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Abstract: In a complex socio-economic context, policymakers need highly disaggregated poverty
indicators. In this work, we develop a methodology in small area estimation to derive predictors
of poverty proportions under a random regression coefficient Poisson model, introducing boot-
strap estimators of mean squared errors. Maximum likelihood estimators of model parameters
and random effects mode predictors are calculated using a Laplace approximation algorithm.
Simulation experiments are conducted to investigate the behaviour of the fitting algorithm, the
predictors and the mean squared error estimator. The new statistical methodology is applied to
data from the Spanish survey of living conditions to map poverty proportions by province and
sex, developing a tool to support policy decision making.

1 Introduction
One out of every five people is at risk of poverty or social exclusion in the European Union
(EU), with the figure rising to 26.4 % in Spain (Eurostat, 2022).

In order to reduce this number, the EU has set national targets for all its members. Among
these measures, the SLC or Survey on living conditions, whose main objective is to provide
comparable statistics on income distribution and social exclusion in order to support policy
makers in the distribution of their policy packages, stands out. Thus, most European coun-
tries use the SLC to estimate poverty indicators. This survey in Spain, the Spanish survey of
living conditions (SLCS), provides information on household income received during the year
prior to the year of the interview, the domains foreseen being the Autonomous Communities
(CCAA).

With these data, different tools can be developed, especially poverty maps, which are widely
popularised as they provide a clear visual representation of the geographical distribution of
poverty and the degree of inequality between territories in a country, becoming a key support
for political decision-making. In fact, the estimation of these indicators and the use of the results
for poverty mapping is of great international interest, initiated and sponsored in many cases
by the United Nations and the World Bank, demanding their collection at increasingly lower
levels of aggregation (see Molina and Rao (2010) for an exhaustive review).

This is a challenge in view of the small or even zero sample size, which can be assumed by
Small Area Estimation (SAE) and which responds to the need to produce precise estimates on
indicators of interest in areas or domains where the sample size is smaller than planned by the
surveys fromwhich the information on the target variable is extracted. Since its definition, with
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the study by Fay III and Herriot (1979), research has followed one after the other, increasing
significantly in recent years, driven by the Sustainable Development Goals (SDGs).

Thus, SAE methods are shown as potential alternatives, with the use of linear mixed models
(LMMs) and generalised linear mixed models (GLMMs) standing out in recent years. How-
ever, all existing work so far in SAE considers the regression coefficients as fixed effects. This
approach may be too rigid when the relationship between the target variable and the auxiliary
variables is not constant across domains. This is common in the socio-economic context, co-
variates such as age, employment status, citizenship or education may have a different rate of
influence on the poverty rate, depending on the region of study. In fact, we have as an example
the Spanish case, where in terms of disparity between provinces, the different realities in the
peninsular geography have been the subject of numerous investigations insinuating that the
current structural inequalities were already established in the 1930s, with a pattern of increas-
ing poverty from the north-east to the south-west of Spain (Tirado et al., 2016).

To provide more flexibility to the modelling process, Dempster et al. (1981), defined random
slope mixed models for the first time in SAE. Despite an early initial development phase, with
works such as those of Prasad and Rao (1990) to derive the empirical best linear unbiased
predictor (EBLUP) and the analytical estimator of the mean squared error (MSE), research
is limited, with the works of Hobza andMorales (2013) andMorales et al. (2021) standing out,
and always in the context of LMMs. In fact, in SAE, to our current knowledge, GLMMs with
random slope have not been defined.

Therefore, and due to the potential gain in flexibility of these approaches, in this work we
present our current research, (Diz-Rosales et al., 2023, accepted for publication), aimed at devel-
oping new statistical methodology in SAE for poverty mapping by exploring the usefulness of
area-level random slope Poisson GLMMs in the inference of poverty indicators. We introduce
bootstrap estimators of the mean squared error. The maximum likelihood estimators of the
parameters and the modal predictors of the random effects are calculated using a Laplace ap-
proximation algorithm. The behaviour of this fitting algorithm, as well as that of the predictors
and the mean squared error estimators, is investigated by simulation experiments. Finally, the
new statistical methodology is applied to the Spanish living conditions survey (SLCS) data.
The objective is to estimate and map, by provinces, the proportions of women and men be-
low the poverty threshold, thus developing a tool of social interest aimed at supporting social
policy-making.

2 Data
The dataset selected for this study corresponds to the 2008 SLCS dataset, with a sample size of
35967. It should be noted that, despite its temporal distance with respect to the current year,
the choice of this dataset lies in the fact that it has been widely used in other methodological
approaches in SAE. In this way, it is possible to make comparisons of the results obtained using
different procedures and, therefore, to make the necessary evaluations to improve the model
for use with current data.

For the elaboration of the database, we constructed an aggregate data file with the 104 do-
mains defined above. For each domain, the target variable of the Poisson model is the count of
persons with an annual equivalised net incomes below a predetermined threshold established
at 60 % of the median income per consumption unit, indicated in euros. The auxiliary variables
are taken from the Spanish labour force survey (SLFS) of 2008, which provides information on
the labourmarket participation of the population by relating it to characteristics of living condi-
tions. Specifically, we consider the following categories where each category is the proportion
of people who meet the defined condition:

• Age, with five categories: ď15 years old (age0), 16 - 24 years old (age1), 25 - 49 years
old (age2), 50 - 64 years old (age3), ě 65 years old (age4), with age0 as the reference
category.
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• Education, with four categories: ď16 years old (edu0); illiterate persons with incomplete
or complete primary education and/or lower secondary education (edu1); persons with
complete secondary education and/or post-secondary education such as baccalaureate
or vocational training (edu2); persons with university studies (edu3), with edu0 as the
reference category.

• Nationality, with two categories: Spanish citizens including those with dual nationality
(cit0); foreign citizenship (cit1), with cit0 as the reference category.

• Labour status, with four categories: ď16 years (lab0), employed (lab1), unemployed
(lab2), inactive (lab3), with lab0 as the reference category

For each factor at unit level, the sum of the proportions of its categories is one. Therefore, it is
necessary to select a reference category and remove it from the dataset.

Finally, it is worth mentioning that, due to the socio-economic divergence across provinces
(Tirado et al., 2016), we have created the income group variable, which classifies provinces into
five categories (K “ 5), k “ 1, . . . , K, based on an ascending order of the aggregate sum of the
average income per household unit for men and women within each province. Thus, after an
exploratory analysis of the data, we find that the relationship between the target variable and
the covariates is different depending on the category k, and in the definition of the model, we
introduce the random slopes by income groups of the provinces.

3 The area level random regression coefficient Poisson model
This section defines the basic principles of the methodology developed to define the area level
random regression coefficient Poisson, which we refer to as the ARRCPmodel, and the derived
predictors. Amore in-depth development can be found in Diz-Rosales et al. (2023, accepted for
publication).

Let us consider a count variable yij taking values on N Y t0u, where i P I “ t1, . . . , Iu and
j P J “ t1, . . . , Ju. Let D “ I J be the total number of y-values. For example, yij could be the
number of people living below the poverty line in a survey sample, the indexes i and j may
represent province and sex, and D is the total number of domains defined by the crossings of
the variables province and sex. In other words, we have a country partitioned into provinces
and sexes. We further assume that each province can be grouped into one, and only one, of the
K clusters, I1, . . . , IK , of an income variable. Let kpiq be the number of the category to which
province i belongs, so that kpiq P K “ t1, . . . , Ku. The number of provinces in the category IK
is mk “ #pIkq, so that D “ J

řK
k“1 mk.

We are dealing with area-level data for modelling and predicting the target variable yij. Let
us assume that we have p explanatory variables with values xℓ,ij, ℓ P P “ t1, . . . , pu, i P I, j P J.
For models with intercept, we take x0,ij “ 1 for all i and j. In what follows, we present the
ARRCP model.

Let uij, i P I, j P J be i.i.d. Np0, 1q random variables. Let ϕℓ ą 0, ℓ P P, be unknown standard
deviation parameters. Let ρrs P p´1, 1q, r ă s, r, s P P, be unknown correlation parameters. Let
vk “ pv1,k, . . . , vp,kq1, k P K, be i.i.d. random vectors such that

diag
1ďℓďp

pϕℓqvk „ Npp0, Vϕρ
vk q, Vϕρ

vk “

¨

˚

˚

˚

˚

˝

ϕ2
1 ϕ1ϕ2ρ12 . . . ϕ1ϕpρ1p

ϕ2ϕ1ρ12 ϕ2
2 . . . ϕ2ϕpρ2p

...
... . . . ...

ϕpϕ1ρ1p ϕpϕ2ρ2p . . . ϕ2
p

˛

‹

‹

‹

‹

‚

.
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Therefore, the variance of vk is

Vvk “ varpvkq “ diag
1ďℓďp

pϕ´1
ℓ qVϕρ

vk diag
1ďℓďp

pϕ´1
ℓ q “

¨

˚

˚

˚

˝

1 ρ12 . . . ρ1p
ρ12 1 . . . ρ2p
...

... . . . ...
ρ1p ρ2p . . . 1

˛

‹

‹

‹

‚

.

Let us define the vectors

u “ col
1ďiďI

p col
1ďjďJ

puijqq „ NI Jp0, I I Jq, v “ col
1ďkďK

pvkq „ NpKp0, Vvq,

where Vv “ diag
1ďkďK

pVvkq and where diag and col are the diagonal and the column operator,

respectively. We assume that u and v are independent. The distribution of the target variable
yij, conditioned to the random effects uij, vℓ,kpiq, ℓ P P, is

yij|uij ,v1,kpiq,...,vp,kpiq „ Poissonpνij pijq, i P I, j P J,

where the offset (or size) parameters νij ą 0 are known and correspond to the sample sizewhen
the model is applied to real data, and the binomial probability, pij, is the target parameter with
range (0,1). For the natural parameters, we assume

ηij “ log µij “ log νij ` log pij “ log νij `

p
ÿ

ℓ“1

βℓxℓ,ij ` σuij `

p
ÿ

ℓ“1

ϕℓvℓ,kpiqxℓ,ij, i P I, j P J,

(18.1)
where µij “ Eryij|uij, v1,kpiq, . . . , vp,kpiqs. We may write xijβ “

řp
ℓ“1 βℓxℓ,ij, where β “

col
1ďℓďp

pβℓq is the column vector of regression parameters and xij “ col1
1ďℓďp

pxℓ,ijq is the row vec-
tor of known auxiliary variables. To finish the definition of the ARRCP model, we assume
that the yij’s are independent conditioned to u and v. The variance component parameters
are σ ą 0, ϕ “ pϕ1, . . . , ϕpq1 P R

p
` and ρ “ pρ12, . . . , ρ1p, . . . , ρp´1pq1 P p´1, 1qppp´1q{2, where

R` “ p0, 8q. The vector ofmodel parameters is θ “ pβ1, σ, ϕ1, ρ1q1. The total number of random
effects is H “ I J ` pK.

With the ARRCP model defined, we proceed to carry out the maximization, deriving the
maximum likelihood estimators of the model parameters, β̂, σ̂, ϕ̂, ρ̂, and the mode predictors
of the random effects, bymeans of a Laplace approximation algorithm (MLLaplace algorithm),
using the R package lme4 1.1-33.

In addition, we define the best predictor (BP), the simplified best predictor (SP), the empiri-
cal best predictor (EBP), the empirical simplified best predictor (ESP) and the plug-in predictor
(IN), to predict the porverty proportion by province and sex. The best predictor (BP) of pij is

p̂bp
ij “ p̂bp

ij pθq “ Eθrpij|ys “ Eθrpij|yjkpiqs

The simplified best predictor (SP) of pij is

p̂sp
ij “ p̂sp

ij pθq “ Eθrpij|ys “ Eθrpij|yijs

The empirical best predictor (EBP) of pij is p̂ebp
ij “ p̂bp

ij pθ̂q, and the empirical simplified best
predictor (ESP) of pij is p̂esp

ij “ p̂sp
ij pθ̂q. These predictor requires approximating a multivariate

integral which we approximate by a Monte Carlo method.
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The behaviour of these predictors is then evaluated by bootstrap simulation studies of at least
1000 iterations, comparing themwith other predictors, such as the plug-in predictor (IN) of pij
and µij under the ARRCP model which has the form

p̂in
ij “ exptxitj β̂ ` σ̂ûij `

p
ÿ

ℓ“1

ϕ̂ℓ v̂ℓ,kpiqxℓ,iju,

where ûij and v̂ℓ,kpiq, ℓ “ 1, . . . , p, are the mode predictors taken from the output of the ML
Laplace algorithm, being µ̂in

ij “ νij p̂in
ij the IN predictor of µij “ νij pij .

As a result of the simulations, the IN predictor shows the best computational efficiency and
accuracy trade-off. To understand these results, it should be noted that the estimation of the BP
and EBP is a very complex multivariate integral approximation problem. In order to perform
this Monte Carlo approximation, we have generated simulations with different configurations
in the number of replications, until we have tested, for the moment, the approximation with
the generation of 2500 independent random variables. However, as we can see from the results,
this number is insufficient. The BP and EBP incorporate the Monte Carlo variance, which is
high, and which has a variance underlying the estimation of the multivariate integral, which
would require substantially more than 2500 for an optimal approximation. By contrast, these
simulations are highly computationally expensive, increasing simulation times to the order of
days.

On the other hand, SP and ESP also experience this problem, although to a lesser extent, since
the integral to be approximated is considerably less complex than BP and EBP. The results in
terms of bias are worse than those of the BP, EBP and IN predictors, although the estimation
of the root mean squared error (RMSE) is notably better, being closer to the IN than the rest.
This, together with an efficient computational time, makes it a candidate for use when few
computational resources are available to simulate the EBP and/or the IN predictor cannot be
used. Although, at the expense of obtaining more efficient results in terms of computational
performance, and having verified the high performance of the IN predictor, we chose it as the
starting predictor for this study.

Consequently, a second simulation study is performed to test the performance of the MSE
estimator of this predictor based on the parametric bootstrap with and without bias correc-
tion. While the performance of the MSE estimators of both approaches was optimal, due to
the substantial improvement in bias and the low computational cost, with virtually unbiased
estimation, in the application to real data we use the parametric bootstrap estimation with bias
correction.

4 Application to real data
During the model selection phase, we consider several criteria: a) significance of model param-
eters and socio-economic interpretability; b) convergence of the ML-Laplace approximation
algorithm; c) validity of model assumptions; and d) lower conditional AIC.

As a result of the selection process, we define theARRCPmodel, introduced in 18.1 in Section
3, with the following variables: yij is the sample count of people below the poverty threshold
in province i and sex j, νij “ nij is the sample size, x0,ij is the intercept and x1,ij, x2,ij, x3,ij
and x4,ij are the values of the auxiliary variables age3, edu1, cit1 and lab2 respectively. The
selected model contains two random slopes for x1,ij and x4,ij, so that the corresponding model
parameters and random effects are ϕ1, ϕ4, ρ14, uij „ Np0, 1q, pv1,k, v4,kq1 „ N2p0, V14q, 0 “ p0, 0q1

and V14pρ14q “
`1 ρ14

ρ14 1

˘

. The natural parameter is

ηij “ log µij “ log nij `

5
ÿ

ℓ“1

βℓxℓ,ij ` σuij ` ϕ1v1,kpiqx1,ij ` ϕ4v4,kpiqx4,ij.
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The estimatedmodel parameters are socioeconomically interpretable, with the auxiliary vari-
ables edu1 and lab2 having a protective effect on poverty, and age3 and cit1 helping to reduce
it. In addition, we obtained the basic percentile bootstrap confidence intervals observing that,
at 95 %, all are significant.

Once the model is selected, it undergoes the diagnostic phase starting with the evaluation of
the Pearson residuals.

Having obtained good results, we proceed to further assess the performance in estimating the
poverty ratio by province and sex. For this purpose, in Figure 1 (left) we plot the IN predictions
and the classic Hájek estimates of the poverty proportions. This figure compares both types of
estimators and analyses the effect of using this type of estimator in unplanned domains.

We can see that the direct estimator and the IN predictor diverge noticeably in domains with
lower sample sizes, becoming closer as sample size increases. This trend is consistent in the
RMSE estimate plotted on the right, where the error magnitude of the direct and IN estimator
tend to decrease and equalise as the sample size increases. However, it is notable the smooth
and decreasing behaviour of the RMSE of the IN predictor while in the case of the direct esti-
mator the RMSE estimates are characterised by an abrupt trend with characteristic peaks.

Figure 1: Poverty proportions estimates p̂ij and associated RMSEij, ordered by sample size

Figure 2: Estimated poverty proportions in Spanish provinces by income group

In order to improve visual comprehension, we represent the estimates of poverty proportions
on maps widely used by socio-political powers. In particular, we illustrate in Figure 2 an exam-
ple of poverty maps at the provincial level and compare it with a poverty map produced taking
into account the existing K categories in the data. As can be seen, the intensity of colours is gen-
erally the same, while in those that diverge, they do so between contiguous groups, without a
substantial difference, as in the provinces of Cádiz or Salamanca.
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These maps allow us to evaluate at a glance the socio-economic state of the country, with a
substantial percentage of areas with high levels of poverty, not being equally distributed, with
a clear north-south, east-west pattern of increasing poverty rates. In addition, we have carried
out a study of differences in poverty rates by sex using bootstrap basic percentile confidence in-
terval, and although, at the 95 % and 90 % percentile, significant differences were only detected
in 6 provinces, in line with other studies in the field, in all cases the poverty rate was higher
among women.

We would like to complement the study with more indicators to overcome limitations such
as the fact that the cost of living is not the same in all regions of the country, but the poverty
line is the same. This does not detract from the conclusions, but it could help to have a more
global vision in decision making.
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