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Abstract: Accurate prediction of inflow in dams plays a crucial role in water resource manage-
ment Kim et al. (2019); Vargas-Garay et al. (2018); Zhong et al. (2018) and risk mitigation Costa-
bile et al. (2020); Rabuñal et al. (2007). This study focuses on the Portodemouros dam (located
between the provinces of ACoruña and Pontevedra), where amodel based on a Long Short-Term
Memory (LSTM) artificial neural network has been implemented to predict dam inflow.
The results demonstrate the well-established effectiveness of the LSTM network in flow predic-
tion Dongkyuna and Seokkoob (2021); Jo and Jung (2023); Li et al. (2020) applied to the Portode-
mouros dam compared to other models. This comparison has already been performed in other
studies with both mathematical models Amirreza et al. (2022); Ansori and Anwar (2022); A.R1
et al. (2018); Beck et al. (2017); Ciabatta et al. (2016); Costabile et al. (2020); Fan et al. (2013);
Heřmanovský et al. (2017); Kim et al. (2019); Vargas-Garay et al. (2018); Zhong et al. (2018),
genetic programming Aytek et al. (2008); Havlı́ček et al. (2013); Heřmanovský et al. (2017);
Rabuñal et al. (2007) and other machine learning algorithms Jo and Jung (2023). Combining
precipitation data frommultiple regions and meteorological forecasts significantly enhances the
model’s ability to anticipate variations in dam inflow. This improved accuracy is essential for
early flood detection and informed decision-making in dam operation.
This study forms part of theMarine Science programme (ThinkInAzul) supported byMinisterio
de Ciencia e Innovación and Xunta de Galicia with funding from European Union NextGenera-
tionEU (PRTR-C17.I1) and European Maritime and Fisheries Fund.

1 Introduction
Predicting the variation in surface water flows (runoff) based on local precipitation (rainfall-
runoff models) has been addressed from the 19th century to the present day using mathemat-
ical models and later machine learning models separately or with comparative studies.

2 Dataset
2.1 Sources
For the training of the neural networks, a dataset of parameters from the Portodemouros dam,
located in the Ulla River basin (42°50’47”N 8°08’26”W) with a total capacity of 297 hm3, which
includes a set of 4554 daily records of dam inflow, precipitation, and 1, 2, and 3-day predictions
provided by meteogalicia, was used. See Figure 1.
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Figure 1: Dam and pluviometer stations situation map

To prepare the complete dataset, several sources were used, including records from the dam,
which include filling level, dam inflow, and dam flow outputs. These data will allow us to link
this study to a subsequent one on human behavior modeling.

2.2 Preliminary Analysis: Discharge Time
To establish a rainfall-runoff model, it is necessary to estimate the time it takes for precipitation
at each measuring station to affect the dam inflow. To accomplish this, the correlation between
precipitation in several areas and changes in the streamwas assessed. Four pluviometer station
recordswere used tomeasure the aforementioned correlation: Arzua, Melide, Serradofaro, and
Olveda. These stations were selected due to their proximity to the upper part of the Ulla River,
demonstrating that all basins take less than 24 hours (1 day) to reach the dam, regardless of the
soil water saturation state.. See Figure 1.

Table 1: Maximum correlation between precipitation and dam inflow (in days)
Soil Moisture Arzua Olveda Serradofaro Melide
Dry 1 1 1 1
Half-wet 1 1 1 1
Wet 1 1 1 1
Very wet 1 1 1 1
Saturated 1 1 1 1

2.3 Cross-Validation
The dataset has been split into subsets based on the year of each sample, resulting in 13 subsets
(spanning from 2010 to 2022). Once these subsets were separated, 13 different sets of training,
validation, and test data were prepared, such that the test set covers a complete year, the
validation set the following complete year (or the first year if the test set includes the last year),
and the training set includes the remaining years. This approach helps mitigate the impact of
year-to-year variability on both model training and evaluation metrics. Subsequently, each of
these sets was normalized by subtracting the mean of each column and dividing the result by
the standard deviation of that column Li et al. (2020). The measurements were calculated by
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averaging across all k-fold subsets.

To compare the model’s performance, other machine learning models and a naive model
have been used:

• Linear Regression Tallarida and Murray (1987)
• SVM (Support Vector Machine for Regression) C. and V. (1995)
• Naive model (using the last known dam inflow value as the prediction for each sample)

3 Results

Figure 2: LSTM predictions (y pred), Naive predictions (Naive) and real values (y test) of dam inflow

Below are the results using different metrics commonly used as a basis in most rainfall-runoff
studies, such as the coefficient of determination (R2) Ansori and Anwar (2022); Aytek et al.
(2008); Jo and Jung (2023); Zhong et al. (2018) and the Nash-Sutcliffe Efficiency coefficient
(NS or NSE) Ansori and Anwar (2022); A.R1 et al. (2018); Ciabatta et al. (2016); Dongkyuna
and Seokkoob (2021); Havlı́ček et al. (2013); Heřmanovský et al. (2017); Jo and Jung (2023);
Li et al. (2020).

Nash-Sutcliffe Efficiency (NS) is a widely used metric in hydrology to assess the accuracy of
runoff models or hydrological forecasts in comparison to observed data McCuen et al. (2006).
It was proposed by John R. Nash and James C. Sutcliffe in 1970 and is considered an effective
measure to evaluate the overall performance of a model in simulating runoff events over time.

Model output metrics
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Table 2: Prediction Evaluation
Model R2 train R2 test NS train NS test
LR 0.849 0.816 0.822 0.782
SVM 0.877 0.76 0.795 0.494
Naive 0.777 0.717 0.776 0.715
LSTM 0.881 0.8 0.845 0.709

These metrics were obtained using a 13-fold cross-validation with complete years as subsets.
Each value is computed by a mean of each subset metric giving a better estimation of each
measure avoiding any bias by extreme climatic difference between dataset years range.

4 Conclusions
As can be observed, the LSTM network achieves a training score of 0.845 and a testing score of
0.709 for NS, which measures the goodness of rainfall-runoff models, regardless of the dataset
used. These NS values are very similar to those found in other studies, such as 0.73 in training
by Ansori and Anwar (2022) or 0.782 in testing by Jo and Jung (2023).

LR has also demonstrated strong performance in the test dataset, achieving the highest
values of R2 and NS in a subset of 365 samples, which makes it a reliable estimator for the
rainfall-runoff model in this specific dataset.

This results confirms the robustness of LSTM algorithm in this dataset and establishes it as
a valid foundation for further fine-tuning or complementation with other types of algorithms.
For example, it can be used to model dam operator behavior, allowing predictions of dam
overflow based on inflow flow forecasted by an algorithm like LSTM, along with another
model predicting the orderly dam release by the operator.

In addition to the rainfall-runoff model, analyzing the behavior of the dam operator when
managing dam releases is crucial to enhance the robustness of an early flood and overflow
alarm system. This helps minimize operational risks while maximizing effectiveness in
complex situations. To model their behavior, we have access to a historical record of actions
based on the variables previously used in the rainfall-runoff model.
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