Finalmente, se obtiene el área de acero vertical total.

$$As = Asf + Ast = 1.24 + 0.43 = 1.43 cm^2$$

Para verificar si el área de acero calculado es adecuada, se compara con el área de acero mínima, el cual se determina mediante la siguiente ecuación.

$$Asmin = \frac{0.1 * f'c * Ac}{fy}$$

$$Asmin = \frac{0.1 * 100 * 600}{4200} = 1.43 cm^{2}$$

Como se observa, el valor de As calculado es mayor al Asmin (As>Asmin); por lo tanto, se considerará a este primero como área de acero requerido As= 1.67 cm². De esta manera, el acero longitudinal a utilizar en las columnas de los muros será de 4 Ø 8mm.

En cuanto al acero transversal de confinamiento, se usará los estribos mínimos especificados en la Propuesta de Diseño en adobe por San Bartolomé (San Bartolomé, 2007). Se dispone de la siguiente distribución de estribos para cada columna de confinamiento 6mm 1 @ 5cm ,4 @10cm resto @ 25 cm.

A continuación, se muestran los resultados obtenidos de área de acero longitudinal para ambas edificaciones en las tablas 4.29 y 4.30.

Tabla 4.29 Área de acero longitudinal en las columnas - Local comunal Orcopampa

MURO	VR (kgf)	F (kgf)	Pt (kgf)	T (kgf)	Asf (cm ²)	Ast (cm ²)	As= Asf+Ast	As min (cm ²)	As
MY-1	28415	5445	3924	1522	1.24	0.43	1.67	1.43	4 Ø 8mm
MY-2	28424	5447	3924	1523	1.24	0.43	1.67	1.43	4 Ø 8mm
MX-1	18584	5230	3930	1300	1.35	0.36	1.71	1.90	4 Ø 8mm
MX-2	14958	5735	3930	1805	1.25	0.51	1.75	1.43	4 Ø 8mm
MX-3	5256	5709	3930	1779	0.92	0.50	1.42	1.43	4 Ø 8mm
MX-4	5333	5794	0	5794	0.93	1.62	2.56	1.43	4 Ø 3/8"

Tabla 4.30 Área de acero longitudinal en las columnas - Puesto de salud Pampacolca

MURO	VR (kgf)	F (kgf)	Pt (kgf)	T (kgf)	Asf (cm ²)	Ast (cm ²)	As= Asf+Ast	As min (cm ²)	As
MY-1	18795	5525	4868	657	0.71	0.18	0.90	1.90	4 Ø 8mm
MY-2	10944	5567	5659	0	0.96	0.00	0.96	1.90	4 Ø 8mm
MY-3	10944	5567	4213	1354	0.96	0.38	1.34	1.90	4 Ø 8mm
MY-4	5983	5600	0	5600	0.52	1.57	2.09	1.43	4 Ø 3/8"
MY-5	18770	5518	4897	621	0.71	0.17	0.89	1.90	4 Ø 8mm
MX-1	6933	5575	4097	1478	0.61	0.41	1.02	1.43	4 Ø 8mm
MX-2	6862	5499	0	5499	0.60	1.54	2.14	1.43	4 Ø 3/8"
MX-3	6933	5575	4097	1478	0.61	0.41	1.02	1.43	4 Ø 8mm
MX-4	8214	6861	4104	2757	0.72	0.77	1.49	1.43	4 Ø 8mm
MX-5	7467	7135	4097	3038	0.65	0.85	1.50	1.43	4 Ø 8mm
MX-6	3677	7074	4097	2977	0.32	0.83	1.16	1.43	4 Ø 8mm
MX-7	8192	6843	9781	0	0.72	0.00	0.72	1.43	4 Ø 8mm
MX-8	6678	5621	0	5621	0.61	1.57	2.19	1.43	4 Ø 3/8"
MX-9	9181	5595	0	5595	0.83	1.57	2.40	1.43	4 Ø 3/8"

4.7.3. Diseño de muros de flexión

De acuerdo con la Propuesta de Diseño en adobe por San Bartolomé (San Bartolomé, 2007), la albañilería de adobe confinada y reforzada horizontalmente no necesita ser diseñada ante cargas sísmicas perpendiculares al plano sino solo se diseñará los arriostres del muro.

Para ello, es necesario determinar la carga sísmica perpendicular al plano de los muros "w", el cual será la proporcionada por la Norma Sismorresistente E.030 mediante la siguiente expresión.

$$w = 0.8. Z. U. C1. \gamma. e$$

Donde:

Z = factor de zona especificado en la NTE E.030. (Z=0.35)

U = factor de importancia especificado en la NTE E.030. (U=1.5)

 C_1 = coeficiente sísmico especificado en la NTE E.030. (C_1 =1.3)

e = espesor bruto del muro (incluyendo tarrajeos), en metros (e=0.4 m)

 γ = peso volumétrico de la albañilería de adobe (γ = 1.6 tonf/m³)

A modo de ejemplo, se determina la carga sísmica perpendicular al plano "w" para el muro MY-1 del local comunal de Orcopampa. Este muro tiene un espesor de 0.4 m.

$$w = 0.8 * 0.35 * 1.5 * 1.3 * 1.6 \frac{tonf}{m^3} * 0.4m = 0.349 \frac{tonf}{m^2}$$

Con el valor de carga sísmica "w", se determina el momento flector distribuido por unidad de longitud del muro MY-1, utilizando la siguiente ecuación

$$Ms = mwa^2$$

Donde:

m= Coeficiente de momento (adimensional)

a = dimensión crítica en metros del paño de albañilería, en metros

Para determinar el momento flector distribuido en los muros, estos se modelarán como una losa simplemente apoyada en los arriostres, los cuales, en este caso, son las columnas, vigas soleras, y la cimentación. Además, los valores del coeficiente de momentos "m" y dimensión crítica "a" se obtiene de la tabla 4.31 de la Norma de Albañilería E.070.

Tabla 4.31 Valores de coeficiente de momentos y dimensión critica

Vai	Valores de coeficiente de momentos "m" y dimensión critica "a" en Muros con 4 bordes arriostrados.											
a = Me	a = Menor dimensión											
b/a =	$b/a = 1.0$ 1.2 1.4 1.6 1.8 2.0 3.0 ∞											
m =	m = 0.0479 0.0627 0.0755 0.0862 0.0948 0.1017 0.118 0.125											

Fuente: Norma Albañilería N.070, 2020

Continuando con el análisis en el muro MY-1, se determina los valores de "m" y "a" considerándose el caso 1, el cual corresponde a muros con cuatro bordes arriostrados.

$$a = 2.45 \, m \, (menor \, dimensión)$$
 $b = 2.67 \, m$
 $\frac{b}{a} = 1.09$
 $m \, (interpolando) = 0.0545$
 $Ms = 0.0545 * 0.349 * 2.45^2 = 0.114 \, tonf. m/m$

A continuación, en las tablas 4.32 y 4.33, se muestran los resultados de momento flector distribuido por unidad de longitud de los muros en ambas edificaciones.

Tabla 4.32 Momento flector distribuido por unidad de longitud – Local comunal de Orcopampa

	MURO		Largo (m)	Ancho (m)	Alto (m)	w (tonf/m²)	Valor de "a"	Valor de "b"	b/a	m	Ms tonf.m/m
	EJE 1	ЕЈЕ А-В	2.67	0.4	2.45	0.349	2.45	2.67	1.09	0.0545	0.114
MY-1	EJE 1	ЕЈЕ В-С	3.21	0.4	2.70	0.349	2.70	3.21	1.19	0.0619	0.158
IVI I -1	EJE 1	EJE C-D	2.67	0.4	2.60	0.349	2.60	2.67	1.03	0.0499	0.118
	EJE 1	EJE D-E	1.91	0.4	2.40	0.349	1.91	2.40	1.26	0.0663	0.085
	EJE 4	EJE A-B	2.67	0.4	2.45	0.349	2.45	2.67	1.09	0.0545	0.114
MX 2	EJE 4	ЕЈЕ В-С	3.21	0.4	2.70	0.349	2.70	3.21	1.19	0.0619	0.158
MY-2	EJE 4	EJE C-D	2.67	0.4	2.60	0.349	2.60	2.67	1.03	0.0499	0.118
	EJE 4	EJE D-E	1.91	0.4	2.40	0.349	1.91	2.40	1.26	0.0663	0.085
MV 1	EJE E	EJE 1-2	3.17	0.4	2.40	0.349	2.40	3.17	1.32	0.0704	0.142
MX-1	EJE E	EJE 2-4	3.59	0.4	2.40	0.349	2.40	3.59	1.50	0.0806	0.162
MV 2	EJE D	EJE 1-2	3.17	0.4	2.40	0.349	2.40	3.17	1.32	0.0704	0.142
MX-2	EJE D	EJE 2-3	2.14	0.4	2.40	0.349	2.14	2.40	1.12	0.0569	0.091
MX-3	EJE A	EJE 1-2'	1.65	0.4	2.40	0.349	1.65	2.40	1.45	0.0784	0.075
MX-4	EJE A	EJE 2'-3	1.65	0.4	2.40	0.349	1.65	2.40	1.45	0.0784	0.075

Tabla 4.33 Momento flector distribuido por unidad de longitud - Puesto de Salud de Pampacolca

	MURO		Largo (m)	Ancho (m)	Alto (m)	w (tonf/m²)	Valor de "a"	Valor de "b"	b/a	m	Ms tonf.m/m
MV 1	EJE 1	EJE A-B	2.96	0.4	2.60	0.3494	2.60	2.96	1.14	0.0583	0.138
MY-1	EJE 1	ЕЈЕ В-С	3.80	0.4	2.60	0.3494	2.60	3.80	1.46	0.0787	0.186
MY-2	EJE 2	ЕЈЕ В-С	3.80	0.4	2.60	0.3494	2.60	3.80	1.46	0.0787	0.186
MY-3	EJE 4	ЕЈЕ В-С	3.80	0.4	2.60	0.3494	2.60	3.80	1.46	0.0787	0.186
MY-4	EJE 5	EJE A-B	1.95	0.4	2.60	0.3494	1.95	2.60	1.33	0.0710	0.094
MY-5	EJE 6	EJE A-B	2.96	0.4	2.60	0.3494	2.60	2.96	1.14	0.0583	0.138
WI I -3	EJE 6	ЕЈЕ В-С	3.80	0.4	2.60	0.3494	2.60	3.80	1.46	0.0787	0.186
MX-1	ЕЈЕ С	EJE 1-2	2.36	0.4	2.40	0.3494	2.36	2.40	1.02	0.0494	0.096
MX-2	ЕЈЕ С	EJE 2-4	2.62	0.4	2.40	0.3494	2.40	2.62	1.09	0.0546	0.110
MX-3	ЕЈЕ С	EJE 4-5	2.36	0.4	2.40	0.3494	2.36	2.40	1.02	0.0494	0.096
MX-4	ЕЈЕ В	EJE 1-2	2.79	0.4	2.80	0.3494	2.79	2.80	1.00	0.0479	0.130
MX-5	ЕЈЕ В	EJE 2-3	2.24	0.4	2.80	0.3494	2.24	2.80	1.25	0.0659	0.116
MX-6	ЕЈЕ В	EJE 3-4	1.45	0.4	2.80	0.3494	1.45	2.80	1.93	0.1223	0.090
MX-7	ЕЈЕ В	EJE 4-6	2.79	0.4	2.80	0.3494	2.79	2.80	1.00	0.0479	0.130
MX-8	EJE A	EJE 1-2	2.48	0.4	2.40	0.3494	2.40	2.48	1.03	0.0501	0.101
MX-9	EJE A	EJE 3-4	3.54	0.4	2.40	0.3494	2.40	3.54	1.48	0.0798	0.161

El esfuerzo normal de tracción producido por el momento flector es hallado con la siguiente fórmula:

$$\sigma_{Ms} = \frac{Ms * Y}{I}$$

Con:

$$Y = \frac{t}{2} = \frac{0.4}{2} = 0.2 m$$

$$I = \frac{1 * 0.4^{3}}{12} = 0.0053 m^{4}$$

$$\sigma_{Ms} = \frac{0.114 * 0.2}{0.0053} = 4.29 \frac{tonf}{m^{2}}$$

Además, se determina el esfuerzo a compresión producido por la carga de gravedad en la mitad del muro donde el esfuerzo de flexión es máximo. Para el caso del muro MY-1, la carga de gravedad a mitad del muro es 0.85 tonf.

$$\sigma_{compresión} = \frac{0.85 \ tonf}{1 \ m*0.4 \ m} = 2.12 \ \frac{tonf}{m^2}$$

Entonces, el esfuerzo normal de tracción será igual a la resta del esfuerzo normal de tracción producido por el momento flector menos el esfuerzo de compresión producido por la carga de gravedad.

$$\sigma = \sigma_{Ms} - \sigma_{compresión} == 4.29 - 2.12 = 2.17 \frac{tonf}{m^2}$$

El valor obtenido $\sigma = 2.17 \frac{ton}{m^2}$ no deberá ser mayor que la resistencia a tracción de la albañilería de adobe f't. De acuerdo a la Norma de Diseño y Construcción con Tierra Reforzada E.080, en el numeral 8.6 del Artículo 8. Esfuerzos de rotura mínimos. Ensayos de Laboratorio, se establece que la resistencia de muros a tracción por flexión tiene una resistencia última de 1.42 kgf/cm² (14.2 tonf/m²). Asimismo, en el artículo 9 se establece que, en caso de no realizar los ensayos de laboratorio se debe considerar un coeficiente de seguridad de 3.

Por ello, se obtiene que la resistencia a tracción de la albañilería de adobe es lo siguiente:

$$f't = \frac{14.2}{3} = 4.73 \frac{tonf}{m^2}$$

Con lo cual se verifica que el esfuerzo normal de tracción $\sigma=2.17\frac{ton}{m^2}$ no supera el valor de la resistencia a tracción de la albañilería de adobe $f't=4.73\frac{tonf}{m^2}$.

A continuación, en las tablas 4.34 y 4.35, se muestran los resultados obtenidos en ambas edificaciones.

Tabla 4.34 Verificación de los esfuerzos – Local comunal de Orcopampa

	MURO		Ms	I (m ⁴)	Y	Esfuerzo a tracción por momento	compi	uerzo a resión por e gravedad	Esfuerzo a tracción total	Esfuerzo admisible a tracción	
	MUKO		tonf.m/m	1 (m)	(m)	σ tracción tonf/m2	Peso (tonf)	σ compresión tonf/m²	σ (tonf/m2)	f't (tonf/m²)	σ <f't< th=""></f't<>
	EJE 1	EJE A-B	0.114	0.0053	0.2	4.29	0.85	2.12	2.17	4.73	OK
MY-1	EJE 1	EJE B-C	0.158	0.0053	0.2	5.91	0.93	2.32	3.59	4.73	OK
IVI I -1	EJE 1	EJE C-D	0.118	0.0053	0.2	4.42	0.90	2.24	2.18	4.73	OK
	EJE 1	EJE D-E	0.085	0.0053	0.2	3.17	0.83	2.08	1.09	4.73	OK
	EJE 4	EJE A-B	0.114	0.0053	0.2	4.29	0.85	2.12	2.17	4.73	OK
MX/2	EJE 4	EJE B-C	0.158	0.0053	0.2	5.91	0.93	2.32	3.59	4.73	OK
MY-2	EJE 4	EJE C-D	0.118	0.0053	0.2	4.42	0.90	2.24	2.18	4.73	OK
	EJE 4	EJE D-E	0.085	0.0053	0.2	3.17	0.83	2.08	1.09	4.73	OK
MV 1	EJE E	EJE 1-2	0.142	0.0053	0.2	5.32	0.83	2.08	3.24	4.73	OK
MX-1	EJE E	EJE 2-4	0.162	0.0053	0.2	6.09	0.83	2.08	4.01	4.73	OK
MV 2	EJE D	EJE 1-2	0.142	0.0053	0.2	5.32	0.83	2.08	3.24	4.73	OK
MX-2	EJE D	EJE 2-3	0.091	0.0053	0.2	3.41	0.83	2.08	1.33	4.73	OK
MX-3	EJE A	EJE 1-2'	0.075	0.0053	0.2	2.80	0.83	2.08	0.72	4.73	OK
MX-4	EJE A	EJE 2'-3	0.075	0.0053	0.2	2.80	0.83	2.08	0.72	4.73	OK

Tabla 4.35 Verificación de los esfuerzos – Puesto de Salud de Pampacolca

	MURO		Ms tonf.m/m	I (m ⁴)	Y	Esfuerzo a tracción por momento	comp	uerzo a resión por le gravedad	Esfuerzo a tracción total	Esfuer admisik tracci	ole a
			toni.m/m		(m)	σ tracción tonf/m2	Peso (tonf)	σ compresión tonf/m²	σ (tonf/m2)	f't (tonf/m²)	σ <f't< th=""></f't<>
MY-1	EJE 1	EJE A-B	0.138	0.0053	0.2	5.16	0.90	2.24	2.92	4.73	OK
IVI I - I	EJE 1	EJE B-C	0.186	0.0053	0.2	6.97	0.90	2.24	4.73	4.73	OK
MY-2	EJE 2	EJE B-C	0.186	0.0053	0.2	6.97	0.90	2.24	4.73	4.73	OK
MY-3	EJE 4	ЕЈЕ В-С	0.186	0.0053	0.2	6.97	0.90	2.24	4.73	4.73	OK
MY-4	EJE 5	ЕЈЕ А-В	0.094	0.0053	0.2	3.54	0.90	2.24	1.30	4.73	OK
MY-5	EJE 6	EJE A-B	0.138	0.0053	0.2	5.16	0.90	2.24	2.92	4.73	OK
IVI Y -3	EJE 6	ЕЈЕ В-С	0.186	0.0053	0.2	6.97	0.90	2.24	4.73	4.73	OK
MX-1	EJE C	EJE 1-2	0.096	0.0053	0.2	3.60	0.83	2.08	1.52	4.73	OK
MX-2	EJE C	EJE 2-4	0.110	0.0053	0.2	4.12	0.83	2.08	2.04	4.73	OK
MX-3	EJE C	EJE 4-5	0.096	0.0053	0.2	3.60	0.83	2.08	1.52	4.73	OK
MX-4	EJE B	EJE 1-2	0.130	0.0053	0.2	4.89	0.96	2.40	2.49	4.73	OK
MX-5	EJE B	EJE 2-3	0.116	0.0053	0.2	4.33	0.96	2.40	1.93	4.73	OK
MX-6	EJE B	EJE 3-4	0.090	0.0053	0.2	3.37	0.96	2.40	0.97	4.73	OK
MX-7	EJE B	EJE 4-6	0.130	0.0053	0.2	4.89	0.96	2.40	2.49	4.73	OK
MX-8	EJE A	EJE 1-2	0.101	0.0053	0.2	3.78	0.83	2.08	1.70	4.73	OK
MX-9	EJE A	EJE 3-4	0.161	0.0053	0.2	6.02	0.83	2.08	3.94	4.73	OK

4.8. Vigas

Las vigas también se clasifican como elementos de arriostramiento en la NTE. 080 de 1999. La función de estos elementos estructurales es contribuir a formar diafragmas rígidos en los niveles de pisos de las viviendas.

Para el caso de las edificaciones de adobe confinado, se utilizará vigas de concreto armado. De acuerdo a la propuesta de diseño brindada por San Bartolomé, A., el diseño sísmico de vigas soleras debe cumplir con las especificaciones de la norma E.080.

4.8.1. Diseño de vigas soleras

Para el diseño de vigas soleras se considerará una sección 40x20 cm. Estas secciones cumplen con el área de concreto mínimo establecido en la Propuesta de Diseño de Adobe (Norma E. 080), en la cual se indica que Acs=10*t (en cm²), donde t es el espesor del muro.

$$Ac \ge Acs$$

 $40 * 20 \ge 10 * 40$
 $800 \ cm^2 \ge 400 \ cm^2 \ (OK)$

Una vez pre-dimensionada la estructura de concreto, se determina el peso de gravedad acumulada que soporta dicha estructura. Para ello, se considera los siguientes pesos específicos: concreto armado 2.4 tonf/m³, peso de teja asentada sobre mortero de barro y viguetas de madera (techo) 0.089 tonf/m² y sobrecarga del techo 0.03 tonf/m².

De esta manera, se obtiene la carga de gravedad acumulada total para las vigas soleras de las dos edificaciones: local comunal y puesto de salud, el cual se detalla en las tablas 4.36 y 4.37.

Tabla 4.36 Carga de gravedad acumulada en vigas soleras – Local comunal Orcopampa

Vigas	L (m)	t (m)	H (m)	P Viga (tonf)	Peso de techo (tonf)	P S/C (tonf)	P total (tonf)	P total (kgf)
VY-1	11.95	0.4	0.20	2.29	2.25	0.75	5.30	5301
VY-2	11.95	0.4	0.20	2.29	24.17	0.21	26.67	26670
VX-1	7.96	0.4	0.20	1.53	2.57	0.08	4.18	4175
VX-2	7.96	0.4	0.20	1.53	9.84	0.30	11.66	11664
VX-3	7.96	0.4	0.20	1.53	7.03	0.21	8.77	8769

Tabla 4.37 Carga de gravedad acumulada en vigas soleras - Puesto de salud Pampacolca

Vigas	L (m)	t (m)	H (m)	P Viga (tonf)	Peso de techo (tonf)	P S/C (tonf)	P total (tonf)	P total (kgf)
VY-1	7.96	0.4	0.2	1.53	0.57	0.19	2.29	2291
VY-2	4.6	0.4	0.2	0.88	0.65	0.22	1.75	1749
VY-3	4.6	0.4	0.2	0.88	0.65	0.22	1.75	1749
VY-4	3.35	0.4	0.2	0.64	0.32	0.11	1.07	1072
VY-5	7.96	0.4	0.2	1.53	0.48	0.16	2.17	2167
VX-1	14.26	0.4	0.2	2.74	1.14	0.38	4.25	4255
VX-2	14.26	0.4	0.2	2.74	2.07	0.69	5.50	5499
VX-3	14.26	0.4	0.2	2.74	1.92	0.64	5.30	5298

Posteriormente, se determina las dimensiones de longitud y espesor para cada viga de las dos edificaciones. Con ello, se procede a calcular la resistencia al corte (VR) de cada viga. A manera de ejemplo, se tomará la viga VY-1 del local comunal de Orcopampa.

Las dimensiones de la viga VY-1 de análisis son los siguientes:

$$L = 1195 cm$$

$$t = 40 cm$$

$$P = 5301 kgf$$

$$VR = 0.5 (1195)(40) + 0.2 (5301) = 24960 kgf$$

Con los datos, se obtiene un valor de $VR = 24960 \ kg$. Este valor será utilizado para el diseño de las vigas soleras. En las tablas 4.38 y 4.39, se muestra los valores de VR para las vigas en la dirección X e Y para cada edificación.

Tabla 4.38 Valores de VR en las vigas del Local Comunal - Orcopampa

VIGA	P total (kgf)	L (cm)	L m crítico (cm)	t (cm)	VR (kgf)
VY-1	5301	1195	376	40	24960
VY-2	26670	1195	376	40	29234
VX-1	4175	796	439	40	16755
VX-2	11664	796	397	40	18253
VX-3	8769	796	271	40	17674

Tabla 4.39 Valores de VR en las vigas del Puesto de salud- Pampacolca

VIGA	P total (kgf)	L (cm)	Lm crítico (cm)	t (cm)	VR (kgf)
VY-1	2291	796	460	40	16378
VY-2	1749	460	460	40	9550
VY-3	1749	460	460	40	9550
VY-4	1072	335	250	40	6914
VY-5	2167	796	460	40	16353
VX-1	4255	1426	292	40	29371
VX-2	5499	1426	334	40	29620
VY-1	2291	796	396	40	29580

La solera debe diseñarse a tracción para soportar una fuerza igual a Ts. Esta se define de acuerdo a la norma E. 080 mediante la siguiente expresión:

$$Ts = VR \frac{Lm}{2L}$$

Para este caso, se tiene como valor de Lm= 376 cm, el cual representa la longitud mayor de la viga.

$$Ts = 24960 * \frac{376}{2 * 1195} = 3927 \, kgf$$

El área de acero horizontal requerido considerando el factor de reducción de \emptyset =0.9, se determina mediante la siguiente ecuación:

$$As = \frac{Ts}{\emptyset * fy}$$

$$As = \frac{3927}{0.9 * 4200} = 1.04 \ cm^2$$

Para verificar si el área de acero calculado es adecuada, se calcula el área de acero mínimo y se compara:

$$Asmin = \frac{0.1 * f'c * Ac}{fy}$$

$$Asmin = \frac{0.1 * 100 * 40 * 20}{4200} = 1.90 \ cm^2$$

Como As < Asmin, el área del acero a utilizar en la viga solera será Asmin = 1.90 cm². De esta manera, el acero horizontal a utilizar en las vigas será 4 Ø 8mm.

En cuanto al soporte de los aceros horizontales, en las secciones de 40x20 cm se utilizará estribos de 6mm, espaciados 1 @ 5, 4 @ 10, resto @ 25 cm tal como se detalla en la Propuesta de Diseño (San Bartolomé, 2007).

Finalmente, se muestran los resultados obtenidos de área de acero horizontal para ambas edificaciones en las tablas 4.40 y 4.41.

Tabla 4.40 Área de acero longitudinal en las vigas soleras del Local Comunal – Orcopampa

VIGAS	VR (kgf)	Ts (kgf)	As (cm ²)	As min (cm ²)	As
VY-1	24960	3927	1.04	1.90	4 Ø 8mm
VY-2	29234	4599	1.22	1.90	4 Ø 8mm
VX-1	16755	4620	1.22	1.90	4 Ø 8mm
VX-2	18253	4552	1.20	1.90	4 Ø 8mm
VX-3	17674	3009	0.80	1.90	4 Ø 8mm

Tabla 4.41 Área de acero longitudinal en las vigas soleras del Puesto de Salud - Pampacolca

VIGAS	VR (kgf)	Ts (kgf)	As (cm ²)	As min (cm ²)	As
VY-1	16378	4732	1.25	1.90	4 Ø 8mm
VY-2	9550	4775	1.26	1.90	4 Ø 8mm
VY-3	9550	4775	1.26	1.90	4 Ø 8mm
VY-4	6914	2580	0.68	1.90	4 Ø 8mm
VY-5	16353	4725	1.25	1.90	4 Ø 8mm
VX-1	29371	3007	0.80	1.90	4 Ø 8mm
VX-2	29620	3469	0.92	1.90	4 Ø 8mm
VX-3	29580	4107	1.09	1.90	4 Ø 8mm

4.8.2. Diseño de vigas soleras para cargas perpendiculares al plano del muro

Las vigas soleras se diseñarán para cargas perpendiculares al plano del muro debido a que estas tienden a deformarse por flexión. Para el diseño, se considera que la viga solera se encuentra simplemente apoyada sobre las columnas y sujeta a las cargas provenientes de los muros y a su peso propio, tal como se muestra en la figura 4.32.

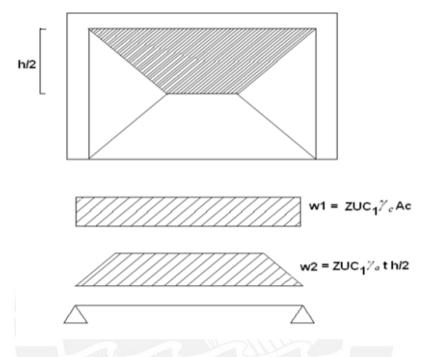


Figura 4.32 Distribución de cargas para el diseño de soleras

Fuente: Delgado, 2006

Para realizar el diseño de la solera sobre el muro MY-1, primero se determina las cargas que actúan sobre esta mediante las siguientes ecuaciones.

$$w_1 = Z * U * C_1 * \gamma_C * A_C$$

 $w_2 = Z * U * C_1 * \gamma_a * t * \frac{h}{2}$

Donde:

W₁ = Carga proveniente del peso propio de la solera

W₂ = Carga proveniente del muro de albañilería

Z = factor de zona especificado en la NTE E.030. (Z=0.35)

U = factor de importancia especificado en la NTE E.030. (U=1.5)

 C_1 = coeficiente sísmico especificado en la NTE E.030. (C_1 =1.3)

 γ_c = peso específico del concreto (γ_c = 2.4 tonf/m³)

 γ_a = peso específico de la albañilería de adobe (γ_a = 1.6 tonf/m³)

t =espesor del muro, en metros (t=0.4 m)

h= altura del muro

Para la solera de sección b=40cm x d=20 cm y L=2.94 m se obtiene los siguientes valores de cargas.

$$w_1 = 0.35 * 1.5 * 1.3 * 2.4 * (0.4 * 0.2) = 0.131 \frac{tonf}{m}$$

$$w_2 = 0.35 * 1.5 * 1.3 * 1.6 * 0.4 * \frac{2.45}{2} = 0.535 \frac{tonf}{m}$$

$$w = 0.131 + 0.535 = 0.666 \frac{tonf}{m}$$

A continuación, se determina las cargas que actúan sobre las soleras de ambas edificaciones. Estas se muestran en la tabla 4.42 y tabla 4.43.

Tabla 4.42 Cargas actuantes en las soleras – Local Comunal de Orcopampa

SOLERA			L (m)	b (m)	d (m)	w1 (tonf/m)	w2 (tonf/m)	w (tonf/m)
	EJE 1	EJE A-B	2.94	0.4	0.20	0.131	0.535	0.666
MY-1	EJE 1	EJE B-C	3.36	0.4	0.20	0.131	0.590	0.721
IVI I -1	EJE 1	EJE C-D	2.94	0.4	0.20	0.131	0.568	0.699
	EJE 1	EJE D- E	2.31	0.4	0.20	0.131	0.524	0.655
	EJE 4	EJE A-B	2.94	0.4	0.20	0.131	0.535	0.666
MY-2	EJE 4	EJE B-C	3.36	0.4	0.20	0.131	0.590	0.721
IVI Y -2	EJE 4	EJE C-D	2.94	0.4	0.20	0.131	0.568	0.699
	EJE 4	EJE D- E	2.31	0.4	0.20	0.131	0.524	0.655
MX-1	EJE E	EJE 1-2	3.57	0.4	0.20	0.131	0.524	0.655
IVIA-1	EJE E	EJE 2-4	3.99	0.4	0.20	0.131	0.524	0.655
MV 2	EJE D	EJE 1-2	3.57	0.4	0.20	0.131	0.524	0.655
MX-2	EJE D	EJE 2-3	2.41	0.4	0.20	0.131	0.524	0.655
MX-3	EJE A	EJE 1-2'	1.92	0.4	0.20	0.131	0.524	0.655
MX-4	EJE A	EJE 2'-3	1.92	0.4	0.20	0.131	0.524	0.655

Tabla 4.43 Cargas actuantes en las soleras - Puesto de Salud de Pampacolca

SOLERA		L (m)	b (m)	d (m)	w1 (tonf/m)	w2 (tonf/m)	w (tonf/m)	
MY-1	EJE 1	EJE A-B	3.36	0.4	0.20	0.131	0.568	0.699
IVI I - I	EJE 1	EJE B-C	3.80	0.4	0.20	0.131	0.568	0.699
MY-2	EJE 2	EJE B-C	3.80	0.4	0.20	0.131	0.568	0.699
MY-3	EJE 4	EJE B-C	3.80	0.4	0.20	0.131	0.568	0.699
MY-4	EJE 5	EJE A-B	2.23	0.4	0.20	0.131	0.568	0.699
MY-5	EJE 6	EJE A-B	3.36	0.4	0.20	0.131	0.568	0.699
WI I -3	EJE 6	ЕЈЕ В-С	3.80	0.4	0.20	0.131	0.568	0.699
MX-1	EJE C	EJE 1-2	2.63	0.4	0.20	0.131	0.524	0.655
MX-2	EJE C	EJE 2-4	2.77	0.4	0.20	0.131	0.524	0.655
MX-3	EJE C	EJE 4-5	2.64	0.4	0.20	0.131	0.524	0.655
MX-4	EJE B	EJE 1-2	3.07	0.4	0.20	0.131	0.612	0.743
MX-5	EJE B	EJE 2-3	2.52	0.4	0.20	0.131	0.612	0.743
MX-6	EJE B	EJE 3-4	1.18	0.4	0.20	0.131	0.612	0.743
MX-7	EJE B	EJE 4-6	3.07	0.4	0.20	0.131	0.612	0.743
MX-8	EJE A	EJE 1-2	2.63	0.4	0.20	0.131	0.524	0.655
MX-9	EJE A	EJE 3-4	3.69	0.4	0.20	0.131	0.524	0.655

Con ello se termina el área de acero requerido en las soleras, mediante las siguientes expresiones.

$$M_u = \frac{w * L^2}{8} = \frac{0.666 * 2.94^2}{8} = 0.72 \ tonfxm$$

$$\omega = \frac{M_u}{\emptyset * f'c * b * d^2} = \frac{0.72 * 10^5}{0.85 * 100 * 40 * 20^2} = 0.0529$$

$$\rho = \frac{\omega * f'c}{fy} = \frac{0.0529 * 100}{4200} = 0.0013$$

$$As = \rho * b * d = 0.0013 * 40 * 20 = 1.01 \ cm^2$$

Para verificar si el área de acero calculado es adecuada, se calcula el área de acero mínimo y se compara:

$$Asmin = \frac{0.1 * f'c * Ac}{fy}$$

$$Asmin = \frac{0.1 * 100 * 40 * 20}{4200} = 1.90 \text{ cm}^2$$

Como As < Asmin, el área del acero a utilizar en la viga solera será $As_{min} = 1.90 \text{ cm}^2$. De esta manera, el acero horizontal a utilizar en las vigas será 4 Ø 8mm.

Finalmente, se muestran los resultados obtenidos de área de acero horizontal para ambas edificaciones en la tabla 4.44 y tabla 4.45.

Tabla 4.44 Área de acero longitudinal en las vigas soleras del Local Comunal – Orcopampa

	SOLER	RA	w (tonf/m)	Mu tonf.m	ω	ρ	As (cm ²)	As min (cm ²)	As req (cm ²)	As colocado
	EJE 1	EJE A-B	0.666	0.720	0.0529	0.0013	1.01	1.90	1.90	4 Ø 8mm
MY-1	EJE 1	EJE B-C	0.721	1.017	0.0748	0.0018	1.42	1.90	1.90	4 Ø 8mm
IVI I -1	EJE 1	EJE C-D	0.699	0.755	0.0555	0.0013	1.06	1.90	1.90	4 Ø 8mm
	EJE 1	EJE D- E	0.655	0.437	0.0321	0.0008	0.61	1.90	1.90	4 Ø 8mm
	EJE 4	EJE A-B	0.666	0.720	0.0529	0.0013	1.01	1.90	1.90	4 Ø 8mm
MY-2	EJE 4	EJE B-C	0.721	1.017	0.0748	0.0018	1.42	1.90	1.90	4 Ø 8mm
IVI I -2	EJE 4	EJE C-D	0.699	0.755	0.0555	0.0013	1.06	1.90	1.90	4 Ø 8mm
	EJE 4	EJE D- E	0.655	0.437	0.0321	0.0008	0.61	1.90	1.90	4 Ø 8mm
MV 1	EJE E	EJE 1-2	0.655	1.044	0.0768	0.0018	1.46	1.90	1.90	4 Ø 8mm
MX-1	EJE E	EJE 2-4	0.655	1.304	0.0959	0.0023	1.83	1.90	1.90	4 Ø 8mm
MV 2	EJE D	EJE 1-2	0.655	1.044	0.0768	0.0018	1.46	1.90	1.90	4 Ø 8mm
MX-2	EJE D	EJE 2-3	0.655	0.476	0.0350	0.0008	0.67	1.90	1.90	4 Ø 8mm
MX-3	EJE A	EJE 1-2'	0.655	0.302	0.0222	0.0005	0.42	1.90	1.90	4 Ø 8mm
MX-4	EJE A	EJE 2'-3	0.655	0.302	0.0222	0.0005	0.42	1.90	1.90	4 Ø 8mm

Tabla 4.45 Área de acero longitudinal en las vigas soleras del Puesto - Orcopampa

				3.5				I		
	SOLER	A	(tonf/m)	Mu tonf.m	ω	ρ	As (cm ²)	As min (cm ²)	As req (cm ²)	As colocado
MY-1	EJE 1	EJE A-B	0.699	0.986	0.0725	0.0017	1.38	1.90	1.90	4 Ø 8mm
IVI I - I	EJE 1	EJE B-C	0.699	1.261	0.0928	0.0022	1.77	1.90	1.90	4 Ø 8mm
MY-2	EJE 2	EJE B-C	0.699	1.261	0.0928	0.0022	1.77	1.90	1.90	4 Ø 8mm
MY-3	EJE 4	EJE B-C	0.699	1.261	0.0928	0.0022	1.77	1.90	1.90	4 Ø 8mm
MY-4	EJE 5	EJE A-B	0.699	0.434	0.0319	0.0008	0.61	1.90	1.90	4 Ø 8mm
MX/ 5	EJE 6	EJE A-B	0.699	0.986	0.0725	0.0017	1.38	1.90	1.90	4 Ø 8mm
MY-5	EJE 6	EJE B-C	0.699	1.261	0.0928	0.0022	1.77	1.90	1.90	4 Ø 8mm
MX-1	EJE C	EJE 1-2	0.655	0.566	0.0417	0.0010	0.79	1.90	1.90	4 Ø 8mm
MX-2	EJE C	EJE 2-4	0.655	0.628	0.0462	0.0011	0.88	1.90	1.90	4 Ø 8mm
MX-3	ЕЈЕ С	EJE 4-5	0.655	0.571	0.0420	0.0010	0.80	1.90	1.90	4 Ø 8mm
MX-4	EJE B	EJE 1-2	0.743	0.875	0.0643	0.0015	1.23	1.90	1.90	4 Ø 8mm
MX-5	EJE B	EJE 2-3	0.743	0.589	0.0433	0.0010	0.83	1.90	1.90	4 Ø 8mm
MX-6	ЕЈЕ В	EJE 3-4	0.743	0.129	0.0095	0.0002	0.18	1.90	1.90	4 Ø 8mm
MX-7	EJE B	EJE 4-6	0.743	0.875	0.0643	0.0015	1.23	1.90	1.90	4 Ø 8mm
MX-8	EJE A	EJE 1-2	0.655	0.566	0.0417	0.0010	0.79	1.90	1.90	4 Ø 8mm
MX-9	EJE A	EJE 3-4	0.655	1.115	0.0820	0.0020	1.56	1.90	1.90	4 Ø 8mm

Capítulo 5. Evaluación técnica

5.1. Comparación técnica

La sobreresistencia es un parámetro efectivo para medir la contribución de la resistencia y rigidez de aquellos elementos ligados a la estructura principal. De esta manera, la comparación técnica se realizará en base a la sobreresistencia en el cual se obtiene al dividir la carga resistente entre la carga actuante.

El cálculo de la sobreresistencia depende de la edificación. En las viviendas de adobe reforzado con cañas se obtiene del cociente del esfuerzo admisible al corte y el esfuerzo cortante debido a la carga horizontal sísmica estática en los muros. Mientras que las sobreresistencia en las edificaciones de adobe confinado se obtiene al dividir la fuerza resistente (VR) y la fuerza cortante actuante (Vc).

La sobreresistencia es hallada en cada muro diseñado. Finalmente, el promedio de estas corresponde al resultado final de edificación. Asimismo, para evaluar la variabilidad de los resultados, se calcula la desviación estándar.

La comparación técnica se realiza entre una misma edificación diseñada con adobe confinado y reforzado con cañas. Por ello, se estudian dos edificaciones para tener una mejor precisión de la evaluación.

5.1.1. Edificación 1: Local Comunal – Orcopampa

De acuerdo a la sobreresistencia calculada en el diseño del local comunal de Orcopampa, se observa que el método constructivo del adobe confinado con elementos de concreto armado es considerablemente más resistente que el adobe reforzado con cañas. Esto se observa en las tablas 5.1 y 5.2.

Tabla 5.1 Sobreresistencia utilizando adobe reforzado con cañas - Orcopampa

	Muro		Esfuerzo admisible cortante (tonf/m²)	Esfuerzo cortante actuante (tonf/m²)	Sobreresistencia
	EJE 1	EJE A-B	2.50	1.78	1.40
N 637 1	EJE 1	EJE B-C	2.50	2.11	1.18
MY-1	EJE 1	EJE C-D	2.50	1.88	1.33
	EJE 1	EJE D-E	2.50	1.55	1.61
MY-2	EJE 3	EJE D-E	2.50	1.55	1.61
	EJE 5	EJE A-B	2.50	1.78	1.40
MX 2	EJE 5	EJE B-C	2.50	2.11	1.18
MY-3	EJE 5	EJE C-D	2.50	1.88	1.33
	EJE 5	EJE D-E	2.50	1.51	1.66
MV 1	EJE A	EJE 1-2	2.50	1.61	1.56
MX-1	EJE A	EJE 2-4	2.50	1.73	1.44
MW 2	EJE D	EJE 1-3	2.50	1.69	1.48
MX-2	EJE D	EJE 3-5	2.50	1.62	1.54
MW 2	EJE E	EJE 1-3	2.50	1.57	1.59
MX-3	EJE E	EJE 3-5	2.50	1.51	1.66
				Promedio	1.47
				Desviación Estándar	0.16

Tabla 5.2 Sobreresistencia utilizando adobe confinado con elementos de concreto armado — Orcopampa

MURO	VR (tonf)	Vu (tonf)	Sobreresistencia
MY-1	28.42	8.85	3.21
MY-2	28.42	8.87	3.21
MX-1	18.58	5.22	3.56
MX-2	14.96	4.78	3.13
MX-3	5.26	1.68	3.13
MX-4	5.33	1.83	2.92
		Promedio	3.19
		Desviación Estándar	0.21

5.1.2. Edificación 2: Puesto de Salud – Pampacolca

De acuerdo a la sobreresistencia calculada en el diseño del puesto de salud de Pampacolca, se tiene que la edificación diseñada con muros de adobe confinado con elementos de concreto armado tiene mayor sobreresistencia en comparación con la estructura diseñada con muros de adobe reforzado con cañas, tal como se muestra en las tablas 5.3 y 5.4.

Tabla 5.3 Sobreresistencia utilizando adobe reforzado con cañas - Pampacolca

	Muro		Esfuerzo admisible cortante (tonf/m²)	Esfuerzo cortante actuante (tonf/m²)	Sobreresistencia
MY-1	EJE 1	EJE A-B	2.50	1.71	1.46
IVI I -1	EJE 1	EJE B-C	2.50	1.73	1.45
MY-2	EJE 2	EJE B-C	2.50	1.83	1.37
MY-3	EJE 4	EJE B-C	2.50	1.83	1.37
MY-4	EJE 5	EJE A-B	2.50	1.75	1.43
N 137. 5	EJE 6	EJE A-B	2.50	1.73	1.45
M Y -5	MY-5 EJE 6		2.50	1.68	1.49
MX-1	EJE A	EJE 1-2	2.50	1.69	1.48
	EJE A	EJE 3-4	2.50	1.78	1.40
MX-2	EJE A	EJE 4-5	2.50	1.63	1.54
	EJE A	EJE 5-6	2.50	1.53	1.63
	EJE B	EJE 1-2	2.50	1.99	1.25
	EJE B	EJE 2-3	2.50	2.07	1.21
MX-3	EJE B	EJE 3-4	2.50	2.07	1.21
	EJE B	EJE 4-5	2.50	2.01	1.24
	EJE B	EJE 5-6	2.50	1.86	1.34
	EJE C	EJE 1-2	2.50	1.61	1.55
MXZ 4	EJE C	EJE 2-3	2.50	1.63	1.53
MX-4	EJE C	EJE 3-4	2.50	1.63	1.53
	EJE C	EJE 4-6	2.50	1.61	1.55
				Promedio	1.42
				Desviación Estándar	0.12

Tabla 5.4 Sobreresistencia utilizando adobe confinado con elementos de concreto armado — Pampacolca

MURO	VR (tonf)	Vu (tonf)	Sobreresistencia
MY-1	18.79	5.63	3.34
MY-2	10.94	3.42	3.20
MY-3	10.94	3.42	3.20
MY-4	5.98	1.93	3.10
MY-5	18.77	5.59	3.36
MX-1	6.93	2.18	3.18
MX-2	6.86	2.00	3.42
MX-3	6.93	2.18	3.18
MX-4	8.21	3.01	2.73
MX-5	7.47	3.19	2.34
MX-6	3.68	1.52	2.42
MX-7	8.19	2.96	2.76
MX-8	6.68	2.19	3.05
MX-9	9.18	2.94	3.12
		Promedio	3.03
		Desviación Estándar	0.34

Capítulo 6. Evaluación de costos y presupuesto

En este capítulo se presenta y se evalúa el presupuesto de obra para la construcción de las edificaciones del Local Comunal y el Puesto de Salud ubicadas en la provincia de Orcopampa y Pampacolca, respectivamente. Ambas edificaciones se proyectaron para ser construidas con adobe confinado y adobe reforzado con cañas. Para la elaboración del presupuesto, se ha considerado realizar el metrado y el análisis de costos unitarios de cada edificación.

6.1. Metrado

El cálculo de metrado de una edificación permite conocer la cantidad de material de obra que se va ejecutar, evaluar y presupuestar mediante partidas que contempla cada elemento, según la unidad de medida establecida.

A partir de la revisión de los planos de las edificaciones detallado en el anexo C, se elabora el metrado. Para ello, se ha tomado como referencia, la relación de partidas y sus unidades respectivas según lo establecido en la Norma Técnica de Metrados para Obras de Edificación y Habilitaciones Urbanas (Ministerio de Vivienda Construcción y Saneamiento, 2010). El metrado de las edificaciones de abobe reforzado con cañas y adobe confinado, adjuntado en el anexo A, se realiza considerando la especialidad de estructuras.

6.2. Presupuesto de Obra

Para la elaboración del presupuesto, se ha considerado realizar el metrado de cantidades de cada partida de obra (Anexo A) y el análisis de costos unitarios (Anexo B). Para obtener el costo de una partida es necesario determinar el costo unitario, el cual muestra de forma detallada el valor de cada unidad de obra y de los elementos que la constituye. El resultado del producto entre los metrados y precios unitarios definirá el costo de cada partida y con ello, el costo directo total.

A continuación, se muestran las siguientes tablas con el presupuesto de obra para las edificaciones de adobe reforzado con cañas y adobe confinado actualizado a la fecha del 23 de diciembre del 2022.

6.2.1. Edificación 1: Local Comunal – Orcopampa

Para la edificación del Local Comunal se realiza el metrado y el análisis de costo unitario para el caso de adobe reforzado con cañas y adobe confinado en las tablas 6.1 y 6.2 respectivamente, obteniéndose un costo directo total de S/. 16,810.28 (Dieciséis mil ochocientos diez con 28/100 soles) y S/. 20,800.55 (Veinte mil ochocientos con 55/100 soles) respectivamente.

Tabla 6.1 Presupuesto con adobe reforzado con cañas - Edificación de Orcopampa

Ítem	Descripción	Unidad	Metrado	Precio Unitario (S/.)	Parcial (S/.)
01	ESTRUCTURAS				
01.01	OBRAS DE CONCRETO SIMPLE	DA			
01.01.01	SOLADO	·OH	/		
01.01.01.01	Concreto f'c=100 kgf/cm² para solado	m ²	27.52	24.77	681.75
01.01.02	CIMIENTO				
01.01.02.01	Concreto f'c=100 kgf/cm² para cimiento	m^3	16.51	205.10	3,386.53
01.01.03	SOBRECIMIENTO	7 /			
01.01.03.01	Concreto f'c=100 kgf/cm ² para sobrecimiento	m^3	5.77	213.64	1,231.82
01.01.03.02	Encofrado y desencofrado normal en sobrecimiento	m^2	29.08	43.04	1,251.69
01.02	OBRAS DE TIERRA REFORZADA	-1///7	V		
01.02.01	MURO				
01.02.01.01	Muro de adobe	m ²	106.44	62.34	6,635.91
01.03	OBRAS DE MADERA		4/		
01.03.01.01	Techo de madera con cubierta de teja de arcilla	m ²	85.91	42.17	3,622.58
	Total Costo Directo (S	S/.)			16,810.28

Tabla 6.2 Presupuesto con adobe confinado - Edificación de Orcopampa

Ítem	Descripción	Unidad	Metrado	Precio Unitario (S/.)	Parcial (S/.)
01	ESTRUCTURAS				
01.01	OBRAS DE CONCRETO SIMPLE				
01.01.01	SOLADO				
01.01.01.01	Concreto f'c=100 kgf/cm² para solado	m ²	26.02	24.77	644.59
01.01.02	CIMIENTO				
01.01.02.01	Concreto f'c=100 kgf/cm² para cimiento	m^3	15.61	205.10	3,201.95
01.01.03	SOBRECIMIENTO				
01.01.03.01	Concreto f'c=100 kgf/cm² para sobrecimiento	m ³	4.77	213.64	1,018.40
01.01.03.02	Encofrado y desencofrado normal en sobrecimiento	m ²	24.28	43.04	1,045.20
01.02	OBRAS DE CONCRETO ARMADO	610	,		
01.02.01	COLUMNA		10		
01.02.01.01	Concreto f'c=100kgf/cm ² en columnas	m^3	4.35	264.80	1,152.22
01.02.01.02	Encofrado y desencofrado normal en columnas	m ²	21.99	63.58	1,398.03
01.02.01.03	Acero de refuerzo fy=4200 kgf/cm ² columnas	kg	127.15	4.34	551.52
01.02.02	VIGA				
01.02.02.01	Concreto f'c=100kgf/cm ² en vigas	m^3	3.81	224.33	855.51
01.02.02.02	Encofrado y desencofrado normal en vigas	m^2	19.00	73.69	1,399.78
01.02.02.03	Acero de refuerzo fy=4200 kgf/cm ² vigas	kg	154.61	4.34	670.83
01.03	OBRAS DE TIERRA REFORZADA			1	
01.03.01	MURO				
01.03.01.01	Muro de adobe	m^2	86.04	60.90	5,239.76
01.04	OBRAS DE MADERA				
01.04.01	ТЕСНО				
01.04.01.01	Techo de madera con cubierta de teja de arcilla	m ²	85.91	42.17	3,622.58
	Total Costo Directo (S.	/.)			20,800.55

6.2.2. Edificación 2: Puesto de Salud – Pampacolca

De la misma forma, para la edificación del Puesto de Salud se realiza el metrado y el análisis de costo unitario para el caso de adobe reforzado con cañas y adobe confinado en las tablas 6.3 y 6.4 respectivamente, obteniéndose un costo directo total de S/. 22,322.83 (Veintidós mil trescientos veintidós con 83/100 soles) y S/. 29,127.33 (Veintinueve mil cientos veintisiete con 33/100 soles).

Tabla 6.3 Presupuesto con adobe reforzado con cañas - Edificación de Pampacolca

Ítem	Descripción	Unidad	Metrado	Precio Unitario (S/.)	Parcial (S/.)	
01	ESTRUCTURAS					
01.01	OBRAS DE CONCRETO SIMPLE					
01.01.01	SOLADO					
01.01.01.01	Concreto fc=100 kgf/cm ² para solado m ² 36.78 24.77					
01.01.02	CIMIENTO					
01.01.02.01	Concreto f'c=100 kgf/cm² para cimiento	m ³	22.07	205.10	4,526.04	
01.01.03	SOBRECIMIENTO					
01.01.03.01	Concreto f'c=100 kgf/cm ² para sobrecimiento	m^3	7.62	213.64	1,627.90	
01.01.03.02	Encofrado y desencofrado normal en sobrecimiento	m ²	38.35	43.04	1,650.58	
01.02	OBRAS DE TIERRA REFORZADA	1				
01.02.01	MURO					
01.02.01.01	Muro de adobe	m^2	146.97	62.34	9,162.67	
01.03	OBRAS DE MADERA					
01.03.01.01	Techo de madera con cubierta de teja de arcilla	m ²	113.51	39.16	4,444.49	
	Total Costo Directo (S	/.)			22,322.83	

Tabla 6.4 Presupuesto con adobe confinado – Edificación de Pampacolca

Ítem	Descripción	Unidad	Metrado	Precio Unitario (S/.)	Parcial (S/.)
01	ESTRUCTURAS				
01.01	OBRAS DE CONCRETO SIMPLE				
01.01.01	SOLADO				
01.01.01.01	Concreto f'c=100 kgf/cm² para solado	m ²	35.10	24.77	869.53
01.01.02	CIMIENTO				
01.01.02.01	Concreto f'c=100 kgf/cm² para cimiento	m^3	21.06	205.10	4,319.30
01.01.03	SOBRECIMIENTO				
01.01.03.01	Concreto f'c=100 kgf/cm ² para sobrecimiento	213.64	1,365.39		
01.01.03.02	Encofrado y desencofrado normal en sobrecimiento	m ²	35.46	43.04	1,526.23
01.02	OBRAS DE CONCRETO ARMADO				
01.02.01	COLUMNA				
01.02.01.01	Concreto f'c=100kgf/cm ² en columnas	m^3	6.17	264.80	1,634.79
01.02.01.02	Encofrado y desencofrado normal en columnas	m ²	37.47	63.58	2,382.04
01.02.01.03	Acero de refuerzo fy=4200 kgf/cm ² columnas	kg	205.24	4.34	890.53
01.02.02	VIGA	11111			
01.02.02.01	Concreto f'c=100kgf/cm ² en vigas	m^3	5.85	224.33	1,312.25
01.02.02.02	Encofrado y desencofrado normal en vigas	m^2	25.98	73.69	1,914.71
01.02.02.03	Acero de refuerzo fy=4200 kgf/cm ² vigas	kg	208.60	4.34	905.12
01.03	OBRAS DE TIERRA REFORZADA				
01.03.01	MURO				
01.03.01.01	Muro de adobe	m^2	124.18	60.90	7,562.95
01.04	OBRAS DE MADERA	11 10			
01.04.01	ТЕСНО				
01.04.01.01	Techo de madera con cubierta de teja de arcilla	m ²	113.51	39.16	4,444.49
	Total Costo Directo (S/.	.)			29,127.33

6.3. Comparación económica

La comparación económica del costo total de las estructuras de adobe reforzado con cañas y adobe confinado se efectúa con un análisis que incluye el presupuesto y análisis de precios unitarios. A partir de los valores de presupuesto directo se obtiene un análisis porcentual de los

datos, con ello se conocerá cuál de las alternativas estudiadas de construcción de tierra reforzada es la más económica.

6.3.1. Edificación 1: Local Comunal – Orcopampa

De acuerdo con la comparación del presupuesto de costo directo de la edificación del local comunal de Orcopampa en la tabla 6.5, se tiene que la propuesta de diseño con adobe confinado tiene un costo mayor en S/. 3,990.28 (Tres mil novecientos noventa con 28/100 soles), el cual representa el 23.70% más de costo directo de la estructura con adobe reforzado con cañas.

Tabla 6.5 Comparación de presupuesto de obra para Local Comunal-Orcopampa

Local Comunal – Orcopampa							
Tipo de edificación	Costo Total (S/.)						
Adobe reforzado con cañas	16,810.28						
Adobe confinado	20,800.55						
Diferencia (S/.)	3,990.28						
Diferencia (%)	23.70%						

Asimismo, en la tabla 6.6, se obtiene el precio de construcción por metro cuadrado de las edificaciones. Para el caso del local comunal con adobe reforzado con cañas se tiene un costo de S/.176.73 (Ciento setenta y seis con 73/100 soles), lo cual equivale a 46.51 dólares. Mientras que cuando se utiliza el adobe confinado se tiene un costo de S/. 218.68 (Doscientos dieciocho con 68/100 soles) equivalente a 57.55 dólares.

Tabla 6.6 Precio por m² para el Local Comunal- Orcopampa

Precio por m ²	Tasa de cambio dólar	En soles (S/.)	En dólares (\$)	
Adobe reforzado con cañas	2.0	176.73	46.51	
Adobe confinado	3.8	218.68	57.55	

6.3.2. Edificación 2: Puesto de Salud – Pampacolca

De acuerdo con la comparación del presupuesto de costo directo de la edificación del puesto de salud de Pampacolca en la tabla 6.7, se tiene que la propuesta de diseño con adobe

confinado tiene un costo mayor en S/. 6,804.50 (Seis mil ochocientos cuatro con 50/100 soles), lo cual representa un 30.50% de costo directo de la estructura con adobe reforzado con cañas.

Tabla 6.7 Comparación de presupuesto de obra para Puesto de Salud-Pampacolca

Puesto de Salud - Pampacolca							
Tipo de edificación	Costo Total (S/.)						
Adobe reforzado con cañas	22,322.83						
Adobe confinado	29,127.33						
Diferencia (S/.)	6,804.50						
Diferencia (%)	30.50%						

Además, para el caso del puesto de salud, se obtiene el precio de construcción por metro cuadrado de las edificaciones en la tabla 6.8. Del análisis se obtiene que cuando se realiza la construcción con adobe reforzado con cañas se tiene un costo de S/.196.66 (Ciento noventa y seis con 66/100 soles), lo cual equivale a 51.75 dólares. Mientras que cuando se utiliza el adobe confinado se tiene un costo de S/. 256.61 (Doscientos cincuenta y seis con 61/100 soles) equivalente a 67.53 dólares.

Tabla 6.8 Precio por m² para el Puesto de Salud- Pampacolca

Precio por m ²	Tasa de cambio dólar	En soles (S/.)	En dólares (\$)	
Adobe reforzado con cañas	2.0	196.66	51.75	
Adobe confinado	3.8	256.61	. ,	

Capítulo 7. Conclusiones

De la investigación desarrollada en la presente tesis, se tienen las siguientes conclusiones:

- De acuerdo a la comparación técnica en cada edificación diseñada con ambas propuestas (adobe confinado y adobe reforzado con cañas), se concluye que la construcción de muros de adobe con elementos de concreto armado tiene mayor sobreresistencia que el muro con adobe reforzado con cañas. Por lo que, de manera indirecta, el confinamiento en el muro de adobe mejora la resistencia ante cargas sísmicas horizontales. Esto demuestra que la hipótesis planteada en relación a la comparación técnica ha sido contrastada.
- En conclusión, la mayor resistencia obtenida con la técnica de construcción de muros de adobe con elementos confinados de concreto armado es importante para las edificaciones analizadas en la presente tesis: Puesto de Salud y Local comunal, las cuales son categorizadas; de acuerdo a la Norma Sismorresistente E.030 (2018), como edificaciones esenciales e importantes, respectivamente. Por lo tanto, la propuesta de construcción más adecuada es la del adobe confinado con elementos de concreto armado, debido a que se debe privilegiar la resistencia
- De acuerdo a la comparación económica que se realizó entre los pares de edificaciones diseñada con adobe confinado y adobe reforzado con cañas, se concluye que la construcción con elementos de concreto armado presenta mayor costo respecto a la construcción con adobe reforzado con cañas. Este adicional principalmente se genera debido al costo del concreto y el acero que se considera para los diferentes elementos estructurales en la propuesta de adobe confinado. Por ello, la hipótesis planteada respecto a la comparación económica es contrastada con este resultado.
- Desde el punto de vista económico, la propuesta de construcción de estructuras diseñadas con refuerzos de cañas representa la opción más económica. Esto debido a que el costo de la caña, material de refuerzo, es considerablemente menor respecto al refuerzo de acero de los elementos de concreto armado.
- El adobe confinado mejora la arquitectura de la edificación, debido a que al no contar con muros perpendiculares de arriostre y no tener límites geométricos de muros y vanos para el diseño se puede implementar ventanas y puerta con mayores dimensiones; así como, se optimiza los espacios y la iluminación de las edificaciones.

Capítulo 8. Recomendaciones

En base al estudio realizado en la presente tesis, si se plantea realizar nuevas investigaciones enfocada en los siguientes temas, se recomienda.

- Se debe realizar un estudio experimental de una vivienda con adobe confinado y otra de reforzado con cañas para tener una mejor comparación técnica y mejores resultados.
 En este estudio se debe tener en cuenta el proceso constructivo y el diseño realizado en la presente tesis.
- Se debe realizar ensayos de simulación sísmica a ambas estructuras, para comparar el comportamiento sísmico que presentan con mayor detalle y exactitud.
- Debe analizarse la interacción del refuerzo horizontal en los muros de adobe mediante ensayos estáticos. Esto se debe realizar ante el sometimiento de la estructura con fuerzas coplanarias.
- Se debe realizar ensayos a los materiales para conocer las propiedades mecánicas que serán utilizadas en el diseño. Esto permitirá reducir el margen de error de los resultados.

Capítulo 9. Referencias Bibliográficas

- Aliaga, S., & Gonzales, E. (2020). "Propuesta de mallas de fibras de maguey para mejorar la resistencia de muros de adobe en el distrito de Colcabamba Huancavelica." In *Universidad Peruana de Ciencias Aplicadas*. https://repositorioacademico.upc.edu.pe/bitstream/handle/10757/651586/Aliaga_CS.pdf?sequence=1
- Blondet, M., Vargas, J., Tarque, N., Soto, J., Sosa, C., & Sarmiento, J. (2015). Refuerzo sísmico de mallas de sogas sintéticas para construcciones de adobe. *Tierra, Sociedad, Comunidad:* 15 Seminario Iberoamericano de Arquitectura y Construcción Con Tierra.
- Córdova, P. (2014). Obtención de las propiedades mecánicas y estructurales de la caña Guadúa Angustifolia Kunth del Ecuador. Universidad Católica de Santiago de Guayaquil.
- Delgado, E. (2006). Comportamiento sísmico de un módulo de adobe de dos pisos con refuerzo horizontal y confinamientos de concreto armado [Pontificia Universidad Católica del Perú]. In *Test.* https://tesis.pucp.edu.pe/repositorio/bitstream/handle/20.500.12404/145/DELGADO_E RICKA_COMPORTAMIENTO_SISMICO_MODULO_ADOBE_DOS_PISOS.pdf?seq uence=1&isAllowed=y
- Guerrero, L. (2014). Potencial ecológico de la edificación con adobe. *Gremium*, *1*(1), 23–35. https://doi.org/10.56039/rgn01a03
- INEI. (2018). Resultados definitivos en el Censo Nacional del 2017, Tomo I.
- Instituto Nacional de Defensa Civil. (2018). *Módulos de vivienda de adobe reforzados con caña*. http://bvpad.indeci.gob.pe/doc/pdf/esp/doc1946/doc1946-2.pdf
- Mamani, E. (2020). Análisis comparativo de las propiedades mecánicas del adobe reforzado con fibra de caña y el adobe convencional, Carabayllo 2019 [Universidad Cesar Vallejo].
 - https://orcid.org/https://repositorio.ucv.edu.pe/handle/20.500.12692/617350000-0002-8140-1644
- Matos, G., Quiun, D., & San Bartolomé, Á. (1997). Ensayo de simulación sísmica en un módulo de adobe confinado por elementos de concreto armado. *XI Congreso Nacional de Ingeniería Civil. Trujillo, 1997*.

- Ministerio de Vivienda Construcción y Saneamiento. (2010). Norma técnica metrados para obras de edificación y habilitaciones urbanas. *Reglamento Nacional de Edificaciones*.
- Ministerio de Vivienda Construcción y Saneamiento. (2017). Norma E.080 diseño y construcción con tierra reforzada. *Reglamento Nacional de Edificaciones*.
- Ministerio de Vivienda Construcción y Saneamiento. (2018). Norma E.030 Diseño sismorresistente. *Reglamento Nacional de Edificaciones*. https://www.gob.pe/institucion/sencico/informes-publicaciones/887225-normas-del-reglamento-nacional-de-edificaciones-rne
- Ministerio de Vivienda Construcción y Saneamiento. (2020a). Norma E.010 Madera. Reglamento Nacional de Edificaciones. https://www.gob.pe/institucion/sencico/informes-publicaciones/887225-normas-del-reglamento-nacional-de-edificaciones-rne
- Ministerio de Vivienda Construcción y Saneamiento. (2020b). Norma E.020 Cargas. Reglamento Nacional de Edificaciones. https://www.gob.pe/institucion/sencico/informes-publicaciones/887225-normas-del-reglamento-nacional-de-edificaciones-rne
- Ministerio de Vivienda Construcción y Saneamiento. (2020c). Norma E.060 Concreto Armado. Reglamento Nacional de Edificaciones. https://www.gob.pe/institucion/sencico/informes-publicaciones/887225-normas-del-reglamento-nacional-de-edificaciones-rne
- Ministerio de Vivienda Construcción y Saneamiento. (2020d). Norma E.070 Albañilería. **Reglamento Nacional de Edificaciones**.

 https://www.gob.pe/institucion/sencico/informes-publicaciones/887225-normas-del-reglamento-nacional-de-edificaciones-rne
- Morales, R., Torres, R., Rengifo, L., & Candiotti, C. (1993). *Manual para la construcción de viviendas de adobe*.
- Moscoso, M. (2010). El adobe, sus características y el confort térmico. I Congreso Internacional Online Filosofía de La Sustentabilidad de Vivienda Tradicional "Transformando Comunidades Hacia El Desarrollo Local." http://www.ecuadorencifras.gob.ec/censo-

- Quiroz, H., & Tena, C. (2021). Propuesta de reforzamiento estructural de viviendas de adobe utilizando mallas de acero electrosoldadas en Huarangal Carabayllo. In *UNIVERSIDAD PERUANA DE CIENCIAS APLICADAS*. Universidad Peruana de Ciencias Aplicadas.
- San Bartolomé, Á. (2007). *Propuesta de diseño en adobe confinado*. http://blog.pucp.edu.pe/albanileria
- San Bartolomé, Á., & Pehovaz, R. (2005). *Comportamiento a carga lateral cíclica de muros de adobe confinado*. Ponencias del XV Congreso Nacional de Ingeniería Civil, Colegio de Ingenieros del Perú. http://blog.pucp.edu.pe/blog/wp-content/uploads/sites/617/2007/04/Adobe-Confinado.pdf
- San Bartolomé, Á., & Quiun, D. (2012). Investigaciones experimentales y propuesta de diseño sísmico para la mampostería de adobe confinado. XXXIV Jornada Sudamericana de Ingeniería Estructural.
- San Bartolomé, Á., & Quiun, D. (2015). Diseño de mallas electrosoldadas para el reforzamiento de viviendas de adobe.
- Servicio Nacional de Meteorología e Hidrología del Perú. (2020). *SENAMI*. Pronóstico Del Tiempo Para AREQUIPA (Arequipa).
- Silva, W., San Bartolomé, Á., & Ramírez, V. (2012). Cartilla de construcción en adobe confinado.
- Tantaleán, C. (2018). Desarrollo de un diseño estructural por esfuerzos de trabajo (DET) en viviendas de tapial de 1 piso.
- Tarque, N., Blondet, M., Vargas-Neumann, J., & Yallico-Luque, R. (2022). Rope mesh as a seismic reinforcement for two-storey adobe buildings. *Bulletin of Earthquake Engineering*, 20(8), 3863–3888. https://doi.org/10.1007/s10518-022-01346-7
- Tavera, H. (2014). Evaluación del peligro asociado a los sismos y efectos secundarios en Perú. In *Instituto Geofísico del Perú* (Vols. 2014–11704, Issues 978-612-45795-9–2).
- Tejada, U. (2001). Buena Tierra (D. y A. P. Centro de Investigación, Ed.; 1st ed.).
- Torres, A. (2012). "Comportamiento sísmico del adobe confinado. Variable: refuerzo horizontal."

Torres Gilles, C., & Jorquera Silva, N. (2018). Seismics retrofiting technics for structural recovery of chilean architectural heritage built with adobe. *Informes de La Construcción*, 70(550). https://doi.org/10.3989/ic.16.128

Zegarra Ciquero, L., Quiun Wong, D., & San Bartolomé, A. (2004). *Técnicas para el reforzamiento sísmico de viviendas de adobe*.

Anexo A

Metrado de edificaciones con adobe reforzado con cañas

a) Local Comunal – Orcopampa

		OBRAS DE CONCRETO SIMPLE							
01.01.00		SOLADOS ESPESOR 10CM							
01.01.01	S0LAD0				Area			27.52	m ²
					27.52		27.52		
01.01.02	CIMIENTO				Area	Altura		16.51	m³
					27.52	0.60	16.51		
			TEN		0				
01.01.03	SOBRECIMIENTO	SOBRECIMIENTO Area Altura							m³
		. 111			19.22	0.30	5.77		

	PARTIDA	DESCRIPCION	CANT	LARG0	ANCH0	ALT0	PARCIAL	TOTAL	UNID
01.02.00			ENCOFRAI	00				29.08	m²
01.02.01	SOBRECIMIENTO	4			Long	Altura		29.08	m²
			1	\	96.93	0.30	29.08		

	PARTIDA	DESCRIPCION	CANT	LARG0	ANCH0	ALT0	PARCIAL	TOTAL	UNID
01.03.00			MUR0					106.44	m²
01.03.01	MUR0			Long	Altura	Vanos	y a	106.44	m ²
	M1		1	6.13	2.39	3.48	11.17		
	M2			1.26	2.29	0.00	2.89		
	M3			1.26	2.76	0.00	3.48		
	M4		I(1)	7.16	2.40	0.19	16.99		
	M5			7.16	2.40	0.00	17.18		
	M6		1	11.95	2.29	0.00	27.37		
	M7		1	11.95	2.29	0.00	27.37		

	PARTIDA	DESCRIPCION	CANT	LARGO	ALT0	ANCH0	PARCIAL	TOTAL	UNID
01.04.00	TECHO 8							85.91	m²
01.04.01	TECH0							85.91	m^2
	SUM		1	9.64	7.96		76.73		
	BAÑO		1	2.31	3.97		9.17		

b) Puesto de Salud – Pampacolca

		OBRAS DE CONCRETO SIMPLE							
01.01.00		SOLADOS ESPESOR 10CM							m²
01.01.01							36.78	m ²	
					36.78		36.78		
01.01.02	CIMIENTO				Área	Altura		22.07	m³
					36.78	0.60	22.07		
01.01.03	SOBRECIMIENTO				Área	Altura		7.62	m³
					25.40	0.30	7.62		

	PARTIDA	DESCRIPCION	CANT	LARGO	ANCHO	ALT0	PARCIAL	TOTAL	UNID	
01.02.00		ENCOFRADO								
01.02.01	SOBRECIMIENTO	1.17			Long	Altura		38.35	m ²	
		1 11			127.82	0.30	38.35			

	PARTIDA	DESCRIPCION	CANT	LARGO	ANCHO	ALT0	PARCIAL	TOTAL	UNID
01.03.00			MUR0					146.97	m²
01.03.01	MUR0			Long	Altura	Vanos		146.97	m²
	M1		1	4.81	2.24	1.54	9.23		
	M2		1	3.18	2.24	1.24	5.88		
	M3		1	2.55	2.24	1.24	4.47		
	M4		17	4.41	2.24	1.54	8.34		
	M5		1	4.81	2.79	2.37	11.05		
	M6			3.18	2.79	0.00	8.87		
	M7		1	2.55	2.79	2.82	4.29		
	M8		700	4.41	2.79	2.37	9.93		
	M9		44/	5.44	2.24	1.54	10.64		
	M10		1	4.21	2.24	1.24	8.19		
	M11		1	4.41	2.24	2.48	7.40		
	M12		4	3.80	2.52	0.00	38.30		
	M13		2	2.96	2.52	0.00	14.92		
	M14		1	2.96	2.52	2.02	5.44		

	PARTIDA	DESCRIPCION	CANT	LARG0	ALT0	ANCHO	PARCIAL	TOTAL	UNID
01.04.00	TECH0							113.51	m²
01.04.01	TECH0							113.51	m²
	CONSULTORIO	CONSULTORIO DE MEDICINA		4.40	4.61		20.28		
	CONSULTORIO	O DEL NIÑO	1	4.40	5.04		22.18		

CONSULTORIO DE NUTRICION	1	4.40	4.61	20.28	
SALA DE ESPERA 1	1	3.56	4.61	16.41	
SALA DE ESPERA 2	1	3.56	2.52	8.97	
HALL	1	3.56	5.46	19.44	
BAÑO	1	3.56	1.67	5.95	

Metrado de edificaciones con adobe confinado con elementos de concreto armado

a) Local Comunal – Orcopampa

		OBRAS	S DE CONCRET	O SIMPLE	=					
01.01.00		S0L	ADOS ESPESOI	R 10CM				46.40	m^2	
01.01.01	S0LAD0				Area			26.02	m²	
					26.02		26.02			
01.01.02	CIMIENTO		FA	P	Area	Altura		15.61	m³	
			TEN	FA	26.02	0.60	15.61			
		100	1	74	M					
01.01.03	SOBRECIMIENTO	OBRECIMIENTO Area Altura								
					15.89	0.30	4.77			

		00040	DE CONODET	2 4 10 4 4 12					
04.00.00		UBRAS	DE CONCRETO		U			0.40	2
01.02.00			f'c 100 kg/cn	<u>12</u>	1	T T		8.16	m³
01.02.01	COLUMNAS			\	V	1 1		4.35	m³
		EJE A (40X40)	3	0.40	0.40	2.29	1.10		
		EJE A (40X10)	2	0.40	0.15	2.29	0.27		
		EJE B (40X10)	2	0.40	0.15	2.29	0.27		
		EJE C (40X10)	2	0.40	0.15	2.76	0.33		
		EJE D (40X40)	3	0.40	0.40	2.40	1.15		
	1	EJE D (40X10)	- 1	0.40	0.15	2.40	0.14		
		EJE E (40X40)	3	0.40	0.40	2.24	1.08		
01.02.02	VIGAS	Entre ejes:		Área		Peralte		3.81	m^3
	V-A	1-2	1	1.33		0.20	0.27		
		2-3	1 1 1 A A	0.77		0.20	0.15		
		3-4	1	0.95		0.20	0.19		
	V-D	1-2	1	1.43		0.20	0.29		
		2-4	1	1.60		0.20	0.32		
	V-E	1-2	1	1.43		0.20	0.29		
		2-4	1	1.60		0.20	0.32		
	V - EJE 1	A-E	1	4.60		0.20	0.92		
		1	<u> </u>	1					
	V - EJE 2	D-E	1	0.76		0.20	0.15		
			•	55		0.20			
	V - EJE 4	A-E	1	4.60		0.10	0.46		
	. 202 1	,,,_	•			0110	0.10		
1 1		I		1	I	1 1		1 1	

	PARTIDA	DESCRIPCION	CANT	LARGO	ANCHO	ALT0	PARCIAL	TOTAL	UNID
01.03.00			ENCOFRADO)				65.27	m²
01.03.01	SOBRECIMIENTO				Long	Altura		24.28	m^2
			1		80.94	0.30	24.28		
01.03.02	COLUMNAS			Long	Long	Altura		21.99	m²
		C1	1	0.40	0.40	2.24	1.79		
		C2	1	0.40	0.40	2.24	1.79		
		C3	1	0.40	0.40	2.24	1.79		
		C4	1	0.40	0.40	2.40	1.92		
		C5	1	0.40	0.40	2.40	1.92		
		C6	1	0.40	0.40	2.40	1.92		
		C7	1	0.40	0.40	2.29	1.83		
		C8	TIN	0.40	0.40	2.29	1.83		
		C9	1-11	0.40	0.40	2.29	1.83		
		CL-1 y CL -2: Eje A	2	0.40	0.15	2.29	1.26		
		CL-1: Eje B	2	0.40	0.15	2.29	1.26		
		CL-1: Eje C	2	0.40	0.15	2.76	1.52		
	la la	CL-1: Eje D	/ 1	0.40	0.15	2.40	1.32		
	-				1				
01.03.03	VIGAS	Entre ejes:		Lado 1	Lado 2	Altura		19.00	m²
	V-A	1-2	1	3.53	3.13	0.20	1.33		
		2-3	1	2.52	2.52	0.20	1.01		
		3-4	1	2.51	2.11	0.20	0.92		
					777				
	V-D	1-2	1	3.37	3.17	0.20	1.31		
		2-4	1	3.79	3.59	0.20	1.48		
						\mathcal{I}_{A}	/		
	V-E	1-2	1,239	3.77	3.17	0.20	1.39		
		2-4		4.19	3.59	0.20	1.56		
), <u> </u>					0.00			
	V - EJE 1	A-E	1/1	11.95	11.15	0.20	4.62		
	\ <u></u>	<u> </u>	C M			0.00			
	V - EJE 2	D-E		1.91	1.91	0.20	0.76		
	\/ EIE 4	A F		44.05	44.45	0.00	4.00		
	V - EJE 4	A-E	1	11.95	11.15	0.20	4.62		

	PARTIDA	DESCRIPCION	Orientación	CANT	Ø	Long	repeticiones	Ø 6mm	Ø 8mm	Ø 3/8"	Parcial	Total (kg)
01.04.00	ACERO FY 4200							0.222	0.395	0.560		281.76
01.04.01	COLUMNAS											127.15
	30.280	C1,C2,C3	Longitudinal	4	3/8"	2.73	3			0.560	18.35	
			Estribos	16	6mm	1.12	3	0.222			11.93	
	25.633	C4,C5,C6	Longitudinal	4	8mm	2.89	3		0.395		13.70	
			Estribos	16	6mm	1.12	3	0.222			11.93	
	16.741	C7,C9	Longitudinal	4	8mm	2.78	2		0.395		8.78	
			Estribos	16	6mm	1.12	2	0.222			7.96	
	10.205	C8	Longitudinal	4	3/8"	2.78	1			0.560	6.23	
			Estribos	16	6mm	1.12	1	0.222			3.98	
					\r			i				
	6.516	CL-1: Eje A	Longitudinal	4	8mm	2.73	1 _	-	0.395		4.31	
			Estribos	16	6mm	0.62	1	0.222			2.20	
	8.317	CL-2: Eje A	Longitudinal	4	3/8"	2.73	1			0.560	6.12	
			Estribos	16	6mm	0.62	1	0.222			2.20	
	13.031	CL-1: Eje B	Longitudinal	4	8mm	2.73	2		0.395		8.63	
			Estribos	16	6mm	0.62	2	0.222			4.40	
	15.319	CL-1: Eje C	Longitudinal	4	8mm	3.28	2		0.395		10.36	
			Estribos	18	6mm	0.62	2	0.222			4.96	
	6.517	CL-1: Eje D	Longitudinal	4	8mm	2.73	1		0.395		4.31	
			Estribos	16	6mm	0.62	1	0.222			2.20	

01.04.02	VIGAS										154.61
	33.078	V-A	Longitudinal	4	8mm	14.36	1		0.395	22.69	
			Estribos	39	6mm	1.2	1	0.222		10.39	
	33.0784	V-D	Longitudinal	4	8mm	14.36	1		0.395	22.69	
			Estribos	39	6mm	1.2	1	0.222		10.39	
	33.0784	V-E	Longitudinal	4	8mm	14.36	1		0.395	22.69	
			Estribos	39	6mm	1.2	1	0.222		10.39	
	24.9448	V-1	Longitudinal	4	8mm	8.06	1		0.395	12.73	
			Estribos	55	6mm	1	1/1	0.222		12.21	
	11.106	V-2	Longitudinal	4	8mm	4.5	1	s -	0.395	7.11	
			Estribos	18	6mm	1	1,9	0.222		4.00	
	7.11	V-4	Longitudinal	4	8mm	4.5	1	ń	0.395	7.11	
			Estribos	55	6mm	1	1	0.222		12.21	

	PARTIDA	DESCRIPCION	CANT	LARGO	ALTURA	VANOS	PARCIAL	TOTAL	UNID
01.05.00			MURO					86.04	m²
01.05.01	MUR0	Entre ejes						86.04	m ²
	M1		1	1.65	2.29	0.00	3.78		
	M2		1	1.65	2.29	0.00	3.78		
	M3		1	3.17	2.40	0.00	7.61		
	M4		1	2.14	2.40	0.00	5.14		
	M5		1	3.17	2.24	0.00	7.10		
	M6		1	3.59	2.24	0.00	8.04		
	M7		1	2.67	2.29	0.00	6.11		
	M8		1	3.21	2.29	0.00	7.35		
	M9		1	2.67	2.29	0.00	6.11		
	M10		_1=1	1.91	2.29	0.00	4.37		
	M11	. 1	1 -	2.67	2.29	0.00	6.11		
	M12	10	1	3.21	2.29	0.00	7.35		
	M13	1 //1	1	2.67	2.29	0.00	6.11		
	M14		1	1.91	2.29	0.00	4.37		
	M15		1	1.26	2.29	2.36	0.53		
	M16		/ 1 /	1.05	2.24	0.19	2.16		

	PARTIDA	DESCRIPCION	CANT	LARG0	ALT0	ANCH0	PARCIAL	TOTAL	UNID
01.06.00			TECH0					85.91	m²
01.06.01	TECH0				1///			85.91	m²
		SUM	1	9.64	7.96		76.73		
	Е	BAÑO	1	2.31	3.97		9.17		

b) Puesto de Salud – Pampacolca

		OBRAS	DE CONCRETO	O SIMPLE					
01.01.00		SOLA	DOS ESPESOF	R 10CM				62.55	m²
01.01.01	SOLADO				Área			35.10	m²
					35.10		35.10		
01.01.02	CIMIENTO				Área	Altura		21.06	m³
					35.10	0.60	21.06		
01.01.03	SOBRECIMIENTO				Área	Altura		6.39	m³
					21.30	0.30	6.39		

		OBRAS	DE CONCRETO) ARMAD	0				
01.02.00			f'c 100 kg/cm	12				12.02	m3
01.02.01	COLUMNAS	119			11			6.17	m³
		C1	1	0.40	0.40	2.24	0.36		
		C2	1	0.40	0.40	2.24	0.36		
		C3	1	0.40	0.40	2.24	0.36		
		C4	1	0.40	0.40	2.24	0.36		
		C5	1	0.40	0.40	2.79	0.45		
		C6	1	0.40	0.40	2.79	0.45		
		C7	1	0.40	0.40	2.79	0.45		
		C8	1	0.40	0.40	2.79	0.45		
		C9	1	0.40	0.40	2.24	0.36		
		C10	1	0.40	0.40	2.24	0.36		
		C11	1	0.40	0.40	2.24	0.36		
		CL-1: Eje C	2	0.40	0.15	2.24	0.27		
		CL-2: Eje C	2	0.40	0.15	2.24	0.27		
		CL-1: Eje B	4	0.40	0.15	2.79	0.67		
		CL-2: Eje A	4	0.40	0.15	2.24	0.54		
		CL-2: Eje 5	1	0.40	0.15	2.24	0.13		
01.02.02	VIGAS	Entre ejes:		Área		Peralte		5.85	m³
01.02.02	V-A	1-2	1	0.60		0.20	0.12	0.00	1111
	V //	1-2	1	0.99		0.20	0.20		
		2-3	1	0.95		0.20	0.19		
		3-4	1	1.41		0.20	0.28		
		4-5	1	0.60		0.20	0.12		
		5-6	1	0.43		0.20	0.09		
	V-B	1-2	1	1.12		0.20	0.22		

	1-2	1	0.43	0.20	0.09	
	2-3	1	0.90	0.20	0.18	
	3-4	1	0.48	0.20	0.10	
	3-4	1	0.36	0.20	0.07	
	4-5	1	4.28	0.20	0.86	
	5-6	1	1.12	0.20	0.22	
V-C	1-2	1	0.60	0.20	0.12	
	1-2	1	0.94	0.20	0.19	
	2-4	1	0.94	0.20	0.19	
	2-4	1	1.05	0.20	0.21	
	2-4	1	0.94	0.20	0.19	
	4-6	_ 1 .	0.94	0.20	0.19	
	4-6	1	0.60	0.20	0.12	
	100	A man		PL		
V-1	A-B	1	1.18	0.20	0.24	
	B-C	1	1.52	0.20	0.30	
- 1			1/2	7 (1)		
V-2	B-C	1	1.52	0.20	0.30	
22						
V-4	B-C	1	1.52	0.20	0.30	
V-5	A-B	1	0.78	0.20	0.16	
	A-B	1	0.34	0.20	0.07	
				J 3//	1	
V-5	A-B	1	1.18	0.20	0.24	
	B-C	1	1.52	0.20	0.30	

	PARTIDA	DESCRIPCION	CANT	LARG0	ANCHO	ALT0	PARCIAL	TOTAL	UNID
01.03.00			ENCOFRADO)				98.91	m²
01.03.01	SOBRECIMIENTO				Long	Altura		35.46	m²
			1		118.19	0.30	35.46		
01.03.02	COLUMNAS			Long	Long	Altura		37.47	m²
		C1	1	0.40	0.40	2.24	1.79		
		C2	1	0.40	0.40	2.24	1.79		
		C3	1	0.40	0.40	2.24	1.79		
		C4	1	0.40	0.40	2.24	1.79		
		C5	1	0.40	0.40	2.79	2.23		
		C6	1	0.40	0.40	2.79	2.23		
		C7	1	0.40	0.40	2.79	2.23		
		C8	1	0.40	0.40	2.79	2.23		

		C9	1	0.40	0.40	2.24	1.79		
		C10	1	0.40	0.40	2.24	1.79		
		C11	1	0.40	0.40	2.24	1.79		
		CL-1: Eje C	2	0.40	0.15	2.24	2.46		
		CL-2: Eje C	2	0.40	0.15	2.24	2.46		
		CL-1: Eje B	4	0.40	0.15	2.79	6.14		
		CL-2: Eje A	4	0.40	0.15	2.24	4.93		
		CL-2: Eje 5	1	0.40	0.15	2.24	1.23		
01.03.03	VIGAS	Entre ejes:		Lado 1	Lado 2	Altura		25.98	m²
	V-A	1-2	1	4.61	4.21	0.20	1.76		
		2-3	1	2.52	2.52	0.20	1.01		
		3-4	-11	2.52	2.52	0.20	1.01		
		4-5	1	2.94	2.74	0.20	1.14		
		5-6	1	1.67	1.07	0.20	0.55		
		1 //1			1) " .			
	V-B	1-2	1	4.21	4.01	0.20	1.64		
	1	2-3	1	2.52	2.32	0.20	0.97		
		3-4	1 /	2.52	2.32	0.20	0.97		
		4-5	1	2.74	2.74	0.20	1.10		
		5-6	1	1.07	1.27	0.20	0.47		
	V-C	1-2	_1	4.61	4.01	0.20	1.72		
		2-4	1	4.64	5.04	0.20	1.94		
		4-6	17	4.01	4.61	0.20	1.72		
							/		
	V-1	A-B	-1	2.96	3.56	0.20	1.30		
		B-C	1	3.80	4.40	0.20	1.64		
			CAA						
	V-2	B-C	1	3.80	3.80	0.20	1.52		
	V-4	B-C	1	3.80	3.80	0.20	1.52		
	V-5	A-B	1	2.66	2.66	0.20	1.06		
	V-6	A-B	1	2.96	3.56	0.20	1.30		
		B-C	1	3.80	4.40	0.20	1.64		

	PARTIDA	DESCRIPCION	Orientación	CANT	Ø	Long	repeticiones	Ø 6mm	Ø 8mm	Ø 3/8"	Parcial	Total (kg)
01.04.00	ACERO FY 4200							0.222	0.395	0.560		413.85
01.04.01	COLUMNAS											205.24
	33.167	C1,C2,C3,C4	Longitudinal	4	8mm	2.73	4		0.395		17.254	
			Estribos	16	6mm	1.12	4	0.222			15.913	
	40.6208	C5,C6,C7,C8	Longitudinal	4	8mm	3.28	4		0.395		20.730	
			Estribos	20	6mm	1.12	4	0.222			19.891	
	16.583	C9,C11	Longitudinal	4	8mm	2.73	2		0.395		8.627	
			Estribos	16	6mm	1.12	2	0.222			7.956	
	10.093	C10	Longitudinal	4	3/8"	2.73	1			0.560	6.115	
			Estribos	16	6mm	1.12	10	0.222			3.978	
	13.031	CL-1: Eje C	Longitudinal	4	8mm	2.73	2		0.395		8.627	
			Estribos	16	6mm	0.62	2	0.222			4.404	
	16.635	CL-2: Eje C	Longitudinal	4	3/8"	2.73	2			0.560	12.230	
			Estribos	16	6mm	0.62	2	0.222			4.404	
	31.741	CL-1: Eje B	Longitudinal	4	8mm	3.28	4		0.395		20.730	
			Estribos	20	6mm	0.62	4	0.222			11.011	
	10.100	CL-2: Eje 5	Longitudinal	4	3/8"	3.28	1			0.560	7.347	
			Estribos	20	6mm	0.62	1	0.222			2.753	
	33.270	CL-2: Eje A	Longitudinal	4	3/8"	2.73	4			0.560	24.461	
			Estribos	16	6mm	0.62	4	0.222			8.809	

01.04.02	VIGAS										208.60
	44.5336	V-A	Longitudinal	4	8mm	14.36	1		0.395	22.689	
			Estribos	82	6mm	1.2	1	0.222		21.845	
	45.5992	V-B	Longitudinal	4	8mm	14.36	1		0.395	22.689	
			Estribos	86	6mm	1.2	1	0.222		22.910	
	45.3328	V-C	Longitudinal	4	8mm	14.36	1		0.395	22.689	
			Estribos	85	6mm	1.2	1/1	0.222		22.644	
	21.1708	V-1	Longitudinal	4	8mm	8.06	1	5	0.395	12.735	
			Estribos	38	6mm	1	1	0.222		8.436	
	9.552	V-2	Longitudinal	4	8mm	4.5	1	11	0.395	7.110	
			Estribos	11	6mm	1	1	0.222		2.442	
	9.552	V-4	Longitudinal	4	8mm	4.5	1		0.395	7.110	
			Estribos	11	6mm	1	1	0.222		2.442	
	11.6932	V-5	Longitudinal	4	8mm	3.86	1		0.395	6.099	
			Estribos	21	6mm	1.2	1	0.222		5.594	
	21.1708	V-6	Longitudinal	4	8mm	8.06	1		0.395	12.735	
			Estribos	38	6mm	1	1	0.222		8.436	

	PARTIDA	DESCRIPCION	CANT	LARGO	ALTURA	VANOS	PARCIAL	TOTAL	UNID
01.05.00			MUR0					124.18	m²
01.05.01	MUR0	Entre ejes						124.18	m ²
	M1		1	3.86	2.24	2.16	6.49		
	M2		1	4.34	2.24	2.48	7.24		
	M3		1	3.86	2.24	2.16	6.49		
	M4		1	3.85	2.79	2.37	8.37		
	M5		1	2.25	2.79	0.00	6.28		
	M6		1	2.10	2.79	2.78	3.08		
	M7		1	3.86	2.79	2.37	8.40		
	M8		1	3.86	2.79	2.16	8.61		
	M9		_1_	3.41	2.24	0.00	7.64		
	M10	-	1 1- /	1.50	2.24	2.16	1.20		
	M11	101	1	1.07	2.24	0.29	2.11		
	M12	4 ////	4	3.80	2.52	0.00	38.30		
	M13		2	2.96	2.52	0.00	14.92		
	M14		, 1	2.81	2.52	2.02	5.07		

	PARTIDA	DESCRIPCION	CANT	LARGO	ALT0	ANCH0	PARCIAL	TOTAL	UNID
01.06.00			TECH0					113.51	m²
01.06.01	TECH0							113.51	m²
	CONSULTORIO	DE MEDICINA	1	4.40	4.61	A .	20.28		
	CONSULTOR	IO DEL NIÑO	1	4.40	5.04		22.18		
	CONSULTORIO	DE NUTRICION	1	4.40	4.61	\sqrt{L}	20.28		
	SALA DE I	ESPERA 1	1	3.56	4.61		16.41		
	SALA DE I	ESPERA 2	1	3.56	2.52	/ · · · ·	8.97		
	HA	LL	1	3.56	5.46		19.44		
	BA	ÑO	1	3.56	1.67		5.95		

Anexo B

Análisis de precios unitarios

a) APU para edificaciones con adobe reforzado con cañas

Partida	01.01.01.01	CONCRE	TO f'c=100 kg/cm2	PARA SOLADO)			
Rendimient	o m2/DIA	60	EQ.	60	Costo unitario di	recto por : m2		24.77
	Descripción	n Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de obra						
	OPERARIO			hh	1	0.1333	15.96	2.13
	OFICIAL			hh	1	0.1333	12.58	1.68
	PEÓN			hh	2	0.2667	11.41	3.04
								6.85
		Materiales						
	CEMENTO	PORTLAND TIPO I (42.5 k	g	bol		0.3600	27.00	9.72
	HORMIGON	I (PUESTO EN OBRA)		m3		0.1200	50.00	6.00
								15.72
		Equipos						
	HERRAMIE	NTAS MANUALES		%mo		3.0000	6.85	0.21
	MEZCLADO	RA DE CONCRETO DE 9	-11p3 INCL. COMBI	US ⁻ hm	1	0.1333	15.00	2.00
								2.20

Partida	01.01.02.01	CONCRETO f'c=100 kg/cn	n2 PARA CIMIE	NTO	11			
Rendimie	nto m3/DIA	25 EQ.	1	25 Costo unita	rio directo po	r : m3		205.10
	Descripción Recu Mano	urso o de obra	Unidad	Cuadrilla	Cantidad	Pr	ecio S/.	Parcial S/.
	OPERARIO		hh		1	0.3200	15.96	5.11
	OFICIAL		hh		1/	0.3200	12.58	4.03
	PEÓN		hh		2	0.6400	11.41	7.30
								16.44
	Mater	riales						
	PIEDRA CHANCAI	DA DE 1/2" (PUESTO EN OBRA)	m3			0.6670	60.00	40.02
	ARENA GRUESA ((PUESTO EN OBRA)	m3			0.6250	50.00	31.25
ı	CEMENTO PORT	LAND TIPO I (42.5 kg	bol			4.1700	27.00	112.59
ı								183.86
	Equip	oos						
	HERRAMIENTAS I	MANUALES	%mo			3.0000	16.44	0.49
	MEZCLADORA DE	CONCRETO DE 9 -11p3 INCL. COM	IBUS hm		1	0.3200	15.00	4.80
ı								4.80

Partida	01.01.03.01 CONCRETO f'	c=100 kg/cm2 PARA SOBF	RECIMIENTOS	3			
Rendimier	nto m3/DIA 25 EQ.	JCM X	12 Costo unita	rio directo po	r : m3		213.64
Código	Descripción Recurso	Unidad	Cuadrilla	Cantidad	P	recio S/.	Parcial S/.
	Mano de obra						
	OPERARIO	hh		1	0.3200	15.96	5.11
	OFICIAL	hh		1	0.3200	12.58	4.03
	PEÓN	hh	2	2	0.6400	11.41	7.30
							16.44
	Materiales						
	PIEDRA CHANCADA DE 1/2" (PUESTO EN	OBRA) m3			0.4900	60.00	29.40
	PIEDRA MEDIANA DE 4" (PUESTO EN OBF	RA) m3			0.2800	60.00	16.80
	ARENA GRUESA (PUESTO EN OBRA)	m3			0.3900	50.00	19.50
	CEMENTO PORTLAND TIPO I (42.5 kg	bol			4.5000	27.00	121.50
							187.20
	Equipos						
	HERRAMIENTAS MANUALES	%mo			3.0000	16.44	0.49
	MEZCLADORA DE CONCRETO DE 9 -11p3	INCL. COMBUS hm		1	0.6667	15.00	10.00
							10.00

Partida	01.01.03.02	ENCOFRADO Y	DESENCOFRAD	O NORMAL F	PARA SOBRI	CIMIENT	os		
Rendimiento	m2/DIA	14 EQ.	-		Costo unita	rio directo	por : m2		43.04
	Descripción Recurso		Unidad	Cuadrilla	Cantidad		Precio S/.	Parcial S/.	
	Mano de	obra							
	OPERARIO		hh	1	1	0.5714	15.96		9.12
	OFICIAL		hh	1	1	0.5714	12.58		7.19
	PEÓN		hh	1	1	0.5714	11.41		6.52
									22.83
	Materiales								
	CLAVOS PARA MADE	RA CON CABEZA DE 3"	kg			0.2600	5.90		1.534
	ALAMBRE NEGRO N°	8	kg			0.1300	8.40		1.092
	MADERA ROBLE NAC	IONAL	p2			4.8300	3.50		16.905
									19.531
	Equipos								
	HERRAMIENTAS MAN	IUALES	%mo			3.0000	22.83		0.68
									0.68

Partida	01.02.01.01	MURO DE ADOBE							
Rendimie	nto M2/DIA	10 MO.	-	Costo unita	rio directo po	or : M2			62.34
	Descripción Recu	rso	Unidad	Cuadrilla	Cantidad		Precio S/.	Parcial S/.	
	Mano	de obra							
	OPERARIO		hh		2	1.6000	15.96		25.54
	OFICIAL		hh		2	1.6000	12.58		20.13
	PEÓN		hh			0.8000	11.41		9.13
									54.79
	Materiales								
	ADOBE 0.4X0.4X0.	2	und			17.5000	0.25		4.38
	BARRO		m3			0.0300	3.00		0.09
	CAÑA DE CARRIZO		m			2.6700	0.54		1.44
									5.91
	Equipos								
	HERRAMIENTAS N	IANUALES	%mo			3.0000	54.79		1.64
									1.64

Partida	01.03.01.01	TECHO CON V	IGUETAS 16.5X4 CM			
Rendimie	nto m2/DIA 9 EQ.	-	Costo un	nitario directo por	: GBL	42.17
	Descripción Recurso Mano de obra	Unidad	Cuadrilla Cantidad	d Pred	cio S/. Parc	ial S/.
	OPERARIO	hh	1	0.8889	15.96	14.19
	OFICIAL	hh	2	1.7778	12.58	22.36
	PEÓN	hh	3	2.6667	11.41	30.43 66.98
	Materiales					00.90
	CLAVOS PARA MADERA CON CABEZA DE 3"	kg		0.02	5.90	0.14
	VIGUETA DE EUCALIPTO DE 16.5x4 cm	p2		1.04	2.45	2.54
	VIGA DE EUCALIPTO DE 18X14 cm	p2		3.96	4.00	15.83
	TEJA ANDINA	und		25.00	0.20	5.00
	CIELO RASO OLYMPIA 1.20 X 0.60 M X 12 MM SKYLINE	m2		1.00	18.66	18.66
						42.17
	Equipos					
	HERRAMIENTAS MANUALES	%mo		3.0000	66.98	2.01

Partida	01.03.01.01		TECHO CON	VIGUETAS 19	X4 CM				
Rendimient	to kg/DIA	9 EQ.	-		Costo unita	rio directo	por : GBL	39	9.16
	Descripción R	ecurso	Unidad	Cuadrilla	Cantidad	!	Precio S/.	Parcial S/.	
	Mano de obra								
	OPERARIO		hh	•	1	0.8889	15.96	14.	.19
	OFICIAL		hh	2	2	1.7778	12.58	22.	.36
	PEÓN		hh	3	3	2.6667	11.41	30.	.43
								66.	.98
	Materiales								
	CLAVOS PARA MA	ADERA CON CABEZA DE 3"	kg			0.02	5.90	0.	.10
	VIGUETA DE EUC	CALIPTO DE 19x4 cm	p2			1.11	2.45	2.	.72
	VIGA DE EUCALIF	PTO DE 18X14 cm	p2			3.68	4.00	14.	.72
	TEJA ANDINA		und			22.85	0.20	4.	.57
	CIELO RASO OLYI	MPIA 1.20 X 0.60 M X 12 MM SKYLINE	m2			0.91	18.66	17.	.06
								39.	.16
	Eq	juipos							
	HERRAMIENTA	AS MANUALES	%mo			3.0000	66.98	2.	.01

b) APU para edificaciones con adobe confinado con elementos de concreto armado

Partida	01.01.01.01		CONCRETO f'c=100 kg/cm2	PARA SOLAD	0			
Rendimiento	m2/DIA	60	EQ.	60	Costo unitario dire	ecto por : m2		24.77
	Descripción Re	curso Mano de obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	OPERARIO			hh	1	0.1333	15.96	2.13
	OFICIAL			hh	7 1	0.1333	12.58	1.68
	PEÓN			hh	2	0.2667	11.41	3.04 6.85
		Materiales						
	CEMENTO POR	RTLAND TIPO	l (42.5 kg	bol		0.3600	27.00	9.72
	HORMIGON (PL	JESTO EN OB	RA)	m3		0.1200	50.00	6.00
		Equipos						15.72
	HERRAMIENTA	Equipos S MANUALES		%mo		3.0000	6.85	0.21
	MEZCLADORA	DE CONCRET	O DE 9 -11p3 INCL. COMBUST	IB hm	1	0.1333	15.00	2.00 2.20

Partida	01.01.03.01	CONCRETO f'c=100 kg/c	m2 PARA SOBRE	CIMIENTOS	4	7		
Rendimiento	m3/DIA	25 EQ.		12 Costo unitar	io direc	to por : m3		213.64
Código	Descripción Recu	rso	Unidad	Cuadrilla	Cai	ntidad	Precio S/.	Parcial S/.
	Ma	no de obra						
	OPERARIO		hh		1	0.3200	15.96	5.11
	OFICIAL		hh		1	0.3200	12.58	4.03
	PEÓN		hh		2	0.6400	11.41	7.30
								16.44
	Ma	teriales						
	PIEDRA CHANCAD	DA DE 1/2" (PUESTO EN OBRA)	m3			0.4900	60.00	29.40
	PIEDRA MEDIANA	DE 4" (PUESTO EN OBRA)	m3			0.2800	60.00	16.80
	ARENA GRUESA (I	PUESTO EN OBRA)	m3			0.3900	50.00	19.50
	CEMENTO PORTL	AND TIPO I (42.5 kg	bol			4.5000	27.00	121.50
								187.20
	Eq	uipos						
	HERRAMIENTAS N	MANUALES	%mo			3.0000	16.44	0.49
	MEZCLADORA DE	CONCRETO DE 9 -11p3 INCL. COMB	USTIB hm		1	0.6667	15.00	10.00
		·						10.00

Partida	01.01.02.01	CONCRETO f'c=100 kg	cm2 PARA CIMIEN	то				
Rendimiento	m3/DIA	25 EQ.		25 Costo unita	rio direc	to por : m3		205.10
	Descripción Recu	rso	Unidad	Cuadrilla	Ca	ntidad	Precio S/.	Parcial S/.
	Ma	no de obra						
	OPERARIO		hh		1	0.3200	15.96	5.11
	OFICIAL		hh		1	0.3200	12.58	4.03
	PEÓN		hh		2	0.6400	11.41	7.30
								16.44
	Ma	teriales						
	PIEDRA CHANCAD	A DE 1/2" (PUESTO EN OBRA)	m3			0.6670	60.00	40.02
	ARENA GRUESA (F	PUESTO EN OBRA)	m3			0.6250	50.00	31.25
	CEMENTO PORTL	AND TIPO I (42.5 kg	bol			4.1700	27.00	112.59
		· -						183.86
	Eq	uipos						
	HERRAMIENTAS N	MANUALES	%mo			3.0000	16.44	0.49
	MEZCLADORA DE	CONCRETO DE 9 -11p3 INCL. COM	BUSTIB hm		1	0.3200	15.00	4.80
		•						4.80

Partida	01.01.03.02	ENCOFR.	ADO Y DESENCOFRADO	NORMAL PA	RA SO	BRECIMIEN	тоѕ	
Rendimiento	m2/DIA	14 EQ.	FAL		Cos	sto unitario d	irecto por : m2	43.04
	Descripción Recu	irso	Unidad	Cuadrilla	Car	ntidad	Precio S/.	Parcial S/.
	Ma	no de obra						
	OPERARIO		hh		1	0.5714	15.96	9.12
	OFICIAL		hh		1	0.5714	12.58	7.19
	PEÓN		hh		1	0.5714	11.41	6.52
								22.83
	Materiales							
	CLAVOS PARA MA	DERA CON CABEZA DE 3"	kg			0.2600	5.90	1.534
	ALAMBRE NEGRO) N°8	kg			0.1300	8.40	1.092
	MADERA ROBLE N	NACIONAL	p2			4.8300	3.50	16.905
								19.531
	Equipos							
	HERRAMIENTAS N	MANUALES	%mo			3.0000	22.83	0.68
								0.68

Partida	01.02.01.02	ENCO	FRADO Y DESENCO	FRADO NORM	AL EN	COLUMNAS		
Rendimiento	m2/DIA	10 EQ.			Co	sto unitario d	irecto por : m2	63.58
	Descripción Recu		Unidad	Cuadrilla	Ca	ntidad	Precio S/.	Parcial S/.
		no de obra						
	OPERARIO		hh		1	0.80000	15.96	12.77
	OFICIAL		hh		1	0.80000	12.58	10.06
	PEÓN		hh		2	1.60000	11.41	18.26
								41.09
	Materiales							
	CLAVOS PARA MA	DERA CON CABEZA DE 3"	kg			0.30000	5.90	1.77
	ALAMBRE NEGRO	N°8	kg			0.17000	8.40	1.43
	MADERA ROBLE N	IACIONAL	p2			5.16000	3.50	18.06
			•					21.26
	Equipos							
	HERRAMIENTAS M	MANUALES	%mo			3.00000	41.09	1.23
								1.23

Partida	01.02.01.01	CONCRETO f'c=100 kg	cm2 EN COLUMN	AS				
Rendimiento	m3/DIA	10 EQ.		10	Cos	sto unitario d	irecto por : m3	264.80
	Descripción Recurso)	Unidad	Cuadrilla	Cai	ntidad	Precio S/.	Parcial S/.
	Mano	de obra						
	OPERARIO		hh		1	0.8000	15.96	12.77
	OFICIAL		hh		1	0.8000	12.58	10.06
	PEÓN		hh		4	3.2000	11.41	36.51
								59.34
	Materiales							
	PIEDRA CHANCADA I	DE 1/2" (PUESTO EN OBRA)	m3			0.6670	60.00	40.02
	ARENA GRUESA (PU	ESTO EN OBRA)	m3			0.6250	50.00	31.25
	CEMENTO PORTLAN	ID TIPO I (42.5 kg	bol			4.1700	27.00	112.59
								183.86
	Equipos							
	HERRAMIENTAS MAI	NUALES	%mo			3.0000	59.34	1.78
	MEZCLADORA DE CO	ONCRETO DE 9 -11p3 INCL. COM	BUSTIB hm		1	0.8000	15.00	12.00
	VIBRADOR DE CONC	RETO 4 HP 2.40"	hm		1	0.8000	12.00	9.60
								21.60

Partida	01.02.01.03		ACERO DE REFUERZO FY=4200	kg/cm2 COLU	JMNAS			
Rendimiento	kg/DIA	250 EQ.	\ LIVER	Cos	to unitario dire	cto por : m3		4.34
	Descripción Recurs		Unidad Cuad	rilla Can	tidad Pr	ecio S/.	Parcial S/.	
	Mano	de obra						
	OPERARIO		hh	1	0.0320	15.96		0.51
	OFICIAL		hh	3	0.0960	12.58		1.21
								1.72
	Materiales							
	ALAMBRE NEGRO N	°16	kg		0.0500	9.80		0.49
	ACERO CORRUGAD	O fy=4200	kg		1.0500	1.98		2.08
								2.57
	Equipos							
	HERRAMIENTAS MA	NUALES	%mo		3.0000	1.72		0.05
					2.3000	2		0.05

Partida	01.02.02.01	CONCRETO f'c=100 kg/d	cm2 EN VIGAS					
Rendimiento	m3/DIA	20 EQ.		20	Cos	sto unitario d	recto por : m3	224.33
	Descripción Recu	rso	Unidad	Cuadrilla	Cai	ntidad	Precio S/.	Parcial S/.
	Ma	no de obra						
	OPERARIO		hh		1	0.4000	15.96	6.38
	OFICIAL		hh		1	0.4000	12.58	5.03
	PEÓN		hh		4	1.6000	11.41	18.26
								29.67
	Materiales							
	PIEDRA CHANCAD	A DE 1/2" (PUESTO EN OBRA)	m3			0.6670	60.00	40.02
	ARENA GRUESA (F	PUESTO EN OBRA)	m3			0.6250	50.00	31.25
	CEMENTO PORTL	AND TIPO I (42.5 kg	bol			4.1700	27.00	112.59
								183.86
	Equipos							
	HERRAMIENTAS M	MANUALES	%mo			3.0000	29.67	0.89
	MEZCLADORA DE	CONCRETO DE 9 -11p3 INCL. COME	SUSTIB hm		1	0.4000	15.00	6.00
	VIBRADOR DE COI	NCRETO 4 HP 2.40"	hm		1	0.4000	12.00	4.80
								10.80

Partida	01.02.02.02	E	NCOFRADO Y DESEN	COFRADO NOF	MAL E	N VIGAS			
Rendimiento	m2/DIA 9 E	9 EQ Costo unitario directo por : m2							73.69
	Descripción Recurso		Unidad	Cuadrilla	Cai	ntidad	Precio S/.	Parcial S/.	
	Mano de obra								
	OPERARIO		hh		1	0.8889	15.96		14.19
	OFICIAL		hh		1	0.8889	12.58		11.18
	PEÓN		hh		2	1.7778	11.41		20.28
									45.65
	Materiales								
	CLAVOS PARA MADERA CON C	ABEZA DE 3"	kg			0.2400	5.90		1.416
	ALAMBRE NEGRO N°8		kg			0.2100	8.40		1.764
	MADERA ROBLE NACIONAL		p2			6.7100	3.50		23.485
								:	26.665
	Equipos								
	HERRAMIENTAS MANUALES		%mo			3.0000	45.65		1.37
									1.37

Partida	01.02.02.03 ACERO DE REFUERZO FY=4200 kg/cm2 VIGAS									
Rendimiento	kg/DIA 250 EQ.		FENI	- Costo		to unitario directo por : m3			4.34	
	Descripción Recur		Unida	d	Cuadrilla	Cant	idad	Precio S/.	Parcial S/.	
	Mai	no de obra								
	OPERARIO		hh			1	0.0320	15.96	i	0.51
	OFICIAL		hh			3	0.0960	12.58		1.21
										1.72
	Materiales									
	ALAMBRE NEGRO	N°16	kg				0.0500	9.80	1	0.49
	ACERO CORRUGA	DO fy=4200	kg				1.0500	1.98	1	2.08
										2.57
	Equipos									
	HERRAMIENTAS M	ANUALES	%mo				3.0000	1.72	!	0.05
										0.05

Partida	01.03.01.01	MURO DE ADOBE		3///77	-\A			
Rendimiento	M2/DIA	10 MO.		Costo unita	io direc	to por : M2		60.90
	Descripción Recur	so	Unidad	Cuadrilla	Ca	ntidad	Precio S/.	Parcial S/.
	Mar	o de obra						
	OPERARIO		hh		2	1.6000	15.96	25.54
	OFICIAL		hh		2	1.6000	12.58	20.13
	PEÓN		hh		1	0.8000	11.41	9.13
								54.79
	Materiales							
	ADOBE 0.4X0.4X0.2		und			17.5000	0.25	4.38
	BARRO		m3			0.0300	3.00	0.09
								4.47
	Equipos							
	HERRAMIENTAS M.	ANUALES	%mo			3.0000	54.79	1.64
								1.64

Partida	01.04.01.01	TECHO CON V	TECHO CON VIGUETAS 16.5X4 CM						
Rendimiento	m2/DIA	9 EQ.	-	- Costo unitario di			irecto por : GBL	42.17	
	Descripción Recurs	0	Unidad	Cuadrilla	Ca	ntidad	Precio S/.	Parcial S/.	
	Mano de obra								
	OPERARIO		hh		1	0.8889	15.96	14.19	
	OFICIAL		hh		2	1.7778	12.58	22.36	
	PEÓN		hh		3	2.6667	11.41	30.43	
								66.98	
	Materiales								
	CLAVOS PARA MADERA	CON CABEZA DE 3"	kg			0.02	5.90	0.14	
	VIGUETA DE EUCALIPTO	O DE 16.5x4 cm	p2			1.04	2.45	2.54	
	VIGA DE EUCALIPTO DE	18X14 cm	p2			3.96	4.00	15.83	
	TEJA ANDINA		und			25.00	0.20	5.00	
	CIELO RASO OLYMPIA 1	.20 X 0.60 M X 12 MM SKYLINE	m2			1.00	18.66	18.66	
								42.17	
	Equi	pos							
	HERRAMIENTAS MA	•	%mo			3.0000	66.98	2.01	

Partida	a 01.04.01.01 TECHO CON VIGUETAS 19X4 CM								
Rendimiento	kg/DIA 9 EQ.		- Cos		Costo unitario directo por : GBL			39.16	
	Descripción Recurso		Unidad	Cuadrilla	Car	ntidad	Precio S/.	Parcial S/.	
	Mano de obra								
	OPERARIO		hh		1	0.8889	15.96	1	4.19
	OFICIAL		hh		2	1.7778	12.58	2	2.36
	PEÓN		hh		3	2.6667	11.41	3	0.43
								6	6.98
	Materiales								
	CLAVOS PARA MADERA CON CABEZA I	DE 3"	kg			0.02	5.90		0.10
	VIGUETA DE EUCALIPTO DE 19x4 cm		p2			1.11	2.45		2.72
	VIGA DE EUCALIPTO DE 18X14 cm		p2			3.68	4.00	1	4.72
	TEJA ANDINA		und			22.85	0.20		4.57
	CIELO RASO OLYMPIA 1.20 X 0.60 M X	12 MM SKYLINE	m2			0.91	18.66	1	7.06
								3	9.16
	Equipos								
	HERRAMIENTAS MANUALES		%mo			3.0000	66.98		2.01

Anexo C

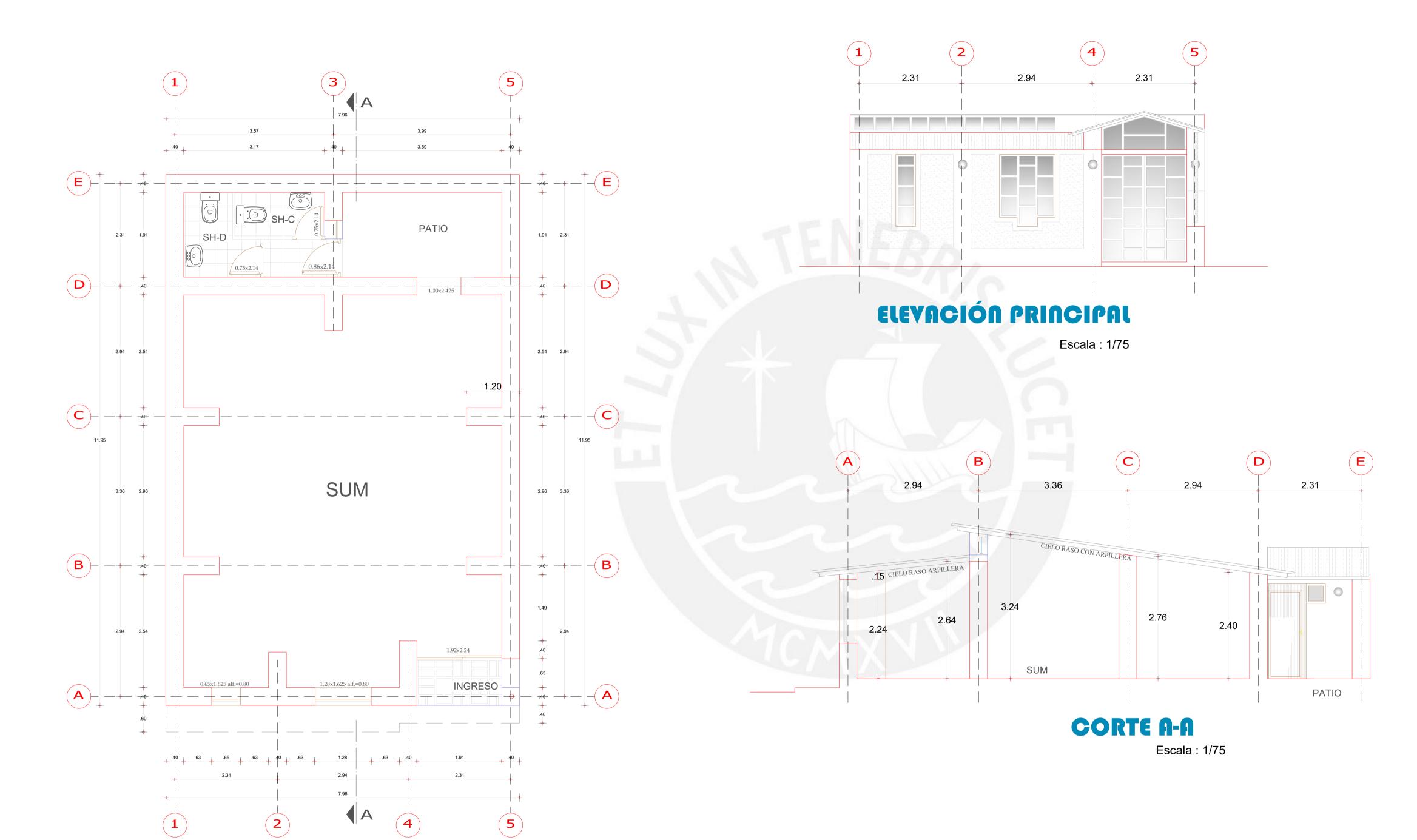
a) Planos arquitectónicos

Edificaciones diseñadas con adobe reforzado con cañas:

- Lámina A-01: Plano arquitectónico del local comunal en el distrito de Orcopampa
- Lámina A-02: Plano arquitectónico del puesto de salud en el distrito de Pampacolca

Edificaciones diseñadas con adobe confinado con elementos de concreto armado:

- Lámina A-03: Plano arquitectónico del local comunal en el distrito de Orcopampa
- Lámina A-04: Plano arquitectónico del puesto de salud en el distrito de Pampacolca


b) Planos estructurales

Edificación del local comunal de distrito de Orcopampa:

- > Sistema de adobe reforzado con cañas
 - Lámina E-01: Detalle de cimiento, sobrecimiento y distribución de muros de adobe reforzado con caña
 - o Lámina E-02: Detalle de viguetas de techo con vigas collar de madera
- Sistema de adobe confinado con elementos de concreto armado
 - o Lámina E-03: Detalle de cimiento, sobrecimiento y armado de columnas
 - o Lámina E-04: Detalle de armado de vigas y encofrado de techo

Edificación del Puesto de salud de distrito de Pampacolca:

- Sistema de adobe reforzado con cañas
 - Lámina E-05: Detalle de cimiento, sobrecimiento y distribución de muros de adobe reforzado con caña
 - Lámina E-06: Detalle de viguetas de techo con vigas collar de madera
- > Sistema de adobe confinado con elementos de concreto armado
 - o Lámina E-07: Detalle de cimiento, sobrecimiento y armado de columnas
 - o Lámina E-08: Detalle de armado de vigas y encofrado de techo

DISTRIBUCIÓN - PLANTA

Escala : 1/75

Tesis:

COMPARACIÓN TÉCNICA Y
ECONÓMICA ENTRE
EDIFICACIONES DE ADOBE
CONFINADO Y ADOBE
REFORZADO CON CAÑAS

Ubicacion::

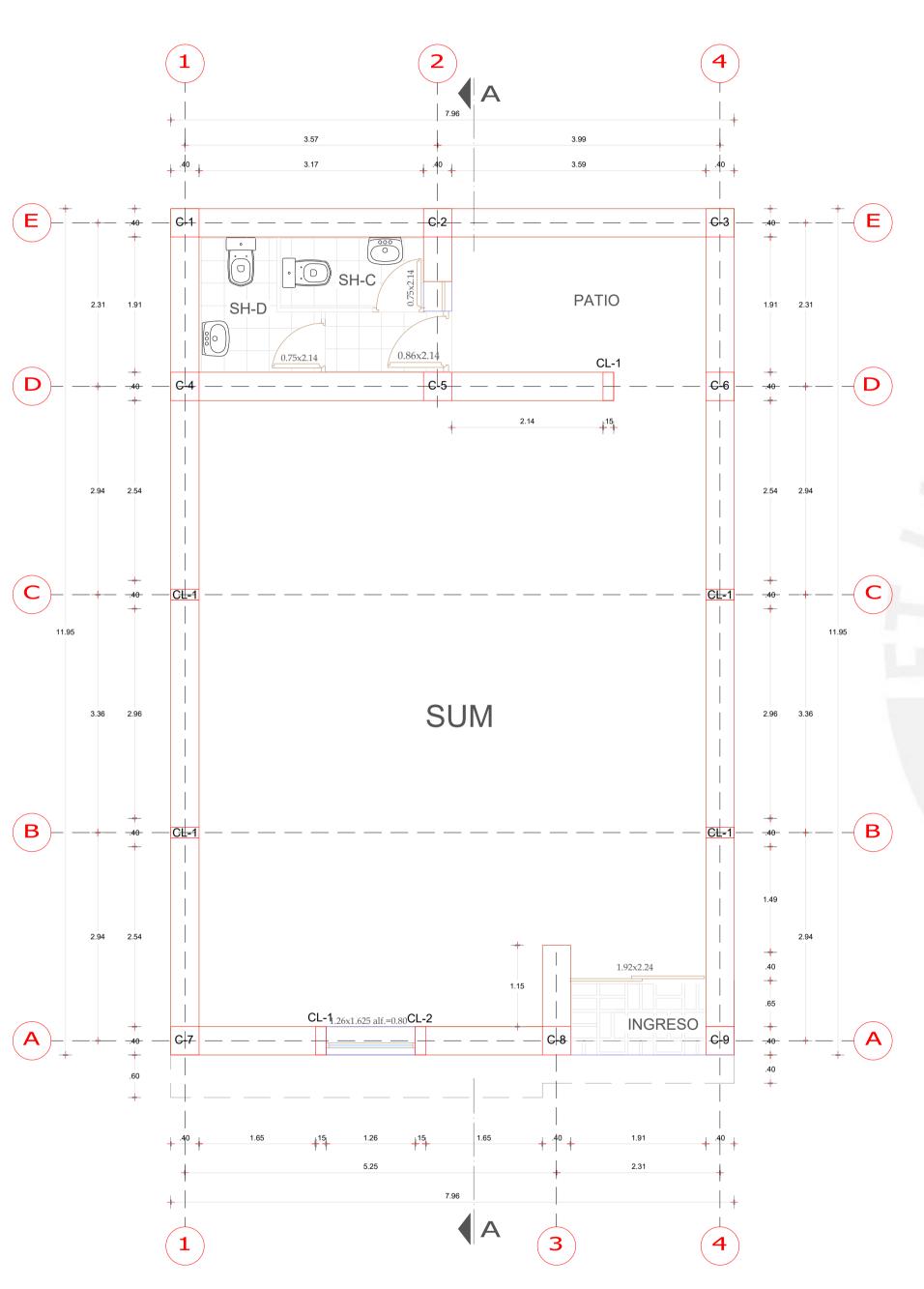
ORCOPAMPA - CASTILLA - AREQUIPA

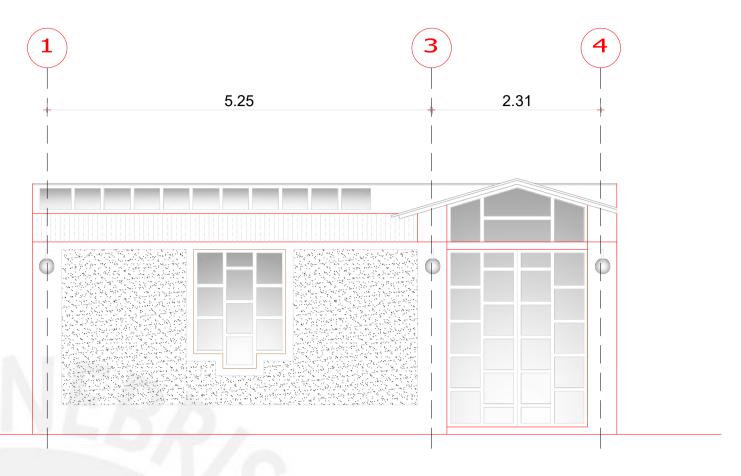
Asesor:

DANIEL ROBERTO QUIUN WONG

Autore

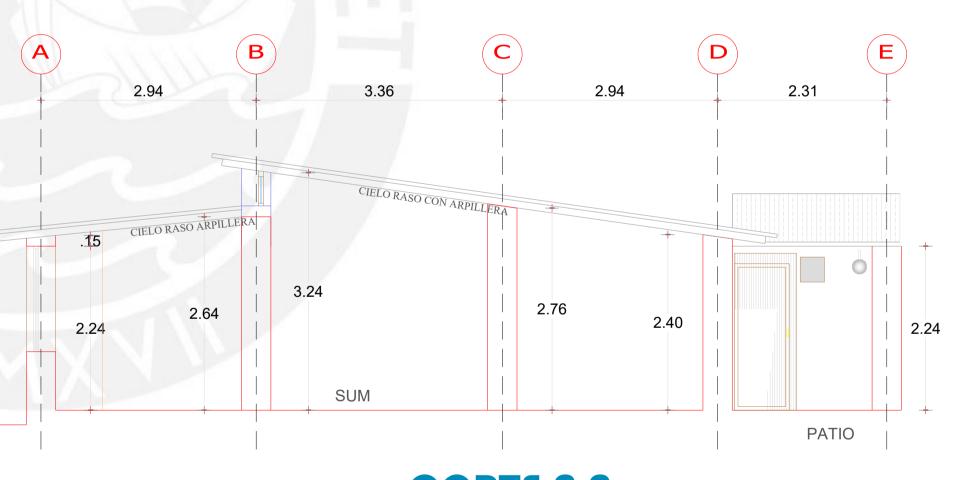
- ERICK FRANZ MANRIQUE HUAMANCAJA
- WENDY JHASMIN MEZA CASTILLO


LOCAL COMUNAL


PLANO ARQUITECTÓNICO DEL LOCAL COMUNAL EN EL DISTRITO DE ORCOPAMPA

echa

19/04/2023


A 01

ELEVACIÓN PRINCIPAL

Escala : 1/75

CORTE A-A

Escala : 1/75

Tesis:

COMPARACIÓN TÉCNICA Y
ECONÓMICA ENTRE
EDIFICACIONES DE ADOBE
CONFINADO Y ADOBE
REFORZADO CON CAÑAS

Ubicacion::

ORCOPAMPA - CASTILLA - AREQUIPA

Asesor:

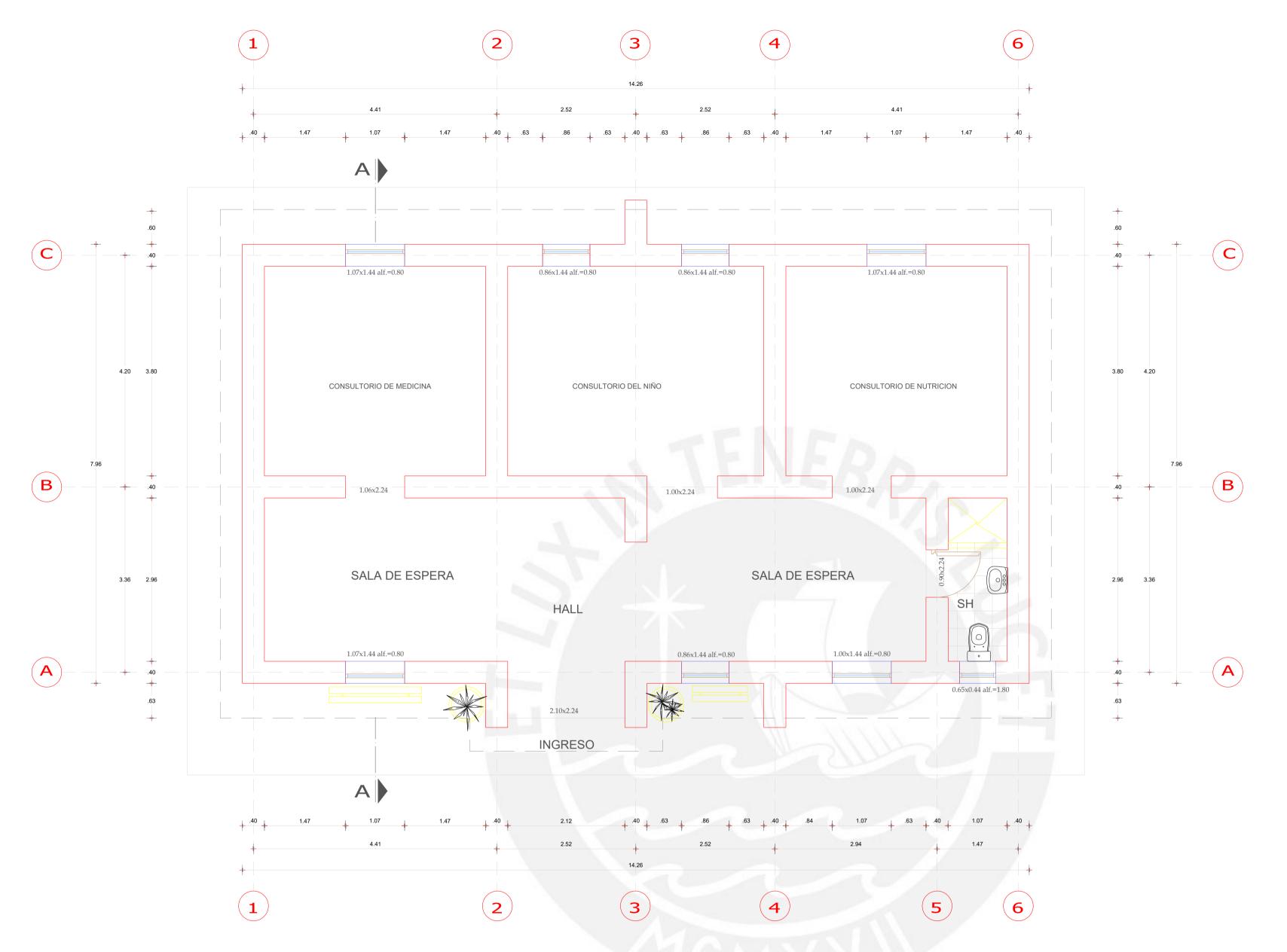
DANIEL ROBERTO QUIUN WONG

Autore

- ERICK FRANZ MANRIQUE HUAMANCAJA
- WENDY JHASMIN MEZA CASTILLO

LOCAL COMUNAL

PLANO ARQUITECTÓNICO DEL LOCAL COMUNAL EN EL DISTRITO DE ORCOPAMPA

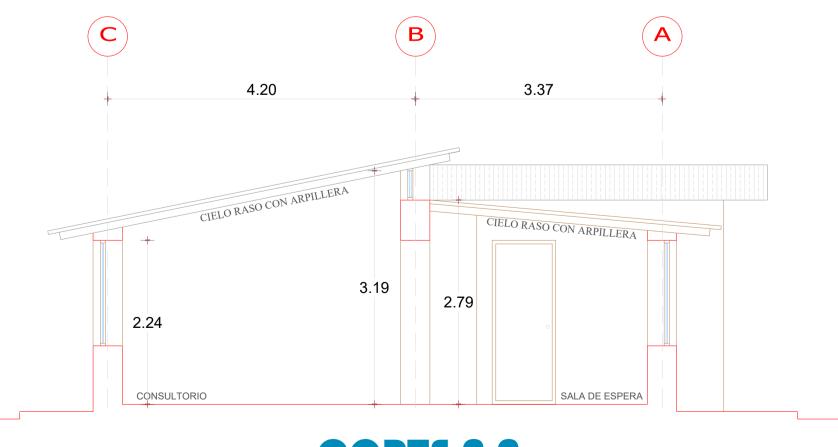

echa

19/04/2023

A 02

Escala

DISTRIBUCIÓN - PLANTAEscala: 1/75


DISTRIBUCIÓN - PLANTA

Escala : 1/75

ELEVACIÓN PRINCIPAL

Escala : 1/75

CORTE A-A

Escala : 1/75

PUCP

Tesis:

COMPARACIÓN TÉCNICA Y
ECONÓMICA ENTRE
EDIFICACIONES DE ADOBE
CONFINADO Y ADOBE
REFORZADO CON CAÑAS

Ubicacion::

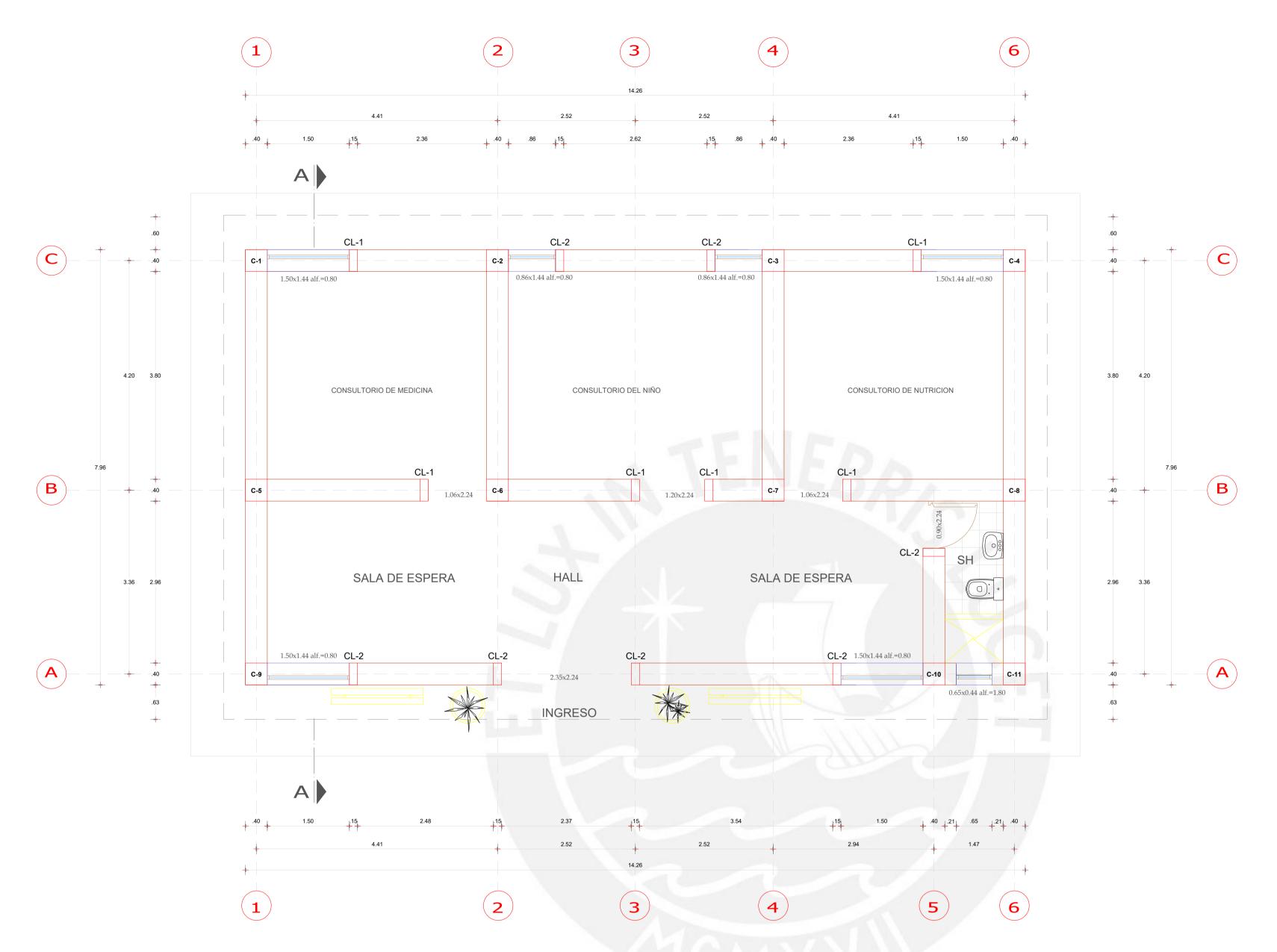
PAMPACOLCA - CASTILLA - AREQUIPA

Asesor:

DANIEL ROBERTO QUIUN WONG

Autore

- ERICK FRANZ MANRIQUE HUAMANCAJA
- WENDY JHASMIN MEZA CASTILLO

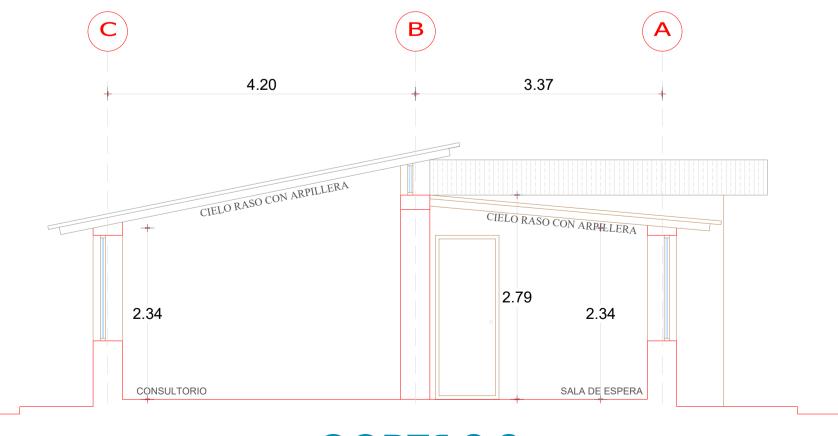

PUESTO DE SALUD

PLANO ARQUITECTÓNICO DEL PUESTO DE SALUD EN EL DISTRITO DE PAMPACOLCA

Fecha


19/04/2023

A 03


DISTRIBUCIÓN - PLANTA

Escala : 1/75

ELEVACIÓN PRINCIPAL

Escala : 1/75

CORTE A-A

Escala : 1/75

PUCP

Tesis:

COMPARACIÓN TÉCNICA Y
ECONÓMICA ENTRE
EDIFICACIONES DE ADOBE
CONFINADO Y ADOBE
REFORZADO CON CAÑAS

Ubicacion::

PAMPACOLCA - CASTILLA - AREQUIPA

Asesor:

DANIEL ROBERTO QUIUN WONG

Autore

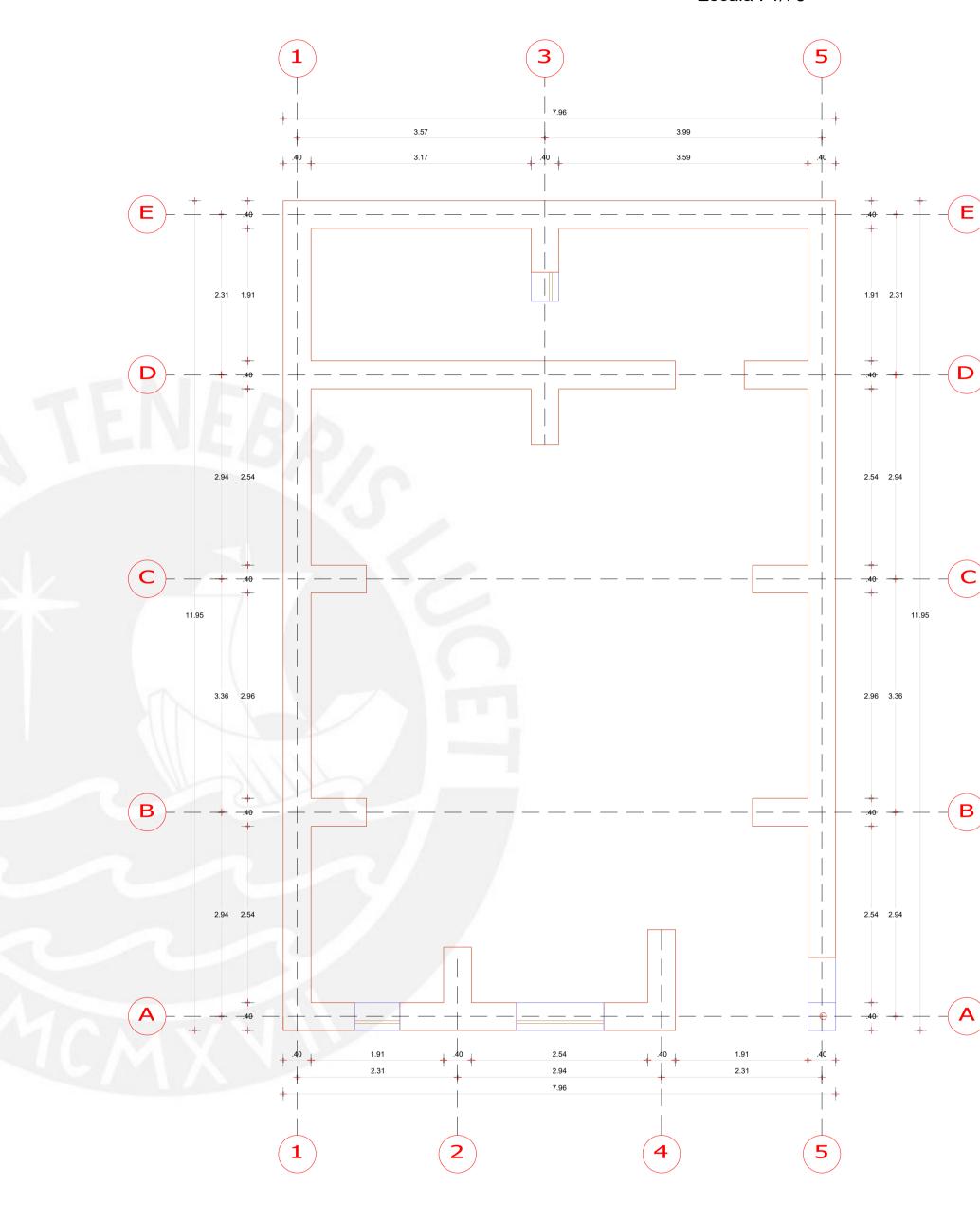
- ERICK FRANZ MANRIQUE HUAMANCAJA
- WENDY JHASMIN MEZA CASTILLO

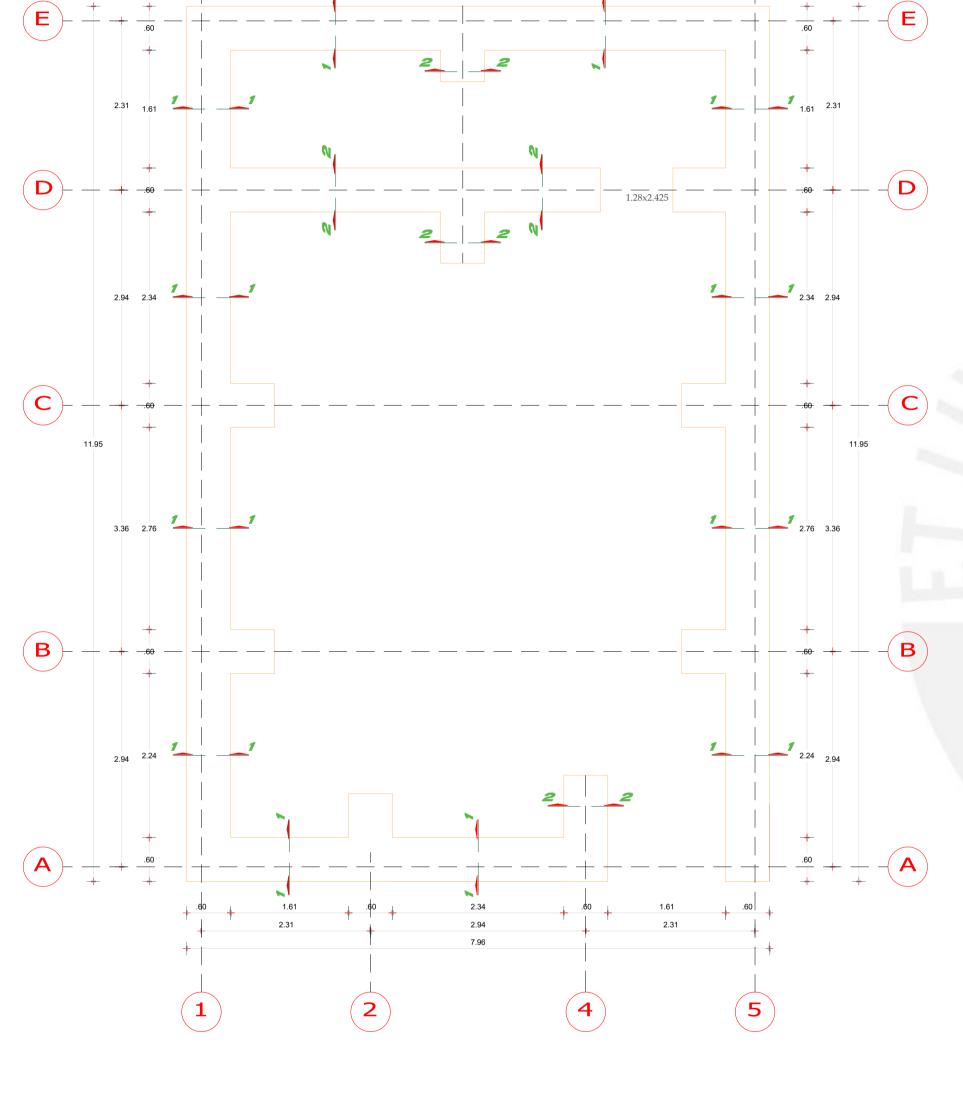
PUESTO DE SALUD

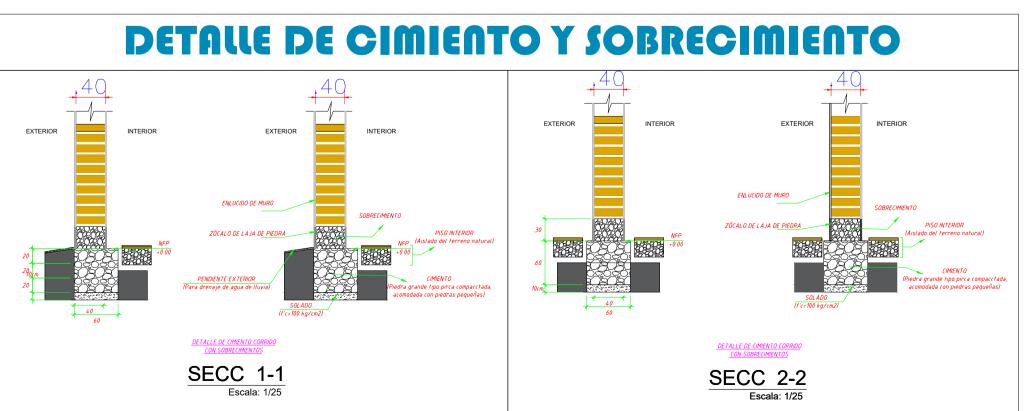
PLANO ARQUITECTÓNICO DEL PUESTO DE SALUD EN EL DISTRITO DE PAMPACOLCA

Fecha

19/04/2023


A 04


PLANO DE CIMENTACIONES Y SOBRECIMIENTO


Escala : 1/75

PLANO DE ADOBE CON CAÑAS

Escala : 1/75

REFORZAMIENTO DE CAÑA

Tesis:

COMPARACIÓN TÉCNICA Y
ECONÓMICA ENTRE
EDIFICACIONES DE ADOBE
CONFINADO Y ADOBE
REFORZADO CON CAÑAS

Ubicacion::

ORCOPAMPA - CASTILLA - AREQUIPA

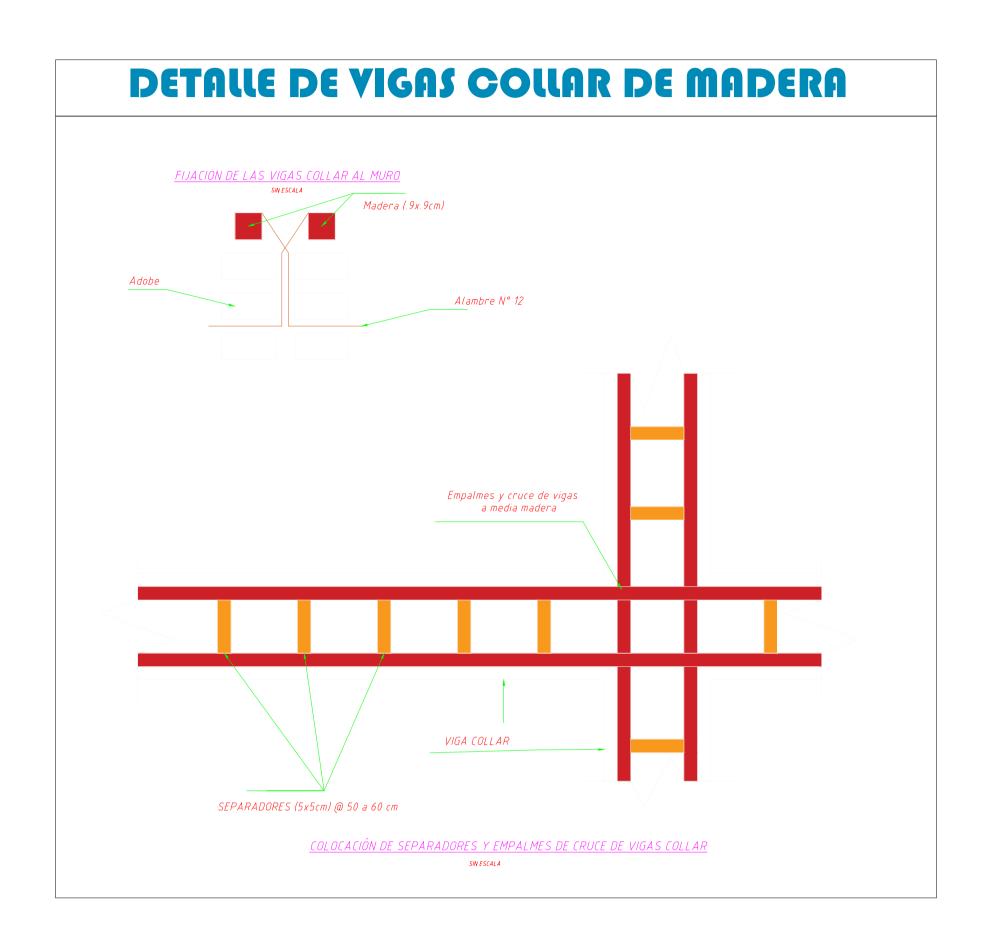
Asesor:

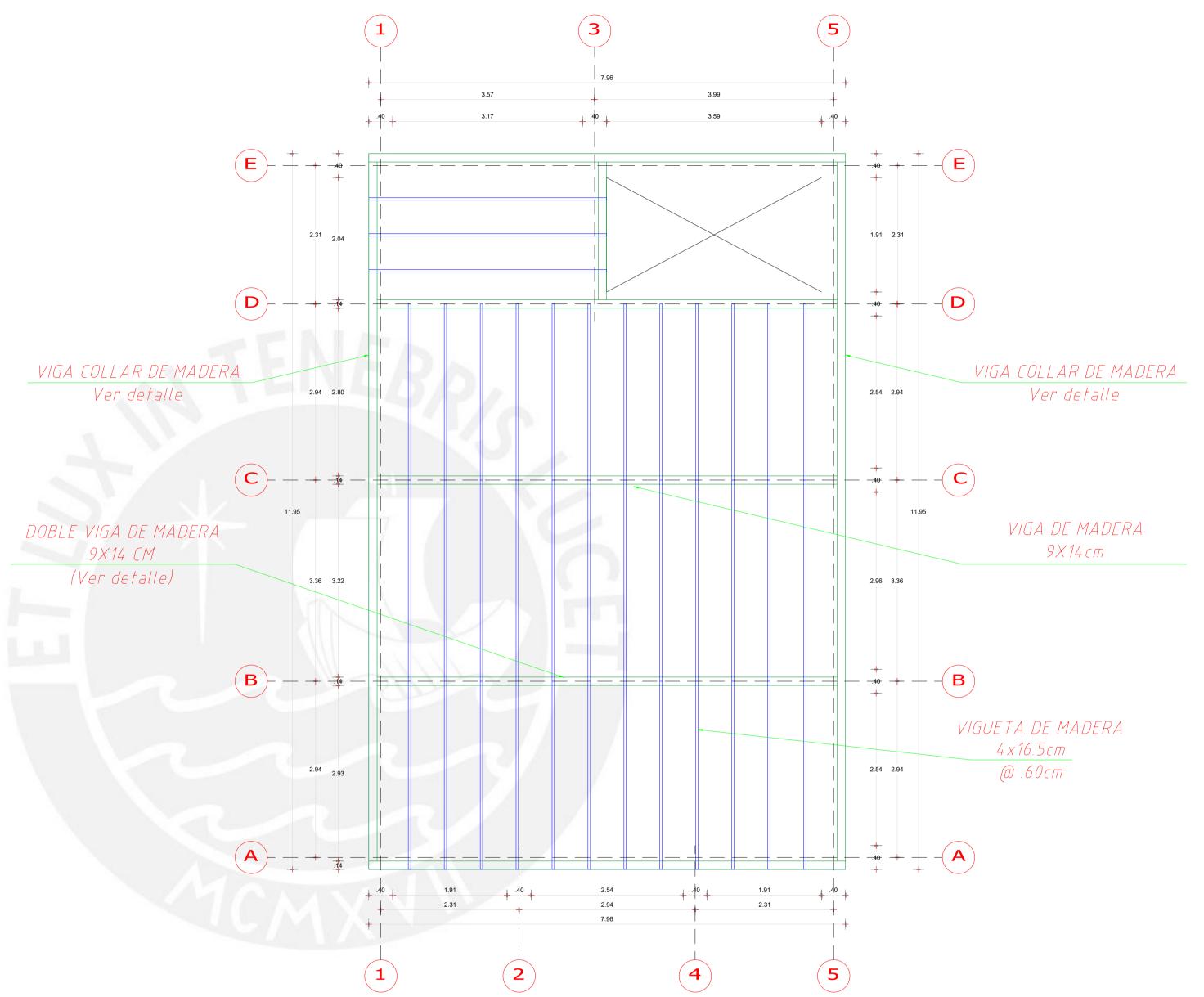
DANIEL ROBERTO QUIUN WONG

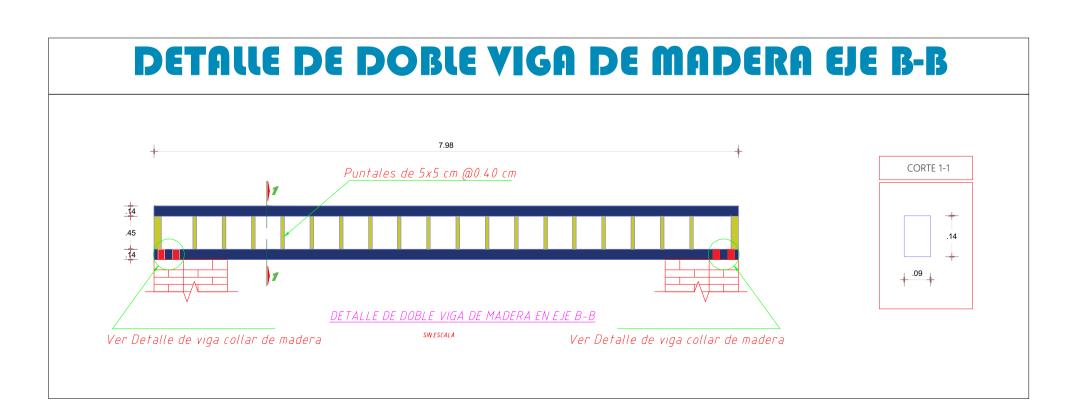
Auto

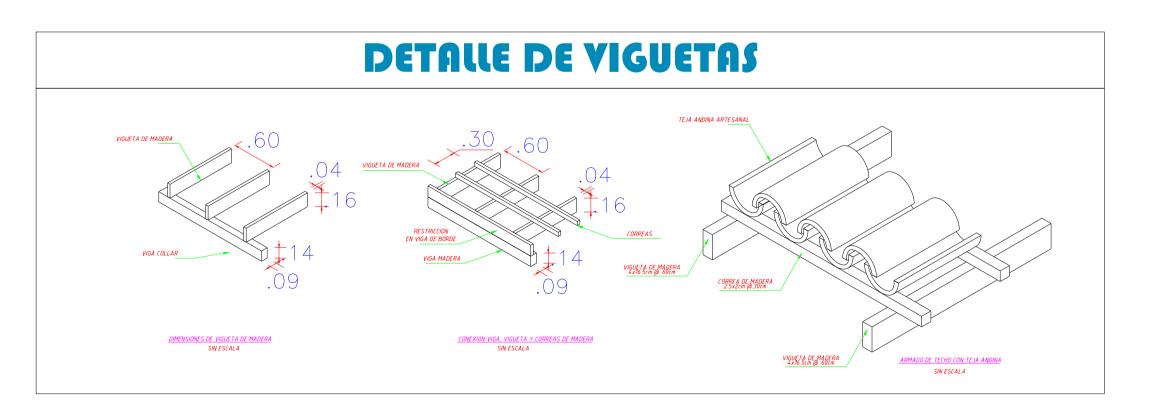
- ERICK FRANZ MANRIQUE HUAMANCAJA
- WENDY JHASMIN MEZA CASTILLO

LOCAL COMUNAL


DETALLE DE CIMIENTO , SOBRECIMIENTO Y DISTRIBUCION DE MUROS DE ADOBE REFORZADO CON CAÑA


cha 19/04/2023


E 01


PLANO DE VIGUETAS

Escala : 1/75

Tesis:

COMPARACIÓN TÉCNICA Y
ECONÓMICA ENTRE
EDIFICACIONES DE ADOBE
CONFINADO Y ADOBE
REFORZADO CON CAÑAS

Ubicacion::

ORCOPAMPA - CASTILLA - AREQUIPA

Asesor:

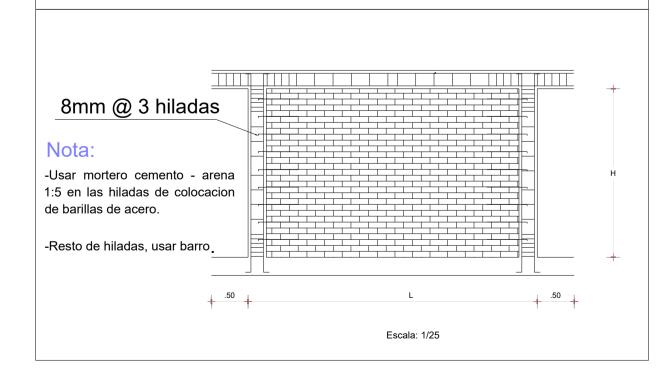
DANIEL ROBERTO QUIUN WONG

Autore

- ERICK FRANZ MANRIQUE HUAMANCAJA
- WENDY JHASMIN MEZA CASTILLO

LOCAL COMUNAL

DETALLE DE VIGUETAS DE TECHO CON VIGAS COLLAR DE MADERA


echa 19/04/2023

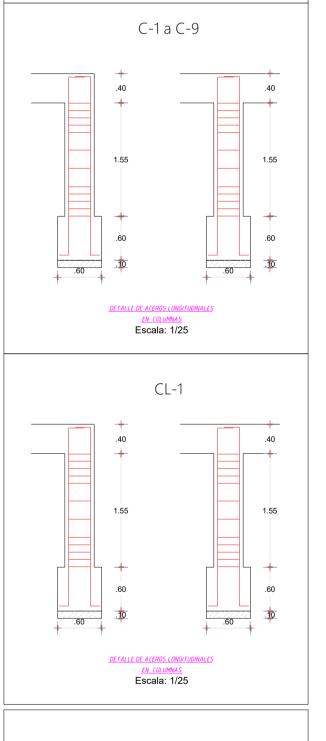
E 02

Escala -

PLANO DE CIMENTACIONES Y SOBRECIMIENTO PLANO DE COLUMNAS Escala : 1/75 Escala : 1/75 3.36 3.21

DETALLE MURO CONFINADO

RECUBRIMIENTOS


ELEMENTO	RECUBRIMIENTO
ZAPATAS AISLADAS Y CORRIDAS VACIADAS SOBRE UN SOLADO	4.0 cm
SUPERFICIES DE MUROS Y LOSAS EN CONTACTO CON AGUA O TERRENO	4.0 cm
SUPERFICIES DE MUROS QUE NO ESTEN EN CONTACTO CON AGUA O TERRENO	2.0 cm
COLUMNAS	4.0cm
VIGAS	4.0cm

PUCP

CUADRO DE COLUMNAS

TIPO	C-8	C-1 a C-7 y C-9	CL-1	CL-2
DIMENSION	.40	.40	.40	.15
CANTIDAD	2	7	3	03
ACEROS	confinamiento ambos extremos 4 ●Ø 3/8"	confinamiento ambos extremos 4 ●Ø 8mm	confinamiento ambos extremos 4 ●Ø 8mm	confinamiento ambos extremos 4 ●Ø 3/8"
ESTRIBOS	Ø 6mm, 1@ 0.05, 4@ 0.10 Rto.@ 0.25 corrugado			

REFUERZO L (m) 3/8"-8mm 0.15 1/2" 0.15 Tesis:

COMPARACIÓN TÉCNICA Y
ECONÓMICA ENTRE
EDIFICACIONES DE ADOBE
CONFINADO Y ADOBE
REFORZADO CON CAÑAS

DETAILE COLUMNA

Ubicacion::

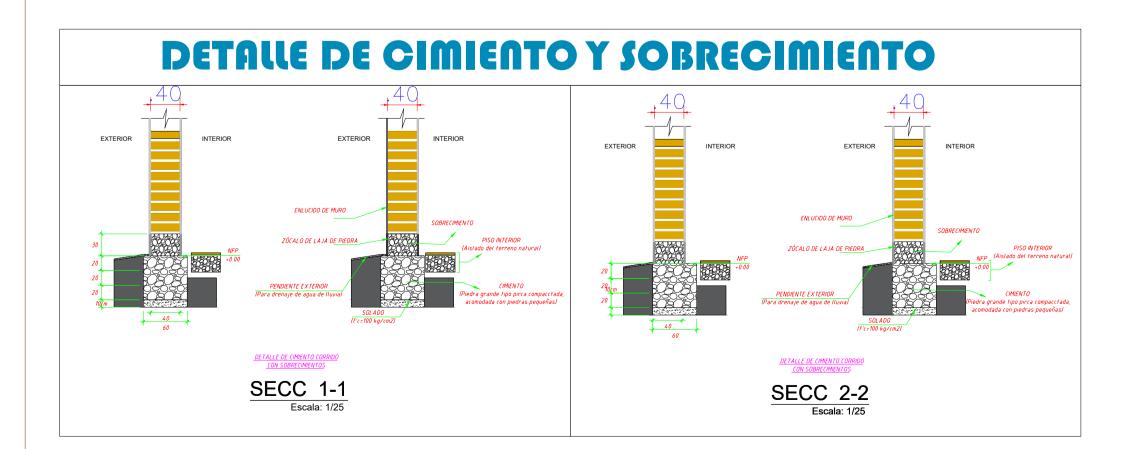
Asesor:

DANIEL ROBERTO QUIUN WONG

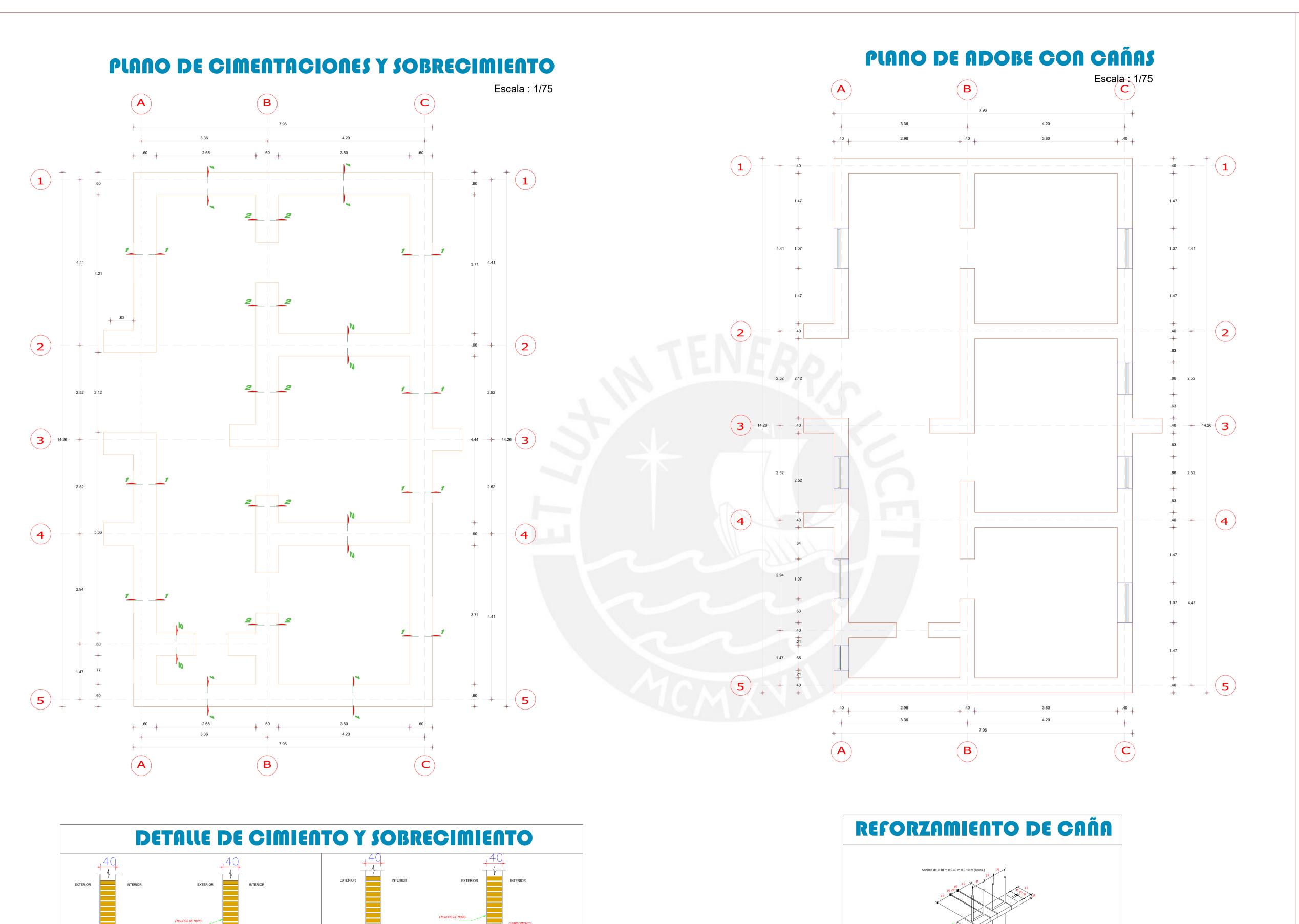
ORCOPAMPA - CASTILLA - AREQUIPA

Autore

- ERICK FRANZ MANRIQUE HUAMANCAJA
- WENDY JHASMIN MEZA CASTILLO


LOCAL COMUNAL

DETALLE DE CIMIENTO , SOBRECIMIENTO Y ARMADO DE COLUMNAS


echa 19/04/2023

E 03

Escala -

DETAILE DE YIGAS PLANO DE VIGUETAS Escala : 1/25 Escala : 1/75 PUCP 1 C 6mm:1 @0.05, 4@.10, 1 C 6mm:1 @0.05, 4@.10, 1 **C** 6mm:1 @0.05, 4@.10, 1 C 6mm:1 @0.05, 4@.10, RTO.@.25 RTO.@.25 RTO.@.25 Tesis: — — V-D₁(20X40) — V₁D (40X20) — V-D (40X20) C 6 COMPARACIÓN TÉCNICA Y VIGA DE MADERA ECONÓMICA ENTRE 9X14cm 1 **C** 6mm:1 @0.05, 4@.10, 1 C 6mm:1 @0.05, 4@.10, **EDIFICACIONES DE ADOBE CONFINADO Y ADOBE** REFORZADO CON CAÑAS **DETAILES VARIOS** \bigcirc CORTE 1-1 DOBLE VIGA DE MADERA 9×14 CM (Ver detalle) 1**3**6mm:1@0.05, 4@.10, 04○**Ø** 8mm RTO.@.25 Ubicacion:: 16 1 ORCOPAMPA - CASTILLA - AREQUIPA VIGUETA DE MADERA Asesor: _20 4 x 16.5cm DANIEL ROBERTO QUIUN WONG @ .60cm 1 C36mm:1 @ 0.05, 4 @ .10, 1 6mm:1 @ 0.05, 4 @ .10, 1 C36mm:1 @ 0.05, 4 @ .10, RTO.@.25 RTO.@.25 — V-A (40X20) — C-8 — V-A (40X20) — C₁9 **MANRIQUE FRANZ** HUAMANCAJA • WENDY JHASMIN MEZA CASTILLO 1 **C** 6mm:1 @0.05, 4@.10, RTO.@.25 1 **¢** 6mm:1 @0.05, 4 @.10, DETALLE DE VIGA DE MADERA EJE B-B DETALLE DE VIGUETAS LOCAL COMUNAL CORTE 1-1 DETALLE DE ARMADO DE VIGAS Y ENCOFRADO DE RTO.@.25 RTO.@.25 **TECHO** DETALLE DE DOBLE VIGA DE MADERA EN EJE B-B 19/04/2023 E 04 Escala

<u>DETALLE DE CIMIENTO CORRIDO</u> <u>CON SOBRECIMIENTOS</u>

SECC 2-2 Escala: 1/25

SECC 1-1 Escala: 1/25

Tesis:

COMPARACIÓN TÉCNICA Y
ECONÓMICA ENTRE
EDIFICACIONES DE ADOBE
CONFINADO Y ADOBE
REFORZADO CON CAÑAS

Ubicacion::

PAMPACOLCA - CASTILLA - AREQUIPA

Asesor:

DANIEL ROBERTO QUIUN WONG

Autore

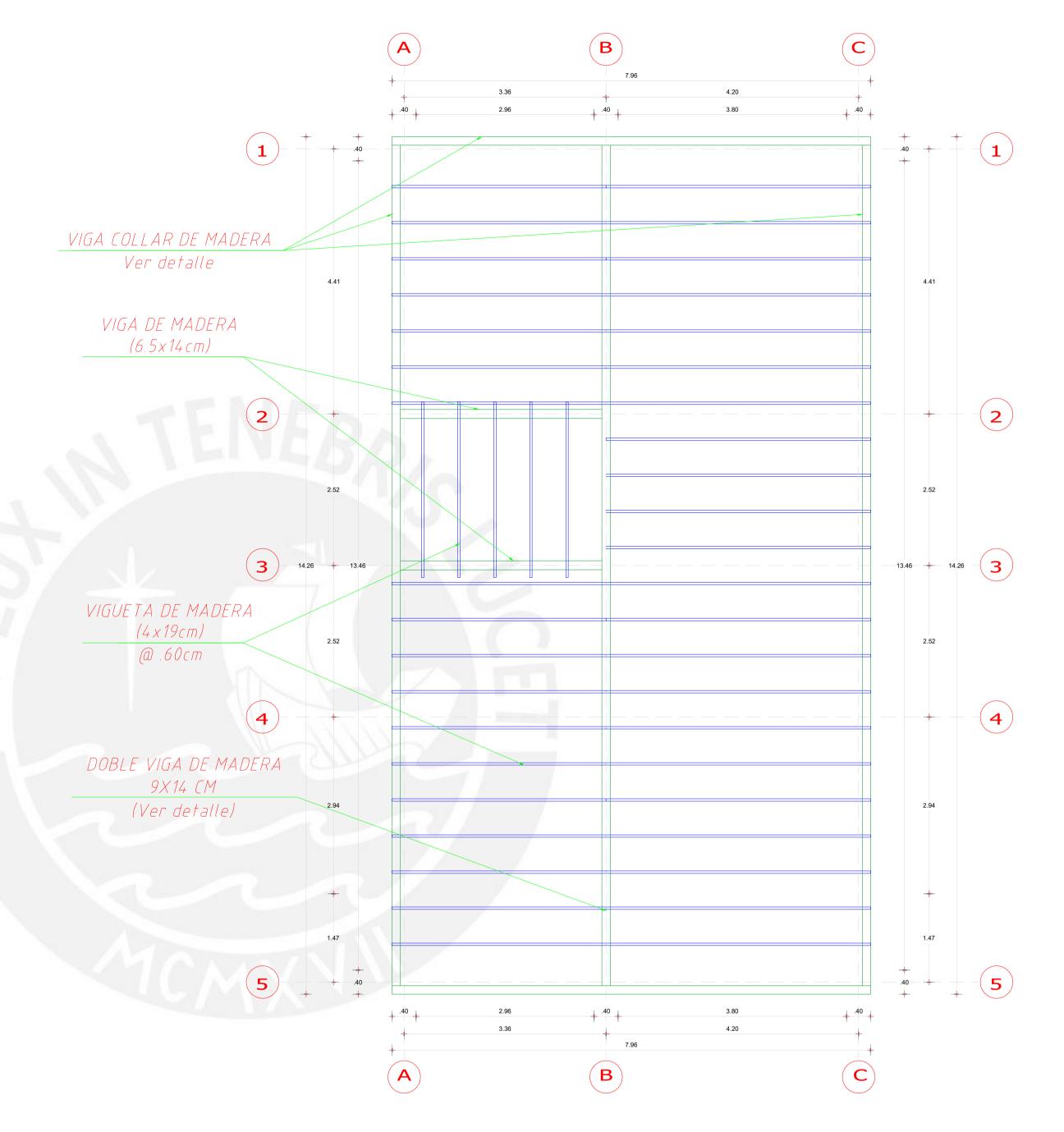
- ERICK FRANZ MANRIQUE HUAMANCAJA
- WENDY JHASMIN MEZA CASTILLO

PUESTO DE SALUD

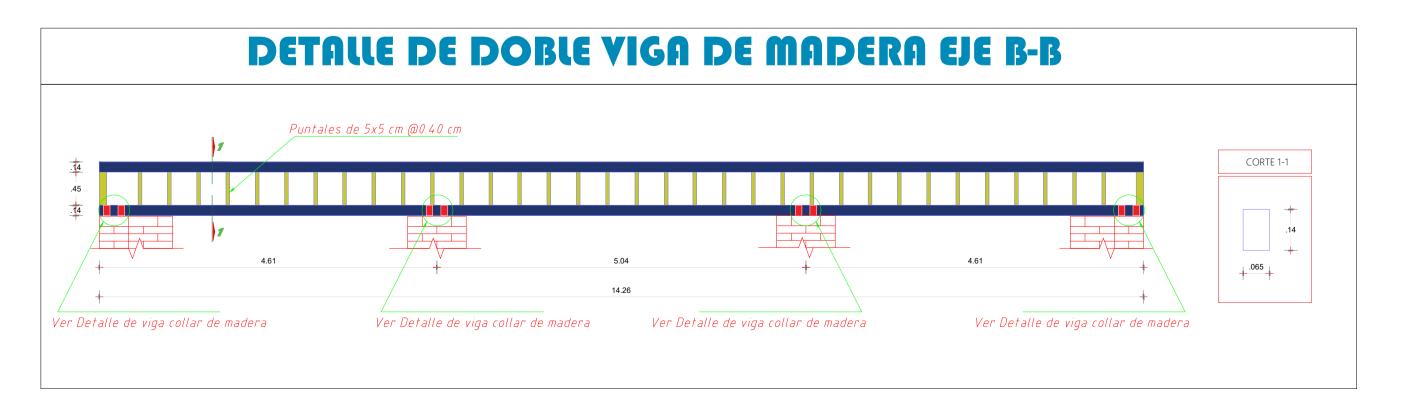
DETALLE DE CIMIENTO , SOBRECIMIENTO Y DISTRIBUCION DE MUROS DE ADOBE REFORZADO CON CAÑA

tha 19/04/2023

E 05


Escala

Escala: 1/25


PLANO DE VIGUETAS

Escala : 1/75

PRINCIPLE DE VIGAS COUAR DE MADERA PRINCIPLE LAS VERTS CREUR AL SCHIP Maries 1 Str. Administration of the Residence of the Str. Administration of the Str.

POST A SE MANTE A SOURCE DE VIGUETAS NOST A SE MANTE A SOURCE DE VIGU

Tesis:

COMPARACIÓN TÉCNICA Y
ECONÓMICA ENTRE
EDIFICACIONES DE ADOBE
CONFINADO Y ADOBE
REFORZADO CON CAÑAS

Ubicacion::

PAMPACOLCA - CASTILLA - AREQUIPA

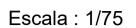
Asesor:

DANIEL ROBERTO QUIUN WONG

Autore

- ERICK FRANZ MANRIQUE HUAMANCAJA
- WENDY JHASMIN MEZA CASTILLO

PUESTO DE SALUD


DETALLE DE VIGUETAS DE TECHO CON VIGAS COLLAR DE MADERA

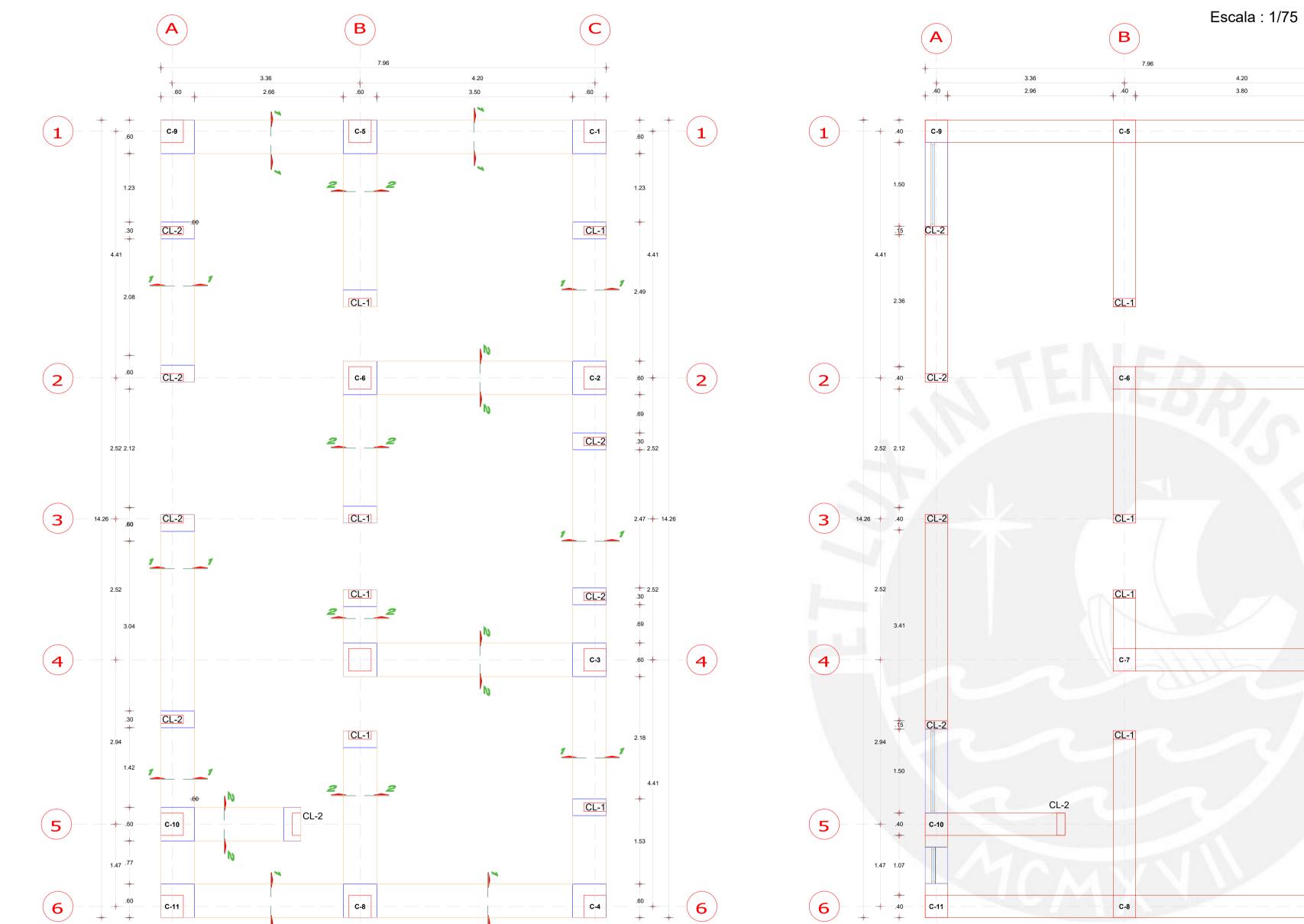
Fecha 19/04/2023

E 06

Escala -

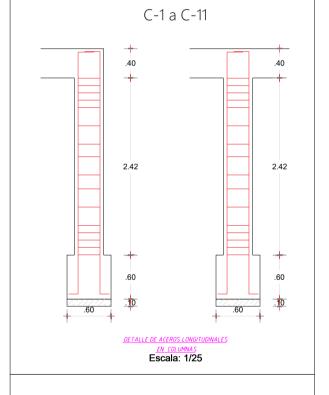
PLANO DE CIMENTACIONES Y SOBRECIMIENTO

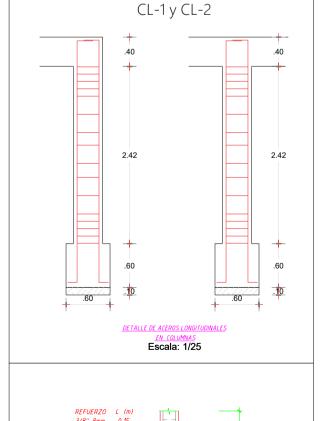
PLANO DE COLUMNAS

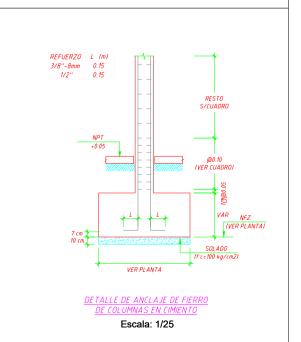

.40 + 1

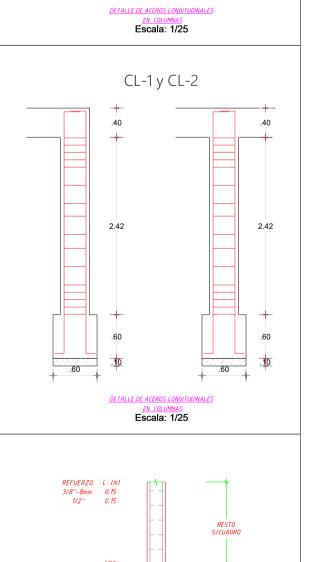
2.62 5.04 14.26

C


C-1


PUCP





DETAILE COLUMNA

Tesis:

COMPARACIÓN TÉCNICA Y ECONÓMICA ENTRE **EDIFICACIONES DE ADOBE CONFINADO Y ADOBE** REFORZADO CON CAÑAS

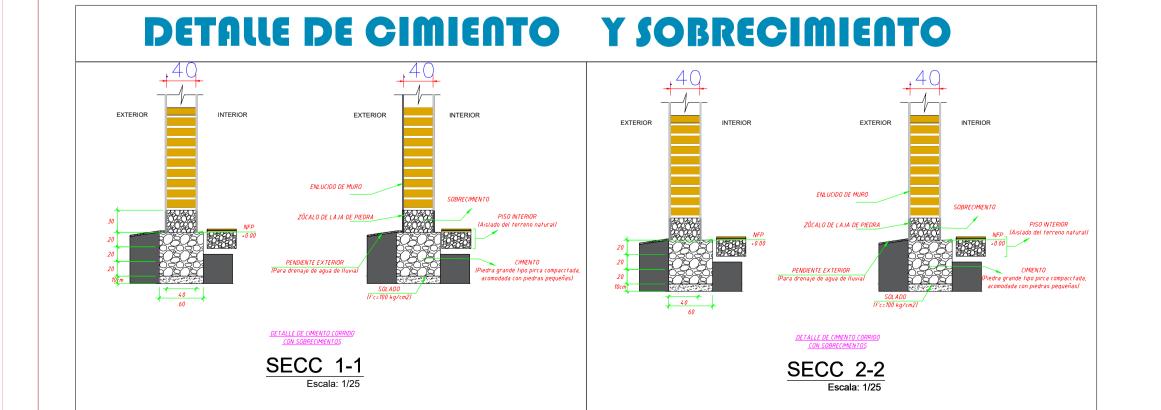
Ubicacion::

PAMPACOLCA - CASTILLA - AREQUIPA

Asesor:

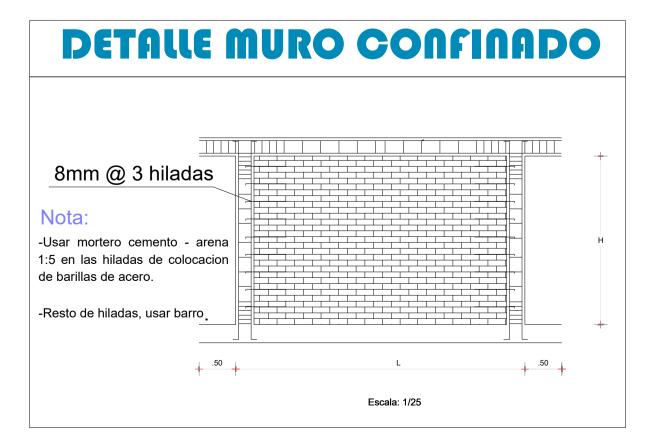
DANIEL ROBERTO QUIUN WONG

- **MANRIQUE FRANZ** HUAMANCAJA
- WENDY JHASMIN MEZA CASTILLO

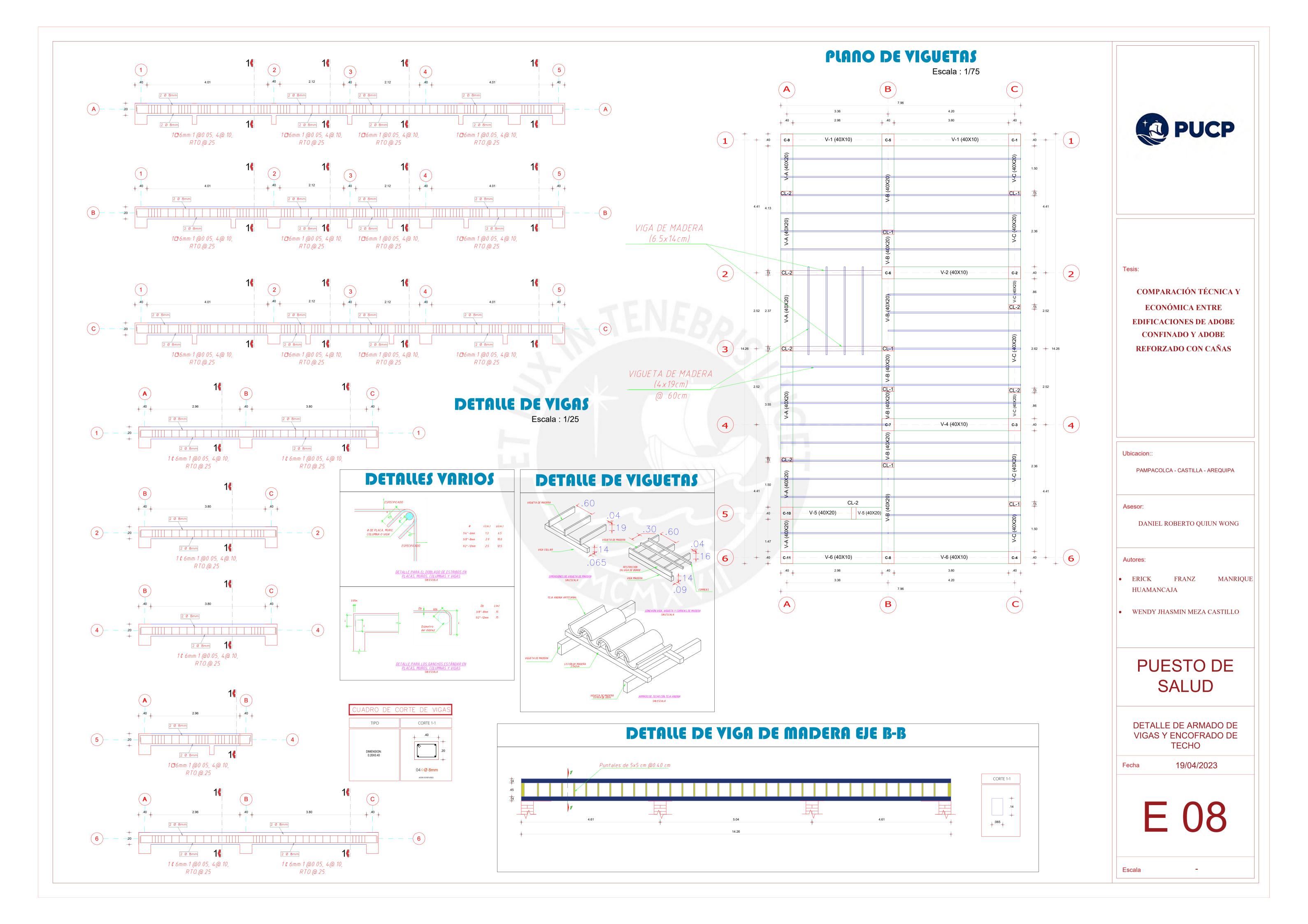

PUESTO DE SALUD

DETALLE DE CIMIENTO, SOBRECIMIENTO Y ARMADO DE COLUMNAS

19/04/2023


E 07

Escala



B

A

B

