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a b s t r a c t

Federated learning (FL) is a distributed approach to developing collaborative learning models from
decentralized data. This is relevant to many real applications, such as in the field of the Internet of
Things, since the models can be used in edge computing devices. FL approaches are motivated by and
designed to protect privacy, a highly relevant issue given current data protection regulations. Although
FL methods are privacy-preserving by design, recently published papers show that privacy leaks
do occur, caused by attacks designed to extract private data from information interchanged during
learning. In this work, we present an FL method based on a neural network without hidden layers
that incorporates homomorphic encryption (HE) to enhance robustness against the above-mentioned
attacks. Unlike traditional FL methods that require multiple rounds of training for convergence, our
method obtains the collaborative global model in a single training round, yielding an effective and
efficient model that simplifies management of the FL training process. In addition, since our method
includes HE, it is also robust against model inversion attacks. In experiments with big data sets and
a large number of clients in a federated scenario, we demonstrate that use of HE does not affect the
accuracy of the model, whose results are competitive with state-of-the-art machine learning models.
We also show that behavior in terms of accuracy is the same for identically and non-identically
distributed data scenarios.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Federated learning (FL) is becoming a very active research
rea in machine learning (ML) because it enables distributed
nd collaborative training of models. This key feature of many
eal-world applications allows models to run on edge computing
evices which, in many cases, have very limited computational
apabilities. Despite most data processing still taking place in
entralized data centers, organizations are beginning to discover
he benefits of edge computing. Recent studies have predicted
hat by 2025, due to the use of mobile devices and the internet
f things (IoT), 75% of data will be created and processed outside
traditional data center [1], leading to a rethinking of where

omputing should take place.
FL, introduced in 2017 by McMahan et al. [2], is an ML environ-

ent in which many clients collaboratively train a model under
he control of a central server while keeping the training data
ecentralized. The underlying idea of training models without
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the raw training data being collected in a single location has
proven useful in a wide range of practical scenarios. The algo-
rithm proposed by McMahan et al. has been applied to Google’s
Gboard [3] to improve next word prediction models, and has also
been used in other applications in a wide range of fields, such as
mobile devices [4,5], finance [6], industrial engineering [7–9], and
healthcare [10–13]. Additionally, several studies have explored
the use of FL in scenarios reflecting privacy-sensitive data, such
as health diagnoses, collaborations across multiple hospitals or
government agencies, etc [14–16]. This paradigm presents several
advantages compared to traditional centralized ML, among them
(a) highly efficient use of network bandwidth, as less information
is transmitted; (b) low latency, as real time decisions can be
made locally at the different clients, and (c) privacy, as storing
data locally rather than replicating it in the cloud reduces the
risk of attacks and (assuming that the clients and servers are
non-malicious) enhances privacy.

There is a significant body of related work that seeks to an-
alyze and learn from distributed data without exposing sensi-
tive information. Although privacy-preserving data analyses have
been conducted for more than 50 years, it is only in the past
decade that solutions have been widely deployed at scale. The
issue has inspired significant interest recently, both from the
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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esearch and applied perspectives [17–21]. The fact that FL al-
orithms preserve data privacy by design is very relevant given
urrent data protection regulations, as systems can achieve much
tronger privacy preservation on the basis that distributed de-
ices do not need to share local data, but can deliver the pa-
ameters of a local model trained with local data to a centralized
erver.
However, recent research has shown that local data of dis-

ributed devices can be leaked through the trained local model
arameters. The possibility therefore exists that a centralized
erver or attacker can infer/extract sensitive private information
sing the structure and parameters of local learning models.
tronger privacy properties are possible when FL is combined
ith other technologies, with different privacy techniques re-
ently established for FL that are briefly described and compared
elow.
Differential privacy (DP) [22,23]. DP techniques introduce a

level of uncertainty into the ML model that masks the contribu-
tion of any individual user. However, when the amount of data
is small, introducing noise will inevitably affect model training.
Moreover, since the data still has to be transmitted elsewhere,
there has to be a trade-off between accuracy and privacy. To
add client-side data protection, [24] introduced the DP approach
to FL, hiding the client’s contributions during training. While DP
techniques are computationally efficient, they inevitably degrade
the predictive performance of the model.

Secure multi-party computation (SMC) [25]. SMC, which incor-
porates a family of cryptographic techniques involving multiple
parties, provides proofs of security in a well-defined simulation
framework that fully guarantees that each party knows nothing
except what is contained in its raw training data. While such
zero knowledge about individual contributions of other clients is
desirable, it usually requires complicated computation protocols
and consequently may not be achieved efficiently. In certain
scenarios, partial knowledge disclosure may be considered ac-
ceptable if security guarantees are provided. Unlike DP, SMC
delivers the exact same result as its unencrypted counterpart.

Homomorphic encryption (HE) [26]. HE protects user privacy
by applying an encryption mechanism to the model parameters
exchanged during learning. The model itself is not transmitted,
nor can it be guessed from the other party’s data, and so there
is little possibility of leakage at the raw data level. While HE
approaches sacrifice computational cost (due to encryption) for
security, it is still more efficient than SMC and is also typically
more accurate than DP because it does not introduce noise into
the data.

In this paper, we present FedHEONN, a novel federated ML
method based on one-layer neural networks that incorporate HE
to ensure robustness against model inversion attacks.
The remainder of this paper is structured as follows. Section 2
eviews the main works on FL and HE. Section 3 details the
roposed method. Section 4 shows the results of experiments

carried out with large data sets in independent and identically
distributed (IID) and non-IID scenarios. Finally, Section 5 presents
the conclusions of the work.

2. Related work

Some of the main challenges of FL environments are related to
the characteristics of the data silos in the clients, and the commu-
nications between the clients and/or with the server, specifically:
(1) dealing with unreliable and relatively low bandwidth con-
nections, (2) the unavailability for training of many or several
clients at certain times, and (3) the great heterogeneity (non-IID)
that may exist between data from different clients and/or data
imbalances in each client [27].
201
FedAVG [2] can be considered the de facto standard in the fed-
erated optimization setting. Based on iterative averaging, it can
be applied to almost any (deep) model that can be trained with
stochastic gradient descent (SGD). In this scheme, in each round, a
fraction of the clients are selected to individually perform several
SGD iterations and to compute a global model update using only
their local training data. Subsequently, a server averages the local
model updates to compute the new global model. In addition
to its satisfactory performance, FedAVG tackles communication
bottlenecks by considerably reducing the frequency (rounds) of
communications required. This is a desirable condition in FL since,
in addition to the fact that communication may be limited, its
cost in these environments tends to predominate over the com-
putational cost. However, for unbalanced and/or non-IID data,
although FedAVG is robust in certain applications, due to the
SGD iterations on each client, in certain circumstances it tends
to overfit to local data, resulting in a low convergence rate or
instability. This phenomenon is called client-drift [28].

SCAFFOLD has been described as a solution to this problem
by Karimireddy et al. [29]. It uses control variates to estimate
client-drift with respect to the model in the server, and uses
these to correct local updates. As a consequence, it has the advan-
tages that it requires significantly fewer communication rounds,
is not affected by data heterogeneity or client sampling, and
is at least as fast as SGD. Additionally, it can exploit similarity
between clients to further reduce communications and accelerate
convergence. However, SCAFFOLD is only designed to work in
the cross-silo setting, participated in by only a relatively small
number of reliable clients usually having large computational
capabilities (e.g. institutions).

MIME [30], in contrast with SCAFFOLD, can adapt an arbitrary
centralized algorithm to FL to work in a cross-device setting,
where clients may have limited computing resources (e.g. mo-
biles), the communication network may be unreliable, and the
number of clients may be so great that during training, not a
single pass may ever be made by all clients. Like SCAFFOLD, MIME
uses control variates that, at the client level, are combined with a
global state of the optimizer computed at the server that remains
fixed during each local learning round. This avoids excessive
adaptation to a client by ensuring that each local update mimics
that of the centralized method running in an IID scenario. It
also reduces communication by naively reducing the number of
participating clients per round. As a result, this framework is able
to translate the convergence of a centralized algorithm to the
federated environment where, under certain circumstances speed
may be even greater.

As mentioned, a major challenge in FL is privacy, so the data
exchanged during learning between clients must be protected
to prevent the inferral of sensitive information. HE refers to
encryption schemes that allow certain calculations to be per-
formed directly on encrypted data without first decrypting the
data. The results of encrypted computations are identical to those
obtained for operations performed on the unencrypted data. Thus,
encrypted calculations may only be decrypted with the secret key
known exclusively to the data owner.

HE carries a computational overhead, however, as compu-
tations already costly for unencrypted data probably become
unfeasible for encrypted data. Nonetheless, use of this technology
is relevant in scenarios with very strict privacy requirements,
where computation in the cloud without encryption is not fea-
sible, and where, because only certain data need to be encrypted,
the computational overhead is small.

Multiple HE schemes with different capabilities and trade-offs
have been proposed in recent years, ranging from fully HE [31]
to more efficient leveled variants [32–35]. To date, however,
there has been little research into the HE approach to FL. In [36]
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FL scenario is assumed in which the data are vertically di-
ided (by features) among clients and only one client knows
he target variable. Their proposed solution, given that there
s no linkage between the partially collected entities at each
lient, is as follows: to learn a linear model by privacy preserving
ntity resolution and using a Taylor approximation applied to
he loss and gradient functions, in order to work over messages
ncrypted with an additively homomorphic scheme for privacy-
reserving computations. However, this method only focuses on
inary classification with two clients. In another approach, de-
cribed in [37], a secure system is proposed to protect logistic
egression training data using additive HE; however, the focus is
n a distributed scenario, not necessarily federated; in a practical
pplication, certain issues would need to be resolved, such as
xcessive computational overhead [38]. Proposed more recently
n [39] is a solution for distributed deep neural network learning
hat uses asynchronous SGD in combination with additive HE to
reserve privacy. Although accuracy is identical to that of a cen-
ralized deep learning system with tolerable communication and
omputational overheads, this method has not been evaluated to
emonstrate that, in contrast with FedAVG, it is not sensitive to
he client-drift problem.

. Proposed method

For one-layer feedforward neural networks (with no hidden
ayers), we propose a new FL method that uses HE to ensure
obustness against model inversion attacks. Despite some lim-
tations, simple models are still of great interest as they can
olve many tasks, are easier to interpret, can be trained relatively
uickly, and can handle large data sets efficiently. We first define
he terminology based on a model with a centralized training set
nd then describe the FL scheme in detail.
Consider a centralized training data set defined by an input

atrix X ∈ Rm×n, where m is the number of inputs (including
he bias) and n is the number of data instances. The desired
utput matrix is defined by d ∈ Rn×c , where c is the number of
utputs. In what follows, we consider only one output (i.e., d ∈

Rn×1) to avoid cumbersome derivation; however, the extension
to multiple outputs is straightforward, since each output of the
one-layer neural network depends only on a set of independent
weights. The neural network parameters are defined by a weight
vector (including the bias), w ∈ Rm×1, and, therefore, the output
of the model (y) is as follows:

y = f (XTw)

where f : R → R is the nonlinear activation function at
the output neuron. Our proposal is based, in part, on previous
research, but for reasons of clarity and completeness, we describe
it briefly in the next subsection.

3.1. Background

In neural networks, optimal weights are usually obtained
through an iterative process that minimizes a cost function. In
the case of supervised learning, while several alternatives for the
cost function are available, the mean squared error (MSE) is one
of the most used. Typically, the MSE at the output of the network
is measured by comparing the actual output y and the desired
output d. However, as was previously shown [40], an alternative
option is to minimize the MSE measured before the activation
function, i.e., between XTw and d̄ = f −1(d). In addition, to avoid
verfitting, a regularization term based on the L2 norm can be
ncorporated, resulting in the following cost function [41]:

(w) =
1 [(

F
(
d̄ − XTw

))T (
F
(
d̄ − XTw

))
+ λwTw

]
(1)
2 s

202
where F = diag(f ′(d̄1), f ′(d̄2), . . . , f ′(d̄n)) is a diagonal matrix
formed by the derivative of the f function for the components
of d̄, and λ is a positive scalar that controls the influence of the
penalty term in the solution. If the hyperparameter λ is set to
zero then the basic MSE is obtained.

The cost function defined in Eq. (1) has the advantage that,
despite using nonlinear activation functions (f ), it is convex and
the global optimum can be obtained directly by means of a closed
solution for a given X and d. Specifically, the minimum of this cost
function can be obtained by deriving it and equating the result to
zero. The solution is the w that satisfies the following system of
linear equations [41]:

(XFFXT
+ λI)w = XFFd̄ (2)

The size of the system of linear equations in Eq. (2) de-
pends on m, as the most costly operations to solve the equations
and obtain w are calculations of matrix (XFFXT

+ λI) and its
inverse, with computational complexity of O(m2n) and O(m3),
respectively. When m is small, these complexities imply high
efficiency, but when the number of inputs is large, they become
computationally demanding, even though the method provides
a non-iterative way to determine w. In order to obtain w in
the most efficient way possible, irrespective of whether the data
contains a greater number of samples than variables or vice versa,
Eq. (2) is transformed [41] using singular value decomposition
(SVD). This results in a factorization of matrix XF = USVT , where
U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and S ∈ Rm×n

is a diagonal matrix with r non-zero elements, known as the
singular values of S, where r = rank(XF) ≤ min(m, n). Using this
approach Eq. (2) can be rewritten as follows:

(USVTFXT
+ λI)w = XFFd̄ (3)

whose optimal solution, i.e., that which provides the minimum
error for a given training set, can also be obtained by a closed-
form as follows [41]:

w = U(SST + λI)−1UTXFFd̄ (4)

As the number of non-zero elements in the diagonal ma-
trix S is r , the effective dimensions of U and S are m × r and
r × r , respectively. This allows us to calculate SVD(XF) using
an economy-sized decomposition that contains all the relevant
information of the regular decomposition, but as it is more com-
pact, it can be calculated more efficiently in time O(mnr) [42].
Moreover, as long as λ is non-zero, (SST + λI) is a diagonal ma-
trix with non-zero elements in the diagonal, and, therefore, the
calculation of the inverse lowers complexity to time O(r); this is
because only the reciprocals of the main diagonal elements have
to be calculated. Under these circumstances, as r ≤ min(m, n),
he system in Eq. (3) becomes efficient, irrespective of whether

≫ n or n ≫ m.

.2. Federated and homomorphically encrypted learning method
FedHEONN)

The solution presented in Eq. (4) is only applicable in a cen-
ralized learning scenario, where the entire data set X is acces-
ible in a single location. However, in the case of a federated
nvironment, the data is partitioned into P submatrices X =

X1|X2| . . . |XP ], such that each node (client) contains only one
f the submatrices. This is a type of FL known as horizontal
earning, in which it is assumed that all clients share the same
ariables for the problem but differ in the samples available.
edHEONN reformulates the research described in Section 3.1,
aking into account the following considerations regarding the

olution presented in Eq. (4):
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• The term U(SST + λI)−1UT involves the matrices U and S,
which, in the original algorithm, are calculated from the
centralized SVD of XF. However, Iwen and Ong [43] demon-
strated that the SVD can be computed in an incremental
and distributed way. Given a data matrix A, decomposed
into P partitions A = [A1|A2| . . . |AP ], this has the same
singular values S and left singular vectors U as the matrix
B = [U1S1|U2S2| . . . |UPSP ], where UpSpVp = SVD(Ap), ∀p =

1, . . . , P , i.e:

SVD(A) = SVD([A1|A2| . . . |AP ])
= SVD([U1S1|U2S2| . . . |UPSP ]) (5)

Therefore, applying the incremental method, we can com-
pute the economy-sized SVD of XF using the partial SVDs
calculated across all clients in the federated scenario.
This partial SVD merging scheme has been shown to be
numerically robust to rounding off errors and corruption of
the original data. It is also accurate even when the rank of
matrix A is underestimated or deliberately reduced.

• The term XFFd̄, which, for simplicity sake, we call m ∈

Rm×1, can be computed by means of a block partitioned
matrix product that only involves algebra in the submatrices
of the factors, using the following equation:

m = XFFd̄ = [X1|X2| . . . |XP ]

⎡⎢⎢⎣
F1
F2
...

FP

⎤⎥⎥⎦
⎡⎢⎢⎣
F1
F2
...

FP

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
d̄1

d̄2
...

d̄p

⎤⎥⎥⎥⎦
= X1F1F1d̄1 + · · · + XpFpFpd̄p (6)

Therefore, m can be incrementally computed through the
local information provided by P clients. Let us suppose that,
at client p, we have a local data set of np examples Xp ∈

Rm×np and that mp = XpFpFpd̄p is computed.
When new data, Xk, from another client k become available,
the new vector mp|k – which combines the information
provided jointly by Xp and Xk – can be easily obtained by
simply adding to mp, the term that depends only on the new
data block, i.e:

mp|k = mp + XkFkFkd̄k (7)

• The proposed method is private by design, as no raw data is
sent across the network to aggregate the information from
multiple clients, only locally computed matrices UpSp and
mp. However, we use an HE mechanism to add an additional
protective barrier against attacks aimed at causing privacy
leaks by inferring the data used during the training process,
such as happens with model inversion attacks. The advan-
tage of this type of encryption, as previously mentioned,
is that it allows us to operate with the encrypted data,
while obtaining the same result as if the operation had been
performed on the plain data. We introduce encryption in
the mp vector sent by each client to the coordinator; this
information may be more vulnerable to attacks than the
UpSp matrix, since the latter comes from the calculation of
the SVD of XpFp and part of the information necessary to
recover the data (the matrix Vp of the factorization) is never
sent.
Therefore, the mp vector is encrypted before being sent to
the coordinator in charge of aggregating all client infor-
mation. Subsequently, the coordinator adds the information
provided by client p to the global vector m by means of the
following homomorphic addition operation:
[[m]] = [[m]] + [[mp]] (8)

203
where [[ · ]] is the HE operator. We used a CKKS HE scheme
[44], since, unlike other HE schemes, it supports approxi-
mate arithmetic over real numbers; although it only
supports homomorphic addition and homomorphic multi-
plication, these operations are enough to implement the
proposed method. This mechanism provides a higher level
of security against inversion model attacks and non-trust
worthy coordination servers, as the operations are per-
formed using encrypted matrices.

Considering the above, we propose a new FL model with HE
in a client–server setup, where P participants (clients) with the
same data structure collaboratively train an ML model with the
help of an aggregation server (coordinator). In order to perform
FL at client p, using the local data partition Xp, we only need
to compute the matrices Up, Sp resulting from the SVD of XpFp,
vector mp = XpFpFpd̄p, and its encrypted version [[mp]] using
the CKKS HE scheme. Each client subsequently sends their partial
results to the coordinator, which incrementally combines all the
information using Eqs. (5) and (8) to obtain the global matrices
, U and S. Weights are then calculated using Eq. (4). Since no

aw data is transmitted between nodes the algorithm guarantees
rivacy.
In the FL scheme, the 1 and 2 algorithms contain the pseu-

ocode for the clients and the coordinator, respectively. The
seudocode for the coordinator is designed to receive the list of
atrices and vectors calculated by all the available clients, and to
ggregate them all sequentially. Although the method can deal
ith all clients in a single stage, the coordinator can also add
lients at different stages if any are temporarily unavailable. To do
his, the coordinator starts aggregating the information provided
y the available clients and, incrementally adds new clients. This
lso allows client addition dynamically, since it is not necessary
o retrain previously aggregated clients to add the information
rovided by the new client. In the interest of contributing to
eproducible research, the Python code is available online.1

Algorithm 1 Pseudocode for the FedHEONN client
Inputs for a client p:

Xp ∈ Rm×np ▷ Local data block with m inputs and np samples
dp ∈ Rnp×1

▷ The corresponding local vector of desired outputs
f ▷ Nonlinear activation function (invertible)

Outputs:
[[mp]] ▷ Encrypted local m vector computed by client p
USp ▷ Local U ∗ S matrix computed by client p

1: function fedheonn_client(Xp,dp,f )
2: Xp = [ones(1, np);Xp]; ▷ Bias is added
3: dp = f −1(dp); ▷ Inverse of the neural function
4: fp = f ′(dp); ▷ Derivative of the neural function
5: Fp = diag(fp); ▷ Diagonal matrix
6: [Up, Sp, ∼] = SVD(Xp ∗ Fp); ▷ Economy size SVD
7: USp = Up ∗ diag(Sp) ▷ Local product USp is computed
8: mp = Xp ∗ (fp. ∗ fp. ∗ dp); ▷ Local vector mp is computed
9: [[mp]] = ckks_encryption(mp) ▷ CKKS encryption of the mp

vector
10: return [[mp]],USp
11: end function

1 https://github.com/ofontenla/FedHEONN.

https://github.com/ofontenla/FedHEONN
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Algorithm 2 Pseudocode for the FedHEONN coordinator
Inputs:

M_list ▷ List containing the encrypted M matrices of the available
clients

US_list ▷ List containing the US matrices of the available clients
λ ▷ Regularization hyperparameter

utputs:
[[w]] ∈ Rm×1

▷ Encrpyted optimal weights

1: function fedheonn_coordinator(M_list, US_list, λ)
2: if previous [[m]], US matrices are available:
3: [[m]] = Stored [[m]] ▷ The vector is initialized with the

existing one
4: US = Stored US ▷ The matrix is initialized with the existing

one
5: else: ▷ First time that clients are aggregated
6: [[m]] = 0 ▷ Zero vector
7: US = [ ] ▷ Empty matrix
8: for [[mp]], USp in (M_list, US_list): ▷ Loop through clients
9: [[m]] = [[m]] + [[mp]] ▷ Aggregation of m vector
10: [U, S, ∼] = SVD([US | USp]); ▷ Incremental SVD
11: US = U ∗ diag(S) ▷ Aggregation of US Matrix
12: [[w]] = U ∗ inv(S ∗ S + λI) ∗ (UT

∗ [[m]]) ▷ Optimal weights
13: Save [[m]], US ▷ To aggregate new information in the future
14: return [[w]]

15: end function

Note that the CKKS implementation of the HE has a limit on
he number of multiplications performed on encrypted data, since
ach operation adds noise, and once a certain amount of noise
s added it is no longer possible to retrieve the original data.
pecifically, recent studies [45] have verified that, for large sizes
f encrypted vectors, no more than two sequential multiplications
hould be done, so as not to degrade the result obtained with
ncryption. However, this does not imply a limitation for our
roposed method, since the chained operations are performed
n the addition operations (line 9 of algorithm 2), and mul-
iplications are only performed on two consecutive operations
line 12 of algorithm 2), regardless of the number of clients. As
etailed below in the results section, this has also been verified
xperimentally in that the accuracy of the model is not degraded.
In addition, an important feature of the method is that, unlike

ost of the state-of-the-art federated methods, it requires only
single round of coordinator aggregation involving all available
lients. This is because, as a non-iterative learning method, the
ptimal weights for the clients can be obtained in a single training
tep. In any case, if any of the clients receive new data in the
uture, this knowledge can be very easily added to the previously
rained model.

As a summary, Fig. 1 depicts the main phases of the proposed
method.

3.3. Communication efficiency

In this subsection, we analyze the total amount of informa-
tion sent through the communication network during training,
both by the proposed method and by a traditional federated
method, such as FedAVG, which uses several training rounds with
a fraction of the clients participating per round. In both cases,
the same base model (one-layer network with one output) is
employed. The analysis is based on the following definitions and
considerations:

• c: number of clients in the federated environment.
• m: number of features in the data set.
• n: total number of data instances. In the federated environ-

ment, n =
∑c

i=1 ni, where ni is the number of instances in

the local data set of client i.
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Fig. 1. Main steps of the proposed federated method.

• ρ: fraction of clients employed in each round (0 < ρ ≤ 1).
In the proposed method, ρ is always equal to 1, since there
is only one round of communication in which all clients
participate.

• The traditional federated method uses r communication
rounds, and for each round it sends the weights of the
network (a vector of size m).

• In the proposed method the information sent by the com-
munication network is the matrix USi ∈ Rm×ki , with ki =

min(m, ni), and the vector [[mi]] ∈ Rm.

Using the above statements, the information sent can be com-
uted by FedHEONN (IFedHEONN ) as follows:

FedHEONN =

c∑
i=1

(

size of USi
mki +

size of mi
m ) (9)

nd by the traditional federated method (IFed) as follows:

Fed = ρcmr (10)

The following operations can be carried out to find out when
he quantity of information sent by the proposed method is less
han that of the traditional method:

IFedHEONN < IFed (11)
c

i=1

(mki + m) < ρcmr (12)

c∑
i=1

(ki + 1) < ρcr (13)

c∑
i=1

ki + c < ρcr (14)∑c
i=1 ki + c

ρc
< r (15)

Using Eq. (15) it can be concluded that the communications
n the proposed method are more efficient when the number of
raditional FL method rounds r satisfies that:

>

1
c

∑c
i=1 ki + 1

(16)

ρ
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In addition, using this equation we can analyze two main
ases:

(a) if m ≤ ni, ∀i = 1 . . . c , then using Eq. (16) we get the
following result:
1
c

∑c
i=1 ki + 1
ρ

< r (17)

1
c

∑c
i=1 m + 1

ρ
< r (18)

cm
c + 1

ρ
< r (19)

m + 1
ρ

< r (20)

(b) if m > ni, ∀i = 1 . . . c , then using Eq. (16) we get the
following result:
1
c

∑c
i=1 ki + 1
ρ

< r (21)

1
c

∑c
i=1 ni + 1
ρ

< r (22)

n
c + 1

ρ
< r (23)

. Results

In this section, we evaluate the performance of the proposed
eHEONN method, in terms of accuracy and consumption, by
esting it on different federated configurations and analyzing the
nfluence of the number of clients on performance. To verify
hat the federated approach does not imply performance degra-
ation, we compare the results with the centralized version of
he algorithm, with just a single client containing all the data. In
ddition, to analyze the impact of encryption, we include results
ith and without encryption. Finally, given the importance of
ata distribution in federated environments, our experiments use
oth IID and non-IID data.
After analyzing FedHEONN performance, we performed a brief

xperiment to compare it with FedAVG (the most widely used
pproach in the FL environment) in terms of accuracy and effi-
iency of CPU usage and communications involved in training.
e also studied test accuracy for our method compared to other

tate-of-the-art ML methods.

.1. Experimental setup

To evaluate performance in a federated environment as close
s possible to reality, we performed different experiments based
n varying the number of clients from 200 to 20,000 in incre-
ents of 200. We selected six large data sets, so that, in the
ost extreme case (20,000 clients), each client could count on
few data points. Table 1 shows the main characteristics of the

classification data sets used, all representing real-world problems
and publicly available at the UCI data set repository [46]. Only the
DryBean×10 and Higgs×4 data sets were semi-artificially created
by replicating ten and four times the data from the Dry Bean
and Higgs data sets, respectively. While this experiment was not
relevant in terms of accuracy, it is interesting to analyze training
time for the method in an even more extreme scenario.

In all experimental tests, the data were divided into two sets:
a training set made up of 70% of the data and a test set containing
the remaining 30%. In addition, to create the federated scenario,
the training data were distributed among all the clients so that
each one had approximately the same amount of data. Table 2
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Table 1
Characteristics of the data sets.
Dataset Samples Attributes Classes

MiniBoone 130,064 50 2
DryBean×10 136,110 16 7
Skin 245,057 3 2
SUSY 5,000,000 18 2
HEPMASS 10,500,000 28 2
Higgs 11,000,000 28 2
Higgs×4 44,000,000 28 2

Table 2
Size of the training set at each client for the centralized scenario and the most
extreme federated scenario (20,000 clients).
Dataset # samples

Global training set Local training set

MiniBoone 91,044 4
DryBean×10 95,277 4
Skin 171,539 8
SUSY 3,500,000 175
HEPMASS 7,350,000 368
Higgs 7,700,000 385
Higgs×4 30,800,000 1,540

shows the size of the centralized training set and the approximate
size of the local training datasets available at each client in the
most extreme federated scenario (20,000 clients). As can be seen,
in this extreme scenario, the amount of local data in each client
was very small.

We carried out all experiments for IID and non-IID scenarios
and compared the results with the same method but without the
encryption layer. To create the non-IID scenario, the global data
set was ordered according to the class label, and local data sets
were created for each client following the pre-established order.
This was a pathological non-IID partition of the data, as the vast
majority of the clients would only have instances of one of the
classes.

In all cases, the regularization hyperparameter (λ) was 1 ×

10−3. No tests were carried out with different values of this
hyperparameter since the aim was to observe the behavior of
the model by only varying the number of clients. Finally, logistic
functions were used as activation functions for neurons.

Since 20,000 different machines were not available to run a
client on each, the federated environment was simulated on the
same computer. All the clients of the federated model and also
the centralized model were executed on a computer with an Intel
Core i7-10700 2.90 GHz processor with 32 GB of RAM.

The following metrics were used to analyze model perfor-
mance:

• Test accuracy: Correctly predicted data points as a percent-
age of all the data points in the test set.

• Training time: In a real federated environment, since clients
run in parallel on different devices, the total training time
required to obtain the federated model is the time taken by
the slowest client (the last to send information to the coor-
dinator) plus the time taken by the coordinator to aggregate
the information from all clients.

• Sum of CPU time: The individual training times of all the
clients plus the time of the coordinator. This metric is an im-
portant reference reflecting the overall energy consumption
of the federated system.

• Watts per hour (Wh): Consumption calculated in terms of
Wh is based on the nominal watts consumed by the CPUs
of the devices and the CPU time used by each device for
training. In this case, as all clients use the same type of
device, the calculation is the result of multiplying the watts

by the sum of CPU time (in seconds) divided by 3,600.
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.2. Performance results

In this section the results of the proposed method are analyzed
nd compared with the results for the same model without apply-
ng encryption. The goal of this comparison is to analyze whether
r not operations with HE information significantly degrade the
odel’s accuracy. The simulations were repeated three times.
ote that the reported results refer to the mean value for each
f the metrics.
Fig. 2 shows results for the test accuracy of the method with

nd without encryption, varying the number of clients in IID and
on-IID scenarios. The first value of the curves i.e., x-axis value
, corresponds to centralized training of the model. It can be
bserved that, regardless of the number of clients, accuracy is
aintained with very little variability. Even in extreme scenarios

n which very little local data are available for 20,000 clients (4
r 8 data points for MiniBoone, DryBean×10 and Skin), model
ehavior is stable. It can be concluded that the proposed method
s very robust in terms of accuracy in all scenarios, as it is not
nfluenced by the number of clients, the use of encryption, or
on-identical distributed data.
Fig. 3 shows the method training time for the various scenarios

onsidered. Analyzing the plots, the following can be observed:

• As expected, the model with encryption supposed an addi-
tional computational cost compared to the model without
encryption. Even so, for large data sets (SUSY, HEPMASS,
Higgs, and Higgsx4) and up to a relatively high number of
clients, the proposed method obtained significantly lower
training times than the centralized version without encryp-
tion (x-axis value 1). As an example, the average training
time of the centralized model for Higgsx4 was 464.84 s
compared to 11.18 s for the proposed method with 10,000
clients.

• Due to the computational cost of adding all the information
in the coordinator, FedHEONN training time grew linearly
up to a certain number of clients, when the computational
cost starts to increase significantly due to the accumulation
of encrypted operations in the coordinator. As can be seen,
this change in trend did not occur in the non-encrypted case.

Fig. 4 shows the sum of CPU time consumed by all clients
and the coordinator (left vertical axis), and also shows the cor-
responding Wh (right vertical axis). As can be observed, in terms
of Wh, encryption supposed, in general, an extra cost. This is to
be expected since it is necessary to carry out data encryption
and operate with encrypted data, which always has a higher
computational cost than an operation with plain data. Despite
this, for large data sets, such as Higgsx4 or even much larger data
sets, certain FedHEONN federated environment configurations
were more efficient in terms of power consumption, and were
therefore more sustainable. More specifically, for the Higgsx4
dataset, power consumption for any of the scenarios between 2
and approximately 8,000 clients was lower than the centralized
model (without encryption), a fact that would be generalizable
and expandable to even much larger data sets.

4.3. Comparison with FedAVG

To demonstrate whether our method, FedHEONN, is compa-
able with FedAVG, the most widely used method in the FL
nvironment, experiments were performed using the SUSY data
et. We employed the same base model (one-layer neural net-
ork) for FedAVG and for FedHEONN. In this case, the number
f clients was varied from 5 up to 50, in increments of 5. For all
he experiments, FedAVG used 100 communication rounds with

ifferent fractions of clients (0.1, 0.3 and 0.5). c

206
Fig. 2. Mean test accuracy as a function of the number of clients, for the IID
and non-IID scenarios, with and without encryption. Since the four curves in
each subplot overlap, only one can be seen.

In terms of test accuracy stability, FedAVG showed similar
behavior and its accuracy did not vary regardless of the number
of clients employed or the fraction of clients used for each round.

With regards to training time, Fig. 5 shows that, despite the
addition of an encryption stage, time for the FedHEONN model
is much lower time than for the FedAVG, irrespective of the
configuration.

Fig. 6 depicts the sum of CPU time and Wh consumed in the
onsidered scenarios, clearly showing that FedHEONN’s power
onsumption is the slowest.
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Fig. 3. Mean training time as a function of the number of clients, for the IID
nd non-IID scenarios, with and without encryption. The shaded areas reflect
he standard deviation of each curve.

.4. Accuracy comparison with other state-of-the-art results

We include a comparative study of the test accuracy obtained
y FedHEONN with respect to the accuracy obtained by other
tate-of-the-art LM models and a single layer neural network
hat is like our model, but trained using all the data centralized
n a single site and with an iterative training algorithm (quasi-
ewton method). Tables 3 and 4 contain the quantitative results
btained by FedHEONN together with other results found in the
cientific literature. The first column of the table shows the name
f the method and the corresponding bibliographic reference.
yphenated cells indicate that the result is not available.
207
Fig. 4. Mean sum of CPU time and Wh consumed in training as a function
of the number of clients for the IID and non-IID scenarios, with and without
encryption. The shaded areas reflect the standard deviation of each curve.

For ease of comparison, mean and median accuracy (calculated
excluding FedHEONN) are reported at the end of the tables. As
can be seen, FedHEONN, despite being based on a network model
without hidden layers, obtained very competitive results, even
against more complex ML models that also use all the data in
a centralized way, and achieved better results in many cases.
Furthermore, a comparison of the overall results shows that Fed-
HEONN was better in 5 out of 6 cases when considering the
mean, and in 3 out of 6 cases when considering the median,
all with the added advantage that it can be used in a federated
environment (IID or non-IID) with very low power consumption
for the processing of large data sets.



O. Fontenla-Romero, B. Guijarro-Berdiñas, E. Hernández-Pereira et al. Future Generation Computer Systems 149 (2023) 200–211

f
f
d

4

Fig. 5. Training time for the SUSY data set as a function of the number of clients,
for IID and non-IID scenarios. Considered for FedHEONN were both encrypted
and unencrypted versions and for FedAVG different fractions of clients per round.
The y-axis is represented in log scale.

Fig. 6. Sum of CPU time and Wh consumed in training the SUSY data set as a
unction of the number of clients for the IID and non-IID scenarios. Considered
or FedHEONN were both encrypted and unencrypted versions and for FedAVG
ifferent fractions of clients per round. The y-axis is represented in log scale.

.5. Communication efficiency

Finally, using the study presented in Sub Section 3.3 regarding
the amount of information sent through the communications
network, we analyzed the results obtained for the data sets for the
scenario with the largest number of clients (c = 20,000). Fig. 7
shows the number of rounds, as a function of ρ, from which the
FedHEONN method was more efficient in terms of the amount of
information sent than a traditional federated method employing
the same base model. Note that the Higgs and HEPMASS curves
overlap, so only the latter is visible. As can be seen, FedHEONN
is more efficient than the traditional method in a low number of
communication rounds. This difference became more acute as the
fraction of participants per round (ρ) in the traditional method
increased. As an example, for the Skin data set and considering a
fraction of clients (ρ) of 0.3, FedHEONN was more efficient than
the other federated model when the latter used more than 13
rounds of communication.

5. Conclusions

In this work, we have described FedHEONN, a novel federated
ML method, based on one-layer neural networks, that incorpo-
rates HE. It has the following advantages compared to current FL
methods:

• FedHEONN obtains equivalent solutions irrespective of
whether the environment is IID or non-IID. This is an im-
portant advantage since most FL models do not yield the

same solutions and performance in both situations.
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Table 3
Accuracy (%) results for FedHEONN compared with results published by other
authors for the small data sets.
Model Dry Bean MiniBoone Skin

Proposed method 90.43 90.02 92.56
Single layer neural network 92.67 90.46 91.90
Logistic regression [47] 91.00 – –
K-nearest neighbor [47] 89.00 – –
K-nearest neighbor [48] 92.52 – –
Condensed Nearest Neighbor [49] – 82.96 99.95
Editing Nearest Neighbor [49] – 87.59 99.97
Reduced Nearest Neighbor [49] – – 99.95
Multilayer perceptron [47] 91.00 – –
Multilayer perceptron [48] 91.73 – –
Artificial Neural Network [50] 92.58 – –
Support Vector Classifier [47] 92.00 – –
Support Vector Classifier [48] 93.13 – –
Support Vector Classifier [50] 92.18 – –
Naive Bayes [47] 89.00 – –
Multinomial Naive Bayes [50] 64.30 – –
Decision Tree [47] 90.00 – –
Decision Tree [48] 87.92 – –
Decision Tree [50] 91.59 – –
Very Fast Decision Tree [51] – – 93.33
Hybrid Decision Tree [51] – – 98.42
C4.5 [51] – – 99.48
Random Forest [47] 92.00 – –
Random Forest [50] 93.61 – –
ELM [49] – 91.70 99.27
ELM-EN [49] – 91.08 99.25
ELM-KL [49] – 88.62 98.08
ELM-KL-ALL [49] – 92.07 98.89
Difference of Convex Algorithm DCA [52] – 84.19 –
Stochastic DCA [52] – 83.90 –
Sequential-based DL Model [53] 94.88 – –
Extreme Gradient Boosting [47] 93.00 – –
Voting Classifier [50] 92.80 – –

Mean 90.35 88.06 98.04
Median 92.00 88.62 99.25

Table 4
Accuracy (%) results for FedHEONN compared with results published by other
authors for the large data sets.
Model Higgs SUSY HEPMASS

Proposed method 64.05 75.76 83.50
Single layer neural network 64.17 78.80 83.64
Logistic Regression [54] 64.21 – –
Logistic Regression [55] – 78.84 –
Spark K-means [56] 48.34 50.04 50.66
Spark Generalized Linear Model [56] 63.51 75.01 83.40
Decision Tree [54] 63.57 – –
Decision Tree [55] – 75.46 –
Random Forest [54] 67.64 – –
Random Forest [55] – 77.40 –
Random Forest [57] 67.67 77.67 82.21
Spark Random Forest [56] 59.65 76.81 82.43
Rotation Forest [57] 68.80 78.59 84.44
Gradient Boosted Tree [54] 70.62 – –
Gradient Boosted Tree [55] – 79.30 –
Spark Gradient Boosted Tree [56] 59.49 75.11 81.83
PANFIS [58] 63.94 75.42 83.32
PANFIS MapReduce [58] 63.48 76.80 83.35
Scalable PANFIS Merging [56] 63.66 76.70 83.47
Scalable PANFIS Voting [56] 63.70 76.22 84.18
Scalable PANFIS AL Merging [56] 63.72 76.79 83.45
Scalable PANFIS AL Voting [56] 63.92 76.20 84.15
PDMS Genetic Algorithm [59] 63.00 – 83.67
Max Mean Discrepancy [60] 57.90 – –
eTS [58] 64.69 77.05 82.32
Simpl_eTS [58] 60.17 70.93 81.22
MapReduce MRAC [61] 62.96 74.57 –
PCA Random Discretization Ensemble [57] 58.33 72.64 81.33

Mean 62.92 75.06 81.12
Median 63.66 76.70 83.35
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Fig. 7. Number of rounds for which FedHEONN communications are more
fficient than the traditional federated method, as a function of ρ.

• For FedHEONN, only a single round of training involving all
the devices is necessary to obtain the optimal weights of the
network, allowing a faster learning process than produced
by the vast majority of current methods in the literature,
which use multiple rounds of training in which part of the
clients collaborate.

• FedHEONN is suitable for working in both cross-silo and
cross-device settings.

• FedHEONN, in addition to being a privacy-preserving algo-
rithm by design, because it does not send raw private data
directly over the communication network, it is also robust
against model inversion attacks since the local clients send
the computed vectors encrypted ([[mp]]) and the coordinator
returns the global weights also encrypted ([[w]]). Further-
more, since the coordinator operates with the encrypted
[[mp]] vectors, it does not need to be trusted, which is also
an additional advantage over other federated models with
a client–server architecture. In addition, the one-time shar-
ing of information over the communication network (single
round) makes FedHEONN more robust against attacks that
attempt to violate data privacy.

• It has been formally shown that FedHEONN is more efficient,
in terms of the amount of information sent over the commu-
nications network, than a traditional FL method that uses
the same base learning model, depending on the number of
rounds and the fraction of clients used.

Finally, FedHEONN has a number of limitations that must be
aken into account:

• As it is designed for neural network without hidden layers,
it has much less representation power than other deeper
networks. Despite this, experimentally it has been proven
to obtain competitive results, and in some scenarios, for
example, IoT environments, where low computing power
devices are used, this may be the only alternative for clients.

• The cost function used by the model is based on the mean
squared error, since this function is what allows us to carry
out the necessary mathematical formulation to analytically
obtain the optimal solution. This function is specially de-
signed for regression tasks, so in some classification tasks
the model may have a slightly lower performance (as shown
in Section 4) than similar ones that use cost functions more

oriented to classification tasks, such as cross-entropy.
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• It must be applied in a client–server architecture to prevent
another client from decrypting the information, since the
private key employed in an HE scheme is unique for all the
clients. If encryption of data is not required, then the model
could be applied in a peer-to-peer architecture.

Future work includes the design of a more powerful algorithm
that uses this learning method as a building block, incorporating
the advantages of HE in the training of more complex models.
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