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palavras-chave

resumo

Cédigos de Lee perfeitos, Conjetura de Golomb-Welch, Pavimentacdes,

Métrica de Lee.

A conjetura de Golomb-Welch estabelece que nado existem codigos de Lee
perfeitos, corretores de r-erros, de palavras de comprimento n sobre Z para
n =3 er =2 Este problema tem recebido particular atengdo devido a sua
importancia em aplicacdes em varias areas que ndo apenas a da matematica e
das ciéncias da computacdo. Apesar de terem sido obtidos muitos resultados
no sentido de provar a conjetura, esta tem resistido estando estabelecida
apenas para alguns valores particulares de n e r, nomeadamente: 3<n<5e
rzz2;n=6er=2.

Nesta tese é dada uma contribuicdo que reforgca a conjetura, sendo provada a
nao existéncia de codigos de Lee perfeitos, corretores de 2-erros, de palavras

de comprimento 7 sobre Z.
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The Golomb-Welch conjecture states that there is no perfect r-error correcting
Lee code of word length n over Z for n = 3 and r = 2. This problem has received
great attention due to its importance in applications in several areas beyond
mathematics and computer sciences. Many results on this subject have been
achieved, however the conjecture has resisted, although its validity has been
proved for some particular values of n and r, namely: 3<n<5andr>=2;n=6
andr=2.

Here we give a contribution for the proof of the Golomb-Welch conjecture which
reinforces it, proving the non-existence of perfect 2-error correcting Lee codes

of word length 7 over Z.
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Introduction

Tiling problems have literally been popular for thousands of years. Although some
of them belong to recreational mathematics, nowadays many of these problems are
motivated by real-life applications.

Problems involving space tilings are common in coding theory. In fact, special
types of tilings can be regarded as error correcting codes which are essential on correct
transmission of information over a noisy channel, see [9] and [14]. For example, tilings
of R™ by crosses and semicrosses constitute different types of error correcting codes,
see [9] and [21]. Another application of these tilings can be found in [18], where tilings
by crosses are related to both a disturb and a retention error in flash memories. The
existence of such tilings has been researched by various authors for special cases, in [6]
we completely solve the problem for the two-dimensional Euclidean space.

Here, we are interested in dealing with tilings of spaces by Lee spheres. The Lee
metric is frequently used in coding theory. Since its first applications, related with
signal transmission over noisy channels, see [14] and [23], many studies involving the
Lee metric have appeared, in particular, studies of different types of codes in the Lee
metric. There exists an extensive literature on codes in the Lee metric. See, for
instance, [2], [5] and [17]. The interest in Lee codes has been increasing due to their
several applications. Some examples can be seen in [3], [4], [7], [16] and [22].

The study of tiling spaces by Lee spheres was introduced by Golomb and Welch
([8] and [9]) which related these tilings with error correcting codes considering the
center of a Lee sphere as a codeword and the other elements of the sphere as words
which are decoded by the central codeword. When a Lee sphere of radius r tiles the
n-dimensional space, the set of all centers of the Lee spheres, that is, the set of all

codewords, produces a perfect r-error correcting Lee code of word length n.
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In the study of Lee codes particular attention is given to the perfect r-error
correcting Lee codes of word length n over §, with § = Z or § = Z,, where r, n
and ¢ are positive integer numbers. In fact, tilings of Z" or Zj by Lee spheres of radius
r, whose set of all codewords is denoted by PL(n,r) or PL(n,r, q) code, respectively,
have been central subjects in the area of the Lee codes. We can relate these two types
of codes since, if n,r and ¢ are positive integer numbers, with ¢ > 2r + 1, so that there
exists a PL(n,r,q) code, then the periodic repetition of this code results in a PL(n, r)
code. As an immediate consequence, if n and r are positive integer numbers so that
there is no PL(n,7) code, then no PL(n,r, ¢) code exists for ¢ > 2r + 1.

This research work is focused on the study of PL(n,r) codes, that is, in the study
of tilings of Z™ by Lee spheres of radius r.

By a Lee sphere of radius r in Z" centered at Z = (21,...,2,) € Z" we understand

the set

{X:(xl,...,xn)EZ”:Z]mi—Zi\ST}-

i=1

Considering the n-dimensional space R™, a small step is needed to establish a relation
between tilings of Z™ and tilings of R™ by Lee spheres. In R™ the unit cube centered
at X = (z1,...,2,) € R" is the set

1

Considering Z € Z", a Lee sphere of radius r in R" centered at Z is the union of the
unit cubes centered at X € Z" satisfying Y " | |#; — z;| < r. In Figure 1 are depicted
Lee spheres of radius 2 in R?* and R3, respectively. A PL(n,r) code exists if an only if
there exists a tiling of R™ by Lee spheres of radius 7.

The question “for what values of n and r does the n-dimensional Lee sphere of
radius r tile a n-dimensional space?” was formulated by Golomb and Welch in [9],

where they proved:

i) n-dimensional Lee sphere of radius 1 tiles the n-dimensional space for any positive

integer n;

ii) for each r > 1, there exists a tiling of the n-dimensional space by Lee spheres of

radius r for n =1, 2.
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Figure 1: Lee spheres of radius 2 in R? and R?, respectively.

In other words, there exist PL(n, 1), PL(1,7) and PL(2,7) codes for any positive integer
numbers n and r, respectively.

Based in these results Golomb and Welch have conjectured:
Conjecture (Golomb-Welch). There is no PL(n,r) code for n >3 and r > 2.

Having in view PL(n,r, ¢) codes, the Golomb-Welch conjecture implies that there
are no PL(n,r,q) codes for n >3, r > 2 and ¢ > 2r + 1.

Motivated by the Golomb-Welch conjecture, the existence and enumeration of
PL(n,r) and PL(n,r,q) codes have captured the attention of many mathematicians.
These codes have been extensively studied by several authors, however the conjecture
is still to be solved.

In [9] Golomb and Welch have proved that:
i) there is no PL(3,2) code;

ii) there is no PL(n,r) code for n > 4 and r > p,, not being specified the value of

Pn.-

There are other results supporting this conjecture. In fact, in [10] the conjecture
is stated for n = 3 and r > 2. Spacapan [19] has showed the non-existence of a
PL(n,r) code for n = 4 and r > 2. Horak has proved in [12] that there are no PL(n, r)
codes for 3 < n < 5 and r > 2. In [11] Horak has also stated the conjecture for the
parameters n = 6 and r = 2. These are the only values of the parameters for which
the Golomb-Welch conjecture is known to be true.

It seems that an immediate generalization of the proofs of the referred cases of
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the conjecture cannot be easily done to the unproved cases. The difficulty in pro-
ving the Golomb-Welch conjecture in its generality has led some authors to prove the
non-existence of PL(n,r, q) codes. Next we present some of the known results.

Golomb and Welch [8] constructed a PL(n,r,¢q) code for the parameters:
i) (1,7,2r+1);
i) (2,7, 4+ (r +1)?);
i) (n,1,2n + 1),
In [15] Post has proved that PL(n,r,q) codes, with ¢ > 2r 4+ 1, do not exist for:
i)3<n<5andr>n-—1;
ii) n>6andr > %ﬁn—i(g\/é—2).

These results were improved by Spacapan in [20], where it is shown the non-existence
of PL(n,r,q) codes for ¢ > 2r + 1 and r > n > 3.

Astola [1] proved the non-existence of PL(n, 2, q) codes for:
i) ¢ =13;
ii) ¢ not divisible by a prime of the form 4m + 1;

iii) ¢ = p*, p is a prime, p # 13, p < V2n2 + 2n + 1.

Some authors have studied the non-existence of special codes imposing additional
conditions. This is the case of codes in which the set of all codewords forms a group
with respect to the vector addition, the so called linear codes. See Horak and Grosek
[13].

As stated previously, a Lee sphere of radius 1 tiles the n-dimensional space for any
positive integer n. Following an intuitive and geometric reasoning, it seems that the
bigger the radius of the Lee sphere is more difficult is to tile the space with the sphere.
Then, it seems that the most difficult cases of the Golomb-Welch conjecture to deal
with are those in which r = 2.

Since the non-existence of PL(n,2) codes for 3 < n < 6 has already been proved,

our goal is to give a contribution to the establishment of the Golomb-Welch conjecture
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proving that there is no PL(7,2) code. It should be pointed out that Horak and Grosek,
in [13], have proved, using a new approach, the non-existence of linear PL(n,2) codes
for 7<n <1I.

Our strategy to prove the non-existence of PL(7,2) codes is based on the assumption
of their existence, being focused on the cardinality restrictions of some codewords sets.
We assume the existence of a PL(7,2) code M and, without loss of generality, we
suppose that O € M, where O = (0,...,0). Since we are dealing with Lee spheres
of radius 2, all words W € Z7, with W = (wy,...,w;), satisfying 23:1 lw;| < 2 are
covered by the codeword O. Having in view the definition of PL(7,2) code, each word
W € Z7 which is distant three units from O must be covered by a unique codeword of
M. These words have to be covered by codewords which dist five units from O, being
these codewords of the types [+5], [+4, £1], [£3, £2], [£3, £1?], [£2% £1], [£2, +1?]
and [+1°]. Denoting, respectively, by A, B, C, D, £, F and G the sets containing the
codewords of these types, we prove the non-existence of PL(7,2) codes showing that it
is not possible to cover all the referred words without superposing Lee spheres centered
at codewords of AUBUCUDUEUFUQG.

Next we present a brief outline of the contents of each chapter of the thesis.

In Chapter 1, basic notions and notations used throughout the document are given.
Here, some necessary conditions for the existence of PL(n,2) codes, when n > 7, are
presented.

In Chapter 2, our study is concentrated in PL(7,2) codes, being presented necessary
conditions for their existence based on restrictions on the cardinality of index subsets
of AUBUCUDUEUFUQG. Particular attention is given to the sets G; being proved
that 3 < |G| < 8 forany i € Z = {+1,42,...,47,—1,—2,...,—7}. In this chapter
are also established relations between the cardinality of index subsets when |G;| assume
different admissible values.

The following chapters are dedicated to the analysis of |G;|, ¢ € Z. In Chapters 3,
4, 5 and 6 we refine the variation of |G;|, proving that |G;| # 3,4, 5,8 for any ¢ € Z.

In Chapter 7, under the assumption 6 < |G;| < 7 for any i € Z, we conclude the

proof of the main result:

Theorem. There is no PL(7,2) code.
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The last section of the document is devoted to conclusions, being also presented

our intention about some future work.



Chapter 1

Perfect error correcting Lee codes

In this chapter we introduce the notion of a perfect error correcting Lee code and some
basic results involving this notion. The notation that will be used throughout the
document is mostly based on Horak work [11]. Particular attention will be given to
perfect 2-error correcting Lee codes, where necessary conditions for their existence will

be presented.

1.1 Definitions

Let (S, ) be a metric space, where S is a nonempty set and p a metric on S. Any
subset M of S satisfying | M| > 2 is a code. The elements of S are called words and,

in particular, the elements of a code M are called codewords.

A sphere centered at W € S with radius r, denoted by S(W,r), is defined as follows
SW,r) =A{V € §: p(V,W) < r}.

HWeMandV € S(W,r), with V' # W, then we say that the codeword W covers
the word V.

Definition 1.1 A code M is a perfect r-error correcting code if:

i) SW,r) N S(V,r) = @ for any two distinct codewords W and V in M;

i) Upreng SW,r) = S.
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In other words, M is a perfect r-error correcting code if the spheres of radius r
centered at codewords of M form a partition of S. Equivalently, M is a perfect r-error

correcting code if the spheres of radius r centered at codewords of M tile S.

When a code M satisfies the condition ) in Definition 1.1, we say that M is a

r-error correcting code.

We are interested in dealing with metric spaces (Z", iy ), where Z" is the n-fold
Cartesian product of the set of the integer numbers, with n a positive integer number,
and gy, is the Lee metric, that is, for any W,V € Z", with W = (wy,...,w,) and
V = (vy,...,v,), the Lee distance between W and V| shortly (W, V), is given by

n

p (W, V) = Jwi —vl.

i=1
If M C Z" is a perfect r-error correcting code of (Z", ), then M is called a
perfect r-error correcting Lee code of word length n over Z, shortly a PL(n,r)

code.

The following result gives us a necessary and sufficient condition on the Lee distance

between two words to avoid superposition of spheres centered at them.

Lemma 1.1 Given W, V. € Z", with W # V, and r a positive integer number,
SW,rynS(V,r) =@ if and only if p,(W,V) > 2r + 1.

Proof. Let W and V be distinct elements in Z", with W = (wy,...,w,) and
V = (v1,...,v,). Consider r a positive integer number.

We begin by showing the necessary condition. Suppose, by contradiction, that
pr(W, V) > 2r + 1 and S(W,r) N S(V,r) # &. In these conditions, there exists
X = (x1,...,2,) € Z", such that X € S(W,r) N S(V,r), that is, pu, (W, X) < r and
pr(V, X) <r. Thus,

D lwi—ail+ ) v —ai] = |wy = x|+ o1 =21 A fwn — 2|+ o — 2| < 20 (11)
i=1 =1

Since |v; — z;| = |z; — v| and |w; — x| + |x; — vi] > |wi — @ + 2 — v = |w; — vy for

all i € {1,...,n}, from (1.1) it follows that

NL(W>V) = ’wl_vl‘—i_"'—i_‘wn_vn‘ < 27",
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contradicting our assumption.

The sufficient condition will be proved supposing, by contradiction, that
S(W,r)NS(V,r) =@ and pu, (W, V) <2r. If u, (W, V) <r, then S(W,r)NS(V,r) # @,
contradicting the hypothesis. Therefore, let us consider r < p, (W, V) < 2r.

Assume, without loss of generality, that V' = (0,...,0). Then, r < Y"1 |w;| < 2r.

The word W can be rewritten as follows
W= (z14+ vy, -, Tn+Yn),

where, for each i = 1,...,n, z; and y; satisty x;y; > 0 and )", |z;| = r. Thus,

> 7 lwil = Jwal + ]+ vl gl =D il + D il

=1 i—1 i=1
Since,

r< ZW’ +Z il <2r and Z’%‘ =T,
-1 i—1 i—1
then,
0< Z il <.
i—1

Now, X = (21,...,2,) is such that p,(X,V) = > " |z;| = r, that is, X € S(V,r).
On the other hand, p (X, W) = Y7 |z, —x —wl| = >y |yil < r, and so
X € S(W,r)n S(V,r), which is a contradiction. O

Next lemma presents three equivalent conditions to define a perfect error correcting

Lee code.

Lemma 1.2 Let M C Z"™ and r a positive integer number. The following statements

are equivalent:
i) (VW,VeM, SWr)nSWV,r)=2) N Upep SW,r) =Z7;
i)V VerzZ, IPWeM:u,(V,W)<r;

iii) (Vv W,V eM, py(W,V) >2r+1) A Upen SW,7) = Z7.
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Proof. i) = i)

By hypothesis Jy e S(W,r) = Z", consequently, for all V' € Z" there exists
W € M such that V€ S(W,r), that is, ur(V, W) < r. Suppose, by contradiction, that
there are two distinct elements W, U € M satistying pr(V, W) < r and pu,(V,U) <.
In these conditions, V € S(W,r) N S(U,r), contradicting the hypothesis.

i) = iii)

Since Uy e S(W,7) C Z", to show that (Jy, o\ S(W,r) = Z™ it is enough to prove
that Z" C Uy e SW, 7).

Let V € Z". By hypothesis there exists W € M such that pr(V,W) < r, that is,
Ve SW,r).

By contradiction, assume that there are two distinct elements W,V € M so that
pr (W, V) <2r. By Lemma 1.1, S(W,r)NS(V,r) # @. Thus, there exists U € Z" such
that pp (U, W) <r and uy(U,V) < r, contradicting the assumption.

iii) = i)

Follows immediately from Lemma 1.1. 0

1.2 Necessary conditions for the existence of PL(n,2)

codes when n > 7

The Golomb-Welch conjecture states that: there is no PL(n,r) code for n > 3 and
r > 2. Our contribution for the proof of this conjecture is focused on the analysis of the
non-existence of PL(n,2) codes. Golomb and Welch have proved in [9] the existence
of PL(1,7) and PL(2,7) codes for any positive integer number 7, in particular, for
r = 2. On the other hand, Horak [11] has proved the non-existence of PL(n,2) codes
for 3 < n < 6, establishing the Golomb-Welch conjecture for r = 2 and some lower
values of n. Since, so far, the non-existence of PL(n,2) codes is proved only for these

values of n, we are interested into reinforcing this conjecture proving that there are no

PL(7,2) codes.
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The non-existence of PL(7,2) codes will be proved by contradiction, that is, assu-
ming the existence of such codes. We begin by deducing some necessary conditions for
the existence of PL(n,2) codes when n > 7, centering, later, our attention on PL(7,2)

codes.

Let us assume the existence of a PL(n,2) code M C Z", n > 7, and suppose,
without loss of generality, that O € M, with O = (0,...,0). Thus, all words W € Z"
such that pn(W,0) < 2 are covered by the codeword O. Taking into account Lemma
1.2, for each word W € Z" satisfying ur (W, O) = 3 there exists an unique codeword
V € M such that up (W, V) < 2. The conditions for the existence of PL(n,2) codes
derive essentially from the analysis of the codewords which cover all words W € Z"

which are distant three units from O.

Let W € Z"™ such that uy(W,0) = 3. Then, W = (wy,...,w,) is of one and only
one of the types:

- [£3], if there exists ¢ € {1,...,n} so that |w;| = 3 and w; = 0 for all

je{l,...,nk\{i};

- [£2,41], if |wy] = 2 and |w;| = 1 for some 7,5 € {1,...,n}, and wy = 0 for all
ked{l,....np\{i,j};

- [£13], if |wy] = |w;| = |wg] = 1 for some 4,5,k € {1,...,n}, and w; = 0 for all
le{l,....n}\ {4, ], k}.

Let T C M be the set of codewords which cover all words W € 7Z" satisfying
pr(W,0) = 3. Any codeword V' € T is such that pz(V,0) = 5. In fact, since O and V'
are codewords in M, by Lemma 1.1, u(V,0) > 5. On the other hand, if we suppose
pr(V,0) > 6 then, for W so that up(W,0) = 3, we get
pp(V,W) = [or—wi [+ +|vg—w,| > [o1]=|wi |+ AHou|—[wa| =Y o] =) |wi] > 3.

i=1 i=1
That is, the codeword V' € T does not cover any word whose distance from O is three
units.

Following the same idea used in the characterization of the words which are distant

three units from O, we conclude that V' € T is of one and only one of the types: [+5],
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[+4, 1], [£3,£2], [£3,+£1?], [£22 £1], [+2,£13] and [£1°]. We will denote the
subsets of T containing codewords of each one of these types by, respectively, A, B,
C, D, &, F and G. Furthermore, we set a = |A|, b = |B|, ¢ = |C|, d = |D|, e = |&],
f =|F| and g = |G|, where | A| denotes the cardinality of the set A and so on.

Consider

Z={+1,42,...,4n,—1,-2,...,—n}

the set of signed coordinates. Let W,V € Z" with W = (wy,...,w,) and
Vo= (v1,...,vn). If dwy > 0 for i € Z, then i and wy; have the same sign. If
iwy; > 0 and iv; > 0, with ¢ € Z, then the |i| — th coordinates of W and V' have the
same sign and we say that W and V' are sign equivalent in the |i| — th coordinate.
Let H C Z". For i,j € Z, with |i| # |j|, and k a positive integer number, H;, H,;

and Hgk) will denote, respectively, the sets:
-Hi={WeH : iwy > 0};
- Hiyy ={W eH : dwy >0 A jwpy >0}
HP =W eH iwy >0 A |wy| =k}

These sets are called index subsets of 7. We note that, it makes no sense to consider
H;; for i = j or i = —7, so, in the rest of the document, when we write H;;, with
H CZ" and i,j € Z, we assume |i| # |j|.

Consider, for instance, W € G. Since the codewords of G are of type [£1°], then
there are 7, j, k,l,m € Z such that W &€ G;jx,,. In this case ¢, j, k,1 and m characterize
the index distribution of W € G. If we consider W € F, since the codewords of
F are of type [£2,£15], there exist 4,7,k,1 € Z so that W € F;j;, more precisely,
W e }"i(Q) N ]:;1) N ]:,il) N ]_-1(1)7 being characterized the index value distribution of W.

Let W € Z" such that p,(W,O) = 3. By definition of PL(n,2) code, there exists a
unique codeword V € T, with T = AUBUCUDUEUF UG, so that u,(W, V) < 2.
Having in mind that p,(W, V) =>"7" | |w; — v, if W is of type:

- [£3], then V € AUBUC UD;
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- [£2,£1], then Ve BUCUDUE U F;
- [£1%], then V e DUEUFUG.

The following three lemmas impose restrictions to the cardinality of index subsets
of AUBUCUDUE U F UG warranting, respectively, that any word of the types [£3],
[+2, +1] or [£13] is covered by a unique codeword of T

Lemma 1.3 For eachi € T, |A; U B§4) U CZ-(?)) U D(g)’ =1

i

Proof. For each i € Z there exists a word W € Z" of type [£3], with W = (wq,...,w,),
satisfying iwj; > 0 and |wy| = 3. This word W must be covered by a codeword
Ve AUBUCUD, in particular, V € A; U BZ-(4) U Cl-(g) U DZ@. Thus, we conclude that
|A; UBZ@) UCZ@ UDE3)| > 1. If, by contradiction, we assume |A7;UB§4) UCZ-(?’) UDZ@] > 2,
then there are two distinct codewords V' and V' in A; U 81(4) U Cf?’) U DZ@) satisfying
pp(V, W) <2 and pur(V',W) < 2, which contradicts the definition of PL(n,2) code.
0

Lemma 1.4 For each i,j € T, with |i| # |j],
BY N B+ lcing| + [DP n DO+ € n g+ |FP nFY = 1.

Proof. For each i, € Z, with |i| # |j], there exists a word W € Z™ of type [+2, £1],
with W' = (wy, ..., w,), satisfying dwy;, jw; > 0, |wy;| = 2 and |wy;| = 1. This word
must be covered by a codeword V' € BUCUD U & U F satisfying one of the following
conditions: V € B nBY; v ec,ne;: veDPnD;veeP ng; ve FPnFY.
Consequently, since B, C, D, £ and F are disjoint sets,

B nBY| +1cne]+ 1DP n DV + 168 n gl + 1 FP nFV| > 1.
If, by contradiction, we suppose

BY nBY |+ [cine| + DY n DY+ €2 n gl + | FP nFY| > 2,

then, there are distinct codewords V' and V' satisfying

v,v' e B nBYuene)u@@nd)yuE? ng)uFE? nFED).
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Consequently, pp(V,W) < 2 and pr(V/, W) < 2, which contradicts the definition of

perfect 2-error correcting Lee code. 0

Lemma 1.5 For each i,j, k € Z, with |i|, |j| and |k| pairwise distinct,
|Dyjie U Eijie U Fijie U Gijie| = 1.

Proof. For each i,j,k € Z, with ||, |j| and |k| distinct between them, there
exists a word W € Z" of type [£1%], with W = (wy,...,w,,), so that, iwy;, jwy;, kwy > 0
and |wy| = |wj| = |wg| = 1. This word must be covered by a codeword
V€ Dijp U &ijk U Fijk U Giji, therefore | Dy U & U Fiji U G| > 1. 1f, by contra-
diction, we suppose that | D, UE;jrx UFij5UGijk| > 2, then there are distinct codewords
V,V' € Dy, U &, U Fiji, U Giji and, consequently, pp(V,W) < 2 and pp(V/, W) < 2,
contradicting the definition of PL(n,2) code. O

Taking into account the number of words of each one of the types [£3], [£2, £1] and
[+1%], and considering the type of codewords which cover them, Horak has deduced
in [11] the following proposition involving the parameters a = |A|, b = |B|, ¢ = |C],

d=|D|, e=|&], f = |F| and g = [G].

Proposition 1.1 The parameters a, b, ¢, d, e, f and g satisfy the system of equations

a+b+c+d=2n
b+2c+2d +4e +3f =8(3)
d+e+4f +10g = 8(3).

There exist many nonnegative integer solutions for this system of equations. How-
ever, we are only interested in determining “good” solutions, that is, solutions which do
not contradict the definition of a perfect 2-error correcting Lee code. For that, we will

focus our attention on the cardinality of the index subsets of AUBUCUDUEUFUQG.

We can find a relation between the cardinality of each set of codewords A, B, C, D,

E, F, G and the cardinality of their index subsets. Considering, for instance, the set
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g, since the codewords of G are of type [+1°], we get
1
9=101= Y6
i€T
Besides, for i € Z,

1
|gi|:Z Z 1Gisl.

JE€T\{i,—i}

Similar equalities for the other subsets of 7 can be derived.

Looking at the words of type [4-13], Horak proved in [11] the following two lemmas

in which a relation between the cardinality of index subsets of D, £, F and G is given.

Lemma 1.6 For each i € I, |D; U&| + 3|F| + 6|Gi| = 4(","). Consequently, if
n # 0 (mod 3) then |D;UE&;| = 0(mod 3), and if n = 0 (mod 3), then |D; UE;| and |F;|
have the same parity, and |D; U&;| = 1(mod 3).

Lemma 1.7 For eachi,j € Z, |i| # |j|,
|Dij U Eij| + 2| Fi5] + 3|Gi5] = 2(n — 2).
Consequently, |D;; U &;;| and |G;;| have the same parity.

Lemma 1.6 restricts the variation of the cardinality of D;, &, F; and G; for any
i € I, consequently, reduces the possible values for the parameters d,e, f and ¢g. In
next result we refine the variation of |D; U &, establishing a smaller upper bound for

the cardinality of D; U &; than the one derived by Horak in Lemma 1.6.

Lemma 1.8 For eachi € Z, |D;U&;| < 2n — 1.

Proof. Suppose, by contradiction, that |D; U &;| > 2n for some i € 7.

Recall that the codewords of D and &£ are, respectively, of types [£3,41?%] and
[+2% +1]. Then, by assumption, |D§3) U Dgl) U Si(Q) U Si(1)| > 2n.

By Lemma 1.3 we get ]Dl@)\ < 1. Thus, |D§1)U8}2)u5§1’\ > 2n—1 and, consequently,

1 3 2
Yo @I D) uENED) > 2m - 1. (1.2)
JET\{i,—1i}
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Since |Z\{i, —i}| = 2n — 2, from (1.2) we conclude that there exists j € Z\{i, —i} such
that ](Dgl) N D](S)) U (&N 8;2))\ > 2, contradicting Lemma 1.4. O

This lemma gives us a range of variation for the parameters d and e. In fact, since
d=23 D) and e =3 e
— 3 : 7 - 3 : il
€T i€l
by Lemma 1.8 we get
1 2n(2n — 1)
dre=3Y D08 < 2BY,
i€l
Having in view the words of type [£2, +1], Horak [11] has established the next two

results.

Lemma 1.9 For eachi € T, B uc® uc® |+ 2DP ueP |+ 3|F?| = 2(n—1) and

1

BYucPuc® upMue® uFD| 4210 = 2(n - 1).
As an immediate consequence, it follows that:

Lemma 1.10 Let i € Z. Then, |FV| < 2(n — 1) — (IDV] + |&| + [EY]) and

_1)— (3) (2)
|]-"Z-(2)| < r(n D 2(? e, DJ. In accordance,

D]+ 1))
3

2(n—1) =2
7] < 21— (D] + fel + 162 + { b nos
We note that |x] denotes the highest integer number less or equal to z.

As we have mentioned before, we are looking for the “good” solutions of the system
of equations in Proposition 1.1, that is, the solutions satisfying the definition of perfect
error correcting Lee code. In this sense, a particular attention will be given to the
parameters [ and g, since F and G are the subsets of 7 in which the codewords have
more nonzero coordinates. Having in mind these sets, we establish the following new
results which restrict the variation of |F;| and |G;| for any i € Z and, consequently,

restrict the range of variation for the parameters f and g.

The following result follows from Lemma 1.10.
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Lemma 1.11 For eachi € T, |F;| < 2220% DU &| - 2|€).

Proof. Leti e Z. By Lemma 1.10 it follows that

3 2
Fl < 20— 1) — (D] + &1+ 1€7)) + f(” 1= 2(:’))”5 I+ 1& )DJ .

Then,

2(n — 1) — 2(|DV| + [€7))
3

Fil < 2(n—1) — (D] + &)+ 1E87]) +
and, equivalently,
8(n —1) 2 2
7 2 (10014 200) - (I + 101+ 567

The codewords of D and & are, respectively, of types [+3,+1%] and [+£22, +1]. Since
D, = Di(?’)UDl(l) and Di(?’)ﬂDl(l) = @, then |D;| = |D§3)|+ |D§1)|. By a similar reasoning,
|E| = ]81.(2)\ + \Si(l)]. In these conditions, (1.3) can be rewritten in the form

8(7”&—1) 1 (3) 1 (2)
1< 2270 (1D = =) = (218] - Z1€@]) .
71 < 22 (1o - 301 - (26 - 5le

As 1&] > |€P| and, by Lemma 1.3, |D!¥| < 1, we get

2

8(n—1) 1 1 8(n—1)+
3 3 3

1
i| < —|Dil + 5 = 2|&| + S |&| = — D U&| — 51&il
il < =3 IDil + 5 = 2l&] + 5l&l 3 D U & - €]

Next two lemmas establish, respectively, an upper and lower bound for the cardi-

nality of |G

Lemma 1.12 For each i € Z, |G;| < w In particular, if n = 0 (mod 3), then

1Gi| < =3 1r = 1 (mod 3), then |Gy < @=N@=5),

Proof. From Lemma 1.6 we get

n—1
6|gi|s4( ) )

(n—1)(n—2)
3

for all + € Z. Equivalently,
G| <
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for each 1 € 7.

Lemma 1.7 leads to
1Gij| < w (1.4)
for each i,j € Z, with |i| # |j]|.
If n = 0(mod 3), then there is a positive integer number k so that n = 3k. Thus,

(1.4) assumes the form

203k —-2) _, 1
. 5

|G| <
Since |G;;| is a nonnegative integer number, it follows that
1Gi;| <2k —2.
Taking into account that k = %, we get
Gsl<2(5-1). (L5)

The codewords of G are of type [+1°]. Therefore,

1
1G: = > 1G] (1.6)

jeI\{i,—i}

for i € Z. As |Z\{i, —i}| = 2(n — 1), from (1.5) and (1.6) it follows that

’gi|§;1><2(n—1)><2<%_1>:(n—1)3(n—3)'

If n =1 (mod 3), then n = 3k + 1, where k is a positive integer number. In these

conditions (1.4) can be written in the form

2
il <2k — -
|g]’ — 3
As |G;;] is a nonnegative integer number, |G;;| < 2k — 1. Taking into account that
k= "T_l, it follows that
n—1 2n—5
g <2 (") . (1)

Thus, by (1.6) and (1.7) we conclude that

2n—5 (n—1)(2n —5)
5= :

1
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Lemma 1.13 For each i € T, |G;| > |Diugi|+(§_l)(”_6) —

1
5
Proof. From Lemma 1.6 we get
-1
e+ oz +vog =1("; )

for all + € Z. Therefore,

(n—1)(n—2) —6|G| — |D; U&]

2
Fil=
7 -

for each v € Z. Considering Lemma 1.11, it follows that

2(n—1)(n —2) —6|G;| — |D; U&; 8n—1)+1 5 8n—1)+1
(0= 1)n=2) ~61G] =D& _ S 5 SN
3 3 3
Thus,
D;Uu&l+(n—1)(n—06 1
g5 DUEI (=D =6) 1
3 6
[l

Lemmas 1.12 and 1.13 reduce the number of the required solutions for the system
of equations given in Proposition 1.1. In fact, these results restrict the variation of |G;|
for any ¢+ € Z. Since it is possible to relate the cardinality of the index subsets G; with
the cardinality of G, from these lemmas we get an interval of variation for g, as we will

see in the next corollary.

. n[2(n—1)(n—6)—1] 2n(n—1)(n—2)
Corollary 1.1 The parameter g satisfies ————— < g < ———&——. In par-

ticular, ifn = 0 (mod 3), then g < 271(%53(7%3) Ifn =1 (mod 3), then g < %&"75)

Proof. The codewords of G are the codewords of type [£1°], and so
1
9=+ > 16 (1.9
ieT
By Lemma 1.13, for all ¢ € Z,

(n-Dn-6) 1
3 6

G| >

Taking into account that |Z| = 2n, from (1.8) and (1.9) it follows that

y2 L [(12 0020 1
) 3 6|’
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equivalently,
n[2(n —1)(n —6) — 1]
7= 15 '
By Lemma 1.12, for any 7 € Z,
n—1)(n—2
1Gi| < ( )3( ) (1.10)
Thus, from (1.8) and (1.10), we get
1 —1 -2 2 —1 -2
by (1= D=2 _ 20(0-1)(n-2)
) 3 15
If n =0 (mod 3), considering Lemma 1.12 we have, for each i € Z,
n—1)n-3
1Gil < (n = 1N )7
3
consequently,
< 2n(n —1)(n — 3)‘
15
If n =1 (mod 3), by Lemma 1.12 we get, for all i € Z,
n—1)2n -5
G| < (n—1)( )
6
Therefore,
n(n —1)(2n —5)
7= 15
0

In this section we have presented some results which must be satisfied by PL(n, 2)
codes, when n > 7, assuming their existence. From now, our research will be focused

in the study of PL(7,2) codes.



Chapter 2

PL(7,2) codes: necessary conditions

for their existence

This chapter is devoted to the study of the conditions that a perfect 2-error correcting
Lee code of word length 7 over Z must obey, assuming its existence.

Firstly, we present some results, having into account the results given in the previous
chapter for PL(n,2) codes, when n > 7, considering now n = 7. In Section 2.2, the
range of variation for the cardinality of G;, for each ¢ € Z, is improved. In the last
section, some conditions on the cardinality of the index subsets of 7 are achieved,

considering particular values for |G;|.

Assuming the existence of a perfect 2-error correcting Lee code M in (Z7, ur), let
us assume, without loss of generality, that O € M, with O = (0,...,0).

All words W € Z7 satisfying pur(W,0) < 2 are covered by the codeword O. On
the other hand, considering Lemma 1.2, for each W € Z7 so that ur(W,0) = 3 there
exists a unique codeword V' € M such that pg (W, V) < 2.

Using the notation presented in the previous chapter, let 7 C M be the set of
codewords which cover all words W € Z7 satisfying . (W,0) = 3 and A, B, C, D, &,
F and G be the subsets of T defined in Section 1.2. The proof of the non-existence of
PL(7,2) codes is centered on the analysis of the codewords which cover all words W
that are distant three units from O, that is, is focused on the study of the codewords
of T=AUBUCUDUEUFUG. We will prove that there is no PL(7,2) code showing

that it is not possible to cover all these words without contradicting the definition of

21
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perfect Lee code.

2.1 Previous results

Assuming the existence of a PL(7,2) code M, it follows immediately from Proposition
1.1 that a = |A], b= |B|, c=|C|, d = |D|, e = |&|, f = |F| and g = |G| must satisfy

the system of equations given bellow.

Proposition 2.1 The parameters a, b, ¢, d, e, f and g satisfy the system of equations

a+b+c+d=14
b+ 2c+ 2d+4e+ 3f = 168
d+e+4f + 10g = 280.

Our aim is to prove that any nonnegative integer solution of this system of equations
contradicts the definition of perfect 2-error correcting Lee code leading, consequently,

to the non-existence of PL(7,2) codes.

The four following results derive directly from Lemmas 1.6, 1.7, 1.8 and 1.9, res-

pectively, when considered n = 7.
Lemma 2.1 For each i € T,
|D; U &i| + 3| Fi| + 6]G;| = 60.
Consequently, |D; U&;| = 0(mod 3).
Lemma 2.2 For each i,j € L, |i| # |j|,
|Di; U &ij| + 2| F] + 3|Gij| = 10.
Consequently, |D;; U &;;| and |G;;| have the same parity.

Lemma 2.3 For eachi € Z, |D; U&;| < 13.
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Lemma 2.4 For each i € T,
BYucPuc?| + 2D ueR| + 31FY =12

and

BYucPuc® upMug® uF| v 21N =12

Having in view Lemma 2.2 we detach the following condition on Fj;, for i,j € Z

and || # |j|, when |F;;| assumes the highest possible value.

Lemma 2.5 For anyi,j € I, with |i| # ||, |Fij| < 5. Furthermore, if | Fi;| =5, then
|‘Ejk‘ =1 fOT all k € I\{Z7 _iaja _]}

Proof. Leti,j € Z with |i| # |j|. From Lemma 2.2 it follows that |F;;| < 5. Suppose
that |F;;| =5 and Wh,....W5 € F;, with Wi € Fijuiwss Wa € Fijwswar--Ws € Fijuwouwno-
Note that, wy,...,w1g € Z\{i,—i,7,—j}. By Lemma 1.5 we must impose w,...,w1g
pairwise distinct. Consequently, since [Z\{i, —i,j, —j}| = 10, we get |F;;x| = 1 for all
ke I\{i,—i,j,—7}. U

Next statements are obtained immediately from Lemmas 1.11, 1.12 and 1.13, res-
pectively, for n = 7, and restrict the variation of the cardinality of F; and G; for each

1el.

Lemma 2.6 For each i€ I, |F;| <2 —|D;U&| - 2|
Lemma 2.7 For eachi € T, |G;| <9.

Lemma 2.8 For cachi € Z, |G;| > P&l#6 1)

Lemmas 2.7 and 2.8 lead to the following corollary.

Corollary 2.1 For eachi € T, 2 <|G;| <9.
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Using Corollary 2.1 and taking into account that, g = %Z |G| and |Z| = 14, it
follows that 6 < g < 25. It is evident that the smaller is the ;gflge of the variation of
|G;|, the smaller is the number of solutions we are looking for.

The proof of the non-existence of PL(7,2) codes is based on the analysis of the

possible cardinalities for G;. In next section we improve the result given in Corollary

2.1 restricting further the possible values for |G;|, i € Z.

2.2 Refining the variation of the cardinality of G;

By Corollary 2.1, 2 < |G;| <9 for all i € Z. Our intention is to reduce more and more
the range of the variation of |G;|. Our first move is to prove that 3 < |G;| < 8 for any
ieT.

Proposition 2.2 For anyi € Z, |G;| # 2.

Proof. Suppose, by contradiction, that there exists ¢ € Z such that |G;| = 2. By
Lemma 2.8 it follows that
2> D;U&E[+6 1

3 6’
and, consequently, |D; U &;| = 0.

Since we are assuming |G;| = 2, let G; = {W,V'}. As the codewords of G are of type
[+1°], there are j,k,l,m,n,0,p,q € Z\{i,—i} such that W € Gijxim and V € Ginopg,
with 7], |k, |I[, |m| pairwise distinct as well as |n|, |o|, |p| and |g].

Now, [{j,k,[,m} N {n,o0,p,q}| < 1, otherwise, there are two distinct elements
a,p € {j,k,l,m,n,0,p,q} such that |G,,s| = 2, contradicting Lemma 1.5. Since
G, = {W,V}, there are, at least, six elements a € {j,k,l,m,n,o0,p,q} such that
|Gia| = 1. By Lemma 2.2, |G;,| and |D;, U &;,| both have the same parity. Then,
|Dio U & is odd, and, consequently, |D; U &;| > 0, which is a contradiction. O

Proposition 2.3 For any i € Z, |G;| # 9.

Proof. By contradiction, let us assume the existence of an i € Z such that |G;| = 9.
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Since
1
1Gil = 1 Z | 1Giil,
JET\{i,—i}

it follows that

> 1G] = 36. (2.1)

JET\{i,—i}
By Lemma 2.2, |G;;| < 3 for all j € Z\{i, —i}. As |Z\{i, —i}| = 12, taking into account
(2.1) we get |G;;| = 3 for each j € Z\{7, —i}.

Let Wi € G; such that Wy € Giupys, where «,3,7,6 € Z\{i,—i} and |a],
18], |7], |0| are pairwise distinct. Since |G;;| = 3 for all j € Z\{i,—i}, then
|Gia| = 1Gig| = 1Giy| = |Gis| = 3. Considering Lemma 1.5, for W € G,\{W;} there
exists, at most, one element ¢ € {a, 3,7,9} so that W € G,.. Thus, the index distri-
bution of the codewords W1,..., Wy € G; must satisfy the conditions presented in the

next table.

=
N SN N S| N S S| S S,
| R [R [ RL|L|L

Table 2.1: Partial index distribution of the codewords of G;.

Let J = {a,0,7,0} and J~ = {—a,—p,—7v,—0}. Denoting by K the set
K=I\({i,—i} UJUJT "), K=A{z,—z,y, -y}

Let W, W’ € Gi.\{W1}, with € € J, such that W € Gicw,wows a0d W’ € Giconws e
where wy,...,wsg € J~\{—¢} UK. Taking into account Lemma 1.5, wy, ..., ws are
pairwise distinct and, consequently, [{wy,...,ws} N (T \{—¢} UK)| = 6. Since
H{wr,...,we} N T \{—¢}| < 3, then [{wy,...,ws} NK)| > 3. On the other hand,

{wy, wo, w3} N K| < 2. In fact, |w], |wy| and |ws| must be pairwise distinct and
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{lk| : k € K} = {|z|,|y|}. Similarly, |[{ws,ws,ws} N K| < 2. Thus, for each ¢ € J
and W, W' € G;..\{W1}, there are, at least, three distinct elements k, k', k" € K so that
W € Giepwr and W' € G Therefore, the index distribution of the codewords of G;

satisfies the conditions presented in Table 2.2, where kq,..., ko € K.

Wi | i | a| B v |6
Wy | i | a| Kk ko

W3 1 (0% k’g

Wa | i | B | ki | ks

Ws | i | B | ke

We | @ | v | kr ks

W7 1 Y kg

Wg | i | 0 | kio | b

Wy | i | 0 | ko

Table 2.2: Partial index distribution of the codewords of G;.

Since K C Z\{i, —i}, then for all k € K we get |Gix| = 3. By the analysis of the Table
2.2, for each € S j and VV, W/ S gie\{Wl}, with W S giswlwgwg and W/ € giew4w5w6, we
must impose [{wy, ..., ws} NK| = 3 and, consequently, [{wy,...,ws} NI \{—¢c}| = 3.

Considering the codewords Ws, Wy, W and Wy, see Table 2.2, as KK = {z, —z,y, —y},
all possible combinations between the elements of I are exhausted in the characte-
rization of these codewords. We may assume, without loss of generality, that k; = x,
ko =y, k3 = —x, ky, = —x and k5 = y. The partial index distribution takes now the
form given in the Table 2.3.

By Lemma 1.5, the elements ji,72,73 € J~ must be pairwise distinct with
Ja # J1,Ja. Js, otherwise, |G| > 2 or |G; _yj,| > 2. Thus, {j1,...,ja} = T . As
|Giyl = 3 and Wy, W, € G, there exists a unique k € {kg,...,k12} such that k = y.
If y = kg, then |Gig,| > 2, contradicting Lemma 1.5. If y € {kr, ks, k10, k11}, since
kz, ks, ko, ki € {, —2,y, —y} = K, we get Wy € Giyo UGiy o or Wy € Giye UGy -
Considering Wy € Gy and Wy € G; _,.,, it follows that |G| > 2 or |G _y] > 2, a

contradiction. Therefore, y = kg or y = kis.
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Wi | @ | « I} v )
Ws | @+ | « x Y 1
Ws | i | a| —x| jo |J3
Wy ¢ | | —o ) Ja
Ws | @ | B | ke

We | i | v ke kg

Wy | i | v ko

Ws | i | 6 | kio | kit

Wy | 2| 6 | ko

Table 2.3: Partial index distribution of the codewords of G;.

Suppose that y = k9. Then W7 € Giyyisjs, With js,j6 € J~ distinct between
them. As J~ = {ji, ..., Ja}, to avoid the contradiction of Lemma 1.5 we must impose
Js,J6 # J1,Ja, that is, j5 = jo and jg = j3. But, even so, we get an absurdity since
W3, Wz € Gijyis-

Considering the assumption y = k2 and using a similar reasoning we would end up

once again with a contradiction. 0]

Next corollary it follows immediately from Corollary 2.1 and Propositions 2.2 and

2.3.

Corollary 2.2 For eachi€Z, 3 <|G;| <8.

Corollary 2.2 allows us further constrain in the range of variation of the parameter
g. In fact, in these conditions we get 9 < g < 22.

Our intention is to prove that any one of the admissible values for |G;| leads to a
contradiction. The proof of the impossibility of |G;| = « for a = 3,4, 5,8 is much more
complex and laborious than the previous ones, as we will see in the following chapters.

Next section is devoted to the establishment of new relations involving the cardi-
nality of the index subsets of AUBUCUDUEUF UG. These results will be crucial

on the analysis of the hypothesis |G;| = « for some 3 < o < 8.
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2.3 Establishment of relations between the cardi-
nality of index subsets of T

Here, we present conditions which must be satisfied by index subsets of

AUBUCUDUEUF when |G|, i € Z, assumes a specific value.

Lemma 2.9 If|G;| = 3, for somei € Z, then |A;| =1, |B;UC,U&| =0, |D;| =3 and
| Fi| = 13. More precisely, |D§3)| =0, |D§1)| =3, |]-"Z-(2)| =4 and |]-"i(1)| =9.

Proof. Let ¢ € 7 such that |G;| = 3. By Lemma 2.8 we get
4o [DuE[+6 1
- 3 6
and, consequently, |D;UE&;| < 3. From Lemma 2.1 it follows that |D;U&;| = 0 (mod 3),
thus [D; U&| =0 or |D;U&| = 3.

Consider G; = {Wy, Wy, W3}, Let Wi € Gijkim, with j, k,I,m € Z\{i,—i} and
171, &, |I], |m| pairwise distinct. By Lemma 1.5 there exists, at most, one element
w € {j,k,l,m} and, at most, one element w’ € {j, k,l,m} such that Wy € G;, and
W3 € Gy Then, there are, at least, two distinct elements z,y € {j, k,,m} satisfying
|Giz| = |Giy| = 1. Taking into account Lemma 2.2, |D;, U &;,| and |G|, as well as,
Dy, U&;y| and |G,y | have the same parity. Thus, |D;, U&;,| and |D;, UE;,| are odd and,
consequently, |D; U &;| > 0. Therefore, |D; U &;| = 3.

Since |D; U &| = 3 and, by hypothesis, |G;| = 3, from Lemma 2.1 it follows that

|Fi| = 13. Consequently, by Lemma 2.6, we get

49 2
13< = —3-2i&)
=3 314l

which implies |&;| = 0 and so |D;| = 3.

The codewords of D are of type [+3, £1?], thus D; = D§3)UD§1). As DZ(?’)DDZ(I) =,
we have |D;| = |D§3)\ + |D§1)|. From Lemma 1.3 it follows that |D,f3)| < 1 and so
D] > 2.

The codewords of F are of type [+2,4+1%]. Thus, F;, = ]-"2-(2) U ]—"i(l). Since
]:2-(2) N ]:i(l) = o, then |F| = |}"Z-(2)| + |.7:i(1)|. By Lemma 2.4 we get |]-_i(2)| < 4.
As seen before |F;| = 13 and so ]]—"i(l)] > 9.
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Taking into account that |&;| = 0, from Lemma 2.4 it follows that
BYuc® uc®| +2pP| + 3|72 = 12 (2.2)

and

BY ucPuc® up®MuFY| =12 (2:3)

Assuming |.7-"i(2)| < 2, then |.7-"Z-(1)| > 11. By (2.3) we get |B§1) UCZ-(Q) UCZ-(?’) UD(1)| <1,

(2

which is a contradiction since, as we have just seen, |D§1)| > 2. Then, 3 < |]-"i(2)| < 4.

Now suppose that |}"i(2)| = 3. Thus, |}"i(1)| =10. As |D§1)| > 2, considering (2.3) we
must have \Dgl)\ = 2 and ]Bi(l) U CZ-(Z) U CZ.(3)| = 0 implying ]DES)\ = 1. Since ].E(z)\ =3
and | D] = 1, by (2.2) we get |BY uc? uc®| = 1. But [P uc®| = 0 and so
|B£4)| = 1, contradicting Lemma 1.3 since |B§4)| = |D§3)| =1

Therefore, |F”| = 4 and |F”| = 9. Accordingly, from (2.2) it follows that
BYuc® uc®| =P =0. As¢; =c® uc?, then |C;] = 0.

Now, |D§1)| = 3 and |D§1) U .7-"i(l)| = 12. Considering (2.3) we get |B£1)| =0. As
1BY) = |BY| =0 and B; = B UBY, then |B;| = 0.

Using the fact that |[BY| = [¢¥)| = |ID®¥)| = 0 and Lemma 1.3, we get |4, = 1. O

Lemma 2.10 If |G;| = 4, for some i € I, then one and only one of the following

conditions must occur:
i) |D;U&| =3 and |Fi| = 11;
it) |D;| =6, |&] =0 and |F;| = 10.
Besides, if ii) is satisfied, then |A;] = 1, |Biu G| = 0, IPDV| = 6, |]-"i(2)| = 4 and

7l =6.

Proof. Let ¢ € 7 such that |G;| = 4. From Lemma 2.8 it follows that

4> D;UE[+6 1

6

and, consequently, |D; U &;| < 6.
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Assume G; = {Wq,...,Wy}. Let Wi € Gijkim, with j, k,l[,m € Z\{i, —i} and ||,
|k, |l], |m| pairwise distinct. Taking into account Lemma 1.5, for each W € G,\{W,}
there exists, at most, one element w € {j, k,[,m} so that W € G;,,. Accordingly, there
exists, at least, one element v € {j, k,[,m} satisfying |G;,| = 1. By Lemma 2.2, |G;,|
and |D;, U &;,| have the same parity. Thus, |D;, U ;| is odd and 0 < |D; U &;| < 6.

From Lemma 2.1 it follows that
|D; U &| + 3|F;| = 36. (2.4)

Consequently, |D; U &;| =0 (mod 3), that is, |D; U&;| =3 or |D; U&;| = 6.
By (2.4), if |D; U&;| =3 or |D; U&;| =6 then |F;| = 11 or |F;| = 10, respectively.

Let us suppose that |D; U &;| = 6 and | F;| = 10.
Using Lemma 2.6 we get
31 2

10 < 3 g’&",
and so |&;| = 0.

Since |D; U &;| = 6, |D;| = 6.

Noting that, |D;| = |D§3)| + |D§1)|, by Lemma 1.3 it follows that |Di(3)| < 1. Since
ID;| = 6, we get [DV] > 5.

Considering Lemma 2.4 and taking into account that |£;| = 0 we obtain the follow-
ing equalities

BY uc® uc®| +21DP)| + 3| F| = 12 (2.5)

and

BOUC uc® UDY UFY] = 12, (2:6)

From (2.5) we conclude that |[F*| < 4. As |F| = |F?| + |FV| and |F| = 10,
then |]-"i(1)| > 6.

As seen before |D§l)| > 5, then, by (2.6), |~7:¢(1)| < 7. Accordingly, 6 < |.7-"i(1)| <7
and so 3 < \]—"i@)\ <A4.

Suppose that ].E(z)\ = 3 and \]—"i(l)| = 7. Taking into account (2.6) we must have
|D§1)| = 5 and, consequently, |B£1) U CZ-(Q) U CZ-(3)| = 0. Thus, |D£3)| = 1 and, by (2.5),
BYuc? uc®| =1. Since |cP UC?| = 0, it follows that |[B{*)| = 1 leading to the
contradiction of Lemma 1.3 (181(4)] = \DZ@] =1).
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Let us now assume that |]-"i(2)| = 4 and |]-"Z-(1)| = 6. Considering (2.5) we get
|B§4) U Ci(z) U CZ-(B) U D§3)| = 0. Consequently, |D§1)\ = 6 and from (2.6) it follows that
BYuc® ue®| =0 As B =BY uBY and ¢; =P uc?, then |B| = |Ci| = 0.
Since \B§4)| = |Ci(3)| = \D§3)| =0, from Lemma 1.3 it follows that |A;| =1 O

Lemma 2.11 If |G| = 5, for some i € I, then one and only one of the following

conditions must occur:
i) |D; U&| =0 and |F;| = 10;
it) |D; U&| =3 and |F;| =9;
iii) |D; U&| =6, |F;| =8 and |Dy| > 3;
i) Dl =9, & =0 and |Fi| = 7.

Besides, if iv) is satisfied, then |A;] = 1, |B;UC;| = 0, |D§1)| =9, \]—"Z-(Q)| = 4 and
7 =3,

Proof. Suppose that |G;| =5 for some i € Z. By Lemma 2.8 we get

. D;U&[+6 1
- 3 6
which implies |D; U &;| < 9.
From Lemma 2.1 it follows that
|D; U&| + 3|F;| =30 (2.7)

and, as an immediate consequence, |D; U &;| = 0 (mod 3).

Taking into account (2.7),
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Assuming that |D; U &;| = 6 and |F;| = 8, considering Lemma 2.6 we get

31
8<———5
— —ZJE.

Consequently, |&;| < 3 and as we are assuming |D; U &;| = 6, then |D;| > 3.

Assuming that |D; U &;| = 9 and |F;| = 7, from Lemma 2.6 it follows that

22
7<——-5
5~ 3lél

which implies |&;| = 0, and as an immediate consequence we obtain |D;| = 9.
Since |D;| = |D£3)| + |D§1)|, by Lemma 1.3, |D§3)| < 1 and so |D£1)| > 8.

By Lemma 2.4 and taking into account that |&;| = 0, we get
1B uc® uc?| +21p®| + 3|FY| = (2.8)

and

BM ucPuc® up®MuFY| =12, (2.9)

From (2.8) it follows that |.7-Z-(2)| < 4. Thus, as |F;| = 7, we get |.7-"Z-(1)| > 3. On
the other hand, since |D§1)| > 8, we conclude, by (2.9), that ]}"i(l)\ < 4. Therefore,
3< ].7-"2-(1)| < 4 and, consequently, 3 < ’-7:1'(2)\ <4.

Suppose that |.7-"i(2)| = 3 which implies |]:i(1)| = 4. Considering (2.9), we must have
|D§1)| = 8 and |B§1) UCi(z) UCi(g)| = 0. Since |D;| =9, we get |D )| = 1. From (2.8) it
follows that \B§4) U Ci@) U CZ-(S)] =1. As ]CZ-(Q) U Ci ] = 0, then ]15’2( )\ = 1, contradicting
Lemma 1.3 (|BY] = || = 1).

Let us now assume that |.7-"i(2)| = 4 and |}"i(1)| = 3. By (2.8) we obtain
1B
1B U CZ(2 uC®| = 0. Accordingly, |B; UC;| = 0. From Lemma 1.3 it follows that
A, UBY U UDP| = 1. Since |BY uc® UDP| =0, then | A4,] = 1. O

l U C U D§3)| = 0. Consequently, |D§1)| = 9. Considering (2.9) we get
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Lemma 2.12 If |G;| = 6, for some i € I, then one and only one of the following

conditions must occur:
i) | D;U&| =0 and |F;| =8;
it) |D;U&E| =3 and |F;|=7;
1) |D;U&| =6 and |F;| = 6;
) |D;U&| =9, |Fi| =5 and |D;| > 6;
v) | Dl =12, |&| =0 and | F;| = 4.
Besides, if v) is satisfied, then |A;| =1, |B;UC;| =0, \D§1)| =12 and \E(2)| =4.
Proof. Let us assume |G;| =6 for i € Z. By Lemmas 2.3 and 2.1 one has:

D V& < 13;

D, U&|+3|F| =24 (2.10)

with |D; U &;| = 0 (mod 3).
Considering (2.10), and analyzing all the possibilities for |D; U &;| and |F;| we get,

- if |D; U & =0, then |F;| = 8;

- if |D; U &| = 3, then | F| =T,

- if |D; U &;| = 6, then |F;| = 6;

- if |D; U&| =9, then |F;| = 5;

- if |D; U &;| = 12, then |F;| = 4.

Assuming that |D; U &;| =9 and |F;| = 5, by Lemma 2.6 we get
22 2

5 < — — =&l
<2 2k

Consequently, |&;| < 3 and so |D;| > 6.
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Assuming that |D; U ;| = 12 and | F;| = 4, from Lemma 2.6 it follows that

13 2
4< =28
<5 —3lél

which implies |€;| = 0. Consequently, |D;| = 12. Besides, taking into account Lemma
1.3, [P®| < 1, and so, [DV| > 11.

Considering Lemma 2.4 and having in mind that |&;| = 0, we get
BY uc® uc®| +21DP)| + 3| F?| = 12 (2.11)

and

BO U ue® up® U FY| =12 (2.12)

Since |DZ(1)| > 11, by (2.12) we conclude that |]-"Z-(1)] < 1. As we are supposing
| = 4, we get 3 < |FP| < 4.

Suppose that |E(2)| = 3 and |]-"Z-(1)| = 1. Accordingly, from (2.12), |D§l)| = 11 and
B uc® uc®| = 0. In these conditions, |[D¥)| = 1. Considering (2.11) we get
BYuc® uc®| = 1. However, as | UC®| = 0, we conclude that |B{”)| = 1, which
is a contradiction since, by Lemma 1.3, B\ U D§3)\ <L

Now assume that |.7-"i(2)| = 4. By (2.11) it follows that |B§4) UCZ-(Q) UCZ-(S) U D§3)| = 0.
Thus, |D§1)\ = 12 and, by (2.12), we conclude that \BED U Ci@) U Ci(3)| = 0. Therefore,
IB;UC;| = 0. As, by Lemma 1.3, |.A;UB™ UCZ-(?’) UD§3)| =1, we must have |A4;| = 1. O

Lemma 2.13 If |G;| = 7, for some i € I, then one and only one of the following

conditions must occur:
i) |D;U&| =3 and |Fi| =5;
it) |D;U&| =6 and |F;| = 4;
iii) |D; UE| =9, |F| =3 and |D;| > 3;
i) |D;U&| =12, |F| =2 and |D;| > 9.

Proof. Let i € Z such that |G;| = 7. By Lemmas 1.8 and 2.1, we get |D; U &;| < 13
and |D; UE&;| =0 (mod 3). Therefore, 0 < |D; U &;| < 12.
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The cardinality of G; can be related with the cardinality of its index subsets as

follows

1
Gl = ; > 1kl

jET\{i,—i}
As, by hypothesis, |G;| = 7, then
> 1G] =28. (2.13)
JE€T\{i,—i}
From Lemma 2.2 it follows that |G;;| < 3 for all j € Z\{i, —i}. Since |Z\{7, —i}| = 12,
taking into account (2.13), there are, at least, four distinct elements j € Z\{i, —i} such
that |G;;| = 3. Applying Lemma 2.2 for these indices j the cardinality of D;; U &;; is
odd. Thus, |D; U&;| > 0 and, consequently, 3 < |D; U &;| < 12.
By Lemma 2.1 we get
|D; U & + 3|F| = 18. (2.14)

Considering (2.14), for each admissible value of |D; U &| we obtain the correspondent

value for |F;|. Namely,
- if |D; U &;| = 3, then | F;| = 5;
- if |D; U &;| = 6, then | F;| = 4;
- if |D; U & =9, then |F| = 3;
- if |D; U &| = 12, then |F;| = 2.

Suppose that |D; U &;| =9 and |F;| = 3. From Lemma 2.6 it follows that

22 2
3< —— &)
<2 -2l

Consequently, |&;| < 6. As we are supposing |D; U &;| = 9, in these conditions we get
D;| > 3.
Now assume that |D; U &;| = 12 and | F;| = 2. Considering Lemma 2.6 we obtain

13 2
2<% _J&
<2 -2l

which implies |&;| < 3 and, consequently, |D;| > 9. O
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In the previous lemmas we have found, for each admissible value of |G;|, i € Z, a
range for the variation of |F;|. In the next chapters we will prove that |G;| = a for
a = 3,4,5,8 lead us to an absurdity. To achieve the contradiction we will focus our
attention mostly in the codewords of G; U F;, since these are the codewords that have
more nonzero coordinates. Our interest is to characterize all codewords of G; U F;,
i € Z, assuming a certain admissible value for |G;| and having in mind the preceding
lemmas.

In the characterization of the codewords of G; U F;, @ € Z, it is natural to think
that the most difficult cases are those for which |F;| is the lower possible value when
assumed a certain value for |G;|. So, it is convenient to get some conditions to overcome
this difficulty.

Observing Lemmas 2.10, 2.11 and 2.12, we verify that there exists a common con-
dition when |F;| is minimal. In fact, in all cases we get |]-i(2)| =4.

We would like to pointed out that, by Lemma 2.9, if |G;| = 3, then we must also
have |.7-"Z-(2)\ = 4. The condition ].E(2)| = 4 is quite strong. As we will see in the next
result, the characterization of the four codewords of ]_.i(z) involves all index subsets of

F\F_i.

Lemma 2.14 For each i € Z, \.E(Z)| < 4. If |.7-"Z.(2)\ =4, then \.E(Q) NF;| =1 for all
J € T\{i,—i}

Proof. From Lemma 2.4 it follows right away that |]-"Z-(2)| <4 foralliel.

Suppose that |}"i(2)| = 4 for some ¢ € Z. If there exists j € Z\{i, —i} such that
\]—"i(Q) N F;| > 2, then Lemma 1.4 is contradicted. Therefore, for each j € Z\{i, —i} we
get [FP N Fl < 1.

Let Wh,... W, € ]:2-(2) such that W1 € Fiywowss Wa € Fiwgwswss W3 € Fiwrwswe
and Wy € Fiuowiwes With wy, ... wiy € T\{i, —i}. Since |]-"i(2) N F;| <1 for each
Jj € I\{i, —i}, then wy,..., w2 must be pairwise distinct. As |Z\{i, —i}| = 12, we
conclude that {w,...,wy} = I\{i,—i}. Thus, |F¥ N F;| =1 for all j € T\{i, —i}. O
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The next lemma establishes the variation of |F;|, i € Z, when 4 < |G;| < 6 under

certain conditions.

Lemma 2.15 Let G; fori € Z. For all j € Z\{i,—i}, |Gi;| < 3. If |Gi;| = 3 for some
j € IT\{i, —i}, then |}"i(2)| < 3. Besides,

i) |Gl # 3;

it) if |Gi| =4, then |F;| = 11;
i) if |Gi| = 5, then 8 < |F;| < 10;
i) if |Gi| = 6, then 5 < |F;| < 8.

Proof. Let us consider G, for ¢ € Z. By Lemma 2.2, [|G;| < 3 for all
Jj € \{i,—i}.

Suppose that there exists k € Z\{i, —i} so that |G| = 3. From Lemma 2.2 it
follows that |F;x| = 0. Looking at Lemma 1.9, one has |]-"Z-(2)| < 4.

Assume, by contradiction, that |}"i(2)| = 4. Then, by Lemma 1.9, |.7-"Z-(2) NF|l =1
for all j € Z\{i, —i}, and so |F;x| > 1 contradicting |F;;,| = 0. Therefore, for |G| = 3,
one has \.E(Q)| < 3.

Lemmas 2.9, 2.10, 2.11 and 2.12, lead straightaway to |G;| # 3 and:

- if |G;| = 4, then |F;| = 11,
- if |G;| = 5, then 8 < |F;| < 10;

- if |G;| = 6, then 5 < |F;| < 8.
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Chapter 3

Proof of |G;| # 8 for any ¢ € 7

In this chapter we intend to restrict the range of variation of |G;| proving that |G;| # 8
for any ¢ € Z. The referred proof will be achieved by contradiction assuming that there
exists an element ¢ € Z so that |G;| = 8.

Initially some conditions that subsets of 7 must satisfy are derived. In last section

we present the proof of the main result of this chapter, that is, |G;| # 8 for any ¢ € Z.

Let us suppose that there exists i € Z such that |G;| = 8. Thus, since
1
§=17 > 1G4l
JET\{i,—i}

we get

> 1G] =32

JE€T\{i,—i}
From Lemma 2.2 it follows that |G;;| < 3 for all j € Z\{i, —i}. Particular attention
will be given to the elements j € Z\{i, —i} so that |G,;;| = 3 or |G;;| = 2.

Throughout this chapter J and K will denote the following sets:
J ={j e I\{i, =i} : |Gij| = 3}

and

K ={keI\{i,—i} |G| =2}

39
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3.1 Preliminary results

We are interested in proving that the existence of an element ¢ € Z for which |G;| = 8
will bring out contradictions on the definition of being a PL(7,2) code. We begin by

characterizing partially the index distribution of the codewords W7, ... , Wy € G;.

Proposition 3.1 If|G;| =8, 1 € Z, thenZ\{i, —i} = JUK, with |J| = 8 and |K| = 4.
The partial index distribution of the codewords Wy, ..., Wy € G; satisfies:

Wy | 1 kq T Y
W2 i kz T —Y
Ws | 1 ks T

Wyl 1 ky | —x | vy
Ws | 1 ks | —x | —y
We | 1 ke | —x

We | @ | ke | y

Ws | @ | ks | —y

where x,—x,y,—y € J and ki, ..., ks € K. Consequently, for all W € G; there exists
a unique element k € K such that W € G;.

Proof. Let i € Z such that |G;| = 8. In these conditions,
1
§=1 > 1G4l
JET\{i,—i}
Equivalently,

> Gy =32 (3.1)
JET\{i,—i}
By Lemma 2.2, for any j € Z\{i, —i} we get |G;;| < 3. Since |Z\{i, —i}| = 12, taking

into account (3.1) we conclude that there are, at least, eight elements j € Z\{i, —i}

satisfying |G;;| = 3. We have just concluded that | 7| > 8.
Let us consider
L={leT\{i,—i}: |G| <2}

Observing that, J U L = Z\{i,—i}, T N L = @, |I\{i,—i}| = 12 and |J| > 8, then

|L£| < 4. Thus, there are, at most, four distinct elements j € J such that —j € L.
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Since | J| > 8, there exist z,y € J, distinct between them, so that —x, —y € J. Then,
let us consider x, —x,y, —y € J.

By definition of J, |G| = |Gi—z| = |Giy| = |Gi—y| = 3. Taking into account
Lemma 1.5, the partial index distribution of the codewords W4,..., Wg € G; must

satisfy the conditions presented in the following table.

Wi s x Y
Wy | 1 x| —y
Ws | 1 T

Wyl @ | —x| y
Ws | @ | —xz | —y
W@ 1 —X

Wel 4 Y

Ws| @ | —y

Table 3.1: Partial index distribution of the codewords of G;.

That is, Wy € Gizy, Wa € G; ., and so on.

Looking at Wy € Gy, there are o, f € I\{i, —i, 2z, —x,y, —y} so that Wi € Gzyap-.
Suppose that o, € J, that is, |G| = |Gis] = 3. Considering Lemma 1.5,
Giza| = |Giyal = |Gizp| = |Giys| = 1. Besides, Giza = Giya = Gizp = Giyp = {W1}. Since
|Gia| = 3, taking into account Table 3.1 and Lemma 1.5, G;,\{W1} C {W5, W, W5}
and Gig\{W1} C {W5 Ws, Ws}. As |G \{W1} = [Gis\{W1}| = 2, there exists
W e {Ws Ws Wg} such that W € G;,5, which contradicts Lemma 1.5 since
W, Wi € Giap. Therefore, there exists I; € £ so that Wi € Gpy,. Similarly, there
are ly, ly,l5 € L such that Wy € G4 _y1,, Wa € Gi_pyy, and W5 € G; o _y 5.

Let us consider W3 € G;,. Having in view W7, Wy € G;, and Lemma 1.5, there
are o, 8,y € I\{i, —i,x, —x,y, —y} so that W3 € G;z0p,. Assume that {a, 5,7} C J.
Then, |Gio| = |Gig| = |Giy| = 3. Accordingly, by Lemma 1.5, |Giza| = |Gizs| = |Gizy| =1
and, consequently, Gi.o = Gizp = Giny = {W3}. Taking into account Table 3.1
and Lemma 1.5, we get: Gio,\{Ws} C {Wy,...,Ws}; Gig\{Ws} C {Wy,...,Ws};
G \{Ws} C {Wa, ... . Wst As |G \{W3s} = |Gis\{Ws} = [Gi\{W5}| = 2 and
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{Wy,...,Ws}| = 5, there exists W € {Wy,...,Wg} such that W € G, for
e,0 € {a, 5,7}, which contradicts Lemma 1.5 since W, W3 € G,.4. Thus, there exists
ls € £ so that W5 € Gjy,. Likewise, there are lg,l7,ls € £ so that Wi € G; _, 4,
W7 € Giyi, and Wy € G; _y .

Therefore, for all W € G; there exists [ € £ such that W € G;,.

By definition of £, |G;| < 2 for all [ € £. We have concluded before that |£| < 4.
Since for any W € G; there exists [ € £ such that W € G;; and |G;| = 8, we must
impose |£| =4 and |G| = 2 for any [ € L. That is, K = {k € Z\{i, —i} : |Gix| = 2} is
such that || = 4. Consequently, for each W € G; there exists a unique element k € K
such that W € G;. Furthermore, |J| =8 and Z\{i,—i} = J UK.

Thus, the partial index distribution of the codewords of G; satisfies:

Wi | i kq T Y
Wy | 1 ko x| =y
Ws | 1 ks T

Wyl 1 ky | —x | vy
Ws | i ks | —x | —y
We | 1@ ke | —x

W7 7 k’7 Yy

Wg 7 kg —Y

Table 3.2: Partial index distribution of the codewords of G;.

where z, —x,y,—y € J and ky, ..., ks € K. O

The following result characterizes with more detail the set IC and, consequently, the

set J.

Proposition 3.2 Ifk € IC, then —k € K.

Proof. We are assuming |G;| = 8 for i € Z. The partial index distribution of the

codewords W7, . .., Wg € G; satisfies the conditions enunciated in Proposition 3.1. We
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recall that, from this proposition it follows that Z\{i, —i} = J U K, with |J| = 8 and
|K| = 4. Furthermore, {x,—x,y, —y} C J and {ki,...,ks} = K.
Let us consider N = J\{x, —z,y, —y} = {a, 8,7,d}. We note that,

I\{Z7 _Z} = {/{31, . - -7k8} U {I, - Y, _y} U {()47ﬂ7’)/, 5}

By Proposition 3.1, for each W € §; there exists a unique element k£ € K so that
W € Gix. On the other hand, since |G;;| = 3 for all j € J, we have identified all
codewords of Gz, Gi_», Giy and G; _,. Thus, to characterize completely the index
distribution of all codewords of G; we must fill in with elements of ' the empty entries

of the table presented in Proposition 3.1.

Consider Wy, Wy, W3 € G, see table in Proposition 3.1. Taking into account

Lemma 1.5, the index distribution of the codewords of G;, must satisfy:

Wy | 1 ky T Y «
W2 1 k’z X —Y
Ws | 1 ks T v
Wil 1 ky | —x | gy

SN

Ws | i ks | —x | —y
We | 1 ke | —x

Wo| @ | ke |y

Wg 1 kfg —Y

Table 3.3: Partial index distribution of the codewords of G;.

Let us now consider the codeword Wy € Gk, s, Having in mind Lemma 1.5
we conclude that W, & G,, otherwise we would get Wi, Wy € G;yo. Suppose that
Wy € Gg. In these conditions, Wy, Wy € Gig, with Wy € G, 4, —0ypand Wo € G 1y oy 5.
Since |Gig| = 3 (B € J), there exists W € G\{W1, Wy, W5, Wy} such that W € G;5.
Analyzing Table 3.3 we verify that W € G; 3 _, U Giz, U G; 5., Consequently, taking
into account Wy and Wy, |G;s.| > 2 for some z € {—z,y, —y}, contradicting Lemma
1.5.

Therefore, Wy € G, U Gs. By a similar reasoning, we are led to the conclusion that

Ws e G,Ugs.
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We are assuming W5 € Gipyuvys. As k3 € K, by definition of K we get |Gir,| = 2.
Thus, there exists k € {ki,....,ks}\{ks} such that & = k3. We note that, ks # kq, ko,
otherwise Lemma 1.5 is contradicted. Since Wy, W5 € G, U G5, taking into account
Lemma 1.5 we conclude that ks # k4, k5. Therefore, k € {k¢, k7, ks}. If ks = k;, then
Lemma 1.5 forces W7 € G yap, Which is a contradiction, since Wy, W7 € G;yo. Then,
ks # k7. By a similar reasoning we may conclude that k3 # kg. Consequently, k3 = kg
and, applying once again Lemma 1.5, we must impose W5 € G; 1y, —2.0.5-

Note that |Gia| = |Gig| = 3. Since Wy, W5 € G, U Gs, we must obligate
Ws;, Wg € G, UGg. Considering W; and W,, Lemma 1.5 leads us to conclude that
W7 € Gg and Wy € G,.

Accordingly, the partial index distribution of the codewords of G, satisfies:

Wy | 1 kq T Y «
W2 1 k’g X —Y
Ws | 1 ks T v

Wyl 1 ky | —x | gy

SN

Ws | i ks | —x | —y

We | i ks | —r | « I}
Wel @ | ke | y | B

Ws | 1 ks | —y | «

Table 3.4: Partial index distribution of the codewords of G;.

Note that, as |G;,| = |Gis| = 3, the four empty entries of this table must be filled in
with v and 9. Thus, Wy, W5, W7, Ws € G, U Gs.

Consider the elements of IC. By the analysis of the entries of the previous table, to
avoid the contradiction of Lemma 1.5, one should have ky = ks, ks = ky and k; = kg.
That is, K = {kq, ko, k3, k7} and the codewords of G; are characterize as it is presented
in Table 3.5.

We intend to show that if £ € K, then —k € K. Let us focus our attention
on k3 € K. We have concluded before that W3, Ws € Gy, with W3 € Gipurs and
Ws € Giky—zap- In these conditions, —ks € Z\({i, —i,z, —x,y,—y} UN). That is,
—ky € Z\({i, —i} U J). Since Z = {i, —i} UJ UK, then —k3 € K.
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Wil i k1 T Y «
Wol @ | ko | o |-y | B
Ws | i ks x v )
Wyl 1 ko | —x | y

Ws | i ki | —x | —y

We | 1 ks | —r | « I6)
Wl @ | ke | y | B

Wg 1 k77 —Y o

Table 3.5: Partial index distribution of the codewords of G;.

Looking at the codewords W7, Wy € G, we get Wy € G, and Wy € G, or, W7 € Gs
and Wy € G,. In both cases —k7; € Z\({i, —i} U J), accordingly —k; € K.

Now, K = {kq, ko, k3, k7} and —k3, —k; € K. Either k3 # —k; or k3 = —k.

If k3 # —k7, then —k € K for all k£ € K.

If ks = —k7 and k1 = —ko, then —k € K for all k € K.

Assume that k3 = —k; and ky # —ko. By this assumption it follows that
—k1,—ky € N ={a,3,7,0}. Thus, there are e1,69 € N so that —k; = &1, —ko = &
and the remaining elements of N, €3 and ¢4, satisfy e3 = —e4. As W} € Gk aya, then
—k1 € {B,7,6}. On the other hand, since Wy € G, j, »—y.p, then —ky € {a,7,0}. We
note that, as ky # ko, then —ky # —ks.

If -k = [ and —ky = «, then v = —4, which is a contradiction since
W3 € Gikgarys-

If —k; = p and —ky = 7, then @« = —¢§. Analyzing Table 3.5 and taking into
account that W, € G, U Gs, we conclude that Wy € G; , —245. Consequently, having
in mind Lemma 1.5, W5 € G, 2.y~ W7 € Girypy and Wy € Gi gy —y.a.6, Which is not
possible since we are supposing o = —9.

If —k; = B and —ky = 4, then a = —. Consequently, Ws € G; 1; —y 0.5 W7 € Gikrypy
and Wy € Gk, —ays. We get a contradiction since, by hypothesis, —ks = 6.

Combining all possibilities for —k; € {5,7,0} and —ky € {«,~,d}, by a similar

reasoning we get always a contradiction. Therefore, —k € K for all k € K. O
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From Proposition 3.1 we get Z\{i, —i} = J UK. We have just seen that, if k € K
then —k € K. So, if j € J then —j € J.

Until this moment we have centered our attention on the characterization of the
codewords of G;. The two following propositions arise from the analysis of other type

of codewords, in particular, codewords of DU E U F.

Proposition 3.3 If |G| =8, i € Z, then |F;| = 0.

Proof. Let |G;| =8 for i € Z. Suppose, by contradiction, that |F;| > 0. Let U € F;.
Since the codewords of F are of type [£2, +13], there are uy, us,us € Z\{i, —i}, with
|uq], |ug| and |uz| distinct between them, such that U € Fiy ugus-

By Proposition 3.1, Z\{i, —i} = J U K, therefore uy,us, uz € J UK. Recall that
|Gij| = 3 for any j € J. Then, by Lemma 2.2 one has |F;;| = 0 for all j € J. Con-
sequently, uj,ug,us € K. From Proposition 3.1 it follows that || = 4 and, taking
into account Proposition 3.2, —k € K for all £ € K. Thus, is not possible to have
Uy, ug, ug € K satisfying |uq|, |ug| and |us| pairwise distinct, contradicting our assum-

ption. 0]

Proposition 3.4 For all j € J, |D;; U&;| = 1. For all k € K, |Dy, U &yl = 4.
Furthermore, if k € I, the codewords Uy,Us, U3, Uy € Dy U &y are such that
Ui € Diguy U Eikuy» Uz € Diguy U Eiuy, Uz € Diguy U Eiuy and Uy € Digyy U Eigouy»

with uy, us € J, uy # ug, and us,uy € K\{k, —k}, with uz = —uy.

Proof. From Lemma 2.2 we get
Dy U Ey| + 2| Fu| + 3|Gul = 10 (3.2)

for all [ € Z\{i,—i}. By Proposition 3.3 we know that |F;| = 0 and, consequently,
|Ful = 0 for all | € Z\{i,—i}. As |G;;| = 3 for any j € J, from (3.2) we obtain
|D;; U&;j| =1 for all j € J. Considering again (3.2), we conclude that |Dy, U &y| =4
for each k € K, since |G| =2 for all k € K.
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Let k£ € K. Then, there exist codewords Vi, Vs € G, and Uy, ..., Uy € Dy U Ep.
We note that, the codewords of D are of type [4-3, £12] and the codewords of £ are of
type [£22, +1]. Thus, there are vy, ..., v, Uy, ..., uy in Z\{i, —i, k, —k} such that:

U | 7 | k| w
Vil i |k |v|vg]|us Uy | v | k| ug
Vol @ | Kk |vg|ws | vg Us | i | k| us
U4 i k Uy

Table 3.6: Index distribution of the codewords of G;;, U D U E;.

It should be pointed out that, by Lemma 1.5, vy, ..., vg, uq, ..., uy must be pairwise
distinct. Therefore, {vy,..., v, u1,...,us} = Z\{i, —1i, k, —k}.

By Proposition 3.1, Z\{i, —i} = J UK, with |J| = 8 and |K| = 4. Furthermore,
from Proposition 3.2, —k € K. Then, {vq,...,vs,u1,...,us} =T UK\{k,—k}.

Since Vi, Vo € Gy, with k € I, taking into account Proposition 3.1 we must im-
pose {vy,...,v6} C J. Consequently, without loss of generality, u;,us € J and

ug, uy € K\{k, —k}. Considering Proposition 3.2 we conclude that uz = —uy. O

3.2 |G| #8foranyiecZ

We are now in conditions to establish the main result of this chapter.
Theorem 3.1 For anyi € Z, |G;| # 8.

Proof. By contradiction, consider i € Z such that |G;| = 8.

From Proposition 3.1 we have || = 4, so let k£ be an element of L. By Proposition
3.4, there exist Uy, ...,U; € Dy, U & whose index distribution satisfies the conditions
presented in Table 3.7, where u, —u € K\{k,—k} and j;,72 € J, with j; # jo. We
note that, in these conditions, K = {k, —k, u, —u}.
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U | i« | k| u
U2 i k —U
Us 1 k jl
U | i | k| J2

Table 3.7: Index distribution of the codewords of D;, U &;y.

Let us denote by H the set of words of type [+2, £1]. Consider the words Py, P, € H
such that P, € ng)ﬁHﬁ) and P, € HEQ)H”HE?. The index distribution of the codewords
of D, U &, and the index value distribution of the words P, and P, are represented in

the following table:

[ k U | —u | g1 | g2
U | x X X
Uy | x | x X
Us | x | x X
Uy | x X X
P | £2 +1
P | £2 +1

Table 3.8: Index distribution of Uy,...,U; € D;. U &, and index value distribution of
P, P,eH,.

By definition of perfect 2-error correcting Lee code, for each P € {P;, P,} there
exists a unique codeword V' € T such that pup(P,V) < 2. Since P, P, € 7-[52),
with H the set of words of type [£2,+1], then each one of these words must be co-
vered by V € BZ-(4) ucu D§3) U Si(Q) U .7:i(2). As, by Proposition 3.3, |F;| = 0, then
veBPucup®ug?.

More concretely, P; is covered by V' & (BZ@) ﬂBJ(-ll)) uC;;, U (DZ@ ﬁDﬁ)) U (5i(2) NEj).
Likewise, P, is covered by V' € (B n BYyu ey, U (DY n DY) U (£ N¢Ej,). Thus,
we may consider Uz and Uy as possible codewords to cover P, and Ps, respectively.

Suppose that P; is covered by Us and P, is covered by Uy. Then, we must impose

Use (DY N nDMYu(EP néng)
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and

Ure (P N nDPYu(EP ngnEy),

which contradicts Lemma 1.4, since Uz, Uy € (DE?’) N D,(:)) U (Si(Q) N &). Therefore,
either P; is not covered by Us or P, is not covered by Uy.

Without loss of generality, let us assume that P; is not covered by Us. Note that,
Us € Digj, Uirj,- As j1 € J, by Proposition 3.4 we get |D;;, UE;;, | = 1. Consequently,
D;;, U&;j, = {Us}. Since we are assuming that Us does not cover Py, then P is covered
by a codeword V satisfying V' € (554) N B](-i)) U Cij, -

Next, we will analyze, separately, the hypotheses:

1) VeB?nB;

J1 7

2) Vedly.

1) Assume that P, is covered by V € 854) N BJ(II).

If P, is covered by V € B\Y ﬂB](-P, then, by Lemma 1.3, [B\{V1Iuc® uD®| = 0.
Consequently, if U € {Uy,...,Us} is such that U € D, then U € Dgl). Furthermore,

under the assumption, % must be covered by

(2

Ve P neyuEP ney).

If V' e Si(Q) N¢&j,, since jo € J we conclude, by Proposition 3.4, that V' = Uj.
Having in mind Uy, U; and Us, see Table 3.8, if U € {Uy, Uy, Us} is such that U € &,
then U € 51-(1), otherwise, U, U, € EZ-(Q) N &k, contradicting Lemma 1.4. Therefore, since
we have concluded before that {Uy, Uy, Us} N DE?’) =g, we get Uy, Uy, Us € Dgl) U Ei(l).
Taking into account the index distribution of U; and U,, we must have U; € DQ(LS) or
U, € D) otherwise, Uy, Us € (Dgl) N D,(:’)) U (52-(1) N 8,5,2)), contradicting, once again,

Lemma 1.4.

It V' e CZ@) N Cg’), to avoid the contradiction of Lemma 1.4 we must impose
U, € D,ES). Consequently, considering again Lemma 1.4, Uy, Us, Uz € D,(:) U 5,&1). We
recall that, we have seen before that {Uy, Us, Us} ﬂDg?’) = @. Thus, in these conditions,

U, € D or U, e D(_?’Q)L, otherwise, Uy, U, € 82-(2) N 8,51), contradicting again Lemma 1.4.
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Therefore, in both cases, supposing V' € 5i(2) NnNé&;, or V' e Ci(Q) N Cg’), we conclude
that U; € DY) or U, € D).

Suppose, without loss of generality, that U; € D). Aswu e K, by Proposition

3.4 there are Us,Us € Dy, U &, satistying Us € Djyjy U Einjy, and Us € Dyyjy U Einjy s
with 73,74 € J distinct. Note that, ji,...,74 € J are pairwise distinct, since, by
Proposition 3.4, |D;; U &;;| =1 for all j € J.

Let us consider P € 7-[52) ﬁ?—lg) and P, € 7—[@(2) ﬂ’Hg). Table bellow summarizes the
conditions that the index distribution, and, in some cases, the index value distribution,

of the codewords and words described until now, must satisfy:

Lk u | —ul g | g2 | Js | Ja
Up | £1| £1| £3
U | x | x X
Us | x | x X
Uy | x X X
P | 2 +1
P | £2 +1
V | +4 +1
Us | x X X
Us | x X X
P; | +£2 +1
P, | £2 +1

Table 3.9: Index conditions on B; UD; U &; and on 4 words of type [+2, £1].

Taking into account the words P3; and P, we may conclude, as we have concluded
before for P, and P,, that either P; is not covered by Us or Py is not covered by Us.
In fact, if Us covers P and Ug covers Py, then Us, Us € (DZ(?’) N D&l)) U (52-(2) N &),
contradicting Lemma 1.4. Let us assume, without loss of generality, that P3 is not
covered by Us. By Proposition 3.4 it follows that |D;;, U &;j,| = 1. Consequently,
Dij, U &ij, = {Us}. As a consequence of the assumption V' € BZ-(4) N B](-i) we get
IBN\{V} U CZ@ UDP| = 0. Furthermore, from Proposition 3.3, |%;| = 0. Thus,
under these conditions, P; must be covered by a codeword R satisfying R € CZ-(Q) N CJ(-S).
Consequently, Us € DY, otherwise, Us € (Dgl) N Dj(.j)) U (51(2) NE;,) U (&N SJ(?) and
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contradicts with the codeword R Lemma 1.4. However, Uy, Us € DS’), contradicting

Lemma 1.3.
Accordingly, P, can not be covered by the codeword V € 854) N B;ll).

2) Assume that P, is covered by V € C;j,.

Since V' € C, then V is a codeword of type [£3,+2]. According with what is being
supposed, V € Ci(g) N C](-IQ) orV e CZ-(z) N C](-f). Consider Us € Djyj, U Eij,. In order to
have Lemma 1.4 fulfilled we must force Us € Dgl) N D,(cg) N Dﬁ) . Schematically:

C k| u | —u g1 | g
U | x X X
Uy, | x | x X
Us | £1| £3 +1
Uy | x X X
P | £2 +1
P | £2 +1
V| x X

Table 3.10: Index distribution on C; U D; U &; and on 2 words of type [£2, +1].

Taking into account Us, by Lemma 1.4 we must have Uy, Uy, Uy € D,E;l) U 8,&1).
Besides, U; € DY) or Uy, € D) otherwise, Uy, Us € (Dg?’) N D,(cl)) U (5;2) N 5,51)),

—Uu’

contradicting Lemma 1.4.

Let us assume, without loss of generality, that U; € DY,

Proceeding as in the previous case, we will consider Us € Dy , U &y, and
Us € Diyj, U Einj,, With js, ju € J and distinct. We will consider also P; € Hl@) N Hg)
and P, € 7—[52) N Hﬁ) Gathering the information obtained so far, one has the index

distribution presented in Table 3.11.



52 3.2. |G| #8forany i € T

t | k| u | —u| g1 | Ja| Js | Ja
Uy | £1 | £1 | £3
Us | x X X
Us | £1| £3 +1
Uy | x | x X
P | £2 +1
P | 2 +1
V] x X
Us | x X X
Us | x X X
P; | +£2 +1
Py | £2 +1

Table 3.11: Index distribution on C; U D; U &; and on 4 words of type [£2, +1].

As seen in the previous case, either Us does not cover P3 or Ug does not cover Pj.
Assume, without loss of generality, that P3 is not covered by Us. By Propositions 3.3
and 3.4 we get, respectively, |F;| = 0 and D;j, U &;j, = {Us}. Therefore, P; must
be covered by a codeword R € (854) N Bj(;)) UCij,. If R € Cjj,, then, by Lemma 1.4,
we must impose Us € D and, consequently, ]Df’)] > 2, contradicting Lemma 1.3.
Accordingly, R € 32(4) N Bﬁ»?.

Taking into account Lemma 1.3, |B§4)\{R} U C,L»(3) U D§3)y = 0. Thus, since, by

Proposition 3.3, |F;| = 0, we may conclude that P, must be covered by a codeword
Sec?ncyuE? ney).

Note that, if S € CZ-(Q) N C](f), then, by Lemma 1.4, Ug € DY implying \D&3)| > 2 and
contradicting Lemma 1.3. Thus, S € 8;2) N &;,. By Proposition 3.4, |D;;, U &, =1
leading to D;;, U&;;, = {Us} and, consequently, S = Ug. Since U; € DEI) N D,(:) NnDY,
taking into account Lemma 1.4, we must force Us € 5}2) n&eM n 5}42). The index
distribution, and, in some cases the index value distribution, of the codewords and

words which we are dealing with are presented in Table 3.12.
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t | k| u | —u| g1 | Ja| J3 | Ja
Uy | £1 | £1 | £3
Us | x X X
Us | £1 | £3 +1
Uy | x | x X
P | £2 +1
P, | £2 11
V| x X
Us | x X X
Us | £2 11 )
P; | 12 11
Py | £2 +1
R | +4 gell

Table 3.12: Index distribution on B; UC; U D; U &; and on 4 words of type [£2, +1].

Let us now focus our attention on —u € K. By Proposition 3.4, there are codewords
U;,Us € D;_,UE&; _y, so that, Uy € D; _y j, UE; _yy sy and Ug € D; _y, s U &y js, With
Js.Je € J distinct. Note that, by Proposition 3.4, |D;; U &;| = 1 for all j € J,
and so ji,...,J¢ are pairwise distinct. Taking into account the existence of the words
P e HZ@) N Hﬁ) and Py € ’HEQ) N Hg-(lj), we obtain the index distribution presented
schematically in Table 3.13.

By a similar reasoning to the one done with the words P, P, € 7-[2(2) and
P, P, € 7—[52), we conclude that either Ps is not covered by U; or Py is not covered

by Ug. Let us assume, without loss of generality, that U; does not cover P5. Then,

Propositions 3.3 and 3.4 lead us to conclude that P; must be covered by a codeword
Qe BYNBYYU(Ciy).

As R € BZ@) N BJ(;), by Lemma 1.3, Q) € CZ@) N C;S). Consequently, taking into account
Lemma 1.4, we must force U; € D(j{

Focus our attention on the codeword Us € Dy, U & —,. Having in mind the
index value distribution of the codewords R, Us and U; and considering Lemma 1.3,
we conclude that Uy € &;. Consequently, either Uy € & N 5,52) or Uy € &N 5&2,2. If
Uy e &N 5;2), then the index value distribution of Us and Us contradicts Lemma 1.4.

U, € &N 593, the index value distribution of Us and U; contradicts also Lemma 1.4.
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i | k| u | —u| g1 | Ja| J3| Ja| J5| Js
Uy | £1 | £1| £3
Uy | x X X
Us | £1 | £3 =]l
Uy | x | x X
P | £2 +1
P, | £2 11
V| x X
Us | x X X
Us | £2 11 12
P; | £2 11
Py | £2 +1
R | +4 =]l
U, | x X X
Us | x X X
P | £2 11
Ps | £2 11

Table 3.13: Index distribution on B; UC; U D; U &; and on 6 words of type [£2, +1].

In both hypotheses, P; covered by V € BZ@) N Bﬁ) or P, covered by V' € C;;,, we

get a contradiction. 0

From Corollary 2.2 and Theorem 3.1 it follows immediately:
Corollary 3.1 Foranyi€Z,3<|G]|<T.

Consequently, the required solutions for the system of equations presented in Proposi-
tion 2.1 must satisfy 9 < g < 19. As we have been saying, our strategy to prove the
non-existence of PL(7,2) codes consists in getting a minimum range for the variation
of |G;|, with @ € Z. In next chapter we get another result which reinforces this aim

proving that |G;| # 3 for any i € 7.

Until now we have been denoting by ¢ a general element of the set Z, since it
is a natural and intuitive choice. However, we call attention to the fact that in the
following chapters we will consider Z = {i, —i, 5, —j, k, —k,l, =1, m, —m,n, —n, 0, —o},

being i representing a certain element of Z although not specified.



Chapter 4

Proof of |G;| # 3 for any i € 7

In the previous chapters we have proved that 3 < |G;| < 7 for any i € Z. Here, we
prove that |G;| # 3 for any i € Z, restricting even more the range of variation of |G/,
that is, 4 < |G;| < 7 for any i € Z.

This chapter is organized as follows. Under the assumption |G;| = 3, for some i € Z,
we present some results from which we get conditions that necessarily must be satisfied
by the codewords of G; U F;. In the second section we show how we apply these results
in the characterization of the index distribution of such codewords. At the end of this
chapter we present the methodology used to show that any one of the obtained index

distribution for the codewords of G; U F; contradicts the definition of PL(7,2) code.

4.1 Necessary conditions for the index distribution

of the codewords of G, U F;

Let us suppose |G;| = 3 for some i € Z. Under this condition, by Lemma 2.9, we have

|F;| = 13 and, in particular, ]J‘L"Z.(z)\ = 4.

Our intention is to show that the hypothesis |G;| = 3, for some i € Z, lead us to
contradictions on the definition of PL(7,2) code. In this sense, we will characterize
the possible index distributions for the codewords of G; U F;, taking into account that
|G;| = 3 and | F;| = 13, having in mind to prove that such codewords do not satisfy the

definition of perfect 2-error correcting Lee code over Z7.
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The following results impose conditions in the index distribution of the codewords

Proposition 4.1 If |G| = 3, for some i € I, then there are o, B,y € T\ {i,—i},
with a, 5 and v pairwise distinct, such that, |Fio| = |Fig| = |Fiy| = 5. Furthermore,
| Fiw| <3 for allw € T\{i, —i,c, 5,7}

Proof. Let i € Z be such that |G;| = 3. The three codewords W5, W, W3 of G; satisfy
Wl S giw1w2w3w47 W2 € giw5w6w7wg a’nd W3 € giw9w10w11w127 Wlth Wiy, ..., W12 S I\{Za _Z}
and not necessarily pairwise distinct.

As |Fi| = %ZweZ\{i,ﬂ‘} | Fiw| and |F;| = 13 one has,

> | Fuwl =39, (4.1)
weT\{i,—i}
Since |Z\{i, —i}| = 12 and, by Lemma 2.2, | F;,| < 5 for all w € Z\{i, —i}, the equation
(4.1) implies the existence of, at least, two elements a, f € Z\{i, —i}, with o # (5, such
that, | Fial, | Figl > 4.

Let us show, now, that there are, at most, three elements «, 3,y € Z\{i, —i},
distinct between them, such that, |Fi.|, |Fis|, |Fiy| > 4. Suppose, by contradiction,
that there exist «,f,7,06 € Z\{i,—i}, distinct between them, such that,
| Fial | Fisl, | Finl | Fis] = 4. By Lemma 2.2, |Gio| = |Gis| = [Giy| = [Gis| = 0
and having in account the index distribution of Wi, Wy, W3 € §;, we may
conclude that wy, ..., wis € Z\{i, —i,a, 5,7,0}. As |[Z\{i, —i,«, 8,7,}| = 8, there are
w,0 € I\{i, —i,a, B,7,0} such that |G;,9| > 2, contradicting Lemma 1.5. Thus, there
are, at most, three distinct elements a, 5, € Z\{i, —i} satistying | Fio|, | Figl, | Fiy| > 4.

Next, we prove that there is now € Z\{i, —i} satisfying | F;,| = 4. By contradiction,
assume that o € Z\{i, —i} is such that |F,| = 4.
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In view of (4.1) and in spite of the conditions established until now, one and only

one of the following conditions is verified:

i) there is f € I\{i,—i,a} such that |Fis| = 5 and |F,| = 3 for any

it) there are 8,7 € I\{i, —i,a}, with 8 # ~, such that | Fis|, | Fi,| > 4 and |Fi,| < 3
for all w € Z\{i, —1i, o, B, 7}

As |G| =3 and |G;| = iZwez\{i,ﬂ'} |Giol, then 3 e i iy |G| = 12.

Let us analyze the hypothesis i). By Lemma 2.2, |G;,| = |Gis| = 0 and |G| < 1 for
all w € Z\{i, =i, cr, B}. As [Z\{i, —i, v, B}[ = 10, it follows that > 7\ 5 |Giw| < 10,
which is a contradiction.

Now assume that the conditions stated in i) are fulfilled. In these conditions,
|\Fial + |Figl + |Fiyl < 14, then having in consideration (4.1) we get
D we\fi—iapoy [Fiwl = 25 Since |T\{i,—1,a, 8,7} = 9 and |[F| < 3 for all
w € I\{i, —i,a, 3,7}, then |F;,| > 1 for all w € Z\{i, —i, «v, 8,7}, furthermore, there
are, at most, two distinct elements 0,6 € Z\{i, —i, «, 8,7} so that 1 < |Fil, | Fier| < 2.
Thus, by Lemma 2.2, ° 7 (; ;1 |Gi| < 11, contradicting our assumption.

Accordingly:

- there are exactly two distinct elements «, 5 € Z\{i, —i} so that |Fi,| = |Fis| =5
and |F,| < 3 for all w € Z\{i, —i, , 5};

- there are exactly three distinct elements «,f(,v € Z\{i,—i} such that
| Fial = [Figl = |Fiy| = 5 and |Fi,| < 3 for all w € Z\{i, —i, o, 8,7}

Let us assume first that there are only two distinct elements «, 5 € Z\{i, —i} such
that | Fio| = |Fig| = 5. By (4.1), there exists a unique element 0 € Z\{i, —i, o, 8} such
that |Fig| = 2 and |F,| = 3 for all w € Z\{i, —i, o, B,0}. Consequently, by Lemma
2.2, we conclude that 37 ;s [Giw| < 11, which is a contradiction.

Summarizing, if |G;| = 3, there are exactly three distinct elements «, 5,y € Z\{i, —i},
such that, |Fi| = |Fig| = |Fiy| =5 and |Fi| < 3 for all w € T\{i, —1, o, 5,7} O
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Proposition 4.2 Let o, 8,7 € I\{i, —i} such that |Fio| = |Fig| = |Fin| = 5. Then,
lal, |B| and |y| are pairwise distinct and there exist Uy, Uy, Us, Uy € F; whose index

distributions satisfy:

Ui | i | a | B |21
Uy | 2+ | a | 7| 2
Us | @ Bl v |zs
U |t |y [ Y2 | Ys

where T1,T2,T3,Y1,Y2,Y3 S I\{Za _ia «, Ba 7}

Proof. Let o, 3,7 € Z\{i, —i} so that |F.| = |Fig| = | Fiy| = 5.

Let us assume, by contradiction, that |«|, |3] and |y| are not pairwise distinct.
Without loss of generality we may assume that a« = —g. Thus, Fi, N Fig = &
and, consequently, |Fi, U Fig| = 10. As |F;| = 13, then |Fn,| = |Figy| = 1 and so
Fi=Fia UFigU Fiy.

From Lemma 2.9, |]-"l.(2)| = 4. That is, |]-"i(2) N (Fia U Fig U Fiy)| = 4. Consequently,
there exists w € {a, 5,7} such that \]—"Z»(Q) N Fiw| = 2, contradicting Lemma 2.14.

Therefore, |al, || and || are pairwise distinct.

We have just seen that if F; = F;o U Fig U Fiy, then Lemma 2.14 is contradicted.
Thus, F; O FiaUF;gUF;, which implies |Fiog,| = 0. As |Fi,| =5 forallw € {o, 8,7},
by Lemma 2.5 we get |Fi| = 1 for all w € Z\{i, —i,w, —w}. As a consequence,

|\ Fiapl = |Fian| = |Figy| = 1. That is, there are Uy, Uy, Us € F; satistying:

U1 1 o ﬁ T
U2 1 [0
Us | 1

X2

-2

™
-2

€3

Table 4.1: Partial index distribution of Uy, Us, Uz € F;.

where x1, 29, x3 € T\{i, —i,a, 5,7}
As |Fio U Fig U Fiy| = 12 and |F;| = 13, there exists Uy & Fio U Fig U Fiy, that is,
U4 € Eyll/ZZ/s Where Y1,Y2,Y3 € I\{Z7 _ia «, 57 7} |:|
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The previous proposition gives us a complete picture of the index distribution of

four codewords Uy, Us, Us, Uy € F;. Namely,

Uy | @+ | a | 8|2
Uy | 1 | a | v | x
Us | i B | 7| s
Us| i |y | y2 | ys

Table 4.2: Partial index distribution of Uy, ..., U, € F;.

where «, 5,7 € Z\{i,—i}, with |af, |B| and |y| pairwise distinct and such that
“Ea‘ = ’EB‘ == ‘E’y‘ =5 and T1,T2,T3,Y1,Y2,Y3 € I\{Z> _i>&7ﬂa7}'

Moreover,

E:EaU-EBU]rmU{Ugl}

Corollary 4.1 In the considered conditions FB = {U, U, U",U"}, where

(2

U' € Fi\(FsUF,), U" € Fiu\(Fa UF,) and U" € F\(Fa U Fp).

Proof. In view of Lemma 2.9, |.7-"i(2)\ = 4. By Lemma 2.14 it follows that
|}"i(2) N F,| = 1 for each u € Z\{i,—i}. Since F; = Fio U Fig U F;y U {U,}, then
Uy € ]:2-(2), otherwise |]-"i(2) N F,| > 2 for some w € {a,,7}. On the other hand,
|F® N (Fia U Fig U Fi)| = 3 and so there are U, U”,U" € F2 N (Fiq U Fig U Fyr)
such that U’ € Fio\(FpUF,), U" € Fig\(Foa UF,) and U" € F,\(F,UFp), otherwise

there exists again w € {a, #,7} such that |.7-"i(2) N Fiw| > 2. O
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Proposition 4.3 If |F,| = |Fig| = |Fiy| = 5, then |Gia| = |Gis| = |Giy| = 0. Fur-
thermore, there exist 0,¢,0 € I\{i, —i,, 8,7} such that |Gis| = |Gi| = |Gig| = 2 and
1Giw| = 1 for all w € T\{i,—i,, 3,7,0,,0}. The index distributions of the three
codewords Wi, Wy, W3 € G; satisfy:

W1 1 ) E | Wy | W
Wy | 1
W3 i € 0 Wy | Weg

>

w3 | Wy

where 6,¢€,0,wq, ..., ws € I\{i,—1i,a, 3,7} are pairwise distinct.

Proof. Let o, f,v € Z\{i, —i} be such that |F,,| = |Fig| = |Fiy| = 5 which means
that |Gia| = |Gis| = |Giy] = 0, in view of Lemma 2.2. Let Wy, Wa, W3 be the three
codewords of G;. Then,

Wil ¢ | wy | we | wy | wy

W2 i Wy We wr ws

Ws 1 Wy | Wy | W11 | W12

Table 4.3: Partial index distribution of Wy, Wy, W3 € G;.

where wy, ..., w2 € I\{i, —1i, @, 5,7}

Regarding the cardinality of G;, we may conclude that |G| < 2 for all
w € I\{i, —i,a, B,7} since |G;,| = 3, for some w, implies, by Lemma 1.5, the exis-
tence of nine distinct elements in Z\{i, —i, o, 8, y,w}, which is a contradiction because
|Z\{i, —1, 0, B,v,w}| = 8.

As |G;| = 3 and, consequently, ZMGI\{Z,’_M’B’,Y} |Giw| = 12, there exist, at least, three
distinct elements w € Z\{i, —i, a, §,v} satisfying |G;,| = 2. Taking into account the
partial index distribution of the codewords of G; and Lemma 1.5, there exist exactly

three elements 0, ¢,0 € Z\{i, —i, «, 8,7} in these conditions satisfying,
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W1 1 0 E | W | W2
Wy | ¢
W3 i € 0 Wy | Weg

>
5

Wy

Table 4.4: Partial index distribution of Wy, Wy, W3 € G;.

where 0,¢,0,wy, ..., ws € Z\{i,—i,a, 3,7} are pairwise distinct. O

Let us consider
1= {27 _i7j7 _.j7 k7 _kv l) _l7 m,—m,n,—n,o, _O}'

Since the index distribution of Uy, Us, Us, Uy € F; is the one illustrated in Table 4.2,

we may assume, without loss of generality, that o = j, 8 = k and U; € F;j, that is:

AEEREEAE
Uy | 1 ]
Us | 1 k
U | @ |y [y | s

<
=2

|

)

)

Table 4.5: Partial index distribution of Uy, ..., U, € F;.
where x1, 29 € T\{i, —1, j, k,v,l} and y1, 0, y3 € Z\{i, —1, J, k, v}

In what follows, the index distribution of the codewords of G; and Uy, U,, Us, Uy € F;
are, respectively, the ones given in the Tables 4.4 and 4.5, respectively. Next, we will

analyze how the codewords of G; and F; fit together.

Proposition 4.4 Ifl £ 6§,¢,0, then, without loss of generality, W1 € G;so1, and either
0=—lorf=—j orf=—k.

Proof. Let us assume that | # 6,¢,60. Since | & {i,—i,j, k,~v}, by Proposition 4.3,
|Gu|l = 1. Without loss of generality, we set W, € G-
Observe that, with the relabeling of the indices, Uy € Fjju.
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Suppose, by contradiction, that 6 # —I,—j,—k. As |F;| = |Fik] = 5 then,
by Lemma 2.5, |Fiu| = 1 for all w € Z\{i, —i,j,—j}, and |Fi,| = 1 for each
w € I\{i,—i,k,—k}. Thus, there exist U € Fijpu, and U € Fippu,, with U # U’,
otherwise Lemma 1.5 is contradicted.

As we have seen, two of the three codewords of G;, namely W, and Wj,
belong, respectively, t0 Gispwsw, and Gicguwsws. Since U, U" € Fiy and Wy, W3 € Gy,
by Lemma 1.5, 0, ¢, uy, ug, w3, wy, ws, wg € Z\{i, —i,7,k,0,—0} are pairwise distinct.
As |ZT\{i,—i,j,k,0,—0} = 8 and we are assuming 0 # [, —[, then we have
I € {6,e,uy,us, w3, wy, ws, ws}. But 6, # [ and so | € {uy, uy, w3, wy, ws, ws}. Conse-
quently either |Fi;| > 2 or |Fiu| > 2 or |Gisi| > 2 or |Gie| > 2, which implies, in any

case, the contradiction of Lemma 1.5. ([l

Bringing to the scene the index characterization of the codeword Uy € F;, in
particular, Uy € F\(F; U Fr U F,), we already know that Uy € Fjy,y,y wWhere

Y1, Y2, ys € I\{i, —1, J, k,v}. Next result bounds the range of y;, y2, y3 even more.

Proposition 4.5 Uy € Fiy,yoys for y1, 92,93 € {—J, =k, =7, 1, x1, 22}, where z1 and x,
are such that Uy € Fijyey, and Us € Fipye, (see Table 4.5).

Proof. As seen before Uy € Fiy,yys, Where 1, yo,ys € Z\{i, —1, j, k, 7}

Suppose, by contradiction, that there exists y € {y1,vy2,y3} such that
y & {—7,—k,—v,l,x1,x2}, that is, y € Z\{i,—i,7,—j, k, —k,~v, —7,l,x1,22}. Since
\Fi;l = |Fil = |Fiy| = 5, for each w € {j,k,7v} we have |F,,| = 1 for all
u € I\{i, —i,w, —w}. In accordance, there are three codewords, U’', U", U" in F; sa-
tistying U’ € Fijy, U" € Fipy and U" € Fiyy. As y # 1, 1, x5 the codewords U', U", U"”
are pairwise distinct. Thus, U’, U"”,U", U, are four distinct codewords in F;,. In spite
of Proposition 4.3, |G;,| > 1. Therefore, |F;,| > 4 and |G;,| > 1, contradicting Lemma

2.2. Consequently, {yla Y2, y3} - {_]7 _ka =7, ly Zy, 1’2}' 0

Now, we know that Uy € Fiju, Uz € Fijye, and Us € Fipya,. Next result establishes
connections between the index distributions of these codewords and the codewords of

G;. Namely,
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Proposition 4.6 If |G| = 2 for some w € T\{i, —1, j, —j, k, —k,~, —7,1}, then either

W=1=T O W = To.

Proof. Let w € Z\{i, —i,j,—7J, k, —k,7,—7,l} be such that |G;,| = 2. Suppose, by
contradiction, that w # x1,x5. As |F;;| = |Fi| = |Fiy| = 5 and, by assumption,
w # —j,—k,—~, taking into account Lemma 2.5, there are U’',U",U" € F; so that
U’ € Fiju, U € Figp and U" € Fi,. By hypothesis w & {l, 21,25}, then U",U"
and U" are pairwise distinct, which is not possible since we would get |F;,| > 3 and

|Giw,| = 2, contradicting Lemma 2.2. 0

Under the conditions and notation of the previous results one has:

Proposition 4.7 The indices 6,e,0 € {—j,—k, —v,l, x1, 2o }\{y1, 2, y3} furthermore
|{_]7 _kv -7 la Iy, $2}| = 0.

Proof. Asseen in Proposition 4.3, the three codewords of G;, W7, W5 and W3, satisfy
Wi € Gise, Wo € Gisp and W3 € Gip, with 6,¢,0 € Z\{i, —1,j,k,v}. Suppose that
w € {0,e,0} is such that w # —j, —k, —7,l. From Proposition 4.6, we conclude that
w=x1 or w = x9. Thus, if w € {0,¢,0}, then w € {—j, =k, =, [, 1, x2}.

By Proposition 4.5, {y1,y2,y3} < {—j,—k,—7,l,21,22}. Suppose, by contra-
diction, that {d,e,0} N {y1,y2,y3} # @. Without loss of generality, suppose that
0 = y1. Thus, {€,0} N {y2,y3} = &, otherwise Uy and Wy, or, U, and Wy contradict
Lemma 1.5. Then, ys,y3 € {—J, —k,—7, 1,21, 22}\{d, &,0}. By Proposition 4.3 there
are W' € G, and W” € G,;,.. To avoid superposition between U, and the codewords
Wi, Wy € Gi5, with § = y1, we must impose W3 € G,cgy,y,, Which is not possible since Uy
and W3 contradict Lemma 1.5. Therefore, d,¢e,0 € {—7j, =k, =7, 1, z1, x2}\{y1, ¥2, y3}.

As 1, Y9, y3 are pairwise distinct and 0, €, 6 are also pairwise distinct, we conclude

that ’{_j, _k7 -7, l?'rly xQ}‘ = 6. -
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4.2 Index distribution of the codewords of G; U F;

In the previous section we have concluded that there are Uy, Us, Us, Uy € F; satisfying

the following conditions

AEEEERAE
U | ¢ j
Us| 1 | k T
Us| @ |y | Y2 | 3

S
=

o

-2

Table 4.6: Partial index distribution of Uy,..., U, € F;.

where:
— xy,x9 € I\{i, —1, j, k,v, —, [} are distinct;

- N,Y2,Ys € {_j7 _ka _V7l7x17x2}‘

We have verified also that the codewords Wi, Wy, W3 € G; satisfy the conditions

W1 1 1) E | W | W2
WQ i Wy

W3 i € 0 Wy | Weg

>
5

Table 4.7: Partial index distribution of Wy, W, W5 € G,.

with
— 0,6,0 € {—j,—k,—,l,x1,22}\{y1, y2, Y3} pairwise distinct;

— wq,...,ws € I\{i,—1,75,k,v,0,e,0} pairwise distinct.

Next, we characterize in more detail the index distributions of the codewords of G;.
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4.2.1 Partial index distribution of the codewords of G;

In this section we present the different possible partial index distributions for the
codewords of G;. In this sense, we will consider Propositions 4.4 and 4.3 from which

follows, respectively, the statements:
o if [ #9,¢,0, then Wi € G;s. and either 0 = —[ or § = —j or 0 = —k;

o for all w € Z\{i, —i, 5, k,,6,¢,0}, |G| = 1.

Taking into account Proposition 4.4, we are going to distinguish the cases:
i) L #6,¢e,0,
ii) 3' w € {d,¢,0} such that w = I.

i) Suppose | # §,¢,0

If | # 6,¢,6, then, by Proposition 4.4, Wy € G5, and, § = —l or § = —j or § = —k.
Considering Uy, ..., Uy € F; and Wy, Ws, W3 € G;, see, respectively, Tables 4.6 and 4.7,

it is indifferent to consider # = —j or # = —k, thus, we only consider the two following
hypotheses:

Wi | ¢ 0 € [ | wy Wil 4 ) € I | w;

W2 1 0 —j Wy | W3 W2 i 0 -1 W | W3

W3 7 € —j Wy | Wy W3 7 € —1 Wy | Wy

Table 4.8: Partial index distribution of the codewords of G;.

where the distinct elements wy,...,ws are so that wy,...,ws € Z\{i, —1,j, —J, k,7,0,¢,1}
if Wi, Wy, W3 € G, satisfy the conditions in Table 4.8 on the left, on the other hand,
wy,...,ws € I\{i,—1i,j,k,v,0d,¢,1, =1} if Wy, Wy, W3 € G, satisfy the conditions in
Table 4.8 on the right.

Next, we will analyze each one of these possible partial index distributions.
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e Assume = —j. From Proposition 4.3, 1 < |G; _i| < 2, since —k € Z\{i, —i, j, k, 7 }.
If |Gi—k| = 2, then § = —k or € = —k. Suppose, without loss of generality, 6 = —k.

Accordingly, concretizing other indices, schematically we have:

Wil ¢ | =kl m | I n
W 1 —k —J | wr | wa

Ws | &« | m | —j|ws| wy

Table 4.9: Partial index distribution of the codewords of G;.

If |G;—x| = 1, we distinguish between the cases W, € G; _, or Wy & G; _x. Accor-
dingly, concretizing other indices, we get the following possibilities for the index dis-

tribution of the codewords of G;:

Wil ¢ | m| n [ | =k Wil 1 | m| n { 0

W2 7 m —j w1 Wo W2 7 m —j —k w1

W3 1 n —j ws Wy Wg 1 n —j Wa W3
Table 4.10: Wy € G; . Table 4.11: W1 &€ G; _.

e Assume now 0 = —I. Since —j, —k € Z\{i,—i,J,k,v}, by Proposition 4.3,
1 <|Gi—j] <2and 1 <|G; x| <2. So, we will consider the cases:

1. 0 = —j and ¢ = —k;
2. 3w € {6,e} such that w € {—j, —k} (without loss of generality, we will assume
w = —j);

3. {6,e} N {—j.—k} = 2.

In the following schemes are presented the partial index distributions of the code-

words of G; satisfying, respectively, the conditions in 1, 2 and 3. In each case we

concretize other indices.



4. Proof of |G;| # 3 for any i € Z

W1 —j —k l m W1 —] m l w1
W, —J | =l | w | we W, —J | =l | wy | w3
W3 k| = W3 | Wy W3 m —1 Wy | Ws

Table 4.12: § = —j and ¢ = —k.

Table 4.13: § = —j and ¢ # —k.

Wy m | n I | w

Wy m | =l | wy | ws

Wy n | =l | wy | ws
Table 4.14: {6,e}n{—j,—k} = @.

it1) Suppose that there is a unique w € {4,¢,0} such that w =1

Without loss of generality, consider 6 = [. Such as in the previous case, one of the

following conditions is satisfied:

1. e=—j and 0 = —k;

2. 3w € {e,0} such that w € {—j, —k} (without loss of generality, we will assume

e=—j)

3. {e,0) N {—j,—k} = 2.

The partial index distribution of the codewords of G; satisfying, respectively, the

conditions in 1, 2 and 3 are presented in the following schemes:

Wi [l | —j | m | n Wi [ | —7 | wy | wy
W2 ) —k w1 | W2 W2 l m W3 | Wy
W3 —J | —k | ws | wy W3 —J| m | ws | we

Table 4.15: ¢ = —j and 0 = —k.

Table 4.16: ¢ = —j and 0 # —k.
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Wiy 1 [ | m | w | we
Wy | 4 [ | n |wy| w
Wi | @ | m | n|ws| ws

Table 4.17: {e,0}N{—j,—k} = 2.

4.2.2 Partial index distribution of the codewords of F;

In the previous subsection we have characterized the possible partial index distributions

of the codewords Wy, Wy, W3 € G;. Here, for each one of these index distributions we

describe, in more detail, the index distribution of Us, Uz, U, € F;.

Let us consider Wy, Wy, W3 € G; satisfying one of the obtained partial index distri-

butions, in particular,

Wiyl ¢ | =kl m | I n
Wo | @ | —k| —j | w | we
Ws | @ | m | —j | ws| wy

Table 4.18: Partial index distribution of the codewords of G;.

where 0 = —k, ¢ = m, # = —j and wy,.

pairwise distinct.

Let Uy, ...,Us € F; be such that:

<o, Wy € I\{Za _Z.aja _jakv —k,l,mﬂl,’}/} are

Uy | i | 7 | k|1
Uy | ¢ e 5t
Us | ¢ k| v |z
U | @ | y1 | Y2 | Y3

Table 4.19: Partial index distribution of Uy, ..

.,U4E.FZ'.

By PI‘OpOSitiOHS 4.5 and 477 {_k7 m, _ja Y1, Y2, y3} = {_ja _ka - l7 L1, 1’2}-
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From Proposition 4.3 it follows that |G;,| = 0, then, taking into account the index
distribution of the codewords of G;, and considering the elements of Z, we conclude

that v € {—1,—m, —n,0, —o}. If:
o v = —I, then |[{—j, =k, =7, 1, 1, 22 }| < 5, contradicting Proposition 4.7;
o y=—-m, then {y17y27y3} = {laxth}? that iSa U4 € Elﬂ?lffz;

o v =—-n, then l>n € {y1>y2,?/3} and U4 S Eln anlylng |giln U Eln| 2 27 Wthh

contradicts Lemma 1.5;
o v =o,then m € {x;,22} and Uy € F;; _o., with @ € {z1, 22} \{m}.

Note that, it is indifferent to consider v = 0 or v = —o.
Therefore, if Wy, Wy, W3 € G, verify the conditions in Table 4.18, then v = —m or
v=oand Uy,..., U, € F,; satisty, respectively:

Ui | ] k|1 Ui i | Jj l
U2 1 j —m | Iy U2 i ] T1
U3 1 k —m | T U3 1 k )
U4 0} l T i) U4 7 [ —O0 x
Table 4.20: v = —m. Table 4.21: v = o; m € {xy,22};

x € {x1, o \{m}.

By a similar reasoning we get, for each one of the partial index distributions of the
codewords of G; obtained in the previous subsection, the following conditions.

If Wy, Wy, W3 € G; satisty the partial index distribution presented in:

¢ Table 4.10, then Uy € F; _j,; and, consequently, |G; _x; U F; ;| > 2, which is a
contradiction;

< Table 4.11, then is satisfied one of the following hypotheses
o vy=—m;n€{x,xe}; Uy € Fi gz, wWith z € {z1, 22} \{n};

o v=-—n;me€ {xy,x2}; Uy € Fi k10, With © € {z1, 22}\{m};
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& Table 4.12, then

o vy=mn; =l €{r,22}; Uy € Fit—na, with € {z1, 22 }\{—1};

¢ Table 4.13, then is satisfied one of the following hypotheses

o v=—m; =l €{x,x2}; Uy € Fi _gyz, with z € {z, 22 }\{—1};

o y=n;x1=mand x9 = —l, or, 11 = =l and 9 = m; Uy € F; _j _ny;
& Table 4.14, then

o y=-—m;xy =nand x9 = —l, or, vy = =l and o = n; Uy € F; _j _i;
¢ Table 4.15, then is satisfied one of the following hypotheses

o v=—mand Uy € Fimz o}

oy=o0and Uy € F o0, 20

{ Table 4.16, then is satisfied one of the following hypotheses

o y=-—mand Uy € F; _j 2, 25

o y=mn;m e {x,02}; Uy € Fs_j—ng, wWith x € {z1, 22} \{m};

¢ Table 4.17, then is satisfied one of the following hypotheses
oy=—m,n€{r,2}; Uy € Fi_j ko, with z € {x1, 22} \{n};

o y=o0; 21 =mand xg =n,or, vy =nand xo =m; Uy € F; _j _j _,.

4.2.3 Complete characterization of the index distribution of

the codewords of G, U F;

Until now we have presented the possible partial index distributions of the codewords
of G; and respective codewords Uy, Uy, Us, Uy € F;. However, our aim is to describe
completely the index distribution of all codewords of G; U F;, taking into account that
|G;| = 3 and |F;| = 13. Here, we show, throughout illustrative examples, the method
applied in the characterization of the index distribution of the codewords of G; U F;.
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By the analysis of all partial index distributions of the codewords of G;U{Uy, ..., U4},
identified in the previous subsections, we have verified that in the majority of the cases
the complete characterization of the index distribution of all codewords of G; U F; im-
plies |Giwp U Fiwp| > 2 for some w, p € Z\{i, —i}, contradicting Lemma 1.5. There exist
some cases in which it is possible to describe the index distribution of all codewords of
G; U F; such that |G, U Fi,p| < 1 for all w, p € Z\{i, —i}. However, in most of these
cases there exists ¢ € Z\{i, —i} such that |]-'i(2) N F,| > 2, which contradicts Lemma
1.4.

There exist only two possible index distributions for the codewords of G; U F; in
which |Gy, U Fiwp| < 1 and |.7:i(2) NF,| <1 forall w,p,p € Z\{i,—i}. In these cases
to show that the definition of PL(7,2) code is contradicted it is necessary to analyze
the complete index distribution of all codewords of G,, U F,, for other index w € Z\{i},
as we will see.

Next, we show how we have gotten the conclusions referred before, presenting illus-

trative examples in which:
1. |Giwp U Fiwp| > 2 for some w, p € T\ {7, —i};

2. |Giwp U Fiwpl < 1 for all w,p € Z\{i,—i} and |.7-"Z-(2) N F,| > 2 for some

3. |Giwp U Fiwpl <1 and ].7:1-(2) NF,| <1 forall w,p, ¢ e I\{i,—i}.

o |GiwpU Fiup| > 2 for some w, p € T\{i, —i}

Consider Wy, Wy, W3 € G; satisfying the following partial index distribution:

Wil @ | =kl m| I n
Wy 1 —k _j wy | W2

Wil @ | m | —j| wsy| wy

Table 4.22: Partial index distribution of the codewords of G;.

where 6 = —k, e =m and 0§ = —.
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For Uy,..., Uy € F;,

AEEEREEE
Uy | 1 J IES!
Us 1 k Y| T2
Us| @ | 1 | Y2 | ys

Table 4.23: Partial index distribution of Uy,..., U, € F;.

we have concluded in the previous subsection that one of the following conditions must

be verified:

Z) fy = —m and U4 c f;:l:ﬂl$2;

it) y=o0;m € {xy,x2}; Uy € Fiy_ou, with x € {z1,22}\{m}.

Let us consider v = 0 and assume m = x;. Accordingly, Uy, ..., Uy € F; satisfy:
Uy | ¢ | J [
U2 1 j m
U3 7 k i)
Uy | ¢ I | —o| x9

Table 4.24: Partial index distribution of Uy, ..., U, € F;.

From Proposition 4.7 it follows that [{—j, —k,—o,l,m,x5}| = 6. Taking into
account the index distribution of the codewords Wy, Wy, W5 € G;, Uy, ..., Uy € F; and
Lemma 1.5 we conclude that xo € {—m, —n}. So, we are going to analyze, separately,

the cases: o9 = —m and xy = —n.
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Suppose first that o = —m. In this case Uy, ..., U, € F; are such that:

Uy | 1 | j k [

Uy | 7 | J m
Us| i | k -m
Uy | ¢ Il | —o| —m

Table 4.25: Index distribution of Uy, ..., U, € F;.

Considering Proposition 4.3, by the analysis of the index distribution of the
codewords known at this moment, Wy, Wy, W3 € G;, see Table 4.22, are such that
wi,...,wy € {—l,—m,—n,—o} and are pairwise distinct. Taking into account the
codewords Wy, Wy, W3 € G;, Uq,...,Uy € F; and Lemma 1.5, two possible index dis-

tributions for the codewords of G; are obtained:

Wil ¢ | =k| m l n Wil ¢ | =k| m ) n
Wo | i | —k|—j|—-m]| =l We | i | =k|—j|—-m]|—n
Wil ¢ | m | —j|—-n|—o Ws | ¢« | m|—3| =l | —o

Table 4.26: Possible index distributions for the codewords of G;.

We recall that |Fix| = 5 and, until now, we have only characterized the index
distribution of two codewords of Fiu, Uy € Fijm and Us € Fjpo-m. Then, we
must describe the index distribution of Us, Us,U; € Fu\{Ui,Us}. Let us consider
Us € Fikuugs Us € Fikuguy and Uz € Figysus- By Lemma 2.5 we must impose
U, ... ug € {—74,—1l,m,n,—n, —o} pairwise distinct.

Assume that Wi, Wy, W3 € G, satisfy the index distribution presented in Table
4.26 on the left. Taking into account the index distribution of all codewords al-
ready characterized, in particular W5 € G;,, —j —n,—o, and Lemma 1.5 we must impose
Us € Fikjur> Us € Fijomnug ad Ur € Fi o _ous, With {ug, us, us} = {—1,m,n}. Con-
sequently, Us € Fi_;n and Us € F;p _pn —y, implying Uz € F; ;o m, contradicting
Lemma 1.5 with the codeword Wj.
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If we suppose Wi, Wy, W3 € G; satistying the index distribution in Table 4.26 on

the right, we get an analogous conclusion.

Let us now suppose that 9 = —n. In this case the index distribution of the

codewords Uy, ...,U; € F; is such that:

U | &+ | J [

Uy | @ | J m
Us| 1 | k -n
Uy | @ [l | —0o| —m

Table 4.27: Index distribution of Uy, ..., U, € F;.

Considering Wy, Wy, W3 € G;, see Table 4.22, and Proposition 4.3, we must im-
pose {wi,...,ws} = {=1,—m,—n,—o} and, having in mind Lemma 1.5, the index

distribution of the codewords of G; satisfies one of the following hypotheses:

Wiyl ¢ | —k| m l n Wil ¢ | =k| m ) n
Wol| @ | k| —j|—m]| —o Wol| @ | —k|—j|—-m|—n
Ws| ¢ | m | —5| -l |—n Ws | ¢« | m|—3| =l | —o

Table 4.28: Possible index distributions for the codewords of G;.

Under the assumption |F;;| = |Fix| = |Fio| = 5, taking into account the codewords

Ui, ..., Uy € F; and Lemma 2.5, we must consider:

- U57U67 U7 S ]:Zk\{Ula U3} S0 tha’t U5 S ]:Z'k?u1u27 U6 S ]:ik‘u3U4 a’nd U7 S ]:ikuytga

with uy,...,ug € {—j,—l,m,—m,n, —o} pairwise distinct;

- U87 U97 UlO € EO\{U27 U3} S0 that U8 S Eou7u8a U9 S ‘/—-'iougum and UlO S Eounulg)

with uz,...,u12 € {—j,—k,l,—1,—m,n} pairwise distinct;

- U117U12aU13 € E]\{UMUQ} SO that Ull S Eju13u147 U12 S '/__:L'ju15u16 and

Uis € Fijurrurss With wys, ... uis € {—k, =1, —m,n, —n, —o} pairwise distinct.
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Assuming that the codewords of G; satisfy the index distribution presented in Table
4.28 on the left, taking into account the conditions referred before and considering all
codewords characterized at this moment and Lemma 1.5, the index distribution of the

remaining codewords of F;, U F;, must satisfies:

Us | ¢ kK| m| —o Ug | ¢ o | =k | -l
UG 1 k —j n Ug 7 0 —j l
U; | 1@ k| =l | —-m U | ¢ o |—-m/| n

Table 4.29: Index distribution of codewords of F;, U F;,.

However, in the characterization of the index distribution of Uyy, Uyg, Uz € Fi\{U1, Uz}
we verify that |G, U Fi,,| > 2 for some w, p € Z\{i, —i}, contradicting Lemma 1.5.
If the codewords of G; satisfy the index distribution in Table 4.28 on the right, the

characterization of all codewords of Fj, implies |G, U Fiwp| > 2 for some

w.p € I\{i, —i}.

o 1Giwp U Fiwp| < 1 for all w,p € IT\{i,—i} and ].E(2) N F,| > 2 for some
p € T\{i, —i}

Consider Wy, Wy, W3 € G; satistying, respectively, the following partial index distribu-

tion:

Wil o |—3 | m | [ |w
W i —7 =l | wy | ws
Wg i m -1 Wy | Ws

Table 4.30: Partial index distribution of the codewords of G;.

where 0 = —j, ¢ =m and 0 = —I.
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Accordingly, we have concluded in the previous subsection that one of the following

conditions must be satisfied:
i) v=—m; =l €{xy,x2}; Uy € Fi gz, with z € {z, 22} \{—1};
it) y=mn;xy =mand 9 = —l, or, v = —l and xo = m; Uy € F; _j -

Let us consider v = —m and —[ = x;. In these conditions, Uy, ..., U, € F; satisfy:

Uy | @+ | J k [
U2 7 ] —-m | —I
Us| i | kK | —m | xs

U4 1 —k l T

Table 4.31: Partial index distribution of Uy, ..., U, € F;.

By Proposition 4.7 it follows that [{—j, —k,m, [, —, xo}| = 6. Taking into account the
index distribution of the codewords of G; and Uy,...,Us € F;, and Lemma 1.5, we
conclude that xs € {n, —n, 0, —o}.

Without loss of generality, suppose that x5 = n. Then,

Uy | @ | j k [
Uy | ¢ | 7 |—m]| -l
Us| i1 | kK |—-m|n
Us | @ | k| 1 n

Table 4.32: Index distribution of Uy, ..., U, € F;.

Consider the codewords Wy, Wy, W3 € G;, see Table 4.30. By Proposition 4.3 we
must impose wy,...,ws € {—k,n,—n,o0,—o}. By the analysis of the codewords of
G;U{Ui,...,U,} and taking into account Lemma 1.5, four possible index distributions

for the codewords of G; are obtained.
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Wil ¢ | —j|m| [l |—n Wiyl @ | —j|m| [l | —n
We | i | —5| L] o | —k Wo | i | —5| L] o | n
Wsl @ | m|—=l]|—-0o]| n Wal| ¢« | m | —=l|—-o]| —k
Wyl ¢ | —j | m]| I 0 Wyl @ | —j | m]| I 0
Wyl ¢ | —j|—=l| n | —o Wl ¢ | =g | —=l|-—n|—k
Ws| @« | m|—l|—-n|—k Ws| ¢« | m|—l| n | —o

Table 4.33: Possible index distributions for the codewords of G;.

Since, by assumption, |F;;| = |Fix| = |Fi—m| = b, taking into account the code-

words Uy, ...,U; € F; and Lemma 2.5, we must consider:

— U5,U6, U7 & Ej\{Ul,UQ} such that U5 S ‘Fijuluw U6 € ]:ijus,u4 and U7 € .7:1‘]‘“5“6,

with uy,...,us € {—k,m,n, —n,o0, —o} pairwise distinct;

— Us, Uy, Uy € Fipy\{U1,Us} such that Us € Firusus, Us €  Fikuguy, and

Uro € Fikuyyuge, With uz, ... uis € {—j, =1, m, —n, 0, —o} pairwise distinct;

— U, Ui, Uz € Fi—n\{Ua, Us} such that Uy € Fi —muisuiss Utz € Fi—mogs.une a0

Uis € Fi—muiruig, With wig, ... uig € {—j,—k,l,—n,0,—0} pairwise distinct.

Suppose that Wy, Wy, W3 € G; are such that: Wi € G; _j i —n, Wo € G _j 10, and
W3 € Gim,—i,—0—k- Considering the index distributions of the codewords already known
and Lemma 1.5 the index distribution of the remaining codewords of F;; U Fy, UF; _p,

must satisfy:

Us| 1| 7 |—k| o Ug | i | kK |—j]| —o
U | i@ | 7 | m|n U | i | k| -l|—n
U:; | ¢ Jj | —mn| —o U | ¢ kK| m | o

Table 4.34: Index distribution of codewords of F;; U Fi.
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Table 4.35: Index distribution of codewords of F; _,,.

We know, by Lemma 2.9, that |]-"i(2)| = 4. Accordingly, by Corollary 4.1,
F& = (U, U, U",U"} with U' € F\(Fx U F_p), U" € Fu\(F; U F_p) and
U" € Fi_m\(F;UF). Then, let U, U",U" € F? such that: U’ € Fijz,zy, U" € Fipse,
and U"” € F; .52 By Lemma 2.14, taking into account that Uy € F; _j ., is a code-
word in ]_-i(z)’ we must impose 21, ..., 2¢ € {—j, —l,m, —n, 0, —o} pairwise distinct. By
the analysis of the codewords Us, Us, U; € F;; we must impose U’ = U;. Considering
Uiy, U, U3 € F_,, we verify that any one of these codewords does not verify the

required conditions.

If Wi, Wy, Wy € G; satisfy Wi € Gi im0 Wo € Gi—j—in—0 and W3 € G; 1y 1y ks
such as in the previous example we can characterize the index distribution of all re-
maining codewords of F;; U Fip U F; _p, with |Gp U Fip| < 1 for all w, p € T\{i, —i}.
However, when we identify the codewords of ]_-i(z) we also get contradictions.

If the index distribution of the codewords of G; satisfies any one of the remai-
ning hypotheses presented in Table 4.33, then the characterization of all codewords of
Fij UFie UF; _m implies the existence of some w, p € Z\{i, —i} so that |G, UFiw,| > 2,

which is a contradiction.

o |G, UFi,| <1and |F?NF,| <1 forall w,p,oeT\{i,—i}

As we have said before, for the majority of the possible partial index distributions
of the codewords Wy, Wy, W3 € G; and Uy, ..., Uy € F; we get, when we characterize
completely the index distribution of all codewords of G; U F;, one of the following

conclusions:

— |Giwp U Fiwp| > 2 for some w, p € T\{i, —i};
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— |Giwp U Fiwpl < 1 for all w,p € Z\{i,—i} and |.7-"i(2) N F,| > 2 for some
v € I\{i, —i}.

Concluding that, in these cases, the definition of PL(7,2) code is contradicted. How-
ever, there exist two cases in which it is possible to characterize the index distribution
of all codewords of G; U F; not being verified any one of the previous statements. Next,

we present the referred cases.

Consider Wy, Wy, W3 € G; satisfying, respectively, the following index distribution:

Wil o | =k| m | I n
Wy i —k —J | wy | wa

Wi | @ | m | —7 | ws| wy

Table 4.36: Partial index distribution of the codewords of G;.

where 0 = —k, e =m and 0 = —.
We have concluded in the previous subsection that, in these conditions, one of the

following hypotheses must occurs:
i) v=—m and Uy € Fipyu;
i) y=o0;m € {x1,x2}; Uy € Fiy 0, wWith © € {x1, 22} \{m}.

Let us consider v = —m and Uy € Fjpy0,. Accordingly, Uy, ..., Uy € F; satisfy:

Uy | i | j k [
Uy | @ | 7 |—-m]|x
Us| i | K | —m|x
Us | @ l Ty | Ta

Table 4.37: Partial index distribution of Uy, ..., U, € F;.

By Proposition 4.7 we have [{—j, —k,m, [, z1,x2}| = 6. Then, taking into account
the codewords Wy, Wy, W3 € G; and Uy, ..., Uy € F;, and Lemma 1.5, it follows that



80 4.2. Index distribution of the codewords of G; U F;

r1, 22 € {—n, 0, —o}. Thus, without loss of generality, we distinguish the following two

cases:
o x1 =o0 and xo = —n;
o 11 =—n and x5 = o.

Next, we analyze each one of these hypotheses.

Let us suppose first 1 = o and x5 = —n. Then, the index distribution of the

codewords Uy, ...,U,; € F; is such that:

Uy | @+ | J k

Uy | i | 7 |—-m| o
U3 1 k —m | —n
Us | @ ) 0 -n

Table 4.38: Index distribution of Uy, ..., Uy € F;.

Considering the codewords Wy, Wy, W3 € G;, from Proposition 4.3 it follows that
wi, ..., wy € {—1,—n,0,—o0}. Taking into account the index distributions of all code-
words known at this moment and Lemma 1.5, we conclude that there exist only two

possible index distributions for the codewords of G;:

Wiyl ¢ | —=k| m l n Wyl ¢ | k| m ) n
Wyl @ | —k|—7| o | —I Wol| @ | k| —j | —0]| —n
Ws| ¢ | m|—j|—0|—n Ws il &« | m|—j5| o| —I

Table 4.39: Possible index distributions for the codewords of G;.

Since |F;j| = |Fir| = |Fi—m| = 5, considering the codewords Uy, ...,Uy € F; and

Lemma 2.5, the remaining codewords of F;; U Fy, U F; _,,, must satisfy:

— U5,U6, U7 c .F;’j\{Ul,UQ} such that U5 c f'ijmuza Uﬁ c ]:ijuguél and U7 c ]:iju5u67

with uy,...,ug € {—k,—l,m,n, —n, —o} pairwise distinct;
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— Us, Uy, Uy € Fir\{U1,Us} such that Us € Fipusus: Uo € Fikugus, and

Uro € Fikuyyuge, With uz, ... u12 € {—7j, =1, m,n, 0, —o} pairwise distinct;

— Un1, Ui, Uz € F - \{U2, U3} such that Uy € Fi _m uiguras Ur2 € Fi—mounsuis and

Uis € Fi—muirus, With wis, ..., ws € {—j, —k,l, —l,n, —o} pairwise distinct.

If Wy, Wy, W3 € G; satisfy the index distribution presented in Table 4.39 on the
right, the characterization of all codewords of G; U F; implies the existence of some
w, p € I\{i, —i} so that |G, U Fi,| > 2.

Thus, let us assume that the codewords Wy, W5, W3 € G, satisfy the index distri-
bution presented in Table 4.39 on the left. In these conditions, there exists a unique

possible index distribution for the remaining codewords of F;; U Fi, U F; _,,, satisfying

1Gip U Fip| < 1 for all w, p € T\{i, —i} and |F*) N F,| =1 for all € T\{i, —i}:

Us | ¢ Jj |l m | = Us | 1 kK| m | o
U; | i@ ¥ n | —o Up | 1 k| =l |—-o

Table 4.40: Index distribution of codewords of F;; U Fi, U F; _pp,.

Taking into account Corollary 4.1 and Lemma 2.14, we conclude that, in this case,

F& = {Uy, Us, Uy, Uy, }.

This is one of the cases which, apparently, does not contradict necessary conditions
for the existence of PL(7,2) codes. As such, its analysis require more some work,
as we will see in next section. There exists only one more index distribution for the
codewords of G; U F; in these conditions, such index distribution is derived from the

analysis of the hypothesis x1 = —n and x5 = o.
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Consider now x; = —n and x5 = o. Accordingly, the codewords Uy, ..., Uy € F;
satisfy:
Uy | @+ | J k [
Uy| 1 | 7 |—-m|—-n
U3 i k —m
U4 1 ) —n

Table 4.41: Index distribution of Uy, ..., Uy € F;.

Such as in the previous case, Wy, Wy, W3 € G; must satisfy one of the index distri-
butions presented in Table 4.39.

Under the assumption |F;;| = |Fix| = |Fi—m| = 5, from the analysis of the code-
words Uy, ..., Uy € F;, and taking into account Lemma 2.5, we conclude that the

remaining codewords of F;; U F, U F; _,,, must satisfy the following conditions:

— U5,U6, U7 < .Fij\{Ul,Ug} such that U5 € “Fijuluzv U6 € ‘Fij”LL3U4 and U7 S »Fiju5u67

with uy,...,ug € {—k,—I,m,n,o0,—o} pairwise distinct;

- U87U97U10 € Ek\{Ulani} SUCh that U8 S Elmwuga U9 S Ekugulo and

Uro € Fikuyyure, With uz, ... u12 € {—7j, =1, m,n, —n, —o} pairwise distinct;

— U1, Ui, Uz € F;—n\{U2,Us} such that Ui € F_muisunss Uiz € Fimmuis e
and Uiz € Fi —mugganss With wis, ... us € {—74,—k, [, —l,n, —o} pairwise dis-

tinct.

If the codewords of G; satisfy the index distribution presented in Table 4.39 on the
left, the characterization of the index distribution of all codewords of F;; U Fi, U F; _p,
implies the existence of some w, p € Z\{i, —i} so that |G, U Fi.,| > 2, contradicting

Lemma 1.5.
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Thus, let us consider Wy, Wy, W5 € G; satisfying the index distribution presented in
Table 4.39 on the right. In this case, we must impose the following index distribution

for the remaining codewords of F;; U Fi, U F; _pp:

Us | 1 J | m | —o Us | 1 kK| m|—-n
U6 l j —k (0] Ug 7 k —j n
U7 7 j —1 n U10 1 k —1 —0

Table 4.42: Index distribution of codewords of F;; U Fi, U F; _pp,.

Accordingly, |Gi,,UFiu,| < 1forallw, p € T\{i, —i}. Furthermore, ]—"i(g) = {U,,Us, Uy, Ua}.

4.3 Analysis of the index distribution of the code-
words of G, U F;

We have presented in the previous section the unique two index distributions for
the codewords of G; U F; which verify the following conditions: |G, U Fiyp| < 1
for any w,p € Z\{i,—i}; |E(2) N F,| <1 for any ¢ € Z\{i,—i}, more precisely,
\]-"1»(2) N F,| =1 for each ¢ € T\{i, —i}. Apparently, these index distributions do not

contradict necessary conditions for the existence of PL(7,2) codes.

In this section, considering one of the cases as an illustrative example, we show
that both hypotheses for the index distribution of the codewords of G; U F; contradict
the definition of PL(7,2) code. We do it considering other element w € Z\{i} and

analyzing the complete index distribution of all codewords of G, U F,,.
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Let us consider Wy, Wy, W3 € G; satisfying

Wyl ¢ | —k| m ) n
Wo | i | —k|—j| o | —I
Ws| i | m|—j|—0]|—n

Table 4.43: Index distribution of the codewords of G;.

and Uy, ..., U3 € F; such that:

Uy | @ | J k l Us | ¢ k| m | o

Uy |+ | 7 |—-m ]| o Uy | 1 kK |—71] n
Us | ¢ k| —m| —n U | ¢ k| =l ] —o
Uy | ¢ ) o | —n Ug | @ | —m| —5 | I

Us | i@ Ji -1 Us | @ | —m| =k | —o
Us| @« | 7 | =k |—n Us | i | —-m| =l | n
U: | @ | j n | —o

Table 4.44: Index distribution of the codewords of F;.

Our aim is to analyze the index distribution of all codewords of a set G, U F,, with
w € Z\{i}. We focus our attention on these sets since their codewords have more
nonzero coordinates, helping our study.

The choice of the element w € Z\{i} it will be done giving preference to the
elements w € Z\{i} for which the known codewords of G;, U F;, generate a partition
of Z\{i,w, —w} with less elements, since in these conditions we reduce the number of
possible index distributions for the remaining codewords of (G, U F,)\(G; UF;), as we
will see. Accordingly, we will concentrate our attention on an element w € Z\{i} so

that |G| = |Fiw| = 2. The elements —j, —k,m € Z are in the required conditions.

We will analyze the referred index distribution of the codewords of G; U F; consi-

dering m € Z, that is, analyzing the index distribution of all codewords of G,,, U F,,,.

The codewords Wy, W3 € G;,,, and Us, Ug € F;,,, induce the following partition P of
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I\{i,m,—m}:
Pr={~k.l,n}; Po={~j,—n,—o}; Py={j~l}; Ps={k,o}; Ps={~i}. (42)

This partition will be useful in the characterization of the index distribution of the
codewords of (G, U F,)\(G; UF;).

By Corollary 3.1 we know that 3 < |G,,| < 7. Since |G| = 2, then |G,,\G;| > 1.
Let W € G,,,\G; so that W € G wowswy, With wy, we, ws,wy € I\{i,m,—m}. Con-
sidering the partition P, we conclude that w, € P,, wy € Py, wz € P, and wy € P,
with p,q,r,s € {1,...,5} pairwise distinct, otherwise, |Gwp U Finwp| > 2 for some
w, p € Z\{m, —m}, which contradicts Lemma 1.5.

Combining the elements of the partition P and taking into account the index dis-
tribution of the codewords of G; U F;, presented in Tables 4.43 and 4.44, as well as

Lemma 1.5, if W € G,,\G; then W must satisfy one of the following conditions:

1 -7 o] 15 -7 o
Z -1 -l 14 - k
3 k| o F 15 -7 -l
4 -8 - 16 i - -1
5 | J 17 t | J
i -f k 12 k -
7| o™ K - o ja| = - o 7
3 -7 k 20 fr] -
q e |k 21 s | ke | e
10 | J 22 k| J
11 o | J 73 | k| 4
12 o J a4 7] F

25 o -

26 - k J

Table 4.45: Possible index distributions for W € G,,\G;.

By the analysis of the above table we conclude that if W € G,\G;, then
W € G —i. Since, by Lemma 2.2, |G, ;| < 3, then 1 < |G,, ;| < 3. Accordingly,
1 <1G,\Gi| <3 and 3 <[G,| <5.

The cardinality of F,, it depends on the cardinality of G,,. In fact, by Lemmas 2.9,
2.10 and 2.11, respectively, we know that

— if |G| = 3, then |F,,| = 13;

— if |G| = 4, then 10 < |F,,| < 11;
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— if |G| = 5, then 7 < | F| < 10.
Furthermore, by the same lemmas,

— if |G| = 3, then |F?| = 4

— if |G| = 4 and |F,,| = 10, then |F| = 4;

— if |G| =5 and |F,,| = 7, then |F| = 4.

That is, in any case the minimal possible value for |7, | implies |F\2| = 4.

Next proposition characterizes 7y when ].7-"7512 )\ =4.

Proposition 4.8 If |F\2| = 4, then F\Y = {Us, M, M', M"Y}, where Us € Fipmo and
the index distribution of M, M', M" satisfies one of the following conditions:

Ad m, f ok o A w il -n A m i -
M| om-ln N m -l ow of # -l ow-o MY | m-d k| m-la
MY m-il-n M omo-ioR moick e | mo-d -k o MY min-i | m -k on

Proof. If |F| =4, by Lemma 2.14 we get |F\) N F,| = 1 for any w € Z\{m, —m}.
Accordingly, |]-"7512) N F;| = 1. Thus, there exists U € F,,, with F,, = {Us, Us}, such
that U € F). We have concluded in the previous subsection that \E(2)| = 4 with
]-“fm = {Uy4,Us, Uy, Ups}. As the codewords of F are of type [£2, £13] it follows that
Us € Fi), with Us € Figmo-

Let M, M',M" € fg)\{Ug}. Taking into account Wy € G; i mi, and Lemmas
2.14 and 1.5, we must impose M € Fp, _kuyues M € Frtugu, and M" € Frnusug, with
Uy,. .., ug € {—i,j,—j — 1l —n,—o}. Considering W3 € G, ,, _j _n o, We must impose
uy,uz, us € {—j,—n,—o} and, consequently, us,us,ug € {j,—I,—i}. Combining all
possibilities for uy, ..., us and considering the index distribution of the codewords of
G; U F; and Lemma 1.5, we conclude that the index distribution of the codewords

M, M' M" e F?) satisfies one of the conditions presented in the following schemes.
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Ad m, f ok o A w il -n A m i -
M| om-ln N m -l ow of # -l ow-o MY | m-d k| m-la
MY om-il-n MU m -dom w, -1 -k o w, -, -k, - M| min i | mi -k w

Table 4.46: Possible index distribution for the codewords of F: N\{Us}.

Corollary 4.2 If |G,,| =5, then 8 < |F,,| < 10.

Proof. Let us suppose |G,,| = 5. Accordingly, |G,,\G;| = 3 and, taking into account
the possible index distributions for W € G,,,\G;, see Table 4.45, |G,, ;| = 3. From
Lemma 2.15 it follows that 8 < |F,,| < 10. O

Next, we will analyze the index distribution of the codewords of G,,, UF,,, when |G,,|
assumes each one of the possible values. We will study separately the cases: |G,,| = 3

and 4 < |G,,,| < 5.

4.3.1 Analysis of G,, UF,, when |G,,| =3

Let us suppose that |G,,| = 3. Accordingly, |G,,\Gi| = 1. By Proposition 4.1, there
are a, 5,7 € I\{m,—m} so that |Fpa| = |Fmsl = |Fmy| = 5. Consequently, from
Proposition 4.3 it follows that |Gpa| = [Gmg| = |Gmy| = 0.

Let W € G,,\G;. We have seen before that if W € G,,,\G;, then its index distribution
satisfies one of the conditions presented in Table 4.45. Let us consider, for instance,

W € G —i—ko,- Then, the three codewords Wy, W3, W € G, are such that:

Wiylm| @+ | =k | I n
Ws|im | i« | —j|—n| —o
W im/| —i|—-k| o Ji

Table 4.47: Index distribution of the codewords of G,,.



88 4.3. Analysis of the index distribution of the codewords of G; U F;

In these conditions, k£ and —[ are the unique elements in Z\{m, —m} satisfying
|Gimk| = |Gm.—1] = 0, which contradicts Proposition 4.3. Applying a similar reaso-
ning to each one of the other possible index distributions for W € G,,\G;, we get the
same conclusion when W satisfies the index distributions identified in Table 4.45 by

the numbers: 5; 12; 17 to 26.

Since we are assuming |G,,| = 3, by Lemma 2.9 we have |.7-"7(712)| = 4. Accordingly, the
index distribution of the codewords of F2 must satisfy one of the conditions presented
in Proposition 4.8.

Let us suppose that W € G,,\G; is such that W € G, _; _x _n—;. Observing
all possible hypotheses for the index distribution of the codewords of .7-"7(3), we con-
clude that in any case there exists V & .7-}(,12 ) such that VW € Gpuwp U Frwp for some
w,p € I\{m,—m}, contradicting Lemma 1.5. By a similar reasoning we verify that
W € G,\G; can not satisfy the index distributions identified in Table 4.45 by the
numbers: 2 to 4; 10; 11; 13; 15; 16.

Consider now that W € G,,, _i _i —no. Thus, Wi, W3, W € G,, are such that:

Wiylm| @+ | =k | I n
Ws|m| i | =) | —n|—o
Wi lm|—i|—-k|-n| o

Table 4.48: Index distribution of the codewords of G,,.

In these conditions, j,k and —I[ are the unique elements in Z\{m, —m} satisfying

|Gmjl = |Gmk| = |Gm,—1| = 0. Taking into account Propositions 4.1 and 4.3 we must
impose |Foj| = [Fok| = [Fm—1] = 5.

Since | F,, —i| = 5, by Lemma 2.5 we have | F,,, _; | = 1 for any w € Z\{m, —m, [, —1}.
In particular, |Fp—1—i| = |Fm-ti—k| = |Fm-t—n| = [Fm-10] = 1. Considering

W € Gm—i—k-no and Lemma 1.5, F,, 1 i, Fin—i—ks Fm—1,—n and F,, _;, must be
pairwise disjoint. Thus, noting that Us € F; ; , i, the partial index distribution of the
codewords of F,,, _; must satisfy the conditions presented in the following table, where

Uy ... ug € {—74,k,n,—o}.
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Us | m | 1 g | =l
U14 m -1 —1 U1
Ugs | m | =1 | =k | us
Ug| m | —1l | —n| us
U7 | m | =l o | uy

Table 4.49: Partial index distribution of the codewords of F,, _;.

Taking into account the index distribution of the codewords of G, U F; U {W} and

Lemma 1.5 we must impose:

Us | m | ¢ g | =l
Ug | m | =1l | —1 | —yJ
Us | m| -l | —-k| -0
U16 m| =] —n k
U7z | m| —=l] o n

Table 4.50: Index distribution of the codewords of F,, _;.

As |F?| = 4 and the codewords of F\?) must satisfy one of the index distributions
presented in Proposition 4.8, we verify that for each one of those index distributions
there exist V € .7-"7(n2) and U € F,, _; so that V,U € F,.p, with V and U distinct, for

some w, p € Z\{m, —m}, facing up to a contradiction.

If W e G,,\g; satisfies one of the remaining possible index distributions presented in
Table 4.45, that is, one of the index distributions identified in Table 4.45, respectively,
by the numbers 6, 7, 8, 9 or 14, such as in the previous example, having in view Propo-
sitions 4.1, 4.3 and 4.8, the characterization of the index distribution of all codewords of

f(r?)UFmanmﬁ UF ey, with a, 8,y € Z\{m, —m} so that | Fa| = |Fms| = [Fmy| = 5,

contradicts Lemma 1.5.

Therefore, |G,,| # 3. Next, we will verify what happens when we consider |G,,| = 4
or |G| = 5.
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4.3.2 Analysis of G,, UF,, when 4 < |G| <5

Let us now assume that |G,,| = 4 or |G,,| = 5. Since |G,,;| = 2, then 2 < |G,,\G;| < 3.
So, we must identify, at least, two codewords in G,,\G;. For that, we will take into

account the possible index distributions for W € G,,\G; presented in Table 4.45.

Considering Lemma 2.10 and Corollary 4.2, one of the two following conditions

must occurs:
— |G| =4 and 10 < | F,,| < 11,
— |G| =5 and 8 < | F,,| < 10.

We note that, |F,,;| = 2, then, accordingly with we have just said, |F,,\F;| > 6.
The possible index distributions for the codewords U € F,,\F; can be identified

following the same reasoning applied in the characterization of the possible index dis-

tributions of the codewords of G,,\G;. Considering the partition P of Z\{i, m,—m},
P = {_kalan}; Py = {_ja -n, _O}; P3 = {ja _l}; Py = {k,O}; Ps = {_i}7

it U € Fu\Fi, with U € Fruupus, then uy € Py, uy € P, and uz € P,, with
p,q,r € {1,...,5} pairwise distinct. Thus, taking into account the partition P, the
index distribution of the codewords of G; U F; and Lemma 1.5, if U € F,,\F;, then the
index distribution of U satisfies one of the conditions presented in Table 4.51.

Our goal is to characterize all possible index distributions for the codewords of
(G UF)\(G;UF;). Taking into account Table 4.45, we will identify all possible index
distributions for the codewords of G,,\G;. Furthermore, for each one of them we will
characterize, considering Table 4.51, the respective possible index distributions for the
codewords of F,,\F;. To show how we have proceeded we will present some illustrative

examples.
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- | e ERN A -
-k - E| -0
-o | -7 -1 k
-4 a | J 2| a
a | J -1 J
ik o | k| g -
a -j k
k| -m -7 -f a
{ -& L -
- ] k
b i = m 7 mz| A | % g
a -1 i
-; -i -i i
Ao oo -1 k
k -a @ |
2k [ N I
J a k| J
J J -
o -i o K
- -i

Table 4.51: Possible index distributions for U € F,,\ F;.

We have seen before that |G,,\G;| > 2, so let us consider W, W' € G,,\G;, with
W # W'. Suppose that W € G, _; i _n,. Taking into account the possible index
distributions presented in Table 4.45 and Lemma 1.5, W' € G,,\G; must satisfy one of

the following index distributions:

m|—t| I | —5| k m|—i| n | —o| —Il
m|—i| | | —o| k m|—i|l n | k| J
m|—t| | | —o| j m|—i| n | k | =l
m|—i| n |—o| k m| —i| —5| k | =l
m|—i| n | —7|—Il m|—i|—ol| k | j

Table 4.52: Possible index distributions for W' € F,,,\ F;.

By the analysis of the tables above we verify that there are ten different possible
index distributions for the codeword W’ € G, \G;, that is, assuming |G,,| = 4 and
W € Gum—i—k—no, there exist ten distinct index distributions for the codewords of
Gm-. On the other hand, by the analysis of the same tables, and taking into account
Lemma 1.5, if we suppose |G,,| =5 and W € G, _i k. _n.o, then W W" € G, \G; must

satisfy one of the index distributions presented in the next tables. We note that, in
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the following tables, W’ on the left is matching to W” presented on the right.

W' im | —i | 1| -7 | k W' im | —i| n |—-o|—I
W' \lm | —i|l]|—-o]| k W'\ m | —i| n |—j5|—I
W' \m | —i|l|—o]| j W" \m | —i| n | —j5|-I
W' im | —i |l ]| —o0]| j W' im | —i| n | k |-l
W' im | —i |l ]| —o]| j W' {m | —i| —j5| k | =l
W'im | —i|n|—j]|—I W' i{m | —i|—o| k | j

Table 4.53: Index distributions for W/, W" € F,,\F;.

In what follows, under the assumption W € G, _; _; o, We will analyze cases in

which:
- |G| = 4 and | F,,| = 10;
- |G| =4 and | F,| = 115

- |G| =5 and 8 < | F,,,| < 10.

e |Gn]=4and|F,| =10

Let us suppose |G,,| = 4 and |F,,,| = 10. From Lemma 2.10 it follows that |]-"7§3)] = 4.
Taking into account the codeword W € G, _; _j _p o, Proposition 4.8 and Lemma 1.5,

Us, M, M', M" € F2 must satisfy:

Us | m | 1 k )
M | m| j [ | —n
M |m|—l|—-k]|—o
M'"\m | —i| n | —j

Table 4.54: Index distribution of the codewords of ]-"7(,3 ).

Accordingly, taking into account the possible index distributions for W’ € G,,\G; pre-
sented in Table 4.52 and Lemma 1.5, W' € G,,,\G; is such that: W' € G,,, _;; _, or
W/ S gm,fi,fo,k,j'
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Assume first that W’ € G,, _;; 0% Until now we know the index distribution of
only five codewords in F,,, namely, Us, Ug € F,,; and M, M’ , M" € fr(f)\}}. Then, we
have to characterize the index distribution of the five codewords of F,,\(F; U Fi )).
Considering the index distribution of the codewords of G,, U F? and Lemma 1.5, by
the analysis of Table 4.51 we conclude that if U € F,,\(F; U Fi)), then the index

distribution of U satisfies one of the following conditions:

m| 1l | —j]o m|n| o |-l
m|n | —l|k m| —j| k | =l
m|n | k |j m | —n| k | =l
m|n| o |j

Table 4.55: Possible index distributions for U € F,,,\ (F; U Fi2).

That is, if U € F,,\(F; U F)), then
U € fm,l,—j,o U -ank U fmno ) Fm,k,—l-

Consequently, taking into account Lemma 1.5, |F,,,\(F; U F2)| < 4, which is a con-

tradiction.

If we consider W' € G, _i ok, proceeding as in the previous case we conclude

again that |F,,| < 10. Therefore, if |G,,| =4 and W € G,,, _i _k,—n,0, then |F,,| # 10.

3 |G| =4 and |F,,| =11

Suppose that |G,,| = 4 and |F,,| = 11. Unlike the previous case, now we do not
have any information about \.7-"7(,?)|. In this case, for each one of the possible index
distributions for W’ € G,,\G; presented in Table 4.52 we must identify, by the analysis
of Table 4.51, the possible index distributions for the codewords of F,,,\ F;.

Let us assume W' € G, _;; _;. Since |F,;| = 2 and, by assumption, |F,,| = 11,
then |F,,\F:| = 9. Considering Table 4.51, taking into account the index distribution
of the codewords W, W' € G,,\G; and Lemma 1.5, we conclude that if U € F,,\F;,

then U must satisfy one of the index distributions presented in the following table.
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mo| k| -e | J - m| -2 | k J
-1 -2 -1
-# mo|on | -k | - no| -0

m| | J | o a J
a -1 mo| -2 -0 J

o I T R | or | £ | -a -1
4 J m | e | k| J

Table 4.56: Possible index distribution for U € F,,,\ F;.

By the analysis of the above tables, if U € F,,,\ F;, then
U e Fm,—k,—o U lej U fmno U fm,n,—l U ank U Fm,—n,k U Fm,—i,n U Fm,—i,—o U fm,—o,k,j-

Thus, considering Lemma 1.5, Uy € Fyy ok and Uss, ..., Uy € F, \F; satisfy, res-

pectively, the partial index distribution presented bellow.

Us | m | —k| —o Ug | m | n k
Ug | m | [ J Uy | m|—n| k
Uz | m | n 0 Upn | m | —1]| n
Ug | m | n | =1 Uyxp | m | —1| —o

Table 4.57: Partial index distributions for Uy, ..., Usy € F, \F;.

Let us consider Uyg € F k- Taking into account Table 4.56,
Uig € Frun—1 Y Frnne—o U Frnnkj-
Accordingly:
— if Uig € Frum—1.k, then Uig, Uig € Frp i
— it Uiy € Frunk—o, then Uiy, Uiy € Frpti—0;
— if Urg € Founkj, then Uiy, Uiy € Frij-

In any case Lemma 1.5 is contradicted.
Therefore, if G,,\G; = {W, W'}, with W € G,,, _; _k_—no and W’ € G,,, _;; _;k, then
Fol #11.
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If we consider W' satisfying any other index distribution presented in Table 4.52,
applying a similar reasoning we can not describe the index distributions of all codewords

of F,,\F; without contradictions.

Thus, if W € G, —i—k —n.o, then |G,,| # 4. In what follows, we study the hypothesis
|G| = b assuming that W € G, _i _k _n.o-

e  |Gu|=5and8<|F,| <10

Suppose now that |G,| = 5. Let us consider G,\G; = {W, W' W"} where
W € G —i—k—no- In these conditions, W', W" e G,,\G, satisfy one of the possible
index distributions presented in Table 4.53.

Since 8 < |Fy,| < 10 and | F,p,;| = 2, then |F,,\Fi| > 6.

Let us consider W' € G, ;1 —jx and W' € G, _; . _, ;. The characterization of the
possible index distributions for the codewords U € F,,\F; is done considering Table
4.51, the index distribution of the codewords of G,,\G; and Lemma 1.5. Accordingly,
it U € F,,,\Fi, then

U S -Fm,—o,j U fmlj U fmkj U fmno U fm,—n,k,—l-

Consequently, taking into account Lemma 1.5, |F,\F;| < 5, contradicting the
assumption 8 < |F,,| < 10. Thus, if |G,,| = 5, then G, \G; # {W, W', W"}, with
WeGnm—i—tk-no W €Gn_i1—jrand W' e G, _in_o_1

If we consider W/ and W satisfying any other possible index distribution presented

in Table 4.53, applying a similar reasoning we get always contradictions.

Therefore, the assumption W € G,,, _; i —n, contradicts necessary conditions for

the existence of PL(7,2) codes. Then, it W € G,,,\G;, then W € G, _i _ _n.0.

Considering each one of the remaining possible index distributions for W € G,,,\G;,
see Table 4.45, proceeding as in the analysis of the hypothesis W € G,,, _i _k _no, We
conclude that, in the majority of the cases, the characterization of the index distribution
of all codewords of G,, U F,,, implies the existence of contradictions. However, there

are cases, although few cases, in which it is possible to identify completely the index
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distribution of all codewords of G,, U F,, without contradictions, being in these cases
necessary to analyze other set G, U F,, with w € Z\{i,m}. Next, we present an

illustrative example of one of these cases.

4.3.3 When there are no contradictions in the characteriza-

tion of the codewords of G, U F;, UG, U F,,

Let us consider |G,| = 4 with WW’' e G,\G; so that W € G, _; k., and
W' € G—it—ok. Assume |F,,| = 10, with Uy, ..., Us € F,,\F; such that:

Uy | m | j [ | —n Ug| m| n k J
Us m | -l | —-k| —o Ug | m | n o | —l
Ug | m | —i1| n | —J Uy | m|—j5| k | =l
Uz m| l | —7]| o Uy |m | —i|-—n| -l

Table 4.58: Index distribution of Uyy, ..., Us € F,,\Fi-

By Lemma 2.10, since we are supposing |F,,| = 10, we have |F1§3)\ = 4. Conse-
quently, from Proposition 4.8 it follows that Fi2 = {Us, U4, U5, Usg}, with Us € Figmeo-
This is an example in which we have found a possible index distribution for all

codewords of G; U F; UG,, U F,, such that:
— |Gupp U Fupp| < 1 for any w, p,p € Z;
— it is possible to identify the codewords of F2.

To verify that, in fact, this index distribution implies contradictions, we will analyze
other set G, U F,, for other element w € Z\{i, m}.

The choice of that element w € Z\{i,m} it depends on the index distribution
of the known codewords of G; U F; U G,, U F,,. Since, until now, we have identified
only one codeword in G;, W € Gy, _i 0, we will concentrate our attention on the

characterization of all codewords of G; U F;.

We note that |F;;| = 5. Considering the index distribution of the codewords of
Fij, see Table 4.44, the codewords Uy, Us, Us, Us,U; € Fi; induce a partition Q of
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I\{ivmmj? _j}:
Q) ={k,l}; Qy={-m,0}; Q3 ={-1}; Qs ={—k,—n}; Qs = {n,—o}; Qs = {—i}.

Such as in the previous cases, this partition will be useful in the characterization of
the possible index distributions for the codewords of (G; U F;)\(G; U F; U G,, U F,,).
We note that, by Corollary 3.1, it follows 3 < |G;| < 7, then |G;\(G; U G,,,)| > 2.
Taking into account the partition Q, the known index distribution of all codewords of
G;UF, UG, UF,, and Lemma 1.5, we conclude that if V' € G;\(G; UG,,), then V must

satisfy one of the following index distributions:

jl=l]|—-—m| k| o gl =t —m| =l | —o
J| =l |-—n|—m| —o gl =i —m| 1 n
j| —%t|—m —n| —o gl =t —-m| k | =l

Table 4.59: Possible index distributions for V' € G;\(G; U G,,).

Analyzing the above tables, if V € G;\(G;UG,,), then V € G; ; _,,UG; _; _,. Con-
sequently, having in view Lemma 1.5, we conclude that |G;\(G; U G,,,)| < 2. However,
by Corollary 3.1 we must impose |G;\(G; U G,,)| = 2, which implies |G;| = 3. Conside-
ring Lemma 1.5 and the possible index distributions for the codewords of G;\(G;UG,,),
presented in Table 4.59, the codewords V.V’ € G;\(G; U G,,,) must verify one of the
conditions bellow. We note that, V' on the left is matching to V'’ on the right.

Vi|jg|—-l]|-—n| k Vil j | —i|—-m|—-n|—o
Vi|jg|—-l]|-—n| k Vil g | —i|—-m| —l | —o
Vi|gjg|—-l]|-—n| k Vil g | —i|—-m| I n
VI|j|—-l|-n|-m|-o Vil g | =i | —m | 1 n

Table 4.60: Possible index distributions for V, V' € G;\(G; U G,,).

Since |G;| = 3, by Proposition 4.1 there exist «, 3,7 € Z\{j,—j} so that
|\ Fial = |Fjs| = |Fj| = 5. Furthermore, by Proposition 4.3, |G,.| = |G;3| = |G;,| = 0.
Let us suppose that V.V’ € G;\(G; U G,,) are such that V € G;_;_, %, and

/
V S gj,—i,—m,fn,fo-
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Accordingly, the codewords of G; are such that:

W4 j m —1 —k
Vi|jg|—-l]-n| k
Vil j | —i|-m|—-n|—o

Table 4.61: Index distribution of the codewords of Gj.

Since ¢, and n are the unique elements in Z\{j, —j} satisfying |G;;| = |G;| = |G;n| = 0,
then [Fji| = | Fj| = | Fjn| = 5.

Let us consider Fj;. Taking into account the codewords of F; U F,,, we already
know the index distribution of two codewords in Fj;: Uy € Fijp and Uiy € Fji—n-
As |Fj| = 5, by Lemma 2.5 we have |Fj,| = 1 for any w € Z\{j, —j,{, —{}. Thus,
|\ Fit—k| = |Fji—i| = |Fjio| = 1. Considering Wy € G, —i _k, and Lemma 1.5 we must
impose Fj;,—xNFj1,—iNFjio = @. Then, the index distribution of Uy, U4, Ji, J2, J3 € Fji

must satisfy:

U, | j l i k
U | g l m | —n
Sl g L=k h
Jo | gL =i g
Js | g | L | o] s

Table 4.62: Index distribution of the codewords of Fj;.

with ji, j2, 73 € {—m,n, —o} pairwise distinct. Considering V' € G; _; __n 0, We
must impose Jo € Fj; _;,. Consequently, Js € F;, . In these conditions we have
J3, Uy € Fj _m.o, which contradicts Lemma 1.5.

If we suppose V, V' € G;\(G;UG,,) satisfying any other index distribution presented
in Table 4.60, such as in the presented example, we get contradictions.

Therefore, the considered index distribution for the codewords of G, U F; UG,,, U F,,

contradicts necessary conditions for the existence of PL(7,2) codes.
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We have analyzed all possible sets G,,\G; whose codewords satisfy the index dis-
tributions presented in Table 4.45. For each one of them we have obtained one of the

following conclusions:

— it is not possible to characterize completely the index distribution of all codewords

of G,, U F,, without contradictions;

— it is possible to characterize completely all codewords of G,, U F,,,, however when
we consider another element w € Z\{i,m}, the characterization of the index

distribution of all codewords of G, U F,, implies contradictions.

In Subsection 4.2.3 we have identified other possible index distribution for the
codewords of G; U F;. Applying a similar reasoning, we conclude also that this index
distribution implies contradictions on necessary conditions for the existence of PL(7,2)
codes.

Thus, we are able to establish the following theorem:
Theorem 4.1 For any o € Z, |G,| # 3.
As an immediate consequence of the previous theorem and Corollary 3.1 we get:

Corollary 4.3 For anya € Z, 4 < |G,| < T.
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Chapter 5

Proof of |G;| # 4 for any 1 € 7

In last chapter we have proved that 4 < |G,| < 7 for any a € Z. Here, we intend to
restrict even more the range of variation of |G, | proving that |G,| # 4 for any « € Z.
Such as in the previous case, we assume, without loss of generality, that there exists
an ¢ € Z such that |G;| = 4 and taking into account that the codewords of G U F have
more nonzero coordinates, we will focus our attention on the codewords of G; UF;. Our
aim is to show that any index distribution for the codewords of G; U F; contradicts the
definition of a perfect 2-error correcting Lee code.

Firstly, we deduce some necessary conditions which must be satisfied by the code-
words of G; U F;. These conditions will help us in the identification of all possible
index distributions for the codewords of G; U F;. We note that, under the assumption
|G| = 4, by Lemma 2.10, 10 < |F;| < 11.

In the last section we show how we may conclude that any index distribution for
the codewords of G; U F; contradicts the definition of PL(7,2) code, that is |G,| # 4

for any o € 7.

5.1 Necessary conditions for the index distribution

of the codewords of G, U F;

Let i € Z be so that |G;| = 4. The first results presented in this section are focused on

the characterization of the index distribution of the four codewords of G;.

101
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Proposition 5.1 If |G| =4, fori € Z, then |Gio| < 2 for any o € T\{i, —i}.

Proof. By Lemma 2.2 we know that |G;,| < 3 for all o € Z\{i, —i}. Suppose, by
contradiction, that j € Z\{i, —¢} is such that |G;;| = 3.

As |G;| = 4, from Lemma 2.10 it follows that |F;| = 10 or |F;| = 11. Next, we
analyze, separately, these two hypotheses: |F;| = 10 and |F;| = 11.

Suppose first that |F;| = 10. Then, by Lemma 2.10, |B; UC; U &;| = 0.
Considering Lemma 2.2 and taking into account that, by hypothesis, |G;;| = 3, then
|Dyi; U &Eij| + 2| Fi;| = 1. Since |&;| = 0, it follows that |D;;| = 1 and |F;;| = 0.

Let us consider two words V; and V3 of type [+2, £1] satisfying:

)
Vi | £2 | £1
Vo | £1 | £2

Table 5.1: Index value distribution of the words V; and V5.

These words must be covered by codewords of B;; U Ci; U Dy;; U & U Fi;. As
|Bij| = |Cij| = |&;5] = |Fij| = 0, then V; and V2 must be covered by the unique

codeword in D;;, which is not possible since the codewords of D are of type [£3, +17].

Now assume that |F;| = 11. Since we are under the assumption |G;;| = 3, let us con-
sider Wy, Wy, Wy € G;; such that Wi € Giwiwws, Wo € Gijwswsws and
W3 € Gijwrwswy, With wy, ..., we € I\{i,—1i,75,—j}. We note that, by Lemma 1.5,
wy,...,wg must be pairwise distinct. As |G| = 4, let W, € G;\G; so that
Wi € Giwygwiwizswis, Where wig, wiy, wig, w1z € Z\{i, —i,j}. In Table 5.2, the code-
words Wy, ..., W, € G; are schematically represented.

Since wy, ..., w9 C I\{i,—i,j,—7} with wy, ..., wy pairwise distinct, taking into

account that |Z| = 14, let {8} = Z\{i, —1,j, —j, w1, ..., we}. Note that,

I\{i, =i} = {5} U {73 U{B} U{ws, ..., wo}.
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Wl 1 ] w1 Ws w3
Wy | 1 J Wy Ws We
W3 | i J wr wg Wy
Wy | i | wio | wir | wiz | wis

Table 5.2: Partial index distribution of the codewords of G;.

Considering Wy € Giuwygwiwiawys, With wig, ..., w13 € I\{i, —i,j}, we conclude that
{wi0,...;wi3} N {ws,...;we}| > 2. On the other hand, [{wsg,...,w13} N {ws,...;we}| < 3,

otherwise Lemma 1.5 is contradicted. We will consider separately the cases:
/L) ’{wu]? s 7w13} N {'LUl, R ,w9}| = 2’

it) {wio, ..., wisk N{wy,...,we}| = 3.

Suppose that [{wig,...,w13}N{wy,...,we }| = 2, in these conditions Wy € G; _; 5.u10.w11 5
with wyg, wyy € {wy, ..., we}. Accordingly, we have |G;;| = 3, |Giwo| = |Giwy, | = 2 and
|Giw| = 1 for all w € Z\{i, —i, j, wip, w11 }. Consequently, from Lemma 2.2 it follows
that |Fi| = 0, |Fiwgls [Fiwy | < 2 and |Fiy| < 3 for all w € I\{4, —i, j, wip, w11 }. As
| Fil = %Zaez\{i,ﬂ'} | Fia| and we are assuming [ ;| = 11, then }_ 7 ;i |Fia| = 33
However, taking into account what was been said before, 3 7\ ; _;y [Fia| < 31, which
is a contradiction.

Now consider that [{wio,...,wiz} N{wy,...,we}| = 3. Thus, Wy € Girwigwirwias
with * € {—j,8} and wyp, w11, w12 € {wq,...,we}. In these conditions, |G;;| = 3,
|Giwsol = |Giwn| = Giwsn| = 2, Gyl = 0 for {y} = {—j, S}\{z} and |G| = 1 for
all w € Z\{i, —i,J,y, wip, w11, w12}. Consequently, by Lemma 2.2, we get |F;;| = 0,
| Fiwnols | Fiwnn s | Fiwna| < 2, |Fiy| < 5and | Fip| < 3forallw € Z\{i, —1, j, y, wip, w11, wia}.

Accordingly, >~ cr\ ;i [Fia| < 32, obtaining again a contradiction. O

We have just proved that for any o € Z\{i, —i} we get |Gin| < 2. Let us consider
the subset J C Z\{i, —i} so that:

J = {a e T\{i,—i} : |Gia| = 2}.
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The following result restricts the variation of | 7.
Proposition 5.2 The cardinality of J satisfies 4 < |J| < 6.
Proof. Since |G;| = izaez\{i,ﬂ'} |Gia| and, by assumption, |G;| = 4, then
3" [Gial = 16. (5.1)
aeT\{i,—~i}

By Proposition 5.1, |G| < 2 for all « € Z\{i, —i}. As |Z\{i,—i}| = 12, having in
view (5.1) we conclude that there exist, at least, four elements o € Z\{i, —i} satisfying
|Gia| = 2, that is, |J| > 4.

Let W, W' € G;. Taking into account Lemma 1.5, there exists, at most, one element
a € I\{i,—i} so that W, W' € Gjo. As |G| = 4, at most, there are 6 = (;) distinct
elements o € Z\{i, —i} such that |G;,| = 2, that is, |J| < 6. O

Next, we establish conditions which must be verified by the codewords of G; U F;

when | 7| assumes each one of the possible values.
Proposition 5.3 If|J| =4, then |Gio| = 1 for any o € T\({i, —i}UT) and |F;| = 10.

Proof. By assumption |G;| = 4, consequently > 7 (; i |Gia| = 16. That is,
Z |Gial + Z |Gia| = 16.
a€T\({i,~i}UT) acd
As |Gio| =2 for all @ € J and, by assumption, |J| = 4, it follows that:
> (Gl =8
aeZ\({i,—i}uT)
Taking into account Proposition 5.1, |G;,| < 1 for all a € Z\({i, —i} U J). Since that
|Z\({i,—i} U J)| = 8, we must impose |G;,| = 1 for all « € Z\ ({7, —i} U JT).

From Lemma 2.10 we know that |F;| = 10 or |F;| = 11. Let us suppose that
|Fi| = 11. In these conditions, taking into account that |F;| = %ZQEI\{L—@'} | Fial, we
have 3~ c7\ ;i [Fia| = 33. Having in mind what was proved before, from Lemma 2.2,
we get |Fio| < 2 for all @ € J and | Fi,| < 3 for any o € Z\({i, —i} U J). That is,
> aet\fi—iy |Fial < 32, which is an absurdity. Therefore, |F;| = 10. O
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Proposition 5.4 If |J| =4, with J = {f,7,90,e}, then |Fio| > 1 for allaw € T\{i, —i}

and there exist, at least, two elements o € J such that | Fi,| = 2. Furthermore:

i) if B,y € J are the unique elements in J satisfying |Fig| = |Fiy| = 2, then
| Fis| = |Fiel = 1 and | Fio| = 3 for all o € T\ ({i, —i} U J);

it) if B,7,0 € J are the unique elements in J satisfying |Fig| = |Fiy| = |Fis| = 2,
then |Fic| = 1 and there are seven elements o € T\({i,—i} U J) such that
|~Ea‘ =3;

i11) if | Fia| = 2 for alla € J, then there are, at least, six elements o € T\ ({i, —i}UT)

satisfying |Fia| = 3.

Proof. Let us suppose |J| = 4 with J = {5,7,d,e}. By Proposition 5.3 we know
that |F;| = 10. Consequently, by Lemma 2.10, we get |~7:¢(2) | = 4. In these conditions,
from Lemma 2.14 we conclude that |F;,| > 1 for all « € Z\{i, —i}.

Since |F;| = 10, then 37 7\ 4 [Fia| = 30. Taking into account Lemma 2.2,
| Fia| < 2 for all @ € J. By Proposition 5.3, |G;,| = 1 for all « € Z\ ({3, —i} U J) and
considering Lemma 2.2 it follows that |F;,| < 3 for all & € T\ ({3, =i} U J). As

ST Fal + Y 1 Fal =30 (5.2)
ae\({i,—i}uJ) aed
and >° cn i —nua) [Fial < 24, we must impose >_,c 7 [Fia| = 6, consequently, there

exist, at least, two distinct elements o € J satisfying |Fo| = 2.

Suppose that there are exactly two elements o € J satisfying | Fio| = 2. Without
loss of generality, we may suppose that |F;s| = |F;,| = 2. Therefore, considering what
was proved before, |Fis| = |Fi.| = 1. Thus, Y . [Fia| = 6 and, by (5.2), we must

impose Y, cn (1i—iyug) |Fial = 24. Consequently, [Fia| = 3 for all v € T\ ({1, =i} U J).

Consider the existence of exactly three elements o € J satisfying |Fin| = 2.
Without loss of generality, let |Fig| = |Fiy| = |Fis| = 2. Thus, |Fi.| = 1. Since
>acs | Fial = 7, taking into account (5.2) we conclude that > 7 1 _nog) [Fial =23
and, consequently, there are seven elements « € Z\({i, —i} U J) satisfying | Fi,| = 3.

If |Fio| = 2 for any a € J, then ) |Fia| = 8 and, by (5.2), we conclude that
there are, at least, six elements a € Z\({i, —i} U J) so that |F;s| = 3. O
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Next, we derive equivalent results considering now | 7| = 5.

Proposition 5.5 If |J| = 5, there exists x € Z\({i,—i} U J) such that |G;,| = 0.
Furthermore, |Gio| = 1 for any o € T\({i, —i,2} U J).

Proof. Let us suppose |J| = 5. By definition of J we have |G;,| = 2 for any
a € J. Thus, 3 c71Gia| = 10. Since, by assumption, > .7 i [Gial = 16,
then > i _iyur) |Gia| = 6. Taking into account Proposition 5.1, if a ¢ J then
1Gia| < 1. As |Z\({i,—i} U J)| = 7, we conclude that there exists a unique element
xr € I\({i, —i} U J) satistying |G| = 0 and |G;,| = 1 for all « € Z\({i, =i, 2} U T). O

Since by Lemma 2.10 we have |F;| = 11 or |F;| = 10, the following two propositions
give us conditions for the index distribution of the codewords of F; when | 7| =5 and

| F;| assumes each one of these values.

Proposition 5.6 Let |J| = 5 and x € I\({i,—i} U J) be such that |G| = 0. If
|Fi| = 11, then:

- |Fial =2 for any o € J;
VBl =5
- |Fia|l =3 for any a € T\({i, —i, 2} U TJ).
Proof. If, by hypothesis, |F;| = 11, then }_ 7 (; i [Fia| = 33. That is,

Yo Fal+ D [ Fial + | Ful =33 (5.3)
ae\({i,—i,e}UT) aed
From Lemma 2.2 it follows that |F,| < 2 for all « € J and |F;,| < 5. By
Proposition 5.5, |G;o| = 1 for all a € Z\({i, —i,2} U J) and using Lemma 2.2 we get
| Fia| < 3 for any a € Z\({i, —i,2} U J).

Consequently, by (5.3), we conclude that:

- |Fia| = 2 for any a € J;



5. Proof of |G;| # 4 for any i € T 107

- | Fia| = 3 for any o € T\ ({i, —i,2} U J).

Proposition 5.7 Let |J| =5, with J = {f,7,0,¢,0}, and x € ZT\({i, —i} UJ) such
that |Gi,| = 0. If |Fi| = 10, then there are, at least, two elements o € J such that
| Fia| = 2. Furthermore:

i) if B,y € J are the unique elements in J satisfying |Fig| = |Fiy| = 2, then
|\ Fis| = |Ficl = |Fiol = 1, |Fizl =5 and |Fin| = 3 for any o € Z\({i, —i, 2} U J);

it) if B,7,0 € J are the unique elements in J satisfying |Fig| = |Fiy| = |Fis| = 2,
then one of the following conditions must occurs:
— |Fiz| =5 and |Fio| = 3 for, at least, five elements o € T\({i,—i,2} UJ);
— |Fial =4, [Fie| = |Fiol = 1 and | Fia| =3 for any o € T\({i, =i, 2} U J);
1) if B,7,d,e € J are the unique elements in J satisfying |Fig| = |Fiy| = |Fis| =
| Fic| = 2, then one of the following conditions must occurs:
— |Fiz| =5 and |Fio| = 3 for, at least, four elements o € T\({i,—i,2} U J);
— |Fiz| =4 and |Fio| = 3 for, at least, five elements o € T\({i,—i,2} UJ);

— | Fizl =3, |Fial =1 and |Fin| = 3 for any a € T\({i, 1,2} U T);
i) if |Fia| =2 for any a € J, then one of the following conditions must occurs:

— |Fizl =5 and |Fin| = 3 for, at least, three elements o € T\ ({i, —t, 2} U JT);
— |Fizl = 4 and |Fio| = 3 for, at least, four elements o € T\ ({i, —i,x} U JT);
— |Fizl = 3 and |Fin| = 3 for, at least, five elements o € T\ ({7, —i, 2} U T);

— | Fie| = 2 and |Fio| = 3 for any « € T\({i, —i,2} U J).
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Proof. Since |F;| = 10, then > 7\ _;y [Fia| = 30. Consequently,

ST Rl + Y 1 Fal + | Fil = 30. (5.4)

aeZ\({i,—i,2}UT) acd
Note that, from Proposition 5.5 we get |Gio| = 1 for all a € Z\({i,—i,2} U J).
Furthermore, |Z\({i, —i,2} U J)| = 6.
By Lemma 2.2, it follows that:

|Fia| <2 forall a € J; |Fiz| <5; |Fia|l <3 forall a e Z\({i,—i,2} UT). (5.5)

Taking into account (5.5), >,z (1i—ijug) [Fial < 23. Consequently, considering
(54), > aes |Fial = 7. Thus, as |[J| = 5, there are, at least, two elements in J

satisfying | Fio| = 2.

Consider J = {f,7,9,¢,0}. Suppose that 3,7 € J are the unique elements in J
satisfying | Fis| = |Fiy| = 2. Therefore, |Fis, |Ficl, | Fig| < 1. Taking into account (5.4)

and (5.5) we must impose:
— |Fis| = [Fie| = [Fiol = 1;

— |Fia| = 3 for any a € Z\({i, —i,2} U J).

Now consider that [, and 0 are the unique elements in J such that
|\Fig| = |Fiy| = |Fis|] = 2. Taking into account (5.4) and (5.5) we must impose
4 < |Fi| < 5, otherwise, >° cnp sy [Fial < 29, which is a contradiction. So, we
will distinguish the cases: |Fi,| =5 and |F,| = 4.

If |Fie| = 5, then ./ |Fia| + |Fiz| < 13 and, by (5.4), we conclude that
Yaen\(fiiztug) Fial = 17 As [I\({i, —i,2} U J)| = 6 and [Fiu| < 3 for all
a € I\({i, —i,2}UT), there are, at least, five elements o € Z\ ({4, —i, 2z }UJ ) satisfying
| Fial = 3.

Supposing |Fiz| = 4, then 37 7\ i s o) [Fial + 20y [Fial = 26. Considering
(5.5), we must impose |F.| = |F| =1 and |F;,| = 3 for any o € Z\({i, —i, 2} U J).
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Let us assume that |Fig| = |Fiy| = |Fis| = |Fiz| = 2. In these conditions, taking
into account (5.4) and (5.5), > cn (i izyug) [Fial + 2acs [Fial < 27. Accordingly,
3 < |Fi| <5.

If |Fiu| =5, a8 3 e 7 | Fial <9, by (5.4) it follows that >, i —i107) [Fial = 16.
Consequently, there are, at least four elements o € Z\ ({7, —i, 2} U J) so that | F;,| = 3.

Following a similar reasoning we get:

— if |Fiz| = 4, there are, at least, five elements o € Z\({i, —i, 2} U J) such that
|Ea| = 3)

— if |Fiz| = 3, then |Fip| = 1 and |F,| = 3 for any a € Z\({i, —i, 2} U J).
Now consider |Fig| = |Fiy| = |Fis| = |Fic| = |Fio] = 2. By a similar reasoning to

the one applied in the previous cases, we conclude in these conditions that 2 < | F;,| <5

and one of the following conditions must be satisfied:

— if |Fiz| = 5, there are, at least, three elements o € Z\({i, —i,2} U J) such that
|»Fia| - 3;

— if |Fiz| = 4, there are, at least, four elements o € Z\ ({7, —i,2} U J) such that
|]:ia| = 3;

— if |Fiz| = 3, there are, at least, five elements o € Z\({i, —i, 2} U J) such that
|]:ia| = 3;

— if |Fiz| = 2, then |F,| = 3 for any a € Z\({i, —i, 2} U J).

The last results of this section are devoted to the characterization of the index

distribution of the codewords of G; U F; when |J| = 6.

Proposition 5.8 If |J| = 6, then there exist v,y € Z\({i,—i} U J) such that
Giz| = |Giy| = 0. Furthermore, |Gio| =1 for any o € T\ ({4, —i,2z,y} UJ).
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Proof. Suppose that [J| = 6. Since > 7\ iy 1Gia| = 16 and, by assumption,
>acs |Gial =12, then 37 7\ ;7 1Gia| = 4. By Proposition 5.1, |G| < 2 for any
a € I\{i, —i}, thus |Gin| < 1for any v € Z\ ({7, =i} UT). As |Z\({i, =i} UT)| = 6, we
conclude that there exist exactly four elements o € 7\ ({7, —i} U J) satisfying |G;o| = 1
and, on the other hand, there are x,y € Z\({i, —i} U J) so that |G;;| = |Giy| =0. O

Such as it was done for the assumption |J| = 5, the following propositions present
conditions for the index distribution of the codewords of F; when |F;| = 11 and

| F;| = 10, respectively, assuming now that | 7| = 6.

Proposition 5.9 Let | J| = 6, with J = {5,7,9,¢,0,u}, and x,y € Z\({i,—i} UT)
such that |G| = |Gyl = 0. If |F;| = 11, then there are, at least, five elements
a € J satisfying | Fia| = 2. Furthermore, if there exist exactly five elements in these

conditions, then:
— |Figl = |Fin| = |Fis| = | Fic| = | Fio| = 2;
— [ Fiul = 1;
— |Fial = |Fiy| = 5;
— | Fia| =3 for any a € T\({i, —i,x,y} U J).

Proof. Suppose that |J| =6 with J = {5,7,9,¢,6, u}. By Proposition 5.8 we know
that there are x,y € Z\({i, —i} U J) so that |G;,| = |G;y| = 0, furthermore, |G;| = 1
for any o € Z\({i, —i, x,y} U J), with |Z\({i, —i,z,y} U T)| = 4. Accordingly, from
Lemma 2.2 it follows that:

- |Fia| <2 for any a € J;
- | Fial £ 3 for any a € Z\({i, —i,z,y} U J).

By assumption, || = 11, then }° 7\, [Fia| = 33. Taking into account what
was said before, 3 7 i _ius [Fial <22, then 3° ¢ 7| Fia| = 11. Consequently, there

are, at least, five elements a € J satisfying |Fi,| = 2.
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If there exist exactly five elements o € J so that |F;,| = 2, then we must impose:
— |Fisl = |Fin| = |Fis| = | Fie| = [Fio| = 2;

= [Ful =1;

— |Fie| = |Fiy| = 5;

— |Fia| =3 for any a € Z\({i, —i,z,y} U T).

Proposition 5.10 Let |J| =6, with J = {f,v,9,&,0,u}, and x,y € T\({i,—i} UT)
be such that |G| = |Giy| = 0. If |Fi| = 10, then there are, at least, three elements

a € J satisfying | Fia| = 2. Furthermore:

i) if B,7v,0 € J are the unique elements in J satisfying |Fig| = |Fiy| = |Fis| = 2,
then |Fic| = |Figl = |Fipl = 1, |Fiz|l = 5, |Fiyl = 4 and |Fio| = 3 for any
€ I\({Z7 _ia I’,y} U j)7

it) if B,7,0,e € J are the unique elements in J satisfying |Fig| = |Fiy| = |Fis| =
| Ficl = 2, then |Fi| + [Fiy| = 8; of [Fiz| + |Fiy| = 8, then [Fig| = |Fiu| = 1 and
|\ Fia| = 3 for any a € T\({i, —i,z,y} UJ);

i) if B,7,0,€,0 € J are the unique elements in J satisfying |Fig| = |Fiy| = |Fis| =
|\ Fie| = |Fig| = 2, then |Fip| + | Fiy| > 7; if | Fia| + | Fiyl = 7, then |Fiu| =1 and
| Fial = 3 for any o € T\({i, —i,7,y} U J);

i) if |Fial = 2 for any a € J, then |Fip| + |Fiy| > 6; if |Fiu| + |Fiy| = 6, then

Fial = 3 for any a € T\({i, i, 2,4y} U 7).

Proof. Consider |J| = 6, with J = {3,7,0,¢,0,u}. Let x,y € Z\({i,—i} U J)
satisfying [Giz| = [Giy| = 0.
By assumption, |F;| = 10, that is, > o7 ;i [Fia| = 30. Accordingly,

S Rl D Bl + | Fil + 15| = 30. (5.6)
aeZ\({i,—i,z,yUT) acJ
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From Proposition 5.8 it follows that |G| = 1 for any o € Z\({i, —i,z,y} U J).

Taking into account Lemma 2.2 we get:

| Fial <2 forany a € J; |Fil, [Fiy| <55 |Fial <3 for any o € I\({i, —i, 2, y}UT).
(5.7)

Let us begin by proving that it is not possible to have |F;;| = |F;,| = 5. Suppose,

by contradiction, that |F;,| = |Fiy| = 5. By Lemma 1.5, there exists, at most, one
codeword U € F;, N Fy. So, |Fip U Fiy| > 9 and, consequently, |F;\(Fi, U Fyy)| < L.

That is, F; satisfies one of the following conditions:
i) Fi = Fia U Fiy U Fipgr, with p, q,r € I\{i, =i, 2, y};
it) Fi = Fiz U Fiy.

Since |F;| = 10, then by Lemma 2.10 we get |]:i(2)| = 4. However, taking into
account the hypotheses i) and i) we conclude that Lemma 2.14 is not satisfied. There-
fore, there exists, at most, one element o € {z,y} satisfying |F;o| = 5. Consequently,
Yae\(firizgog) [Fial T [Fia| + [Fiy| < 21 and 3°,c 7 [Fia| = 9, which implies the
existence of, at least, three elements o € J satisfying |Fin| = 2.

Next, we will verify what happens when we consider the existence of three, four,
five and six elements in J in these conditions.

Suppose, without loss of generality, that 3,~,d are the unique elements in 7 such
that |Fig| = |Fiy| = |Fis| = 2. In these conditions, taking into account (5.6) and (5.7)

we must impose:
= \Fil = 1Pl = 1Fiul = 1
= |[Fi| = 5 and [Fy| = 4
— |Fial = 3 for any a € Z\ ({4, —i, z,y} U J).

Now consider that there are exactly four elements a € J so that |F;,| = 2. That
is, |Figl = |Fin| = |Fis] = |Ficl = 2. In these conditions, taking into account (5.6)
and (5.7), we have |Fi,| + |Fiy| > 8. If |Fiu| + | Fiy| = 8, then |Fi| = |Fiul = 1 and
| Fia| = 3 for any a € Z\({i, —i,2z,y} U J).

The rest of the proposition follows applying the same reasoning. O
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5.2 Index distribution of the codewords of G; U F;

In the previous section we have derived necessary conditions on the index distribution
of the codewords of G; U F;, i € Z, for the existence of PL(7,2) codes. Here, we
will apply such results, describing a process which allow us to get all possible index
distributions for the referred codewords. We note that, were obtained many distinct
possible characterizations for the codewords of G; U F; being presented here only some
of them.

We begin by showing how we obtain all possible index distributions for the code-
words of G;. In the last part of this section, considering certain index distributions for
the codewords Wy, ..., W, € G;, we exemplify how we get the respective possible index

distributions for the codewords of F;.

5.2.1 Index distribution of the codewords of G;

Let us consider Wy, ..., Wy € G;. By Proposition 5.1 we know that |G;,| < 2 for any
a € T\{i, —i}. Furthermore, from Proposition 5.2 it follows that 4 < |J| < 6, where
J ={aeI\{i,—i} : |G| = 2}.

We intend to describe a methodology to get all possible index distributions for
Wi, ...,W, € G,;. For that, we will analyze, separately, the cases: |J| =4, |J| =5
and |J| = 6.

e Index distribution of the codewords of G, considering | 7| = 4

If | J| = 4, this means that there are exactly four elements in Z\{i, —i} being, each
one of them, “shared” by two codewords of G;. The following schemes traduce this
idea and help us in the identification of possible structures for the index distributions

of the codewords of G;.
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! w,
" < / v, oW, / \ w,
w; n-g,

Figure 5.1: Possible structures for the index distribution of the codewords of G;.

That is, considering J = {f3,7,0,¢}, there are two possible structures for the index

distribution of the codewords of G;:

Wil @ | B |v|w |w Wil o | B |~y |0 |w
Wo | @ | B |0 ]| ws]| wy Wol @ | B | € | wy | w3
Ws | @ | 0 || ws| ws Wi | @ | v | € | wg| ws
Wyl @ | v | €| wr| ws Wyl i | 6 | we | wy | wg

Table 5.3: Possible structures for the index distribution of the codewords of G;.

Considering Z = {i, —i,j, —j, k, —k,l,—l,m, —m,n, —n, 0, —o}, our aim is to con-

cretize the possible index distributions for Wy, ..., W, € G;.

We begin by considering that the codewords W7, ..., W, € G, satisty:

Wil i | B |v|w |w
Wo | @ | |0 ]| ws]| wy
Ws | i | 0 | e|ws| ws
Wyl 2 | v | €| wr| ws

Table 5.4: Index distribution structure of Wy, ..., Wy € G,.

where 3,7,0,¢,wy, ..., ws € Z\{i,—i} are pairwise distinct.

The following results will be useful in the characterization of these codewords.
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Proposition 5.11 Let |J| =4, with J = {B,7,0,e}, and Wy,... , Wy € G; satisfying:

Wali| B |y | w | w
Wo | i | B | 0 | ws | wy
Ws | i | 0 | € | ws | ws
Wy | @ | v | €| wy | wg

where B,7,0,e,w1,...,ws € T\{i,—i} are pairwise distinct. If x,y € J are such that
|Gizyl = 0 and || # |y|, then |Fiz| # 2 and |Fyy| # 2.

Proof. Let Wy,..., W, € G, satisfying the stated conditions. Without loss of genera-
lity, consider § and e so that |G;s.| = 0. By contradiction, suppose that |3| # |¢| and
| Figl = 2.

Let us consider Uy, U, € Fig so that

Uy 1 6 Uy U2

U, i 6 U3 Uy

Table 5.5: Partial index distribution of Uy, Us € Fip.

with wy,...,uy € Z\{i,—1,3,—F}. By Lemma 1.5, uy,...,uy must be pairwise dis-
tinct. Note that, Z\{i, —i} = {8,7,0,&,w1,...,wg}. Taking into account the code-
words Wy, Wy € G5 and Lemma 1.5 we must impose uy, ..., us € {€,ws, ..., ws}. Since
—pB € {e,ws,...,wg} and, by assumption, —f3 # &, then —5 € {ws,...,ws}. There-
fore, without loss of generality, Uy € Fipey, with u € {ws,...,ws}. Consequently,

considering W3, W, € G;. we conclude that Lemma 1.5 is contradicted. 0]
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Proposition 5.12 Let |J| =4, with J = {B,7,0,e}, and Wy,... , Wy € G; satisfying:

Wa | i | B | v | w | w
Wo | i | B | 0 | wsg | wy
W3 1 ) € Ws Weg
Wy | 2| v | | wy | ws
where B,7,0,&, w1, ..., wg € I\{i, —i} are pairwise distinct. In these conditions, there

exist v,y € J such that |Gizy| =0 and x = —y.

Proof. Let us consider Wy,..., W, € G, satisfying the stated conditions. By contra-
diction, suppose that for any x,y € J satisfying |G;,,| = 0 we have x # —y. We note
that, for each z € J there exists a unique y € J so that |G,,,| = 0. Then, taking into
account Proposition 5.11, we conclude that |F;,| # 2 for all a« € J, which contradicts

Proposition 5.4. 0

Considering Wy, ..., W, € G; satisfying the conditions in Table 5.4 and taking into

account Proposition 5.12, there are two possible hypotheses:
i) = —¢cand vy # —0;
it) = —c and 7y = —4.

Without loss of generality, let us suppose Wy € G;jpim. Then, if i) or i7) are satisfied,

we get, respectively:

Wil i | g | k [ | m Wil i | g k [ | m
W2 1 j 0 w1 | W2 W2 i ] —k w1 | Wa
Ws | @ | 60 | —7 | ws| wy Ws | @ | —k| —j | w3 | wy
Wyl @ | k| —7 | ws | weg Wyl @ | k| —J | ws | wg

Table 5.6: G; satisfies 7). Table 5.7: G; satisfies 7).
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If Wi, ..., Wy € G, verify the conditions listed in Table 5.6, then, up to equivalent

cases, 0 = —[ or 6 = n. That is:
Wil v | g k [ | m Wil @ | g k [ | m
Wo | @ | g | =1 | w | we Wy | @ | J n | w; | wy
W3 i -1 —j W3 | Wy W3 i n —] | W3 | Wy
W4 7 k —] W5 | We W4 1 k —] W5 | Weg

Table 5.8: Codewords of G; satisfying i) with § = —[ or § = n, respectively.

Therefore, in Tables 5.7 and 5.8 are listed all possibilities for the elements of J

when the codewords of G; satisfy the conditions in Table 5.4.

Now consider that W7y, ..., Wy € G; satisfy:

Wi | ¢ B | v 0 | w
Wo | i | B | € | wy | ws
Wg 1 Y € Wy | W5
Wyl i | 6 | we | wy | wg

Table 5.9: Index distribution structure of Wy, ..., Wy € G,.

where (3,7,0,e,w,...,ws € T\{i, —i} are pairwise distinct.
As in the previous case, we begin by presenting a result which will help us to

characterize the different hypotheses for the indices 3,v,d,e € J.

Proposition 5.13 If |J| =4, with J = {5,7,9,e}, and the codewords of G; satisfy

Wi | ¢ B | 0 | w
Wol @ | B | € | wy | w3
Ws | @ | ~ wy | Ws
W4 1 ) We | Wy | W8

with B,7,6,e,wq,...,ws € T\{i, —i} pairwise distinct, then |Fi.| <1 and
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i) |Figl = 2 implies Wy € G_p;
it) |Fiy| = 2 implies Wy € G_;
i11) | Fis| = 2 implies § = —¢.

Proof. Let us consider that Wy, ..., Wy € G, satisfy the stated conditions. We note
that, any a € J is such that |G| = 2, then, by Lemma 2.2, |F;,| < 2 for any o € J.

Suppose that |Fig| = 2. Let Uy, Uy € Fig so that Uy € Fipyyu, and Us € Figuguy,
with uy,...,us € Z\{i,—i,8,—F}. We note that, Z\{i,—i} = {B,7,0,&, wy,...,ws}.
Considering Wy, Wy € G;3 and Lemma 1.5, we must impose uy,...,uy € {wy,...,ws}
pairwise distinct. Accordingly, in these conditions, —f € {wy,...,wg}. Therefore,
Uy ..oty € {wy, ..., ws \{—F}. If =8 € {wy, w5}, then W, and one of the codewords

of F;s contradict Lemma 1.5. Accordingly, —f € {wg, wr, ws} and Wy € G_g.
Assuming | F;,| = 2 we may conclude, by a similar reasoning, that W, € G_.,.

Now consider that |Fis| = 2, with Uy,Uy € Fis satisfying Uy € Figuu, and
Us € Fisusu,- Considering the codewords Wy, W, € G;5 and Lemma 1.5 we must
impose uy, ..., uy € {&,ws, ..., ws} pairwise distinct. Note that, —d € {&,wo, ..., ws}.
If 0 # —e, then one of the codewords in {W5, W3} contradicts Lemma 1.5 with one of

the codewords in F;5. Therefore, 6 = —¢.

Next, we prove that it is not possible to have |F,.| = 2. Suppose, by contra-
diction, that |Fi.| = 2, with Uy,Uy € Fic so that Uy € Fioyyu, and Us € Ficyguys
where wy,...,uy € {0, w;,ws, wy,ws} are pairwise distinct. Therefore, we have
—e € {4, wy,ws, wy,wg}. If —e = ¢, then W, and one of the codewords of F;. con-
tradict Lemma 1.5. On the other hand, if —e € {wy, ws, w7, ws}, then there exists

U € Ficsu, with u € {wy, ws, w7, wg}, and Lemma 1.5 is once again contradicted. L]

Since we are assuming |J| = 4, by Proposition 5.4 there are, at least, two ele-

ments « € J satisfying |F;,| = 2. Having into account the previous proposition,
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it Wy,...,Wy € G; satisfy the conditions listed in Table 5.9, then two of the three
following conditions must be satisfied: W, € G_5; Wy € G_; § = —¢.

Therefore, considering W1y,..., W, € G, satisfying the conditions listed in Table
5.9 and assuming that Wi € G;jkim, from Propositions 5.4 and 5.13 we get, up to an
equivalent index distribution, the following possible partial index distributions for the

codewords of G;:

W2 1 j w1 wWao W2 i j -1 w1 | Wa
W3 1 k W3 Wy W3 i k -1 W3 | Wy
W4 1 l —j —k Ws W4 1 [ —] W5 | Weg
Table 5.10: |F;;| = | Fux| = 2. Table 5.11: |F;;| = |Ful = 2.

If the codewords of G; satisfy the conditions in Table 5.10, then there are three distinct

hypotheses for € to be considered. Namely, ¢ = —[, ¢ = —m or € = n, see bellow.
W2 1 j —1 w1 Wa W2 1 j —m w1 w2
Ws | @ | k| =1l | w3 | wy Wsl| 7 | k| —m]| ws | wy
Wyl o | L | —7 | —k]|ws Wyl 2 | L | —F | —k | ws
Wil i | g k l m
Wo 7 J n wy | W2
Ws | @ | k| n | wg | w
Wyl 2 l —7 | —k | ws

Table 5.12: Partial index distributions for Wy, ..., Wy € G;.

Therefore, if Wy,..., Wy € G; satisfy the conditions listed in Table 5.9, then the

elements of J satisfy one of the hypotheses presented in Tables 5.11 and 5.12.

We have presented a partial index distributions for the codewords of G; when
| 7| = 4. However, we are interested in their complete characterization. To show
how we do it, we will consider one of the presented partial index distributions of the

codewords of G;.
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Let Wh,..., W, € G; be so that:

Wililj k][l [m
ngj—lwlwg

W3 1 - _] Wg | Wy

Wyl 1 E | —7 | ws | we

Table 5.13: Partial index distribution of W1, ... . W, € G;

with wy, ..., ws € {—k, —m,n, —n, o0, —o} pairwise distinct. Focusing our attention on

wy and wy, we consider, up to an equivalent cases, the following hypotheses:

i) wy = —k and wy = —m;
i1) wy = —k and wy = n;
i) w; = —m and wy = n;

iv) w; =n and wy = o.

If the conditions i) or iii) are satisfied, we get respectively:

Wil @ | g | k l m Wil i | g | k l m
Wol| ¢ | g | —-l|—-k|-—-m Wol| @ | jg | —=l|-m]|n
Wi | ¢ | =l| —j| n 0 Wi | ¢ | =l|—j| =k | o
Wyl @ | k| —j| —n| —o Wyol @ | k| —j| —n|—o

Table 5.14: Hypothesis 7). Table 5.15: Hypothesis iii).

If Wy, ..., Wy € G; satisfy the condition i), then we get the two following possible
index distributions presented in Table 5.16.
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Wil @ | g | k l m Wil @ | g | k [ m
Wo | @« | 5| -l | —k Wo | @« | 5| —-l| —k

Ws | ¢ |=l|—7|—-m] o Ws| ¢ |=l|—j| —n]| o
Wyol @ | k| —j| —n|—o Wyl @ | k| —j|—m]|—o

Table 5.16: Hypothesis ii).

Now considering that the codewords of G; verify the condition iv), we obtain the

two following index distributions:

Wyl @ | 5| k l m Wil @ | J | k l m
Wol @ | 5| —l] n 0 Wol @ | 7| —L]| n )

Ws| ¢ | =l| —j| —k|—-m Ws | ¢ | =l|—-5| =k |—n
Wyl @ | k| —j| —n| —o Wyl @ | k| —j| —m]| —o0

Table 5.17: Hypothesis iv).

We obtain all possible index distributions for the codewords of G; when |J| = 4
applying the same reasoning to each one of the other presented partial index distribu-

tions for the codewords Wy, ... . W, € G,.

e Index distribution of the codewords of G; considering | 7| =5

Let us suppose that Wy, ..., Wy € G; are such that |J| =5, with 7 = {5,7,d,¢,0}. In
this case, considering the way of how the elements of 7 are “shared” by the codewords

of G;, there exists only one possibility:

Figure 5.2: Structure for the index distribution of W1, ..., W, € G,.
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That is, Wy, ..., Wy € G; satisty:

Wi | ¢ B lv| 6 | w
Wo | @ | B | e ]| ws| ws
Wil @ | v |e| 6 | w
W4 i 0 0 Wy | Weg

Table 5.18: Structure for the index distribution of Wy, ..., W, € G,.

with wy, ..., ws € Z\{i,—1, 5,7, 0,¢,0} and pairwise distinct.
Considering Z = {i, —1, j, —j, k, —k,l, —=l,m, —m,n, —n, o0, —o} and Wy € G;jxim, we

have, up to an equivalent case, five distinct hypotheses for the elements 3, v, d,¢,0 € J:

Wiyl @+ | g | k [ |m Wi @ | j k [ |m
Wo | @ | g | =1l | w | wo Wo | @ | g | —m | w | wy
W3 1 k -1 — ] ws W3 1 k —m | — ] ws
W4 1 l —j Wy Ws W4 1 l —j Wy Ws
Wil ¢ | 5| k [ | m Wil @ | k [ m
Wol @ | g | n | w | w Wy | & | g n wy | Wey
Ws| ¢« | k| n | —j|ws Ws | @ | k n | —m | ws
Wi | i I | =7 | wy | ws Wil 1 I | —m | wy | ws

Wiyl ¢ | g k|1l |m

Wo | @ | J | o] w | w

Wsl @ | k|lo| n | ws

Wi i [ | n| ws| ws

Table 5.19: Partial index distributions of Wy, ..., W, € G;.

As before, when we have considered |J| = 4, we are interested in the complete

characterization of the index distribution of the codewords of G;.
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Let us consider, for example, W7y, ..., W, € G, satisfying:

Wil @t | g | k I | m
Wo | @ | 7| =1 | w | ws
Ws | @ | k| —7|—l|ws
W4 i l — j Wy | Ws

Table 5.20: Partial index distribution of W1, ..., W, € G;.

with wy,...,ws € {—k,—m,n, —n, 0, —o} pairwise distinct. Concentrating our atten-
tion on w3 we get as possibilities, up to an equivalent index: w3 = —m or w3z = n.
For each one of these cases we will present next, up to an equivalent case, all possible

index characterizations.

Assuming w3 = —m, we get the following possibilities for wy, ws, ws4 and ws:
i) wy = —k, wy =n, wy = —n and ws = o;
1) wy =n, wy = o0, wy = —n and w; = —o.

In the case of w3 = n, then wy, we, wy and ws satisty one of the following conditions:

i) wy = —k, wy = —m, wy = —n and ws = o;
i1) wy = —k, we = —n, wy = —m and ws = o;
i) wy; = —k, wy = 0, wy = —m and wy = —n;
i) wy = —k, wy =0, wy = —m and ws = —o;
v) wy = —k, wy =0, wy = —n and ws = —o;
Vi) wy = —m, wy = 0, wy = —n and ws = —o.

We get all possible index distributions for the codewords of G; when |J| = 5 apply-

ing a similar reasoning to each one of the other partial index distributions presented

in Table 5.19.
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e Index distribution of the codewords of G; considering |J| =6

Now assume that the codewords of G; are such that |J| = 6.

In these conditions

there exists a unique possible structure for the distribution of the “shared” indices of

Wl,...,W4€Qi:

Wy

Ak

W W,

/

W,

Figure 5.3: Structure for the index distribution of W7, ..

Therefore, considering J = {,7,9,¢,0, u}, the codewords Wy, ..

Wi | ¢ B lv|d|w
Wol @ | Blel|f| w
Ws | @ | v |e|p| ws
Wyl i | 6|0 p|wy

Table 5.21: Structure for the index distribution of W7, ..

with wy, ..., ws € Z\{i, —1, 5,7, 9,¢, 0, u} pairwise distinct.

Assuming Wi € Gijiim, we get:

Wiyl i | jg|k|l|m
Wol @ | j || 6] ws
Ws | @ | k|e|p|ws
W4 i l 0 M| Wy

.,W4€Q,~.

., Wy € G; satisfy:

.,W4€QZ-.

Table 5.22: Partial index distribution of W1, ..., W, € G,.
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where €, 0, u, we, w3, wy € T\{i, —1, j, k,l,m}.
Considering €, 0, u € J, we obtain, up to an equivalent partial index distribution,

the following hypotheses:

i) e=—1,0=—kand u=—jy;
it) e =—1,0 =—k and p = —m;
iii) e = —1,0 = —k and p = n;
i) e =—1,0=—m and p=n;
v) e=—Il,0=mnand u=o;

vi) e =—m, 0 =n and p = o.

For each one of the hypotheses which we have just to present we characterize com-

pletely the index distribution of all codewords of G; by the concretization of ws, ws

and wy. Let us consider, for instance, the case in which Wy, ..., W, € G; satisfy:
W2 1 _] —1 —k Wa
Ws | @+ | k| =l |—7]|ws
W4 1 l —k —j Wy

Table 5.23: Partial index distribution of W1, ..., Wy € G;.

We note that we,ws,wy € {—m,n,—n,o0,—o} and are pairwise distinct. Thus, for
Wi, ..., Wy € G, satisfying the conditions in Table 5.23 there are, up to an equivalent
index distribution, three possible hypotheses:

— wy = —m, w3 =n and wy = —n;
— we = —m, w3 =n and wy = 0;

— wy =n; wy = —n and wy = o.
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Considering each one of the other possible partial index distributions concentrated
on the elements of 7, see the conditions i) to vi), proceeding in the same way we get

all possible complete index distributions for the codewords of G;.

5.2.2 Index distribution of the codewords of F;

In the previous subsection we have described the method to get all possible index
distributions for the codewords of G;. Here, we will concentrate our attention on the
codewords of F;.

We are assuming |G;| = 4, accordingly, by Lemma 2.10, we have 10 < |F;| < 11.
Our aim is to characterize all possible index distributions for the codewords of F;, when
it is given a certain index distribution of the codewords of G;.

Applying the method described in the last subsection, we obtain all possible index
characterizations for Wy, ..., Wy € G;. We intend to analyze each one of these index
distributions, identifying the respective possible index distributions for the codewords
of F;. For many of the obtained index distributions for the codewords of G; it is not
possible to describe completely the index distribution of all codewords of F; without
contradictions on the definition of PL(7,2) code. However, there exist cases in which
it is possible to characterize all codewords of G; U F; without contradictions.

Here, we present a method which, given a certain index distribution for the code-
words Wy, ..., W, € G;, allow us to verify if it is or not possible to characterize com-
pletely all codewords of F; and, in the cases in which such characterization is possible,
to identify all possible index distributions for the codewords of F;. We note that,
the index distributions of W7y, ..., W, € G, for which it is not possible to identify all
codewords of F; are not valid, since lead to contradictions.

As said before, there are many possible index distributions for the codewords of G;,
thus we will take only some representative cases to illustrate how the analysis of the
codewords of F; is done.

In Section 5.1 we have derived results which help us to characterize the index
distribution of the codewords of F; when the codewords of G; satisfy certain conditions,
in particular, when | 7| assumes, respectively, one of the values in {4,5,6}. Thus, for

having the application of each one of the presented results we will consider examples
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in which |J| =4, |J| =5 and |J| = 6, respectively.

e Characterization of F; when |J| =4

Let us consider Wy, ..., Wy € G; so that:

Wil i | j| k l m
Wo | @i | 5| —k| —I
Ws| ¢ | =kl =5 | —n | o
Wyl ¢ | k| —j | —m]| —o0

Table 5.24: Index distribution of Wy, ..., W, € G;.

In this case we have |J| =4 with J = {j, —j, k, —k}.

By Proposition 5.4, there are, at least, two elements o € J so that |F;,| = 2. In
accordance, we begin the characterization of the codewords of F; identifying, for each
a € J, the possible codewords in F;, assuming that |F;,| = 2.

Taking into account the codewords of G; and Lemma 1.5 we get:

t| jJ | o|—m 1| k| n| o
1| 7 | —o| —n t| k| —n| —I
Table 5.25: Fj;. Table 5.26: Fj.
1| —k| m | —o i —J| L | n
| —k| —m]| I 1| —j| =l m
Table 5.27: F; _y. Table 5.28: F; _;.

First assume that |F;,| = 2 for all @ € J. Accordingly, codewords satisfying the
index distributions presented above, must exist. By Proposition 5.3 we have |F;| = 10,
and so we must identify in F; more two codewords. We note that the remaining
codewords U € F; are such that U € F, with a € Z\({i, —i} U J). Taking into
account the index distribution of all codewords of G; U F; already known and Lemma
1.5, we conclude that it is not possible to identify in F; any other codeword without

facing a contradiction.
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Therefore, we will focus our attention on the following two hypotheses: there are
exactly two elements o € J satisfying |F;,| = 2; there are exactly three elements
a € J satistying | Fio| = 2.

We recall that from Proposition 5.4 we have:

i) it 5,7 € J are the unique elements in J satistying |Fig| = |Fiy| = 2, then
| Fis| = |Fic| = 1, with 0,e € J\{5,~}, and | Fio| = 3 for all « € Z\({i, =i} U T );

it) if B,7,0 € J are the unique elements in J satisfying |Fig| = |Fiy| = |Fis| = 2,
then there are seven elements « € Z\ ({7, —i} U J) such that |F;,| = 3.

In any one of the two given hypotheses there are two elements o« € J so that
|Fia| = 2. Thus, combining the elements of 7, one of the following conditions must
oceurs: | Fy| = [Fue| = 25 |Fyy| = [Finl = 23 |Fyyl = |Fimj| = 25 | Fiwl = [Fimil = 2
[ Fiel = 1Fi—il = 25 [Fimel = [Fisl = 2

As |Z\({i, —i} U J)| = 8, considering the conditions i) and i) referred before and
obtained from Proposition 5.4, in both cases, we may conclude that there exists, at
most, one element « € Z\ ({i, —i} U J) such that |F,| < 2.

Suppose that |F;;| = |Fi| = 2. Then, there exist in F; codewords satisfying
the index distributions presented in Tables 5.25 and 5.26. Taking into account these
codewords, the codewords of G; and Lemma 1.5, considering —I, —m € Z\ ({i, —i}UJ),
we conclude that the unique possible index distributions for codewords in F;_; and

Fi_m are, respectively:

1| =l m| —j 1| —m| 1l | =k
1| =Ll m| o 1| —m| 1 n

| =l m| —o i —m| l | —n
Table 5.29: F; _;. Table 5.30: F; _,,.

Consequently, by Lemma 1.5, and considering the known codewords in F;; U Fi,
we conclude that |F; ;| < 2 and |F;_,| < 2. That is, there are two elements
a € IT\({i,—i} U J) satisfying |Fia| < 2, which contradicts Proposition 5.4. Thus,
the condition |F;;| = |Fix| = 2 is not valid.



5. Proof of |G;| # 4 for any i € T 129

By a similar reasoning we come to the same conclusion for:

— |Fyj| = | Fi—k| = 2, since |Fy, | Fi—nl < 2;

- |-7:zk:| - |'/—-;,—j| - 27 since |Em|7 |-7:io| S 27

- |f',—k| = |E,—j’ - 27 since ’-/—:zn’; “E,—O‘ < 2.

Let us now assume |F;;| = |F; _;| = 2. By what was done before, we must impose
| Fix| # 2 and | F; _x| # 2. Consequently, by Proposition 5.4, for any o € Z\ ({4, —i}UJ)
we must have |F,| = 3.

Consider in F; the codewords satisfying the index distributions presented in Tables
5.25 and 5.28. Focusing our attention on o € Z\({i,—i} U J), and considering the
codewords of G; U F; already known and Lemma 1.5, we conclude that the remaining
codewords Uy,U; € Fi, must satisfy: Uy € Fiop— and Uy € Fipmpn. Considering
m € I\({i, —i} U J) we verify that the remaining codeword Us € F;,, must satisfy
Us € Fim—k—o However, when we focus our attention on —o € Z\({i, —i} U J) we
conclude that it is not possible to characterize any other codeword in F;_, without
facing a contradiction.

The assumption of |Fj| = |F;—x| = 2 led us to the same conclusion, by a similar
reasoning.

Therefore, for W1, ..., W, € G; satisfying the index distribution presented in Table
5.24 it is not possible to characterize completely all codewords of F; without facing a
contradiction. Thus, the considered index distribution for the codewords of G; is not

valid.

e Characterization of F; when |J| =5

In this case will be analyze two possible index distributions for the codewords of G;

satisfying |J| = 5.
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Example 1
Let us consider now Wi, ..., Wy € G; such that:

Wyl @ | 5| k [ m
Wol ¢ | 5| —l]| n 0
Wi | ¢ | k| —=l]|—j|—-m
Wyl 2 | L |—7|—n] —o0

Table 5.31: Index distribution of Wy, ..., W, € G;.

By the analysis of the index distribution of Wy, ..., W, € G; we verify that |J| = 5
where J = {j, —7,k, [, —l}.

As |G;| =4, by Lemma 2.10 we get |F;| = 10 or |F;| = 11.

Suppose that |F;| = 10. From Lemma 2.10 it follows that |]-"i(2)\ = 4. By Lemma
2.14, we have |]-"i(2) NFa| =1 for any a € Z\{4, —i}. Thus, there are in ]—"i(?) codewords
Ui,Us,Us and Uy so that Uy € Fi;, Uy € Fy,, Us € Fy and Uy € Fy,,. Considering
Lemma 1.5 and W € G; we conclude that Uy, ..., Uy must be pairwise distinct and,
therefore, ]:2‘(2) ={Uy,...,Us}.

Let us consider Uy,...,Uy € }"i(Q):

U1 i ] Uy | U
U2 i k us | Ug
U3 1 [ Us | Ug
Uys | © | m | ur | ug

Table 5.32: Partial index distribution of Uy,..., Uy € ]-"Z-(Q).

We note that, by Lemma 2.14, uq,...,us must be pairwise distinct. Furthermore,

considering the codewords of G; we must impose:
— Uy, Uz € {_k7 -m,—n, _O}a

— wug,uy € {n,—n, o0, —o};
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— Us,Ug S {_k7 _m7n70};
— uz,ug € {—j,—k,—l,n,—n, o0, —o}.

By Lemma 2.14 there exist U, U’ € .7-';2> so that U € F;_; and U' € F; _;. Taking

into account what was said before, we must consider u; = —j and ug = —[. That is,

Uy € Fim,—j—1 which is an absurdity since W3 and Uy contradict Lemma 1.5.

Now suppose that |F;| = 11. By Proposition 5.6 we get: |Fi,| = 2 for any o € J;
| Fi—k| = 5; | Fia| = 3 for any a € Z\ ({7, =1, -k} U J).

Let us concentrate our attention on the codewords of F; ;. Since |F; _x| = 5, by
Lemma 2.5 we must impose |F; _ro| = 1 for each o € Z\{i,—i, k, —k}. Thus, there
exist in F;_j codewords Uy,...,Uy so that Uy € F;_x;, Us € Fi_py, Us € Fi_p

and Uy € F; _i,—;. Considering the codewords of G; and Lemma 1.5 we conclude that

Ui, ..., Uy must be pairwise distinct. Therefore, the codewords of F; _j are such that:
U1 i —k j U1l
U2 i —k ) (%)
Us | @ | —k| =1 | ug
U4 i —k —j Uy
Us | i | —k| us | ug

Table 5.33: Partial index distribution of the codewords of F; _y.

with uy,...,ug € {m,—m,n,—n,o0,—o} and pairwise distinct.

Considering Wi € Gijrm, and taking into account Lemma 1.5, we must impose
uy, uy # m. Suppose that us = m, that is, Us € F; _j ;. We note that, by Proposi-
tion 5.6 we get |F; ;| = 2, so we must identify one more codeword in F; _;. Taking into
account Wy, Wy € G; _;, Us € F; _; and Lemma 1.5 we conclude that Us € F; _; is such
that Us € Fi_1—n,—o, contradicting Lemma 1.5 with Wy. If we assume uy = m, that
is, Uy € Fi_k,—jm, since |F; _;| = 2 we get, as in the previous case, a contradiction,
since Ug € F;—; would verify Us € F; _jno. Therefore, we must have us = m. In
these conditions and focusing our attention on —m, considering W3 we must impose

us, Uy, ug # —m. Assuming u; = —m, as |F;;| = 2, the remaining codeword in F;;
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must verify Us € F; j _n —o, contradicting Lemma 1.5 with W,. On the other hand, if
uy = —m, since |F;| = 2 then the remaining codeword of F;; must satisfy Us € Fino,
obtaining again a contradiction. Thus, we conclude that it is not possible to describe
all the codewords of F; _; and, consequently, the considered index distribution of the

codewords of G; contradicts the definition of PL(7,2) code.

Example 2

Until now we have presented examples for which it is not possible to characterize
the index distribution of all codewords of G; U F; without contradictions on definition
of perfect 2-error correcting Lee code. Next, we present an example in which such

characterization is possible.

Consider Wy, ..., W, € G; satisfying:

Wil i | j| k l m
Wol @ | j | n|—m| o
Ws| i | k| n | —3 |-l
Wyl 2o | L | —7] —n | —o0

Table 5.34: Index distribution of W7y, ..., W, € G;.

with J = {j,—J, k,l,n}.

By Lemma 2.10 we obtain 10 < |F;| < 11. Let us begin considering | F;| = 10. From
Lemma 2.10 one gets ].7:1-(2)\ = 4. Accordingly, by Lemma 2.14, ].7-"2-(2) NF,| =1 for each
a € T\{i, —i}. Thus, considering the codewords of G; and Lemma 1.5, Uy,...,U; € ]:i(Q)
must satisfy the conditions presented in Table 5.35, where uy,us € {—n,—o0}. As an
immediate consequence, we get the two possible index distributions for the codewords

of .E(2) presented in Tables 5.36 and 5.37, respectively.
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Uy | @+ | g -l |
Us | 2 k —m | U2
U3 i ) n —k
Uyl 2 | m | —j | o

U1 1 ] - —n U1 1 j — —0
Us | ¢ k| —m | —o Us | 2 k| —m | —n
Us | ¢ [ n | —k Us | 1 [ n | —k
Uil @« | m | —J 0 Ul 2+ | m | —) 0

Table 5.36: u; = —n; us = —o. Table 5.37: u; = —o0; us = —n.

Let us consider that Uy,...,U; € .7-}<2) have the index distribution presented in
Table 5.37.

By Proposition 5.7, there are, at least, two elements o € J so that |F;,| = 2. Thus,
we must scrutinize for which elements « € {j, —j, k, [, n} it is possible to have | F;,| = 2.
Considering the codewords of G; U .E(z) and Lemma 1.5, it is possible to include in Fj;,
Fi—; and F,, respectively, one more codeword: U € F;j_j_n; U € Fi_j _j_m;
U" € Finm-—o However, when we consider the indices I,k € J we can not do it
without contradicting Lemma 1.5. Thus, we may conclude that, if & € J is such that

| Fia| = 2, then a € {j, —j,n}. We will analyze separately the following two hypotheses:
— there are exactly two elements a € {j, —j,n} so that |Fi,| = 2;
— |Fia| =2 for any a € {j,—j,n}.

First assume that there are exactly two elements a € {j, —j,n} so that |F;,| = 2.
Taking into account Proposition 5.7, |Fi.| = 3 for any a € Z\({i,—i,—k} U J),
consequently, |F; _,,| = 3. At this moment, we have only identified one codeword of
Fiem, Us € E(Z), thus we must include two more codewords in F; _,,,. Taking into

account the codewords of G; U]—"i@) already known, and Lemma 1.5, if U € F; _,,,\{U},
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then
Ue E,—m,—k,—j U E,—m,—k,—l U E,—m,—k,—o-

Considering Lemma 1.5 we conclude that |F; _,,,\{U2}| < 1, a contradiction.

Let us now consider that |F;;| = |Fi_;| = |Fin| = 2. In these conditions we must
consider in F; the codewords Us € Fij i —n, Us € Fi_j—j—m and Uy € Fipm o
We have seen before that |F; _,,| < 2, thus, from Proposition 5.7, it follows that
|Fi—k] = 5. We have now described three codewords of F; _j: Us, Us and Us.
Therefore, we must identify two more codewords in F; ;. Taking into account all
codewords of G; U F;, already known, as well as Lemma 1.5, we conclude that if
U e Fi_x\{Us,Us,Us}, then U € F; _j_1;n U Fi_. 1, Consequently, considering
Lemma 1.5, we have |F; _;\{Us, Us,Us}| < 1, a contradiction.

Now consider that the codewords of ]-"2-(2) satisfy the conditions in Table 5.36.
In this case, considering the elements of J, it is possible to have |F,,| = 2 for
a € {j,—j,k,n}, in fact, it is possible consider in F; subsets of codewords satisfying:
Fij—k—03 Fi—j—k—m; Fik,—no; Finm—o- Lhus, taking into account Proposition 5.7,

we must consider each one of the following hypotheses:
— there exist exactly two elements o € J verifying | Fio| = 2;
— there exist exactly three elements o € J verifying | Fi,| = 2;
— there exist exactly four elements o € J verifying |F;o| = 2.

Suppose that there exist exactly two elements o € J satisfying |F;,| = 2. By
Proposition 5.7 we have |F;,| = 3 for any a € Z\({i,—i,—k} U J). Let us consider
—m € I\({i, —i,—k} U J). Until now we have the knowledge of only one codeword of
Fi—m Uy € Fijp—m,—o. Thus, we must identify in F; _,, two more codewords. Consi-
dering the codewords of G; U ]-"fm already known and Lemma 1.5 we conclude that if

U € Fio\{Us}, then
U e E,—m,—k,—j U E,—m,—k,—l ) E,—m,—k,—n'

Once again, by Lemma 1.5, we conclude that |F; _,,\{Uz}| < 1 and, consequently,

| Fi.—m| < 2, which is a contradiction.
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Accordingly, there exist, at least, three elements a € J such that |F;,| = 2.
Considering Proposition 5.7, we verify that in some cases the hypothesis |F; x| = 5
may occurs. Let us analyze this possibility. We note that, at this stage, it is known
one codeword of F; _: Us € Fiypn—k. If |Fi_| = b, then, considering Lemma 2.5,
| Fi—k.al = 1 for each o € T\{i, —i, k, —k}. Therefore, |F; ¢ ;| = |Fi—km| = 1. Taking
into account the codeword Wi € Gjjpim, we must impose F; ;i N Fi _pm = D. S0,
let us consider Us € F; i ju, and Us € Fi g mu,. Having in mind the codewords of
Gg; U ]-"i(Q) and Lemma 1.5 we must consider u; = —o and uy € {—I, —n}. Thus, the

codewords of F; _; must satisfy one of the following conditions:

Us | i | k| I n Us | i | —k| I n
Us | @ | k| J —0 Us | @« | k| 5 | —o
Us| © | =k| m | =l Us| @+ | =k| m | —n
U: | @ | k| —5|—-m U: | @ | k| —j| —m
Ug| i | —k|—m| o Ug | © | —k| —I 0
Table 5.38: uy = —I. Table 5.39: uy = —n.

We note that, under the assumption |F; _x| = 5 are already known eight codewords in
F;. Since we are assuming |F;| = 10, then we must identify two more codewords. If
the codewords of F; _j satisfy the index distribution presented in Table 5.38, having
in mind all codewords of G; U F; already known and Lemma 1.5, we can identify only
one codeword in F;: Uy € F; yn—o. However, is not satisfied what is being supposed.
On the other hand, if the codewords of F; _j satisty the conditions in Table 5.39 the

remaining codewords Uy, Uy € F; must verify one of the following two hypotheses:
1) U9 S E,k,—n,o and UlO € ‘/—-;,—l,m,—o;
2) U9 € E,k,—n,o and UIO € En’mn,—o-

We note that, if Uy, Uyy € F; satisfy the conditions in 1), by the analysis of all
codewords Uy, ...,U;qg € F; we conclude that there exist only three elements a € J

satisfying |Fia| = 2: |Fi;| = |Fi—;| = |Fir| = 2. Furthermore, there are five elements
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a € I\({i, —i,—k} U J) verifying |F;,| = 3, namely:
’]:i,—l| - |]:zm| - |]:z—n| - |]:w| - |]:i,—0| = 3.

On the other hand, if Uy, Uy € F; have the index distribution presented in 2), then

| Fia| = 2 for any « € {j, —j, k,n} and |F;| = 3 for o € {m, —n, 0, —0}.

If, by assumption, there exist only three elements a € J verifying | Fi,| = 2, then
from Proposition 5.7 we get as possibilities: |F; _x| = 5 or |F;_x| = 4. If |F | = 4,
by the same proposition we must impose |F;,| = 3 for any a € Z\ ({7, —i,—k} U J).

However, when we have assumed |F;,| = 2 for only two elements v € J we have
concluded that |F; _,,| < 2. So, we must impose |F; ;| = 5. In these conditions,
taking into account the analysis of the hypothesis |F; x| = 5 done before, we can

identify only one possible index distribution for the codewords of F;: Uy,...,.Us € }}(2)
described in Table 5.36; Us,...,Us € F; _j presented in Table 5.39; Uy € F; k,—pn, and
UlO S E,—l,m,—o-

Suppose that there are exactly four elements « € J so that | F;,| = 2. We note that,
we have already seen that, in this case,necessarily |Fi;| = |Fi—;| = |Fix| = |Fin| = 2.
Thus, in addition to considering in F; the codewords of ]__i(z) presented in Table 5.36,
we should also consider the codewords Us,....Us € F; satisfying: Us € F;j i —o;
Us € Fi—j—k,—m; Ur € Fik—no; Us € Finm—o- By Proposition 5.7 it follows that
|\Fi—k| = 5, |Fi—x| = 4 or |F;_x| = 3. We note that we can not have |F; x| = 3
since, by the same proposition, we would get | F;,| = 3 for any o € Z\ ({7, —i, =k} UT)
and, as we have seen in the previous cases, |F; _,| < 2. If we consider |F; x| = 4,
since we have only described three codewords of F; i, Us € Fi -k, Us € Fij ko
and Us € Fi_j _k—m, then we must consider in F; _j only one more codeword. As
we are assuming |F;| = 10, we must identify one more codeword U € F; so that
U ¢ F;_i. Taking into account the codewords of ]—"Z»(Q), see Table 5.36, and Us,...,Usg
presented before as well as the codewords of G; and Lemma 1.5 we conclude that if

U e F\{U,...,Us} then

UeFi—km-nUFi—k—tmIFi—k—10,
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that is, U € F; i, contradicting what was said before. So, we must have |F; x| = 5.
In this case, having in mind the analysis of the hypothesis |F; _x| = 5 done before, we
may conclude that there exists a unique possible index distribution for the codewords
of F;: Uy,...,Uy € .E(Q) presented in Table 5.36; Us,...,Us € F;_j satisfying the
conditions in Table 5.39; Uy € F . —pn o, and Uiy € F;mn —o-

Therefore, considering Wy, ..., Wy € G; satisfying the conditions in Table 5.34 and

assuming |F;| = 10, there are two possible index distributions for the codewords of F;

which have in common the codewords Uy, ..., Uy satistying:
Uy | @2 | J -l | —n Us| i | k| m | —n
Uy | ¢ | k| —m| —o Uy | @ | k| —5 | —m
Us | i@ [ n | —k Usg | © | —k| =1
Ug| i1 | m | —j 0 Uy | i« | £ | —n
U5 1 —k ] —0

Table 5.40: Possible index distributions for codewords of F;.

and differing in only one codeword, Uy, existing two hypothesis: Uyg € F; _jm —o OF

UlO € -F.i,m,n,fo-

Let us now assume that |F;| = 11. In these conditions, from Proposition 5.6 it
follows that |F;,| = 2 for any a € J = {j, —j, k,[,n}. Considering the possible index
distributions for the codewords in F;;, taking into account the codewords of G; described

in Table 5.34 and Lemma 1.5, we verify that if U € F;;, then

UeFit—k—mUIFis—tnUFil ko

Consequently, by Lemma 1.5, |F;| < 1, which contradicts Proposition 5.6.
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e Characterization of F; when |J| =6

Consider Wy, ..., Wy € G; satistying the following index distribution:

Wil i | j| k [ m
Wol| @ | 5| -l]|—-k| —n
Ws | i« | k| =l| n |—m
Wyl 1 Il | —=k| n 0

Table 5.41: Index distribution for Wy, ..., W, € G,.

with J = {j,k,—k,l,—l,n}. As, by Lemma 2.10, |F;| = 10 or |F;| = 11, we will
analyze separately these two hypotheses. Let us begin considering |F;| = 10. By
Lemma 2.10 we get |.7-"i(2)| = 4. Taking into account Lemma 2.14 as well as Lemma 1.5
and the codewords of G;, we must impose Uy,...,U; € .7-"2»(2) satisfying U, € F;j, Uy € Fi,
Us; € F;; and Uy € Fyp,, with Uy, ..., U, pairwise distinct. Considering, in particular,
U € Fi;, Uy € Fy, and Us € F;, we present, taking into account the codewords of G;

and Lemma 1.5, all possible index distributions for these codewords:

el [ [ | Lefe[ [ [ Lele] [ |
/ l \ I '- '-l 1

L T 7] ) = =& a -0 =i - -3 -
J S g

Figure 5.4: Possible index distributions for Uy, Uy, Uz € ]:Z-(Z).

By the above schemes we conclude that:

— iU, € JT"Z']', then

Ur € Fij—mo Y Fij—m—oUFijn—o;
— if Uy € Fj, then
Us € Fik—jnUFik—jo I Fik—i—o0UFik-noUFik—n—o
— if U3 € Fj;, then

US € E,l,fj,fm ) -F.i,l,fj,fn U -F.i,l,fj,fo U -/T_:i,l,fm,fn U ‘/T_:L',l,fm,fo U -F'i,l,fn,fo-
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Let Uy,..., Uy € ]:i(Q) such that Uy € Fijuiuss U2 € Fikuguas Us € Fitusus and
Us € Fimugus, With uy, ... ug € Z\{i, —i, j, k,,m}. Considering Lemma 2.14 we must
impose uq, ..., us pairwise distinct.

U, € Fij—mo, thenUsy € Fip _jUF; k. —n_oand Us € F; _jUF;; _p . Supposing
Uy € Fip—j, thenUs € Fi; . Analyzing the hypotheses for Uy € F; _;, we can not
guarantee that u,,...,us are pairwise distinct. On the other hand, if Uy € Fi i _pn 0
any one of the possibilities for Us € F; will end up in a contradiction.

Now assume that Uy € F;; _m . Under this assumption we must impose that
Us € Fij—j—n- DBut considering all possible index distributions for U, € Fj, we
conclude that uq,...,ug are not pairwise distinct, which is a contradiction.

Let us now consider that Uy € F; j, —o. In this case, Uy € F;, and Us € F;; satisfy

one of the following index distributions:
1) U2 S JT;Z',k’,—n,o and US € E,l,—j,—m;
2) U2 € E,k,—j,o and U3 € E,l,—m,—n-

Each one of the presented hypotheses implies Uy € F;,, — —;, Which is not possible
since Uy and W5 contradict Lemma 1.5.

Therefore, we conclude that \.E(Z)| # 4 and so |F;| # 10.

Now consider |F;| = 11. By Proposition 5.9 there are, at least, five elements o € J
satisfying |F;o| = 2. Considering the codewords of G; and Lemma 1.5, we get the

following possible index distributions for the codewords of F;,, assuming | F;,| = 2, for

ae J\{l}:

i|Ff| = o |i|m |- |m|i|k|n|l-wo|i|-d|m|-w|i|-k]|-m o
or ar or
i k|ln|lo|i|=d|m| o |i|-k|m o

Table 5.42: Possible index distributions for Fj,, with o € J\{l} and |Fi,| = 2.
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If |Fu| = 2, then, unlike the other cases, there are more than two possibilities for
U, U" € Fy. In this case, U,U" € F;; are such that U € Fjy 0, and U’ € Fiygu,, with
Uy, ... Uy € {—7j,—m, —n, —o} pairwise distinct.

Suppose that |F;,| = 2 for any o € J. By the analysis of the index distributions
in Table 5.42, and taking into account Lemma 1.5, we conclude that the codewords

U, ....Ug € Fij UFiy UF; 1 UF; 1 UF;, whose index distribution satisfies:

Uy| 7 | 7 |—-m| o Us| @ | =l | m | o
Uy | 7 | j n —o0 Uz | ¢ | =l | —5 ]| —o
Us| 2 | n | —7 | m Us| @« | kK |—7| o
Us| @ | =k| m —0 Ug | i@ k| —mn|—o
Us | © | k| —5 | —m

Table 5.43: Index distribution of Uy,...,Uy € F;.

must be in F;. Consequently, Uy, U1 € Fy are such that Uy € Fi;_;—, and
Ull € JT_-i,l,—m,—o'
We have described a possible index distribution for the codewords of F; assuming

|F;| = 11 and considering that |F;,| = 2 for any o € J.

Next, we assume the existence of only five elements o € J satisfying | Fio| = 2. In
this case, by Proposition 5.9, we have |F; _;| = |F; _,| = 5. We note that, if |F; _;| =5,
by Lemma 2.5 we must impose |F; _;,| = 1 for each a@ € Z\{i, —4, j,—j}. A similar
conclusion is obtained when we consider |F; _,| = 5, that is, |F;_,| = 1 for any
a € I\{i, —i,0, —o}. Taking into account what was already said as well as Lemma 1.5
and the codewords of G;, Uy,...,Us € F; _, must satisfy the conditions presented in

next table
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Table 5.44: Partial index distribution of Uy,

with wuq, ..

U | ©+ | —o| k |u
Us | i | —o| =1 | us
Us | i | —o| n | us
Uy | © | —0o| =k | uy
Us | i | —o| | | us

— up € {_]7 —TL},

— U € {_]7m}7

— ug € {.77 _jvm}v

— Uy € {_j7ma _m}a

— us € {—j,—m

Then, we get the following possible index distributions for the codewords of F; _,:

,—n}.

Uy | ¢ | —o| k | —J
Uy | © | —o| =l | m
Us | 7 | —o| n J

Us| @ | —o| =k | —m
Us | © | —o| 1 -n
U | 2 | —o| kK | —n
Uy | 72 | —o| =l | m
U3 | 2 | —o| n J

Uy | @ | —0o| —k| —J
Us| i | —o| | | —m

Table 5.45

: Possible index distributions for the codewords of F; _,.

., us pairwise distinct and satisfying:

...,U5€./—"Z‘7_O.

U | ¢ | —o| kK | —n
Uy | 2 | —o| =l | m
Us | i | —o| n Ji

Us| @ | —0o| =k | —m
U5 1 —0 [ —j
U | ¢ | —o| kK | —n
Uy| @ | —o| =l | —J
Us| 2 | —o| n j

Us| @ | —o| k| m
U5 i —0 ) —m

However, for only one of these hypotheses it is possible to characterize the index distri-

bution of all codewords of F;_; without contradictions on definition of PL(7,2) code.
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Namely, when: Ul S -F.i,fo,k,fn; U2 S -F.i,fo,fl,fj; US € E,fo,n,j; U4 € J—-'i,fo,fk,m;
Us € Fi_oi—m- In this case, considering the codewords of G, U F; _, and Lemma

1.5, Us, ..., Uy € F; _; must verify:

Us| ¢« | —j| I | —n
U; | i | =3 | —k|—m
Us| 2 |—j| n m
Uy | @« | —j| k o)

Table 5.46: Index distribution of Us, ..., Uy € F; _;.

As we are assuming |F;| = 11, we must identify in F; two more codewords. Taking
into account the index distribution of the codewords of G; U F; _; U F; _, and Lemma

1.5, we get three possible index distributions for Usg, Uyy € Fi\(F-; UF_,):
— Ui € Fij—mo and Uiy € Fi i m.0;
— Uio € Fij—mo and Uyy € Fj . —no;
— Uio € Fimm,—no and U1 € Fi 1m0

As we see, for the index distribution of the codewords of G; presented in Table 5.41
it is possible characterize completely different index distributions for the codewords of

F.

Apparently, it seems that the presented examples for which we have described
completely the index distributions of all the codewords of G; U F; satisfy the definition
of PL(7,2) code. However, when we consider other sets, G, U F, with a € Z\{i}, we
verify that we always end up contradicting the definition of perfect 2-error correcting

Lee code, as we will see in the next section.
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5.3 Analysis of the index distribution of the code-
words of G, U F;

In this section we present the method which we have applied having in account all
index distributions obtained for the codewords of G, U F;. Since the referred index
distributions do not contradict the definition of PL(7,2) code, the characterization of
index distributions of other codewords of G U F will be carried out. In this sense, we
will analyze the codewords of G, U F, for a certain o« € Z\{i}. We will concentrate
our attention on elements o € Z\{i, —i} for which |G;,| is minimum and the respective
value of | F;,| is maximum, since, in these conditions, it is necessary to characterize more
codewords in G,, being the number of possible index distributions for these codewords
restricted by the known codewords of F;,.

As we have identified many possible index distributions for the codewords of G; UF;,

we will show throughout some illustrative examples how we always get a contradiction.

Example 1

Suppose that the index distributions of Wh,..., Wy € G; and Uy, ...,Uy; € F; are the

ones listed bellow:

Wil 7 | j k [ m Uy | i | 7| —-n| o
Wo | @ | 7 | L] -k | n U, | i | 7 |—-m]| —o
Ws | 4 k| =l|-m]|—-n Us | @« | —m| —7 | n
Wy | 1 Il | =k|-m]| o Uy | 1 ) n —0
Us | ¢ I | —j | —n
Us | @ | k n 0
U7 ) k —j —0
Ug 1 —1 —j 0
Ug | © | =l | m | —o
Ug | @ | —k| =] | m
Uil @ | k| —n | —o

Table 5.47: Index distribution of the codewords of G; U F;.
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For showing that the presented index distribution of the codewords of G; U F; contra-
dicts the definition of PL(7,2) code, we will concentrate our attention on an element
a € I\{i,—i} for which |G;s| is minimum and |F;,| is maximum. As |G; _,| = 0 and
| Fi—o| = 5, we will consider the element —o € 7.

We begin by analyzing the codewords of G_,. By Corollary 4.3 we know that
4 < |G_,| < 7. Thus, we must characterize the index distribution of, at least, four
codewords of G_,. We note that, until now we have not identified any codeword of G_,
since |G; _,| = 0.

If |G_,| = 4, then from Proposition 5.1 we conclude that |G_, ;| < 2 and, con-
sequently, |G_,\(G; UG_;)| > 2. On the other hand, if |G_,| > 5, by Lemma 2.2 we
have |G_,_;| < 3 and, as a consequence, |G_,\(G; U G_;)| > 2. That is, under any
assumption, we get always |G_,\(G; UG_;)| > 2. So, we will focus our attention on the

codewords of G_,\(G; UG_,).

To characterize the possible index distributions for the codewords of
G_,\(G;UG_,) it will be helpful to consider the partition P of Z\{i, —i, 0, —o} induced
by U27 U47 U77 UQJ Ull € E,—O:

Py ={j,—m}; Py=A{l,n}; Ps={k,—j}; Pi={-l,m}; Ps={—k,—n}. (5.8)

In fact, for W € G_,\(G; U G_;) satisfying W € G_, ., wpwsws W€ must impose
wy,...,wy € Py U---UPs be such that [{wy,...,ws} NP, < 1forp=1,...,5
otherwise Lemma 1.5 is contradicted. Thus, taking into account the codewords of
G; U F;, see Table 547, and Lemma 1.5, we conclude that there exists only one
possible index distribution for W € G_\(G;UG_;): W € G_,_; _k_i1—m. That is,
1G_o\(G: UG_;)| <1, which is a contradiction. Therefore, the considered index distri-
bution for the codewords of G; U F; contradicts the definition of PL(7,2) code.

In this example it was simple to concluded that the codewords of
G; U F; contradict the necessary conditions for the existence of PL(7,2) codes already
established. However, in the majority of the cases this conclusion is obtained by a

more complicated process of exhaustion, as we will see in next example.
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Example 2

Now consider the following index distribution of G; U F;:

Wil @ | J k|1l | m Uy | 2| 7 |—-m]| o
Wy | 4 J | =l|n|—k Us | 1 J —-n | —o
Ws | i k|=l]|o|—n Us | i | m n | —o
Wyl 1 l nlol| —j Us | ¢ k | —m
Us | © | —k| m 0
Usg | @ | —j| —I
U; | i | =l |—m]| —o
Us |« |—j| kK | —o
Ug | 1 I | —m | —n
Upog | @2 | k| 1 —0
U11 i —J —k —n

Table 5.48: Index distribution of the codewords of G; U F;.

As |Gi | = 0 and |F; _,| = 5, we will consider —o € Z, beginning our analysis by
the study of the codewords of G_,,.

Such as in the previous example, 4 < |G_,| <7 and |G_,\(G; UG_;)| > 2.

Firstly, we are going to characterize the possible index distributions for the code-
words of G_,\(G; UG_;). With this purpose, we consider the following partition P of
Z\{i, —i,0, —o} induced by the codewords Us, Us, Uz, U, Uy € F; _o:

Py ={j,—n}; Po={m,n}; Ps={-l,—m}; Py={—4,k}; Ps={-k1}. (5.9)

As we have seen in the previous example, if W € G ,\(G; U G ;), then
W € G wowsws With wy, ..., wy € PyU---UP5 and {wy,...,ws} NP,| <1 for all
p=1,...,5. Taking into account the considered index distribution of the codewords

of G; UF; and Lemma 1.5, if W € G_,\(G; UG_;), then W is such that:
w S gfo,j,l,fm,n U gfo,fj,l,m,fn U g—o,—k,—l,m,—n U g—o,—j,—k,—m,n-

Since |G_,\(G; U G_;)| > 2, having in view the possible index distributions for the
codewords W € G_,\(G;UG_;) and Lemma 1.5, we conclude that |G_,\(G;UG_;)| = 2,
with W5, W € G_,\(G; U G_;) satisfying one of the following index distributions.
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Ws| —o| g | L |—m | n Ws | —o0| 7 | L |—m | n
W | —o| —5 | I m | —n We | —o| =k| —=L| m | —n

Ws | —o| —j | 1 m | —n Ws | —o| =k| =L | m | —n

We| —o| —j| —k|—m| n We | —o| —j | —k| —m| n

Table 5.49: Possible index distributions for W5, W € G_,\(G; UG_;).

We have concluded that |G_,\(G; U G_;)| = 2. By Corollary 4.3, 4 < |G_,| < 7,
furthermore we have |G_, ;| = 0, then |G_,_;| > 2. Thus, for each one of the possible
index distributions for the codewords Wj, W € G_,\(G;: UG_;) we will analyze possible

index distributions for the codewords W € G_, _;, having in mind that |G_, ;| > 2.

Let us suppose that W5, Ws € G_,\(G; U G_;) are such that W5 € G_,, i _mn
and Ws € G_o_jim,—n. Considering the partition P of Z\{i, —i, 0, —o}, see (5.9), if
W e G_,_; is such that W € G_, _; u, wows, then wy,wy,ws € Py U --- U Ps with
H{w1, we, w3} NP,| <1forp=1,...,5. Taking into account W5, Wy € G_,\(G; UG_;)
as well as the index distribution of the codewords of G;UF; and Lemma 1.5, we conclude

that for |G_, ;| = 2, Wy, W5 € G_, _; satisfy one of the following index distributions:

W Wy i Wy
| o-d | o | -k | - | - | 4| k|
o | 2| k| |a| - -i g k| om S-S IRET A I < I 30 A O Ao m
-a | | k| o | & -a | | k| -m | s
o | | G| R om N (% =y — £ | g k|
a | 2| | Hd|el e | k| -m | -» el B A e S I
- —z: -}? - | -a R I —z: k| -m|-a
o I S I S T - o | - | k| | -,
R I S S B I . I T S I o |- k| e k| |
s | i | ok | | -m |G| G| om | e | k| | s
o | 2l -k m| e | k| -m | -» o |- g k| -l el Ak -m |-

Table 5.50: Possible index distributions for W7, Ws € G_, _;.

If |G_o —i| = 3, there are only two hypotheses for the index distribution of the codewords
W77 WSa W9 € g—o,—i:

— WreG o i iins Ws €G 6 _ii—tms Wo € G_o_ik—m—n;
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-~ WreG o ijtms Ws €G 6 ij—tm» Wo €G_6_ik—m,—n-

We note that, by Lemma 2.2, |G_, _;| < 3. Therefore, all possible index distribu-
tions for the codewords of G_, _; are described when W5, Wy € G_,\(G; U G_;) assume
the considered index distribution. In this case, unlike what has happened in the Exam-
ple 1, we can characterize different index distributions for all codewords of G_,. Next
step consists in the identification of all possible index distributions for all codewords
of F_,, for each one of the presented index distributions of G_,. We will do it for some
of the presented index distributions of the codewords of G_,, since the remaining cases

follow the same reasoning.

Suppose that |G_,| = 4, with W5, Wy € G_,\(G; U G_;) satisfying the index dis-
tribution in consideration, that is, W5 € G_, i _mn and Ws € G_, _jim —n, and
Wz, Ws € G_,_; such that Wr € G_, _;ip 1, and Wy € G_,_; ;i _j_m. We may
analyze the index distribution of the codewords of F_, applying equivalent results to
the ones derived in Section 5.1, since by assumption |G_,| = 4, however, since the index
distributions of some codewords, in particular, of the codewords of G; U F; UG_, are
known, it is simpler to do it analyzing all possible index distributions for the code-
words of each one of the following sets: F_, i, F_oj, Foo—j, Fooks Foo—k>» F-o,
Foo—ty Fooms Foo—ms F—omns F—o-n- As |F_,i| =5, taking into account Lemma 2.2
we should not consider any more codewords in F_,;. The following schemes represent
all possible index distributions for the codewords of F_,\F;. These index distributions

were obtained taking into account the codewords of G; U F; UG_, and Lemma 1.5.

el | | [eflsl [ | [elsg] | | [el&e] | |
— [S—— M —
M 1
i { o R R S I m  -m -m
L v
e[ [ | [l [ | [el[2] | ]
—_——
soom on - wooo-n
T

Figure 5.5: Possible index distributions for U € F_,\ F;.
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In the previous schemes we are saying that if U € F_,_; is such that
U € Foo—imyus then up,us € {j,1,m,—n}. However, there exists only one possible
index distribution for this codeword, U € F_, _; jm, since considering the remaining

hypotheses we will always end up with a contradiction. In fact, if:
— u; = j and uy = [, U contradicts Lemma 1.5 with Wi;
— uy = j and uy = —n, U contradicts Lemma 1.5 with Us;
— u; =l and uy = m, U contradicts Lemma 1.5 with W;
— u; =1 and uy = —n, U contradicts Lemma 1.5 with Wj;
— uy = m and us = —n, U contradicts Lemma 1.5 with Wj.

U e F, ,\(FUF), then U € F_,; _km o F_oj _i.m, and so on.

We note that, we have not presented possible index distributions for the codewords
of FlomUF_o_mUF_onUF_, _, since these codewords were analyzed when considered
the sets F_, for o € {—i,j,—7, k, —k,1,—1}.

By the analysis of the schemes in Figure 5.5 we may conclude that if U € F_,\F;,
then

Ue ‘/T_;o,j,m U J—-;o,k,fm,fn U -Ffo,fk,fl-

Taking into account Lemma 1.5 we conclude that |F_,\F;| < 3 and, as |F_,;| = 5,
we get |F_,| < 8, which is an absurdity since we are assuming |G_,| = 4 and from
Lemma 2.10 it follows that |F_,| = 10 or |F_,| = 11. Therefore, the considered index
distribution for the codewords of G_, contradicts necessary conditions for the existence
of PL(7,2) codes.

In the majority of the remaining possibilities for the index distributions of the
codewords of G_, we conclude, applying the same reasoning, that |[F_,| < 9. How-
ever, there are some cases in which this does not happen, as we will see in the next

characterizations of the codewords of G_,.

Now consider that |G_,| =4 with W7 € G_, _; _; 1n and W € G, _ij —pm—n. In
these conditions, proceeding as in the previous case, we get the following possible index

distributions for the codewords U € F_,\F;.
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el ] [ | [efls]l [ | [elg] [ | [=w]l&[ [ |
E——— —— U (S——
_ / i { A
gk i om kokoo- Eo-m f o4 m om
L S O . he o L
ol [ | [l [ | [ef[2] [ |
G —
Jdoom oam o2 om L
J :

Figure 5.6: Possible index distributions for U € F_,\ F;.

Analyzing the above schemes we conclude that if U € F_,\F;, then
Ue f—o,—i,—k U Jf—o,jnn U f—o,k,—l U F—o,—j,—k,—m U F—m—k‘,—l-

Consequently, considering Lemma 1.5 and taking into account that |F_,;| = 5, we
get |F_,| < 10. However, by Lemma 2.10 we must impose |F_,| = 10 and, by the
same lemma, |.7:£20) | = 4. Considering Lemma 2.14 and the possible index distributions
for the codewords of F_,, we conclude that if U, U, U",U" € .7-“&20), then we must
have: U € F_oimus: U € Fovo—kusus; U € Foojmus; U € F_ok—ing; With
Uy ... ug € {—i,—7,l,—m,n,—n} pairwise distinct. Consider U" € F_,k —1us,
looking at the schemes in Figure 5.6, we conclude that ug = j or ug = m, contradicting
what was said before and so the considered index distribution for the codewords of G_,
contradicts the definition of PL(7,2) code.

There exist few hypotheses for G_, for which it is possible to characterize completely
all codewords of G_, U F_, without contradictions on definition of PL(7,2) code, being
necessary, in these cases, to analyze other sets G, U F,, for a € Z\{i, —o}. We present

next one of these cases.

Now suppose that |G_,| = 5 with Wy, W5, Wy € G_, _; such that W7z € G_, _; _; i n,
Ws € Go_ij—km and Wy € G_ i _m—n. Taking into account the codewords of
G, UF;UG_, and Lemma 1.5, we obtain the following possible index distributions for
the codewords of F_,\F;.
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(el [ ] [elil T 1 [=e]l<] [ | [=]&] [ |
— [ — P -
! k- - S R
J _J S
le|*] | | |[=]2] | | [=]=2] | |
‘k_v_.-'
4o-m o on -m mo -n
e

Figure 5.7: Possible index distributions for U € F_,\ F;.

That is, if U € F_,\F;, then
U e f—o,k,—l U f—o,—j,—k,—m U f—o,—k,—l,—n-

By assumption |G_,| = 5, accordingly, by Lemma 2.11 we get 7 < |F_,| < 10. If
|F_o| = 7, then from Lemma 2.11 it follows that |f£20)\ = 4. However, the possible
index distributions for the codewords of F_, contradicts Lemma 2.14 since if U € F_,,

then

U e ./T"_O,i U »F—o,k U ./T"_O,_k.

Thus, in these conditions, we must impose |F_,| = 8, with Uiy € F_,_j i _m,
Us € Footot—n and Uiy € F_ok 14, with u € {j,m}. Therefore, we can have a
complete admissible characterization of all codewords of G_, U F_,. Then, we must
analyze one other set G, U F, for a € Z\{i, —o}.

Let us consider the index —k € Z. Until now the index distributions of the following

codewords of G_; U F_,, are characterized:

W2 ) j —1 n —k U5 1 —k m (0]
W | —o| —i| 5 | =k| m U | @ | =k| 1 —0

Uy | —o|l =3 | k| —-m
U13 —o| =k | —I —n

Table 5.51: Index distribution of codewords of G_, U F_,.
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By Corollary 4.3 it follows that 4 < |G_x| < 7 and so we must identify in G_y, at least,
two more codewords. To do it, we will consider the partition Q of Z\{i, k, —k, —o}

induced by the codewords Wy, Uyg, U1, U1z € G —o U F_ ot
Q1 ={—i,j,m}; Q={l}; Q={—j,—m}; Q={-l,—n}; Qs={n}; Qs={o}.

W e G, \(GiUG_,) is such that W € G_ 1, wpws.ws, then wy,.. wy € QU - U Qg
and [{wq,...,w} NQ, <1forq=1,...,6. We note that, |G_;,;| = 1, |F_j;| = 3,
|G_k—o| =1 and |F_ _,| = 3. Accordingly, by Lemma 2.2 the codewords presented in
Table 5.51 are the unique ones in G_j; U F_j; UG_j _, UF_j _,. Taking into account
the index distribution of the codewords of G; U F; UG_, U F_, and Lemma 1.5 we get
the following hypotheses for the codewords W € G_,\(G; UG_,):

—k|—i| [ |—m|o —k| —i| =l | —m
—k|—i| I | —n | o —k|—i| =5 | —n
—k | J Il | —m o —k| —i| —m| n

Table 5.52: Possible index distributions for W € G_;\(G; U G_,).

Taking into account Lemma 1.5, the analysis of the possible index distributions for
W e G, \(G: UG_,) described above, leads us to conclude that |G_x\(G; UG_,)| < 2
and, consequently, |G_j| = 4. Furthermore, the codewords Wio, W11 € G_x\(G; UG_,)

satisfy one of the following conditions:
1) Wio € G ji—no and Wiy € G_j i 1 _.o;
2) WlO S g—k,j,l,—n,o and Wll € g—k,—i,—m,n,w

Next, for each one of these hypotheses we will concentrate our attention in the
codewords of F_,. We note that, until now, only five codewords of F_, are chara-
cterized. Since |G_x| = 4, by Lemma 2.10 we have |F_g| = 10 or |F_i| = 11. Therefore,
we must identify in F_j, at least, five more codewords.

Suppose that Wi, Wi, € G, \(G; U G_,) verify the conditions in 1), that is,
Wio € Gk ji—no and Wi1 € G i 1 o Having in mind all known index distri-
butions of the codewords of G; U F; UG_, U F_, U G_ and Lemma 1.5 we get the
following possible index distributions for U € F_;\(F; U F_,).
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Figure 5.8: Possible index distributions for U € F_;\(F; U F_,).

That is, if U € F_,\(F; UF_,), then U € F_g_;; UF _gmn. Considering Lemma
1.5 we get |F_p\(F; UF_,)| < 2. Consequently, since |F_j; UF__o,| = 5, we get
|F_x| <7 which is an absurdity. Assuming that Wiy, W11 € G, \(G; UG_,) satisfy the
conditions in 2), following a similar reasoning we obtain again |F_;| < 10. Therefore,
we conclude that although we can characterize the index distribution of all codewords
of G;UF, UG ,UF_,, when we consider one other element in Z\{i, —o}, in this case,

—k € Z, we get contradictions on the definition of PL(7,2) code.

Considering the index distribution of the codewords of G; U F; presented in Table
5.48, for any possible index distribution of the codewords of G_, we always end up, as

in the presented examples, with one of the following conclusions:

— it is not possible to characterize the index distribution of all codewords of F_,;

— we can describe the index distribution of all codewords of F_, but when we
consider other element o € Z\{i, —o} it is impossible to characterize the index

distribution of the codewords of G, U F,.

Consequently, the index distribution for the codewords of G; U F; presented in Table
5.48 contradicts the definition of PL(7,2) code.
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Example 3

As we have said at the beginning of this section, we would analyze all obtained in-
dex distributions for the codewords of G; U F; considering other sets G, U F, for
a € T\{i}. We have also said that we would give preference to the elements o € Z\{i}
so that |G;s| is minimum and |F;,| is maximum. In the previous examples, considering
the codewords of G;, we have verified the existence of elements o € Z\{i} satisfying
|Gia| = 0, concentrating our attention on these elements. However, there are index
distributions for G; U F; in which |G;,| > 1 for all a € Z\{i, —i}, in particular, when
| 7| = 4. In these cases, the criterion to choose the element o € Z\{i, —i} is the same,
that is, we give preference to the elements for which |G;,| is minimum, concentrating
our attention on the elements which satisfy |G;,| = 1 and |F;4| = 3. We note that, by
Lemma 2.2, if |G;,| = 1, then |F,| < 3.

The following example describe one of these cases.

Suppose that the index distribution of the codewords of G; U F; satisfy:

Wil 1 7J k l m Ui | ¢ Jj | —m| —o
Wy | 4 R Uy | ¢ k -1 0
Ws| @+ |—-k|—j|—-m| o Us | « | —5| 1
Wil 4 k| —j| —n]|—-o Uy | © | =k| m | —n
Us | i | K |—-m| n
Us | 1 [l | =k | —o
U; | 1 | m n
Ug i [ —n
Uy | i |-l | —m]|—n
Ug | ¢ |-l | m | —o

Table 5.53: Index distribution for the codewords of G; U F;.

In this case for all & € Z\{i, —i} we have |G;,| > 1. Thus, as said before, we will focus
our attention on an element o € Z\{i, —i} satisfying |G;o| = 1 and |F;4| = 3. There
are several elements in these conditions, let us consider the element —o € Z. Since we
have characterized the index distribution of one codeword of G_,, Wy € G, i —j _—n o,

taking into account Corollary 4.3 we must identify, at least, three more codewords in
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G_,. We note that, if |G_,| = 4, then by Proposition 5.1 we get |G_, ;| < 2 and,
consequently, |G_,\G_;| > 2. On the other hand, if |G_,| > 5, since from Lemma
2.2 it follows that |G_, ;| < 3, then |G_,\G_;| > 2. As |G_,;| = 1, in both cases
we have |G_,\(G; UG_;)| > 1. This is one of the differences when we compare this
example with the previous examples. In the examples presented before we had to
impose |G_,\(G; U G_;)| > 2. We could think that in this example there are more
possible hypotheses for the index distribution of W € G_,\(G; UG _;), however since we
have identified one codeword in G_,;, its index distribution contributes to restrict the
possibilities for the codewords of G_,\(G; UG_;), as we will see.

As in the previous examples, to simplify the characterization of possible index
distributions for W € G_,\(G;UG_;), we will consider the partition P of Z\{i, —i, 0, —o}
induced by the codewords Wy € G; _, and Uy, U, Uig € Fi —o:

Pr=A{k,—j,—n}; Pa={j,—m}; Ps=A{l,—k}; Pa={-lym}; Ps={n}.

Considering this partition as well as the index distribution of the codewords of G; U F;

and Lemma 1.5, we conclude that if W € G_,\(G; UG_;), then
W e g—o,—j,—l,—m,n U g—o,—j,—k,m,n'

Taking into account Lemma 1.5, we must impose |G_,\(G;UG_;)| < 1. Since |G_, ;| = 1,
we get |G, ;| > 2. By Lemma 2.2, |G_,_;| < 3, consequently, |G_,|] = 4 or
|G_o| = 5. Next, we proceed as in the previous examples, we characterize all pos-
sible index distributions for the codewords of G_, _; and for each one of the possible
index distributions of the codewords of G_, we try to characterize all codewords of
F_,. Similarly to the other presented examples, we always get contradictions on the
necessary conditions for the existence of PL(7,2) codes, concluding again that the index

distribution for the codewords of G; U F; presented in Table 5.53 are not allowed.

Although we have presented here only some examples, we have scrutinized all pos-
sible index distributions for the codewords of G; U F;, applying the reasoning presented
in this section, ending always up in a contradiction. In fact, for all of them it is always
possible to find an element o € Z\{i} for which it is not possible to characterize com-
pletely the index distribution of all codewords of G, U F,. Thus, we are in conditions

to enunciate the following theorem.
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Theorem 5.1 For any o € Z, |G,| # 4.

As an immediate consequence of Theorem 5.1 and Corollary 4.3 we get:

Corollary 5.1 Forany o € Z, 5 < |G,| < 7.
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Chapter 6

Proof of |G;| # 5 for any 1 € Z

In the previous chapters it is proved that the assumption of being a perfect 2-error
correcting Lee code of word length 7 over Z" is contradicted when |G,| € {3,4,8},
a € Z. As an immediate consequence we get 5 < |G,| < 7 for any o € Z. Here, we

analyze the hypothesis |G,| = 5 for some a € 7.

Let us then assume |G;| =5 for ¢ € Z.
Since, from Lemma 2.2, |G;,| < 3 for any a € Z\{i, —i}, we will distinguish the

cases:
1) |Gia| = 3 for some a € Z\{i, —i};
2) |Gia| < 2 for any « € Z\{i, —i}.

In this chapter we study, separately, these two hypotheses. For each one of them we
derive, initially, some conditions that must be satisfied by elements of Z, which will be
useful for the characterization of the codewords of G; U F;. As we will see, in both cases
there are different possible index distributions for the codewords of G; U F; satisfying
the definition of PL(7,2) code, however, considering other elements of Z\{i}, we will
verify that any concretization of G; U F; contradicts the definition of perfect Lee code,

proving that |G,| # 5 for any « € Z.

157
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6.1 |G;.| =3 for some o € T\{i, —i}

Throughout this section we assume the existence of an element o € Z\{i, —i} satisfying

|Gio| = 3. Since we have considered
I = {Z7 _i>j7 _j7 k? _ka l? _l> m,—m,n,—n,o, _0},

we assume, without loss of generality, |G;;| = 3.

This section is divided into three subsections. In the first one we present some
results which help us to get all possible index distributions for the codewords of
G; U F;, that will be given in the second subsection. In last subsection we prove
through illustrative cases that any set G; UF; does not satisfy the definition of PL(7, 2)

code.

6.1.1 Necessary conditions for the index distribution of the

codewords of G, U F;

Let us consider |G;| = 5 and |G;;| = 3. Then, by Lemma 2.11, 7 < |F;| < 10.

The following proposition restricts even more the variation of |F;|.
Proposition 6.1 If |G;| =5 and |G;;| = 3, then |F;;| =0 and 8 < |F;| < 9.

Proof. Since |G;;| = 3, from Lemma 2.2 it follows that
Dij U Eij| + 2| Fig| + 9 = 10,

implying |F;;| = 0 and |D;; U &;j| = 1.

As |G;| = 5 and |G;;| = 3, by Lemma 2.15 we get 8 < |F;| < 10. Supposing |F;| = 10,
by Lemma 2.1 we must impose |D; U ;| = 0, which contradicts |D;; U &;;| = 1. There-
fore, 8 < |F;| < 0. O

It is possible, up to an equivalent index distributions, to characterize all codewords

of G;;, as we will see in the next proposition.
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Proposition 6.2 The index distribution of the codewords Wy, Wy, W3 € G;; satisfies:

Proof. Let W;,W, and W3 be the codewords of G;; satisfying Wi € Gijuw,wowss
Wo € Gijwgwsws ad W3 € Gijwprwgwg, With wy, ..., we € I\{i,—i,j,—j}. By Lemma
1.5, wy,...,wg must be pairwise distinct. Since {wy,...,we} C Z\{4, —i,j,—j} and
|Z\{i, —1, j,—75}| = 10, with Z\{i, —i, j, =7} = {k, =k,l, =1, m, —m,n, —n, 0, —o}, there
exists a unique element o € {k, —k, [, —l,m, —m,n, —n, 0, —o} so that |G;;,| = 0.
Suppose, without loss of generality, that Wi € Gjjpm. In these conditions, we
get wy, ws, ..., we € {—k,—l,—m,n, —n,0,—o}. Considering W5 € G;ju,wsws, We note
that [{wy,ws,we} N {—k,—1,—m}| # 0, otherwise, there are w,w’ € {wy,ws,ws}
such that w = —w’, which is not possible. Considering W3 € Gijuwrwsws, apPply-
ing the same reason, we conclude that |[{wr,ws,we} N {—k,—1,—m}| # 0. Thus,
1 < {wy, ws, we} N {—k,—1,—m}| < 2. Next, we analyze, separately, the hypotheses
{wy, ws, we} N {—k,—1,—m}| = 2 and |{wy, ws,ws} N {—k, —l, —m}| = 1, supposing,

respectively:
Z) W2 E giaj’_ky_Ln;
it) Wy € Gij—kmo-

If Wy € G; j—k,—i1,n, the codewords of G;; have the following index distribution:

Wa | i|j| k l
W2 1 ] —k -1 n

Ws |+ | 5| —m | —n| o

Table 6.1: Index distribution of the codewords of G;; supposing Wa € G; j i —1n-
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Let us now assume that W5 € G, j i 0. In this case, focusing our attention on the
index distribution of W7, we must, in principle, distinguish the following two possibi-

lities:

Wy lil|g| k l m Wililjg| k l m
Wo li|g|—k| n 0 Woli|j|—k| n 0
Ws 2|5 -l |—-m|—-n Ws t|j5| -l ]| —-n|—-o

Table 6.2: Index distributions of the codewords of G;; supposing W € G; j _.n.o-

But analyzing carefully the index distributions presented in Tables 6.1 and 6.2,
we verify that they are equivalent. In fact, any one of them induces a partition of

I\{i,—i,7,—j} of the type:

{a, 8,7} {—a,=B,6}; {—v,—6,0}; {0}

with {«, 8,7,0,0} = {k,l,m,n,o}. O

Taking into account the previous proposition, we will assume for the index distri-

bution of the codewords Wi, Wy, W5 € G;; the one given in:

Wy i\ g | kK | L | m
Wo | i | j| -k | -1 | n

Ws 2| 5| —m | —n| o

Table 6.3: Index distribution of the codewords of Gi;.

The index distribution of the codewords of G;; induces a partition P of Z\{i, —i, j }:
P =A{k,l,m}; Py ={—k,—l,n}; Ps={-—m,—n,o}; Py={—0}; Ps={—j}. (6.1)

This partition will be useful in the characterization of the codewords of G; U F;.
In fact, taking into account Lemma 1.5, if W € G\G;, with W € Giuywowsuw, and
wy, ..., wy € I\{i,—i,7}, then [{wy,...,ws} NPy < 1, {wy,...,ws} NPs| <1 and
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[{wi,...,ws} NP3| < 1. The same reasoning is valid for the index distribution of the
codewords of F;.

Until now —o and —j are the unique elements in Z\{—i} which are not used in
the index distribution of the codewords of G;;. Particular attention will be given to
these elements in the characterization of the codewords of G; U F;. Let us consider the

subsets of, respectively, G; and F;:
H={W € Givwswsws : W1 €EP1 A wo € Py A w3 € P3 A wy € {—0,—j}}

and

J:{Ueﬂulugw:mEPl A Uy € Py /\U3€P3}.

Taking into account the partition of Z\{i, —1, j}, see (6.1), we get
G\G; =HUGi 0

and

F=JUF o UF

We recall that |G;\G;| = 2, since we are assuming |G;| = 5 and |G;;| = 3. Besides,
by Proposition 6.1, 8 < |F;| < 9.

Next, we present results which impose conditions on the index distribution of the
codewords of (G;\G,) U F; by the establishment of relations between the cardinality of
the sets H, J, Fi—, and F; _j. The following proposition will be useful to obtain the

refereed relations.
PI'OpOSitiOIl 6.3 The set Di,j,—o U gz}j,—o satisﬁes |Di,j,—o U gi,j,—o| = 1.

Proof. Let V = (vy,...,u7) be a word of type [£1%] so that |v;| = |v;| = |v_| = 1.
This word must be covered by a codeword of D, ; _,U&; ; o UF;; _oUG;, .

Taking into account the index distribution of the codewords of G;;, |G, ; —,| = 0 and,
by Proposition 6.1, |F;;| = 0. Consequently, |D;; _,UE; j_,| > 1. Considering Lemma

1.5 we conclude that |D;; _,U&; ;| = 1. O

©0,—

The following proposition restricts the variation of |[H U 7|, |H| and |T].
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Proposition 6.4 The sets H and J satisfy |H U J| < 6. Furthermore, 1 < |H| < 2
and |J| < 5.

Proof. Let W € H and U € J be such that W € Giuyuwpws and U € Fiyyupus, With

wy, U1 € P, wo, us € Py and ws, uz € Ps, where:
P = {k7l7m}7 Py = {_k7 —l,n}, P3 = {_ma -n, O}'

Assuming by contradiction that |H U J| > 7, there exists, at least, one ele-
ment o € P; such that |H;o U Jiw| > 3. We note that, H,, is denoting the set
{W e H:W € Gi}. On the other hand, J;, represents the set {U € J : U € F;,}.
Let Vi, V5, V3 € Hin U Jia satistying:

Vilit | ol v | v
Vo | © | o | vg | vy
Va | i | o | v5 | vg

Table 6.4: Index distribution of the codewords Vi, V5, V3 € H;o U Jia-

where vy, v3,v5 € Py and vy, v4,v6 € P3. By Lemma 1.5, we must impose vy, ...,
pairwise distinct, consequently, {vy,...,v6} = Py U P3, which is an absurdity since
—a € Py U Ps. Therefore, [HU J| < 6.

The condition |#H| < 2 is obtained immediately, since H C G;\G; and |G;\G;| = 2.

Assume, by contradiction, that |H| = 0. Taking into account the partition P of
I\{i,—i, 7}, see (6.1), W,W' € G;\G; must satisfy W, W' € G, _,_;, contradicting
Lemma 1.5. Therefore, 1 < [H| < 2.

Since [HU J| <6, [H| >1and HNT = &, we get |J| < 5. O

By the above proposition we get 1 < |H| < 2. The next two results allow us to
obtain conditions for the codewords of F; when |H| = 1 and |H| = 2, respectively.
In particular, as F; = J U F; _, U F; _;, more precisely, we get conditions for the

cardinality of J, Fi _,, Fi—; and F; _, _;j.
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Proposition 6.5 If |H| = 1, then 3 < |J| < 5 and |F;_o—;| = 0. In particular,

considering Wy € H one has:

i) if Wy € Gi_p, then 4 < |J| < 5. Moreover, if |J| = 4, then |F;_,| = 1,
|\Fi—j|l =3 and | Fi| = 8;

it) if Wy € G;_j, then 3 < |J| < 5. Moreover, if |J| = 3, then |F;_,| = 3,
|\ Fi—jl =2 and |F;| = 8.

Proof. Assuming |H| = 1, let us denote by W, the only codeword of H. As
G\G; =HUG; _,_; and |G;\G,| = 2, there exists W; € G, _, _; and so, by Lemma 1.5,
| Fi—o,—il = 0.

Consider the partition P of Z\{i, —i, j}:
Pl = {k7 lam}y PZ = {_k7 _lan}v 7)3 = {_m7 —-n, 0}7 7)4 = {_0}7 7)5 = {_]}

By definition of H, Wy € Giwwpwsws, With wy € Py, wy € Py, wy € Ps and

wy € {—0,—7}. Then, we must consider the two following hypotheses:
Z) W4 € gi,fo;
ZZ) W, € Qi7,j.

In what follows it will be useful to recall the following equation obtained from
Lemma 2.2:

|Dia U Eia| + 2| Fial + 3|Gia| = 10, (6.2)

for any o € Z\{i, —i}.

Suppose that W, € G; _,. Concentrating our attention on —o € Z, we verify that,
since W5 € G, _, and |G, j_o| = 0, |G; _,| = 2. By Proposition 6.3, |D; _, U&; _,| > 1.
Having into account (6.2), we conclude that |F; _,| < 1.

Let us now focus our attention on —j € Z. Note that, W5 is the unique codeword
in G; _; (|Gi—;| = 1). Consequently, by (6.2), |F; _;| < 3.

Taking into account that we have concluded before, |F; _, U F; _;| < 4.

Now, by Proposition 6.1, 8 < |F;| < 9. As F, = J U F,_, U F;_j, it follows that
| 7| > 4. Having in mind Proposition 6.4, 4 < |J| < 5. If, in particular, |J| = 4, then



164 6.1. |Gia| = 3 for some o € T\ {3, —i}

|\ Fi—o UF;_j| =4, with |F; _,| =1, |Fi_;| =3 and |F;, _,_;| = 0. In these conditions
7l=s

Now consider that W, € G; _;. Since W5 € G; _, _;, then |G, _;| =2 and |G; _,| = 1.
Taking into account Proposition 6.3, |D; _, U &; _,| > 1 and by (6.2) it follows that
|Fi—o| < 3. Furthermore, |F;_;| < 2. Consequently, |F; _, U F;_;| < 5 and, since
| Fi| > 8, we get | J| > 3. Now considering Proposition 6.4, one has 3 < |J| < 5.

If |J| =3, then |F;, _, UF, _;| =5, with |F, _,| =3, |Fi_;| =2 and |F;_,_;| =0,
and so |F;| = 8.

Thus, independently of the index distribution of W, € H, we conclude that
3<|J]<5. O

Proposition 6.6 If |H| = 2, then |G;_,—j| = 0 and 3 < |J| < 4. In particular, if
|T| = 3, then |F;| = 8 and considering Wy, W5 € H.:

i) if Wy,Ws € Gi_,, then either |F;_;j| = 5, or, |Fi_j| = 4, |Fi_o| = 1 and
|E,—o,—j‘ =0;
it) if Wy, W5 € G, _;, then either |F,_,| = 4, |Fi_j| = 2 and |F;_o_;| = 1, or,
|Fio| =4, |Fi—jl =1 and |F; —, ;| = 0;
i) if Wy € Gi_, and W5 € G;_;, then either |F,_,| = 3, |Fi—j| = 3 and

|\Fico—il =1, or, |Fi_o| =2, |Fi_;| =3 and | F; —o—_j| = 0.

Proof. Let Wy, W5 be codewords in H. The condition |G; _,_;| = 0 comes imme-
diately from the definition of H.

By Proposition 6.4, |H U J| < 6. As we are assuming |H| = 2, then |J| < 4.
The proof of | J| > 3 is obtained from the analysis of each one of the hypotheses for
Wy, Ws € H:

i) Wi, Ws € Gi _;
it) Wy, Ws € Gi—j;

ZZZ) W4 € Qi7,o and W5 € giy,j.
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Let us suppose that Wy, W5 € G; _,. In these conditions, since |G, ;_,| = 0, we
have |G; _,| = 2 and |G; ;| = 0. Focusing our attention on —o € Z and taking into
account that, by Proposition 6.3, |D; _,U&; _,| > 1, considering (6.2) we conclude that
|Fi—o| < 1. Now concentrating our attention on —j € Z and considering again (6.2),
we get |F; ;| < 5.

If |Fi—j| = 5, by Lemma 2.5, |F; _; _,| = 1 and, consequently, |F; _, U F; _;| <5.
On the other hand, if |F; _;| < 4, we conclude also |F; _, U F; ;| < 5. Thus, taking
into account that F; = J UF; _, U F; _; and that, by Proposition 6.1, 8 < |F;| <9, in
both cases we must impose |J| > 3. If |J| = 3, then |F;, _, U F;_;| =5 and |F;| =8,

furthermore one of the following conditions must occurs:
- |~7:i,—j| = 9;

— [Fil =4 |Fiol = Land | Fi o | = 0.

Now assume that Wy, W5 € G; _;. In these conditions, |G; _;| = 2 and |G, _,| = 0.
Considering —j € Z, from (6.2) it follows that |F; _;| < 2. Focusing our attention on
—o € Z, taking into account Proposition 6.3 and (6.2), we conclude that |F; _,| < 4.

If |Fi—;| = 2, then the codewords Wy, W5 € G, _; and Uy,U, € F;_; are such
that Wi € Gi —juwiwswss W5 € Gi—jwawsws> Ut € Fi—jurue a0d Uy € Fi s 0y, With
Wiy .oy, Wey U, ... Uy € I\{i,—1,j,—7} pairwise distinct. As |Z\{i,—1,75,—j} = 10
and |G; _,_;| =0, it follows that |F; _; _,| = 1. In these conditions, |F; _, UF; _;| < 5.
Assuming |F; _;| < 1, we get again |F; _, U F; _;| < 5. Thus, independently of the
cardinality of F; _;, |Fi_o U F;_;| < 5. As, by Proposition 6.1, 8 < || < 9, and
Fi=JUF,_,UUF, _,;, then we must impose |J| > 3. If |[J| = 3, then |F;| = 8 and

one of the following conditions must occurs:
— [Fi—l =2, |Fiol =4 and | Fi o ;| = 1
— |Fi—jl =1and |F,_,| =4 and |F; _,_;| = 0.
Consider Wy € G, _, and W5 € G; _;. Accordingly with what is being assumed,

|Gi—o| = |Gi—;| = 1. Consequently, by (6.2), we get |F;_,| < 3 and |F;_;| < 3.

Suppose that |F;_,| = 3. Since |G;_,_;| = 0 and, by Proposition 6.3, there
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exists V € D, _,; U& _,;, then the codewords Uy, Us,Us € F;_, and Wy € G, _,
are such that Uy € Fi oy uzs U2 € Fi—oususs Us € Fi—omsug a0 Wi € Gi 01 g s
with wuy, ..., ug, w1, wo, w3 € IZ\{i,—i,0,—0,7}. Since |Z\{i,—i,0,—0,j}| = 9 and
wy, we, w3 # —j, then |F; _,_;| = 1. Then, independently of the value of |F;_,| we
conclude that |F; _, U F; _;| <5 and, consequently, || > 3. If |J| = 3, then |F;| =8

and one of the following conditions is satisfied:
— [Fiol =3, [Fijl =3 and | Fi o[ = 1;

— |~7:i,—o| = 2, |E7_‘j| =3 and |f;,—o,—j| =0.

The index characterization of the codewords of G; U F; is mostly based in Proposi-

tions 6.5 and 6.6, as we will see next.

6.1.2 Index distribution of the codewords of G; U F;

Here our aim is to show a possible method to obtain all possible index distributions
for the codewords of G; U F;, taking into account that, by assumption, |G;| = 5 and, by
Proposition 6.1, 8 < |F;| < 9. Applying the results derived in the previous subsection,
manly Propositions 6.5 and 6.6, we identify many possible index distributions for the
codewords of G;UJF;. By this reason, in this subsection we present only some illustrative

and representative cases in which the described method is used to obtain them.

In last subsection we have considered the subsets H C G;\G; and J C F; defined
by

H ={W € Givyupwsuws : W1 € P1 A wa € Py A w3 € P3 A wy € {—0,—j}}

and

T =AU € Finjugus : t1 € P1 A us € Py A uz € Ps},
with Py, Py and P elements of the partition P of Z\{i, —i, j} induced by the codewords
of G-

Pl - {ka l7m}7 PQ - {_ka _lan}a 733 - {_m7 —-n, 0}7 P4 - {_0}7 7)5 — {_]}
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By Proposition 6.4, 1 < |H| < 2. If |H| = 1, with Wy € H, then W, € G, _,
or Wy € G;_;. On the other hand, if |H| = 2, then W,, W5 € H satisfy one of the
following conditions: Wy, W5 € G; _o; Wy, W5 € G; _j; Wy € G; _, and W5 € G; _;. We
shall present some representative cases of possible index distributions for the codewords

of G; U F; in which all of these possibilities for the codewords of H are satisfied.

The characterization of codewords of H and 7 is based on the elements of Py, Py
and P3. The following table presents all possible combinations between the elements

of these sets:

s
o | D] =] T h | e ] | e

-5
o ol I
{ o
no| -
o 10
-2 | -k 11
- 12
b -k 13
o -f 14
» 15

Table 6.5: Combinations between the elements of Py, Py e Ps.

From the above table we obtain all possible index distributions for the codewords
of H and J. In fact, it W € H, then W € G; w1 wsws 0T W € Gi _jo1 wo,ws, With
w1, we and ws satisfying one of the conditions presented in the table. If U € 7, then

U € Fiujugus, With uq, ue and ug satisfying one of the hypotheses described.

We recall that, by Lemma 1.5,
|Dia6 U gz’aﬁ ) Eaﬁ U giaﬁ’ - 17

for any «, 5 € Z\{i, —i} satisfying |a| # |5|. This means that, for example, we can not
consider W € H satisfying W € G; o5 —1,—m and U € J such that U € F;; _;,, since
W,U € Gik,—1UF;—. In what follows we will apply frequently this lemma does not

being many times referenced.
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e |H|=1and W € H satisfies W € G, _,

Let Wy, € H such that Wy € G;_,. By definition of H, Wi € Gi 0w wows With
w1 € P1, we € Py and w3 € P3. Taking into account Py, Py and Ps3, we get, up to an
equivalent index distributions, the following hypotheses for W, € H: Wy € G; o . —i;
Wy € Gi—o—min- In fact, when we chose an element of Ps to be index of Wy, observing
P1 and Py we verify that it is indifferent to select —m or —n, on the other hand, being
chosen —m, when we get an element of Py, it is also indifferent to chose k or [. Thus,
for example, if we consider Wy € G, _, _,, _k,; this index distribution is equivalent to
Wy € Gi—o—mp—1- In fact, permuting m with n, & with —k and [ with —[ we get the
same partition P of Z\{i, —i,j}.

It is possible to characterize W5 € G;\(G; U H) when Wj satisfies each one of the
referred hypotheses. Since W5 & H, then W5 € G; _o _j wy w, With wy,wy € PyUP,UPs.
We note that, by Lemma 1.5, [{wy, wa} NP,| < 1 for p € {1,2,3}. Taking into account
Wi,...,Wy € G; described at this moment, we get the following possibilities for Wjy

when Wy € G, _» i~ and Wy € G; _y _ im, T€SpPeCtively:

1\ Ws ¢ | —o| =5 | I | k||| W5 @ |—0|—5| | | —k
21 W5 ¢ | —0o| —j | I n (|2 Ws ¢ | —0o| —j| m | —k
I W5 ¢ |—o| —j| m | —k||3| W5 ¢ |—0|—3| m | —I
4\ Wsl @ | —o| —g | m | n |[|[4| W5 ¢ | —0| —3| | | —n
5| Ws| ¢« | —0o| =5 | I | —m||b| W5 ¢ | —0|—75| m | —n
6| Ws| @ |—0o|—=j| m |—-n|6|Ws ¢ |—0|—5|—-k]|—-n
TIWs @ | —o| —j|—k|-n||7T| W5 ¢ |—0|—3]| -l |—n
Table 6.6: W, € gz‘,_@_m,k,_l. Table 6.7: W, € gi7_07_m7k7n.

Since we have characterized all possible codewords of G;, next step consists in the
description of all possible codewords of F;. Recall that, by Lemma 6.1, 8 < |F;| < 9.

Furthermore, from Proposition 6.5, the codewords of F; must satisfy:
—4< T <5

= |Fi—o—j1 = 0;

) )
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— if |J| =4, then |Fi_| = 1, |Fi_;| = 3 and | F;| = 8.

Considering Proposition 6.5, we will characterize the codewords of F; distinguishing
the cases: |J| = 5 and |J| = 4. Next we present examples in which for a certain

characterization of G;:
1) it is not possible to describe all codewords of F;;
2) the characterization of F; depends on the cardinality of J;

3) the characterization of F; does not depend on the cardinality of J.

Example 1: It is not possible to describe all codewords of F;.

Let us consider Wy € G; _y 1.~ and W5 € G; _, _;; 1. Since, by Proposition 6.5,
4 < |J| <5, we begin by analyzing possible codewords in 7. From the analysis of Table
6.5 and taking into account Lemma 1.5, if U € J, then U € FipnoUFitn UF;m —nUFimeo-
Thus, considering again Lemma 1.5, we conclude that | 7| = 4. Accordingly, we get

two possibilities for the codewords Uy, ..., Us € J:

U | © | k| n 0 U | ¢+ | k| n 0

U | 1@ l n | —m Us | 1 { n | —m
Us| i |m|—n| —k Us| i |m|—-n| —I
Uy | 2 |m| o —1 Uy | 2 |m| o —k

Table 6.8: Possible index distributions for the codewords of 7.

To complete the characterization of the codewords of F;, we recall that, by Propo-
sition 6.5, since |J| = 4, we have |F;| = 8, in particular, |F; _,| = 1, |F; ;| = 3 and
| Fi~o—jl = 0.

Consider Uy, ..., Uy € J such that Uy € Figno, Uz € Fitn—m, Us € Fim—n—k
and Uy € Fim o1 Since |F; ;| = 3, we begin by describing the index distribution of
the codewords of F; _;. For that, we will consider the following scheme in which all
possibilities for these codewords not contradicting the definition of PL(7,2) code are

presented, considering the codewords of G; U J described until now.
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- T

B m -2 n -3 o

% 4

Figure 6.1: Possible index distributions for U € F; _;.

By the analysis of this scheme, it U € F; _;, then U € F; _; , U F; _jmn. Conse-

quently, |F; _;| < 2, contradicting Proposition 6.5.

Now suppose that the codewords Uy,...,Us € J satisty: Ui € Figno, Uz € Fipn,—m,
Us € Fim,—n,—iand Uy € F; 0 —k. Likewise in the previous case, we begin by describing

the codewords of F; _;:

Lils [ [ |
T _—

[ N
k-l M - M -# e}
\ R
\ P

Figure 6.2: Possible index distributions for U € F; _;.

By the analysis of the above scheme, the codewords Us, Us, U; € F; _; must satisfy:

U5 0 —j -1 o
U | i | =7 | m n
U7 i —j k —n

Table 6.9: Index distribution of the codewords of F; _;.

To complete the characterization of all codewords of F; we must identify the unique
codeword in F; _,. Considering the codewords Wy, W5 € G; _,, if Us € F; o, us, then
uy,ug € {m,n,—n}. That is, Us € F; _omn Or Us € Fi _ym —n. In both cases Lemma

1.5 is contradicted when we consider, respectively, Ug and Us.
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Therefore, the codewords Wy € G; o —pmi,—1 and W5 € G; _, ;i contradict the
definition of PL(7,2) code.

There are many index distributions for the codewords of G; for which it is not pos-
sible to describe all codewords of F; without contradictions. When Wy € G; _ 1 k.1
and W5 assumes, respectively, the index distributions represented by 1,2,3,6 and 7
in Table 6.6, it is not possible to characterize all codewords of F; without facing an
absurdity. We came to the same conclusion when Wy € G; _, _,, p, and W5 satisfies

the conditions 1,5 and 7 in Table 6.7.

Example 2: The characterization of F; depends on the cardinality of J.

Consider Wy € Gi o —mp,— and W5 € G, _, ;1 —n. We begin by identifying all
possible codewords for 7. By the analysis of Table 6.5 and taking into account the
codewords Wy, W5 € G\G,, it U € J, then

Ue -F:L'kno U E,l,fk U —Eln U J—-'i,m,fn U Emo'

Suppose that | 7| = 5. Then, Uy, ..., Us € J must satisfy:

U | 1| k n 0
Us | @ l n -m
Us | 1| I —k 0
Us | 2 | m 0 -1
Us |« | m | —n | —k

Table 6.10: Index distribution of the codewords of 7.

By Proposition 6.1, 8 < |F;| <9, As F; = JUF, _,UF,_j, then |F; _,UF; _;| > 3.
Considering the codewords of G; U J, it U € F; _,, then U € F; _, . Consequently,
| Fi—i\Fi—o| > 2. In the following scheme all possible index distributions for the

codewords of F; _; are described.
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Lelo] [ ]
'\._T_J

ko-k -4 M - ] ]
L s

Figure 6.3: Possible index distributions for U € F; _;.

Thus, |F;—;| < 2. Since |F;—, U Fi_;| > 3 and |F;_,| < 1, we must impose
|\Fi—ol = 1, with Us € F, _omn, and |F,_;| = 2, with Uy € F,_j_k_m and

Us € Fi_jmn- However, the codewords Us and Ug contradict Lemma 1.5.

Now suppose that |J| = 4. By Proposition 6.5, |F; _,| = 1. So, we begin by the
identification of this codeword. Taking into account Wy, W5 € G;\G; and Lemma 1.5,
iftUeF, o, thenU € F, o _kmUFi_omn-

Let us assume that U; € F;_, _km. From the analysis of Table 6.5, we get the

following possible index distributions for the codewords of J:

Us | © | k n 0 Us | © | k n 0
Us | &« |m|—n| —I Us| i« |m]| o -1
Uy | © | 1 n | —m Uy | 1 | 1 n | —m
U5 7 [ —k 0 U5 1 [ —k 0

Uy | 2 |m| o n

Us| 2 |m|—-n| —I

Uy | 1 ) n | —m

Us | 1@ Il | —k| o

Table 6.11: Possible index distributions for the codewords of 7.

By Proposition 6.5, for each one of these possibilities we must identify three code-
words in F; _;. Proceeding as in the scheme of Figure 6.3, we conclude that if the
codewords Us,...,Us € J are such that Uy € Figno, Us € Fimo—1, Us € Fijpn—m and
Us € Fii—ko, then it is not possible to characterize all codewords of F; _;, without

facing a contradiction.
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On the other hand, for Us, ..., Us € J satisfying one of the following conditions:
'L) U2 € Ekno; U3 € Jri,m,—n,—la U4 € E,l,n,—m and U5 € ‘/—_%,L—k,o;
”) U2 € Emnm U3 € J—-.i,m,fn,fly U4 € J—-.i,l,n,fm and U5 € -F.i,l,fk,o;

we get, respectively, the following index characterization for Us, U7, Ug € F; _j:

Us | i | —j| —k|—m Us | @ | —j| —k|—-m

U; | 1 | =3l m n U; | © | —J| k n

Ug 7 —j 0 —1 Ug 1 —j 0 —1
Table 6.12: If 7) is satisfied. Table 6.13: If i7) is satisfied.

In these cases we are able to describe completely all codewords of G; U F;, without

facing an absurdity as we show next.

If Uy € Fi—omn, considering Table 6.5, and taking into account Wy, W5 € G;\G;, we
identify eleven possible index distributions for the codewords of 7, however for each
one of them we conclude, applying a similar reasoning to that one described in the
scheme of Figure 6.3, that it is not possible to describe all codewords of F; _; without

contradicting the definition of PL(7,2) code.

Thus, for Wy € G o _mi— and W5 € G; _, _;; _,, there exist only two possible

index distributions for the codewords of F;:

U | @ | —o| =k | m U | © | —o| =k | m
Uy | i | k| n 0 Uy | i |m| o n
Us| i |m|-—-n| —I Us| i |m|—-n| —I
Uy | @ ) n | —m Uy | @ ) n | —m
Us | 1 I | —=k]| o Us | 1 Il | —=k| o
Us| @ | —j| =k | —m Us | © | —j| =k | —m
U:; | 1 | —j| m n U; | © | —7| k n
Us| @ | —j| o —l Us| @ | —j| o —l

Table 6.14: Index distributions for the codewords of F;.
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Example 3: The characterization of F; does not depend on the cardinality of 7.

Let us consider Wy € G; _y i~ and W5 € G; _, _j . In this case, as we will see,
it is possible to characterize all codewords of F; satisfying the definition of perfect Lee

code when |J| =4 as well as when |J| = 5.

First assume that | 7| = 5. From the analysis of Table 6.5, we get the two possible

index distributions for the codewords of 7:

U | ¢+ | k| n 0 U | ¢+ | k| n 0
Us | ¢ [ n | —m Us | ¢ [ n | —m
Us | 1 Il | —k| —n Us | ¢ Il | —k| o
Uy | i |m| —n| —I Uy | i |m| —n| —k
Us| i« |m| o —k Us| i |m| o —

Table 6.15: Possible index distributions for the codewords of J

By Proposition 6.1, 8 < |F;| < 9. Since F; = JUF, _,UF,_; and |J| =5, then
“E,fo U -F.i,fj’ 2 3

Suppose that the codewords Uy,...,Us € J are such that: Uy € Gikno; Uz € Gi1,—m;
Us € Git—k—n; Us € Gim—n—1; Us € Gimo—k. Let us analyze the set F; _,. Consi-
dering the codewords of G; U J and Lemma 1.5, we conclude that if U € F; _,, then
U € Fi—ouus With uy,us € {—k, 1, —n}. Taking into account the codeword Us;, we
must impose |F; _,| = 0, consequently, |F; ;| > 3. Following a similar reasoning like
the one applied in the scheme of Figure 6.3, we obtain the following hypotheses for the

codewords of F; _;:

Us| i | —j| -k | —-m Us | i | —j| -k | —m
U7 1 —j k —n U7 1 —j k —n
Ug 1 —j ] [ Ug 1 —j 0 —1

Table 6.16: Index distributions of the codewords of F; _;

And so all codewords of F; are characterized.
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Now assume that the codewords of J satisfy: Uy € Gikno; Uz € Gitnm;
Us € Git—ko; Us € Gim—n—i; Us € Gimo—1. In this case it is possible to identify
a unique codeword in F; _,: Us € F; o1 —n. Let us consider the set F; _;. Note that,
as |Fi_o UF;—;| > 3 and |F;_,| < 1, then |F;,_;| > 2. In the following scheme all

possible index distributions for the codewords of F; _; are presented:

Lils] [ |
Jk._w_.z
k—kfrf —{ —;}z -\—1?2 o]

N s

Figure 6.4: Possible index distribution for U € F; _;.

Thus, it U € F,_;, then U € F, _; __pm U Fi,—j,—n. Consequently, |F;_;| < 2.
Accordingly, there exist two possible index distributions for the codewords of

'F:L*o U Evij:

Us | © | —o| I —n Us | © | —o| I —n
U; |+ | —j| =k | —m U; | i@ | =3 =k | —m
Ug 7 —j —n —1 Ug 1 —j k —n

Table 6.17: Index distributions of the codewords of F; _, U F; _;

Once again it was possible to characterize all codewords of F;.

Let us now assume that | 7| = 4. Applying the same strategy used in the analysis
of the condition |J| =4 when Wy € G, _, i and W5 € G; _, _;; _,, (Example 2), we
obtain possible index distributions for all codewords of F;. In fact, for Wy € G; _ 1 1,1
and W5 € G; _o _jm.n We get, under the assumption |J| = 4, twenty three distinct index
distributions for the codewords of F;.

In Example 2, when considered Wy € G; _o _mr,— and W5 € G; _, ;1 —n, we have
characterized only two possible index distributions for the codewords of F;. However,
for certain index distributions of Wy, W5 € G;\G; there are many hypotheses for the

codewords of F;. The example which is being now considered is one of these cases.
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e |H|=1and W € H satisfies W € G, _;

Assume that |H| = 1 and Wy € H is such that Wy € G, _;. By definition of #,
Wi € Gi_jwn wanws With wy € Py, wy € Py and ws € Ps. We recall that Py = {k, [, m},
Py ={—k,—l,n} and P3 = {—m, —n,0}. Up to an equivalent index distributions, W,

satisfies one of the following conditions:

Wyl @ | =gl k| —=1l]|—m
Wyl @ | =gl k| n|—m
Wyl @ | =gl k| —=l] o
Wyl @ | —J| k| n

Wil @ | —jlm| n

Table 6.18: Possible index distributions for W, € H.

Next step consists in the characterization of all possible index distributions for
W5 € G:\(G; UH) when W, assumes one of the conditions presented in Table 6.18.
We note that, since W5 ¢ H, then W5 € G, _,_;. In Tables 6.19, 6.20, 6.21, 6.22
and 6.23 all possible index distributions for W5 are described, when Wy € G; _j & —1—m,
Wi €Gi_jkm—m Wi €Gi_jk—to» Wa €Gi_jrnoand Wy € G _jno, respectively.

For each one of the presented index distributions of Wy, W5 € G;\G, we try to
characterize F;. We recall that, by Proposition 6.1, 8 < |F;| < 9, furthermore, from

Proposition 6.5 it follows that:

- 3< [T <5
- |~7:i,—0,—j| = 0;
— it |J| =3, then |F, _,| =3, |Fi—j| =2 and |F;| =8.

As in the previous case, for certain index distributions of Wy, W5 € G;\G; it is not
possible to describe all codewords of F; without facing a contradiction. In some cases it
is only possible to find out possible codewords for F; when | 7| assumes certain values

and, in other situations, we can characterize F; independently of the cardinality of 7.
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—k

—l

—n

—J
—J
—J
—J
—J

—0

—0

—0

—O0

—O0

Ws

Ws

Ws

Ws

—k

—J
—J
—J
—J
—J
—J

—0

—0

—0

—0

—O0

—0

Ws

Ws

Ws

Ws

Ws

Table 6.20: W, € Qi,,j,k7n7,m.

Table 6.19: W, € Qi,,j7k7,l,,m.

—k

—1

—Nn

—n

—J
—J
—J
—J
—J

—J

—0

—0

—0

—O0

—O0

—0

—0

l

?

W

Ws

Ws

Ws

5

8

—m

—n

—m

—m| 10 W5

m

—k

n

—J
—J
—J
—J

—J
—J

—J

—0

—0

—O0

—O0

—0

—0

—O0

l

Ws

Ws

Ws

Ws

10 | W5

Table 6.22: W, € gz"_j7]€7n70.

Table 6.21: W, € gz',_j7k7_l’0.

—m

—J
—J
—J
—J

—J
—J

—O0

—O0

—O0

—0

—0

—O0

—0

—0

l

Ws

Ws

Ws

Ws

Ws

Ws

Ws

10 | W5

Table 6.23: W4 S gZ”,]’,m,n’O.



178 6.1. |Gia| = 3 for some o € T\ {3, —i}

Next, we will present the methodology applied, which is mostly based in Proposition

6.5, considering examples in which:
1) it is not possible to describe F;;

2) there exist possible index distributions for all codewords of ;.

Example 1: It is not possible to describe F;.

Consider Wy € G; _jk,—1,—m and W5 € G; _,_j; . By Proposition 6.5 we get
3 <|J| <5. Let us describe the codewords of J. Taking into account the codewords
Wy, W5 € G;\G; and Lemma 1.5, the analysis of Table 6.5 allows us to conclude that if
U € J, then
U € Fikno Y Fitn U Fimn—n U Fimo,

and so | J| < 4.

If | 7| = 4, the codewords Uy, ...,Uy € J must satisfy one of the following condi-

tions:

U | @+ | k| n 0 U | @+ | k| n 0

U | @ l n | —m Us | @ ) n | —m
Us| ¢ |m|-—-n| —k Us| ¢ |m|-—-n| —I
Uy | 2 |m| o —1 Uy | 2 |m| o —k

Table 6.24: Possible index distributions for the codewords of 7.

By Proposition 6.1, 8 < |F;| < 9. As F;, = JUF, _,UF,_; and |J| = 4, then
| Fi—o U Fi_j| > 4. The following schemes allow us to identify, for both hypotheses of
J, all possible index distributions for the codewords of F; _, U F; _;:

i [a] [ ] lifl=] [ |
N —
o T
m # # o ko m - ) 5
J e l\‘—"}_/'

Figure 6.5: Possible index distributions for the codewords of F; _, U F; _;.
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By the analysis of the schemes in Figure 6.5 we conclude that it U € F; _,UF; _;, then

77j7

U € FimnUFi_o_n. Consequently, |F;_,UF;_;| <2, which is a contradiction.

Now suppose that |J| = 3. By Proposition 6.5, |F; _,| = 3, |Fi_;| = 2 and
|]:i,—o,—j‘ = 0.
We begin by characterizing the codewords of F; _; taking into account the code-

words Wy, W5 € G;\G; and Lemma 1.5:

LilJ ] [ |
(O
b2 b -# el

Figure 6.6: Possible index distributions for U € F; _;.

By the analysis of the above scheme, Uy, U, € F; _; must satisfy: Uy € F; _j,, and
Uy € Fi—jm —n. However, when we try to characterize the codewords of J we verify,
considering Table 6.5, that if U € J, then U € F; . —m U Fimo and so |J| < 2, which
is a contradiction.

Therefore, the considered index distribution for Wy, W5 € G;\G, does not satisfy

the definition of perfect error correcting Lee code.

There exist other index distributions for the codewords of G;\G; for which, such as

in the presented example, it is not possible to characterize all codewords of F;. Namely,
— 1,2,3,5,6 and 7 in Table 6.19;
— 5,6 and 7 in Table 6.20;
— 1,5,7,9 and 10 in Table 6.21;
— 1,2,4,6,8 and 10 in Table 6.22;

— 1,2,3,5,8 and 10 in Table 6.23.
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Example 2: There exist possible index distributions for all codewords of F;.

Suppose that Wy, W5 € G;\G; are such that Wy € G; _jjno and W5 € G, _, i1 _p.
Since, by Proposition 6.5, 3 < |J| < 5, we will consider the three possible hypotheses:
[T =5, [T =4and |J] = 3.

Let us begin by assuming |J| = 5. By the analysis of Table 6.5, having in mind
the codewords of G;\G; and Lemma 1.5, we verify that if U € J, then U is such that
UeFiin-mUFik_1UFii_xUFim_nUFime, more precisely, Uy, ...,Us € J satisfy

one of the following index distributions:

Uy | ¢ l n | —-m Ui | ¢ { n | —m
Uy | i | Il |—=k]| o Uy | i | Il |—-k]| o

Us| 72 |m| o —1 Us| 72 |m| o —1
Uy | @ |m|-n| —k Uy | @ |m|—-n| —k
Us| i | k| =l |—m Us| i | k| -l | —n

Table 6.25: Possible index distributions for the codewords of 7.

Since F; = J U F;_, U F;_; and, by assumption, |J| = 5, taking into account
Proposition 6.1, we must impose |F; _, U F; ;| > 3.

Assume that the codewords of J are such that: Uy € Fiin—m; Us € Fii_ko;
Us € Fimo—1; Us € Fimn—n—k; Us € Fig—i,—m- Let us identify the possible index
distributions for the codewords of F; _, U F; _;:

Lel[ T ] [il=] [ |
\__Y__) \_v_/
-k -4 e -1 k. -k -7 ] -m n
. vy \_ J

Figure 6.7: Possible index distributions for U € F; _, U F; _;.

Through the above schemes, we conclude that if U € F; _, U F; _;, then
Ue Jri,—k,—m U Jri,—o,m,n-

Accordingly, considering Lemma 1.5, we get |F; _,UF; _;| < 2, which is a contradiction.
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Now consider that the codewords of J satisfy: Uy € Fiin—m; Us € Fii_ko;
Us € Fimo—1; Us € Fimp—n—k; Us € Fip_1—pn. Following a similar reasoning that
one applied in the other hypothesis for 7, we get possible index distributions for the
codewords of F; _, U F; _;:

Le [ | ] lil-o| [ |
— O —
-k - m -pt k -k - m - #
\- ) - \ /

Figure 6.8: Possible index distributions for U € F; _, U F; _;.

Accordingly, |F;_, U F;_;| = 3 and the codewords Us, U;,Us € F;_, U F;_; must

satisfy one of the following conditions:

i iz s
i | | e Pk |-m| e
ilm | on | -a i k|-om| o
il | k| o k|l-m| o
i N

Table 6.26: Possible index distributions for the codewords of F; _, U F; _;.

Now consider |J| = 4. By the analysis of Table 6.5, we get the following possible

index distributions for the codewords Uy,..., Uy € J:

(] i [ iy
ik g il m | e | 1
i e - | -k 2
i ] i o i i o - 3
il k| m i om | n| -k 4
| d | oa|-m i 1 - | - 5
il m| @ - i e - | -k [
il el gl il | | & | 3] m | o |- 7
il om| -» -f i ] o | -k ]
il A || i|m)| | k|3 b2 o - 9
i Tk |-m|i|m|-n|-k|i 1 o - 10
ik | - il m | -» - i e o | -k 11
i Pkl e il m| e -f i wmo| o-n | -k 12
ik A |i|lm|-n|-k|i]lm| e |4 2 P de)om | 13
i i k| e 14

Table 6.27: Possible index distributions for the codeword of 7.



182 6.1. |Gia| = 3 for some o € T\ {3, —i}

As we are assuming |7 | = 4, by Proposition 6.1, we must impose |F; _,UF; _;| > 4.
For each one of the conditions presented in Table 6.27, using the same strategy as in the
previous case, we identify all possible index distributions for codewords of F; _,UF; _;.
However, in the majority of the cases it is not possible to complete the characterization
of F; without contradictions. In fact, we are only allowed to do it when the codewords
of J satisfy, respectively, the conditions 1, 2, 5 and 6, presented in Table 6.27. The
respective codewords Us, Ug, U7, Ug € F; _,UF; _; for each one of the referred conditions

are presented in the following table:

ilm| n |0 ||| 4 |m|i]| | k| mP2 k|l-m|-e| 3
il k5| -m | -0
il k|| iG] m|i|m]| n | -0l k| -m|-6] 4
i| -l -m | o
il A [mli]g]l k] m il k]-m|-clilm][ an|-2[35
ilm| w0 |G A | |il k| | e|li|l-k]|-wm]|-2]|6

Table 6.28: Possible index distributions for the codewords of F; _, U F; _;.

Suppose that |J| = 3. As, by Proposition 6.5, |F;_,| = 3, |Fi—;j| = 2 and
| Fi—o—j| = 0, then |F; _, UF; _;| = 5. Beginning the characterization of all possible
codewords of F; _,UF; _; and proceeding as in the schemes illustrated in Figure 6.8, we
conclude that Uy, ..., Us € F; _,UF; _; must satisfy: Uy € F; _j _pm; Us € Fi—j—1—m;
Us € Fi—omm—k; Us € Fi—omn; Us € Fi_ok—1- By the analysis of Table 6.5, we
get the two possible index distributions for the codewords of 7, completing the cha-

racterization of F;:

U6 7 [ —k 0 U6 1 [ —k 0
U; | 12 [ n | —m U; | 2 [ n | —m
Ug | i |m|—n| —I Ug | i |m|—n| —I

Table 6.29: Possible index distributions for the codewords of 7.
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® ‘H’ =2 and W4,W5 eH Satisfy W4,W5 € Qi,,o

Let us assume |H| = 2 with Wy, W5 € H satisfying Wy, W5 € G, _,. Up to an equivalent

index distributions, there are four distinct possible characterizations for Wy, W5 € H.

Wyl @ | —ol k| =1l | —m Wyl @ | —o|l K| =l | —m
Ws| i | —o|l | —-k| —n Ws| i | —olm | —n| —k
Wil 2 | —0o|l K| n | —m Wil 2 | —0o|l K| n | —m
Wsl| @ | —o|lm | —n | —k Wsl| @ | —olm | —n | —I

Table 6.30: Possible index distributions for the codewords Wy, W5 € H.

For all possible index distributions of the codewords Wy, W5 € H presented above
it is possible to characterize F;. We identify those possible index distributions taking

into account, mainly, Proposition 6.6 from which we know that:
- 3Tl <4
— if |J| = 3, then |F;| = 8 and one of the following conditions must occurs
o |Fi—il =5;
O |Fisl = 4, |F ol = 1 and | Fi 4] =0.

To exemplify how was done the characterization of the possible codewords of F;,

we will consider the case where Wy € G; _o . —1.—m and W5 € G; 1k —n-

Let us suppose that | 7| = 4. From the analysis of Table 6.5, and taking into account
Wy, W5 € H as well as Lemma 1.5, we verify that the codewords Uy, ..., U; € J must

satisfy the index distribution presented in Table 6.31.
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U | i« | k| n 0

Uy | @ ) n | —m
Us| i |m|—-n| —I
Us| @ |m ]| o —k

Table 6.31: Index distribution of the codewords of 7.

Next step consists in the characterization of the remaining codewords of F;, that is,
the codewords of F; _, U F; _;. We note that, since |J| = 4 and that, by Proposition
6.1, 8 < |Fi| <9, we must impose |F; _,UF; _;| > 4. Let us identify the possible index
distributions for the codewords of F; _, U F; _;:

1= 1] 1o [ |
o
- e » ! - e - » -7 o

ko -k
\i/' '\\_'\5 X ’ o

Figure 6.9: Possible index distributions for U € F; _, U F; _;.

Considering Lemma 1.5 and analyzing the schemes in Figure 6.9, we conclude that
|\ Fio UFi—j| =4 and Us,...,Us € F;_, U F;_; must satisfy one of the following

conditions:

s s Iz U

N ENEAE:
B

o LU L

- LI L LU
b o
1
o

Table 6.32: Possible index distributions for the codewords of F; _, U F; _;.
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Let us now consider |J| = 3. Taking into account Proposition 6.6, we will study

separately the following hypotheses:
o |Fi—il = 5;

o |Fi—jl =4, |Fi—o| =4 and |F, _,_;| = 0.

Suppose that |F; _;| = 5. By Lemma 2.5, for each o € Z\{i, —, 5, —j} there exists
a unique U € F; _; such that U € F; _;,. Consider —o, k, —l, —m € Z, the elements in

the index distribution of Wj,. Taking into account Lemma 2.5, we get
| Fij—ol = [Fi—jinl = [Fi—j—tl = |Fimjimm| = 1.

Since Wy € G _op—1—m, by Lemma 1.5, Uy € Fi_j ou, Uz € Fi_jkuss
Us € Fi—j—ius and Uy € F; _j 4, are such that uy,...,uy are pairwise distinct
and uy,...,us & {—o,k,—I,—m}. Considering what was said before and taking into
account Lemma 1.5 as well as the index distribution of the codewords of G;, we conclude

that: u; € {m,n}; us € {n,—n,o}; us € {m, —n,o}; uy € {—k,l,n}. Consequently,

the codewords Uy, ..., Us € F; _; must satisfy one of the following conditions:
i| < b |l 14 | o & LE leel Bl 1
g—_,r—ami'f'*r -4 Bl | b | f |3 |8 k| 2] 3
g | =i i ol ¥ 1= 1 s | 5k g Lof] 0] 3
il | =] 8 | 3| =i kb |-n| i | 5 | |k |i |51 = 4
AFIPNDFIERCARNFIEINE
A I I o Pl | e |||kl m]| 6
LR I o n ; . : : p
P i | | d | < | k||| @ ;|
Bt AT I AE: A |m| i | 5| -m { i |<f|-k|m| B

Table 6.33: Index distributions of the codewords of F; _;.

The majority of the hypotheses for F;_; presented in Table 6.33 imply, by the
analysis of Table 6.5, | 7| < 2, contradicting Proposition 6.6. There are only two cases
in which this does not happen, those, correspond to the cases where Uy, ..., Us € F; _;
satisfy the conditions in 4) or in 7). If the codewords of F; _; satisfy the conditions in

4), then Us, Uz, Ug € J are such that: Us € Figno; Ur € Fim—n—1; Us € Fimo—k- On
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the other hand, if F;_; satisfy the conditions in 7), then: Us € Fipno; Ur € Fitn—m;
US € E,m,o,—k‘

Next we will analyze the condition |F;_;| =4, |Fi_,| = 1 and |F; _,_;| = 0. We
begin by identifying the unique codeword in F; _,. Considering Lemma 1.5 and the
codewords of G; we get Uy € F;_omn. From Table 6.5 it follows the distinct index
distributions for Uy, U3, U, € J:

UE i 3 U4
I m | -n -
i k| » o £ i kil W m | o | -k
i M a -
i mo|o-n | - i M a | -k
IR R N A N - R i M
i b o

Table 6.34: Possible index distributions for the codewords of 7.

It is only possible to characterize all codewords of F; _;, taking into account that

| Fi—;| =4, when U, Us, Uy € J satisty, respectively:
2) U2 € Jriknoa US € E,l,n,—m; U4 S -/T_-Lm,o,—k:;
“) U2 € JT;Z'knm US € Jri,m,—n,—l; U4 € E,m,o,—k-

For each one of these conditions we get, respectively, the following index distribution

for the codewords of F; _;:

Us | @ | —j| —k|—-m Us | @ | —j| —m | —k
Us| @ | —j| —n| k Us | @« | —j] I n
U7 1 —j 0 [ U7 1 —j —n k
Us | @ | —j| =l | m Us| 7 | —j| o -l

Table 6.35: J satisfies 7). Table 6.36: J satisfies i7).
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e |H|=2and Wy, W5 € H satisfy W,, W5 € G, _;

Suppose that |H| = 2 and Wy, W5 € H satisty Wy, W5 € G; ;. Let Wy € Gi _j iy wa,ws
and W5 € G _jwiwsws With wi,ws € Pi, wo,ws € Py and ws,ws € P3, where
Py = {k,l,m}, Py = {—k,—l,n} and P3 = {—m, —n,0}. Up to an equivalent index
distributions, W, and Wj verify one of the conditions presented in the following tables
where for certain index distributions of Wy, that is for Wy € G; _j k1.0, Wi € Gi _j k.0
Wi € Gi—jr—1,—m and Wy € G; _j . n _m, are presented the respective possible index

distributions for Wi.

Ws| i | =gl 1l | n |—m Ws| i | —j|m|—n|—Fk
Ws| i | —j|m|—-n| —k Ws | i | —j|m|-—-n| —I
Table 6.37: W, € Qi,,j7k7,l7o. Table 6.38: W, € QL,]-,k,n,o.
Ws | @« | =3 L | =k | —n Ws| i | —g|lm|—n|—k
Ws | ¢« | —j| I | —=k| o Ws | @ | —j|lm | —n| —I
Ws | ¢ | —j| Ll | n 0 Ws| @ | —j|m —k
Ws | ¢ | —j|m|-—-n|—k Ws | @ | —j|m —l
W5 1 —j m —k

Ws | @« | —j|m n

Table 6.40: W, € gi’_j“lg’n’_m.

Table 6.39: W, € gi,,j7k7,l’,m.

Such as seen in previous cases, for some of the possible index distributions of
Wy, W5 € H it is not possible to describe all codewords of F; without facing a contra-
diction. In fact, this happens when Wy € G; _jxn—m and W5 € G; _; i as well as
when Wy € G; i, —1,—m and W5 assumes each one of the following index distributions:
Ws € Gi—jm—n—k; W5 € Gi —jmo—k W5 € Gii—jmon-

Next, we will focus our attention on Wy, W5 € H satisfying, respectively,
Wy € Gi—jhm—m and W5 € G; ;. —n —; to exemplify how we obtain all the index

distributions for the codewords of F;.
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The characterization of F; will be done having in view the Proposition 6.6 from

which we get:
- 3T <4
— if |J| = 3, then |F;| = 8 and one of the following conditions must occurs
O | Fiol = 4, Figl = 2 and | iyl = 1
o | Fiol =4, 1B sl = Land |F oyl =0.

We begin by considering the hypothesis | 7| = 4. Analyzing Table 6.5, and taking
into account the codewords of G; as well as Lemma 1.5, we identify two possible index

distributions for the codewords of J:

Uy | @« | k| =1 ) Uy | @« | k| =1
Uy | i | I n Uy | 1 | n
Us| i |m| o | —k Us| i |m| o | —k
Uy | i | | | —k]|—-m Uy i |l | —k|—-n

Table 6.41: Possible index distributions for the codewords of J

As we are assuming |J| = 4 and by Proposition 6.1 we get 8 < |F;| < 9, then
| Fi—o U Fi—j| > 4.

Considering the first distribution, that is, Uy € Fik 1.0, U2 € Fitno, Us € Fimo—k
and Uy € Fij_k—m, let us identify possible index distributions for the codewords of

‘E7_0 U 'F;»_J:

T T ] Lele] [ |
-,____\(___) k_\(__,'
A o { A ™
-k ! o o ko ok ! = i -3 # -1
\_ o \ e | N

Figure 6.10: Possible index distributions for U € F; _, U F; _;.

Looking at the above schemes we conclude that if U € F; _, U F; _;, then

U e «/T_‘i,fo,fl,fm U «/T_‘i,fo,m,n ) ‘/_'.i,fj,fo U Jri,fo,fn-
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Accordingly, taking into account Lemma 1.5, we get |F; _, U F; _;| = 4. From the
analysis of the schemes in Figure 6.10, and considering again Lemma 1.5, we obtain

the following possible index distributions for the codewords Us,...,Us € F; _, U F; _;:

s s iz s
? £ S| -k i o | -» !
i | 28| | g o | m | om 3 a2 . ot ’;g
s | | ; i o-e | om
2 i -0 | -n | -k

Table 6.42: Possible index distributions for the codewords of F; _, U F; _;.

Applying the usual strategy we get the following possible index distributions for
the remaining codewords of F; when U, ..., Us € J satisty: Uy € Fi i 1.0, Uz € Fiinos
Us € Fimpo—r and Uy € Fiy g —n.

i s i iy
i e | o | & i -o | -m | |
i -o | B | -& i o | om | & 2 o | -m |
i | o | < i i e |-m|
i o | -m | -k

Table 6.43: Possible index distributions for the codewords of F; _, U F; _;.

Let us now suppose |J| = 3. Taking into account Proposition 6.6, we begin by
assuming that |F; _,| =4, |F;_;| = 2 and |F; _,_;| = 1. Considering the codewords
Wy, Ws € G;\G; and having in view Lemma 1.5, we get only two possible index distri-
butions for the codewords Uy, U, € F; _;:

—UieFijioand Uy € Fi_j 1 _o;

- Ul S E’_jJ:_O and U2 S E’_j7_k»o'
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Assume that U; € F; _j;, and Uy € F; _; 0. By the analysis of Table 6.5, the

codewords Us, Uy, Us € J must satisfy one of the following conditions:

iy s s
. i 2 | i e a | k|1
2 i _; 5 i 4 o] # 2
5 i e | g i e g | -k |3
i # o »n | 4

Table 6.44: Possible index distributions for the codewords of 7.

For each one of the hypotheses described in Table 6.44 we can find possible index
distributions for the remaining codewords of F;, that is, for the codewords of F; _,, see
Table 6.45. We do it considering, for each case, all codewords of G; UF; _; U J already
known as well as Lemma 1.5. We note that, in Table 6.45 the numbers 1, 2, 3 and 4
identify the respective codewords of F; _, for J satisfying the conditions identified in
Table 6.44 by the same numbers.

Ue & s
3 il | & i - ! #
1 i T Y ) i -0 | m | o#
i 0| -1 i < | m | #»
2 i o | k| -m i o | A e | -0 i n
; | Y Lo | 2 -0 ! b
3 i T T o i | x| om
i o | e | g o | m | on
4 i - ! » i T R S R = | & | -

Table 6.45: Possible index distributions for the codewords of F; _,.

Now suppose that Uy € F;_;;_, and Uy € F;_j_,. We then get the following

possible index distributions for the codewords of 7:

I L] [
: e | o = i |-k |-m|5
: i __; a i ! Y R Y
; ; 5 i i ! k| | T
i ! | -m | 8

Table 6.46: Possible index distributions for the codewords of 7.
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As in the previous case, for each one of the hypotheses presented in Table 6.46 we

can complete the characterization of all codewords of F;:

[ (it [

=) Pl - | -k | om o | || D || k| &

G il | k| e | d|l-m| i |w| k|2
g | | ca BB |

7 i |- | <f |- i | -o | k| m
o |-k|l-n]|id|-0|m
=5 | s | i -a | -k | -

8 il | KB |- Pl e | |
o |-k |lm | 1 |o| -1 |-m

Table 6.47: Possible index distributions for the codewords of F; _,.

To conclude the analysis of the hypothesis | 7| = 3, we now assume that |F; _,| = 4,
|Fi—;l = 1 and |F;_o—j| = 0.

Ul?"-7U4 € J_"i,fo:

Let us begin by characterizing all possible codewords

] £ e 5
s | | s | i |-e | k|| i | -a | ]| -k
i || & | < i | P -m)| 8 e | k| on
I I T N i |- | k|| i | o | m | -k
ila|k|m|li|le|a|mpiilelilali | ¢|k|m
i |-o | m| & Pl | -k |

Table 6.48: Possible index distributions for the codewords

of Fi_o.

Considering the hypotheses presented above for the codewords of F; _,, there

exists only one for which it is possible to characterize all codewords of F;, this happens

when Uy € Fi—op,—n; U2 € Fi—o—1,-m; Us € Fi—oyn; Us € Fi—o—km- In this case we

get the following possible index distributions for Us, Us, U7y € J and Ug € F; _;:

i e & [f
il |k |ml 2 ld] e
i|lm|ol|la|i | k| -d]|e cA -k | o
il g k| il lo
i k| o

Table 6.49: Possible index distributions for the codewords of J U F; _;.
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® |7‘” =2 and W4,W5 eH Satisfy W4 € Qiy,o and W5 S g@,j

Suppose that |H| = 2 and Wy, W5 € H are such that Wy € G; 4w wows and
W5 € Gi—j s wswe, With w1, wy € Py, wa, ws € Py and ws, wg € Ps. Up to an equivalent
index distributions, W5 must verify one of the following conditions when W, satisfies,

respectively, Wy € G_; _ok—1,—m and Wy € G_; ok n —m:

1 |\ Ws| ¢ | =3 k| n o |1 | W5l 2 | =3 | k| —=l|-—n
2 |\ W5l 2 | =g | L | —k|-—-m|2 W5 ¢ |—3| k| —-l| o
3\ Wsl @ | =g |l | —=k| |3 W5 2 |—5|1l |—-k|—-m
4 (W5l ¢ | =5 | L |—k]| o (|4 | W5 ¢ | —5| 1 | —-k| —n
S5 W5l @ | =3l | n | —m||d5 | W5 ¢ |—5] 1 |-k

6 | W5 @« | =3 |1l | n o ||[6 | W5 @« | =31l | n
TIWsl @ | =g m|—m| —=k|T7T W5 2 |—j|m|-n| —k
8| W5 ¢« | =g m|—-n| =L |8 | W5 ¢« |—j|m|-—-n| —I
9 [Ws| 2 | =3 | m —k|9 [ W5l ¢ | =5 |m| o | —k
10 [Ws5 2 | =7 | m —L||10 | W5 & | —7 | m —l
11| W5 2 | =7 | m n [[11 | Ws| ¢ | —7 | m n

Table 6.50: Wy € G_i _ok—1,—m.- Table 6.51: Wy € G_i _okn,—m.-

The characterization of all codewords of F; for each one of the index distributions
for Wy, W5 € H presented in the tables above is mainly based in Proposition 6.6 from

which it follows:
- 3<|I<4
— if |J| = 3, then |F;| = 8 and one of the following conditions must occurs
o |Fimel =3, 1Pyl =3 and |Fi ] = 1
O | Fiol =2, 1Fig] = 3 and | i gs] = 0.

For some of the possible index distributions of Wy, W5 € H it is not possible to
characterize completely all codewords of F;, this happens when Wy € G; _, 1.~ —,, and
W satisfies the conditions 3, 4, 6, 7 and 11 in Table 6.50; and when Wy € G; _s k.0 —m
and Wj satisfies the conditions 1, 2, 4, 5, 8 and 10 in Table 6.51.
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Let us present a case in which is possible identify index distributions for all code-
words of F;. Consider, as an illustrative example, the case where Wy € G; ok —1—m

and Wy € Qi,_%kmp.

First suppose that || = 4. From the analysis of Table 6.5, it follows two possible
index distributions for Uy,...,Us € J:

Uy | i l n | —m Ui | 1 ) n | —m
Uy | i | | |-k| —n Uy | i« | Il |-k]| o

Us| i |m|—-n| —I Us| i |m| o —1
Us| & |m ]| o —k Us| @ |m| —n| —k

Table 6.52: Possible index distributions for the codewords of J.

Next step consists in the characterization of the remaining codewords of F;, that
is, the codewords of F; _, U F; _;. As |J| =4, we must impose |F; _, U F; _;| > 4.
Suppose that the codewords of J are such that: Uy € Fipn_m; Us € Fip—k,—n;

Us € Fim—n—1; U € Fimo-—r In this case we obtain the following possible index
distributions for the codewords of F; _, U F; _;:

a4 [ | lile] [ |
— [ —
& .I'/’.E 4
'.\__ = m :}m -?E -0 -k i e po -

Figure 6.11: Possible index distributions for U € F; _, U F; _;.

By the analysis of the above schemes, we conclude that if U € F; _, U F; _;, then
U G 'F;;7_j7_0 U ‘E7_j7_k7_m U E7_O7m7n'

Accordingly, considering Lemma 1.5, it follows that |F; _, U F; _;| < 3, which is an
absurdity.
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Now consider that the codewords of J satisfy: Uy € Fiin—m; Us € Fii_ko;
Us € Fimo—i1; Us € Fip—n—k. In this case we obtain the following possible index

distributions for the codewords of F; _, U F; _;:

L[] [ | lil=]| [ |
———
fr; P;g k. ":‘ﬁ; -k ! m » -1
= = o T s
£ . g K I

Figure 6.12: Possible index distributions for U € F; _, U F; _;.

Analyzing the schemes presented in Figure 6.12 we get as possibilities for the index

distribution of the codewords Us, ..., Us € F; _, U F; _;:

Us |+ | —j| =k | —m Us | 1@ [l | —n| —o
Us | 1 [l | —n| —o Us| i« |m| n | —o
U;| 2 |lm| n | —o U; | 1 | —j| =k | —o
Ug 7 —j — —n Ug 7 —j — —n
Us | @ | —j| k| —m Us | @ | —j| =k | —m
Us| ¢t |m| n | —o U | ¢t |l | —n| —o
Uz | @ | —j| | | —o Uz | @ | —j| m | —o
Us | @ | —j| =l | —n Ug | @ | —j| =l | —n

Table 6.53: Possible index distributions for the codewords of F; _, U F; _;.

Now, we assume | 7| = 3. Taking into account Proposition 6.6, we begin by sup-
posing that |F; _,| = |F;—;| = 3 and |F; _, ;| = 1. Let us identify possible codewords
in F;_,. Consider Uy € Fi _ouyuer U2 € Fi—ouguy a0d Us € Fi _ousus- We note
that, taking into account that W, € G; .5 _;_, and Lemma 1.5, we must impose
Uy, ... ug € {—j,—k,l,m,n,—n} with uq,..., ug pairwise distinct. Thus, the code-

words Uy, Uy, Us € F; _, must satisfy one of the conditions presented in Table 6.54.
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Table 6.54: Possible index distributions for the codewords of F; _,.

I i i
i || |-k i |-a|m|-»n
o | om i |lca| | m | i |al|l k]| -n
i |- | i |-w | i |-a|-k| m
i |e| k|G |l i ]| o
ol a | m| i |e| |0 i e |-k|-»
i || -i|lw]i|l-o]|-k]|1

When the codewords of F;_, are such that U; € F;_,, , it is not possible to

characterize the remaining codewords of F;, that is, the codewords of JUF; _;, without

facing a contradiction.

If Uy € Fi_onm, for each possibility presented in Table 6.54 we try to find out,

firstly, all possible index distributions for the codewords of F; _;, taking into account

that |F; _;| = 3, after we will identify the codewords of J.

For the codewords Uy, Us,Us € F; _,, Us,Us € F; _j and U, U7, Ug € J we get the

following index distributions:

U | © | —o| n m
Uy | @ | —o| —7 | —k
Us | i | —o| I -n
U4 7 —j [ —m
Us | 1 | —j| =l | —n
Us | 1 Il | —-k]| o

U; | i |m|—n| —k
Us| i |m| o -1
U | i | —ol n m
U2 7 —0 —j [

Us | i | —o| —k| —n
Uy | @ | —j| =k | m
Us | ¢« | —j| =l | —n
Us| i |m| o -1
U; | @ ) n | —m
Ug | 1 Il | —=k| o

Table 6.55: Possible index distributions for the codewords of F;.

U | i« | —ol n m
Uy | @ | —0o] =3 [

Us | i | —o| =k | —n
U 2 | —j| m | —n
Us | i@ | —j| =k | —m
U@ i ) —k 0

Ur; | 2 [ n | —m
Ug| i |m| o —1
U | i | —o| n m
U2 1 —0 —j [

Us | i | —o| =k | —n
Uy | @ | —j| —k|—m
Us | ¢« | —j| =l | —n
Us| ¢« | I |—k| o

U; | @ { n | —-m
Ug| @ |m| o -1
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To conclude the characterization of all possible index distribution of the codewords
of F;, we will consider |J| = 3 with |F; _,| =2, |F;,_;| =3 and |F; _, ;| = 0.
Let us identify the possible index distributions for the codewords of F; _;:

Lild] [ |
L_V’_";

Figure 6.13: Possible index distributions for U € F; _;.

Accordingly, taking into account Lemma 1.5, the codewords of Uy, U,, Us € F; _; satisty

one of the following conditions:

U2 7 —j -m | —k U2 1 —j [ —m
U3 7 —j l —n U3 1 —j —k —n

O | i |—jl—=l] -n
U2 i —j l —m
U3 1 —j —k m

Table 6.56: Possible index distribution for the codewords of F; _;.

However, for each one of the hypotheses presented above it is not possible to get

all codewords of J U F; _, without contradicting the definition of PL(7,2) code.

6.1.3 Analysis of the index distribution of the codewords of
Gi U F;

In the previous subsection we have identified possible index distributions for the code-
words of G; U F; when |G;| = 5, with |G;;| = 3, and 8 < |F;| < 9. Although we have
presented few examples, we have analyzed all cases applying always similar strate-
gies to identify all possible index distributions for the codewords of G; U F;, having
obtained many possibilities. The question is: considering each one of the obtained

hypotheses for G; U F;, is it possible to describe the remaining codewords necessary to
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cover all words of Z” without contradicting the definition of perfect 2-error correcting
Lee code? To answer to this question we have focused our attention on codewords
of the other sets G, U F,, with a € Z\{i}. Since we have identified all codewords of
G; U F;, it would be natural to verify what happens when we consider codewords of
A; UB,UC; UD; UE;. However, we have decided to analyze again sets of type G, U Fq,
a € Z\{i}, since the codewords of G and F are the ones with more nonzero coordinates.

As we have said before, we have identified many possible hypotheses for G; U F;.

Let us consider, as a representative example, one of these cases.

Consider the codewords Wy, ..., W5 € G; and Uy, ..., Ug € F; satisfying:

Wi @ | g k l m U | © | —ol m n
W2 1 j —k —1 n U2 1 —0 —j —k
Wil @« | j | —-m|—-n]| o Us | 7 | —o| I -n
Wyl @ | —o| k -l | —m Ug | 2 | —j] I | —m
Ws| @ | —j| k n 0 Us | ¢ | —j| =1l | —n
Us| i | | | -k]| o
U; | i |m|—n| —k
Ugs| 2 |m| o —1

Table 6.57: Index distribution of the codewords of G; U F;.

Our aim is to find out an element o € Z\{i} for which it is not possible to describe
all codewords of G, U F,.

By the analysis of the index distribution of the codewords of G;, we verify that for
any o € IZ\{i, —i} we get: |Gio| = 3, |Gia| = 2 or |Gin| = 1. Since, by Corollary 5.1,
5 < |Ga| < 7, for each element o € Z\{i, —i} it will be necessary to identify, at
least, two more codewords of G,. Let us concentrate our attention on the elements
a € T\{i, —i} satistying |G;o| = 1, since in this case we must characterize more code-
words of G,. As we have seen before, in the description of codewords it is useful to
see Z partitioned in subsets. For that reason in the set of the elements a € Z\{i, —i}
satisfying |Gin| = 1, we will give preference to the elements which verify also | F;,| = 3.
That is, we are interested in the indices o € Z\{i, —i} such that |G;,| = 1 and |F;,| = 3.

In these cases, the codewords of G;, U F;, induce a partition on Z with few elements.
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Observing Table 6.57 we verify that —j, —k, [, m, —n and —o are in these conditions.

Let us consider, for example, m € Z. We will try to characterize all possible index
distributions for all codewords of G,,, U F,,,. Now 5 < |G,,,| < 7 and from Propositions
2.11, 2.12 and 2.13 it follows, respectively:

— if |G| = 5, then 7 < | F,,| < 10;
— if |G,n| = 6, then 4 < |F,,| < 8;
— if |G| =7, then 2 < |F,| < 5.

Let us consider Wy € G;,,, and Uy, Uz, Ug € Fip, (see Table 6.57). These codewords
induce the following partition Q of Z\{i, m, —m}:

Q={j.k1}, Q={-on}, Qs={-n—k}, Qi={o,—l}, Q5 ={-j}, Qs={-i}.

(6.3)
As seen before, this type of partition help us to characterize the index distribution
of the codewords of G,, U F,,. In fact, by Lemma 1.5 and taking into account the
codewords of Gy, U Fip, if V€ (G, U F)\(Gi U F), then V' & G0, U Frnpyo, With
V1,09 € Qg for g € {1,...,4}.

We begin by characterizing all codewords of G,,. As |G;,| = 1 and |G,,,| > 5, we
must identify in G,,, at least, four more codewords. That is, |G,,\G:| > 4. We note
that, considering the codewords of G; U F;, the element —: is the unique element in 7
that, until now, it is not being used in the characterization of the index distribution of
any codeword. Thus, when we consider a codeword V' € G,,, _; U F,, _; there exists less
probability of getting a contradiction on the definition of being a PL(7,2) code than
when we consider a codeword V' € (G,,,UF,,,)\(G_;UF_;). So, in the characterization of
the codewords of G,,\G; we begin by characterizing the codewords W € G,,\ (G, UG_,).

By Lemma 2.2, |G,,o| < 3 for all « € Z\{m,—m}. As |G,,\G;| > 4, it follows that
|G \(G; UG_;)| > 1. Let us begin by identifying all possible index distributions for the
codewords W € G,,\(G; UG_;). Taking into account the partition Q, all codewords of
G;UF; presented in Table 6.57 and Lemma 1.5, we conclude that if W € G,,\(G;UG_,),
then W must satisfy one of the conditions presented in Table 6.58.
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Wi im|j|—o| =l]—-n
Wi im|—j| kK | —n| —o
Wim | —j| I n | —k
Wim | —j| [ o | —n

Table 6.58: Possible index distributions for W € G,,\(G; U G_,)

Analyzing the above table and considering Lemma 1.5,
|G \(G; UG ;)| < 2. Furthermore, if |G,,\(G; UG_;)| = 2 then W5, W7 € G,,\(G; UG_;)

must satisfy one of the following conditions:

we conclude that

Table 6.59: Possible index distributions for Wg, W7 € G,,\(G; U G_,).

We will analyze the following hypotheses:

1) |G \(G;UG_;)| =1,

2) 16 \(G;UG_;)| = 2.

1) Suppose |G, \(G;UG_;)| = 1.

Let us consider Wy € G,,,\(G; U G_;) satisfying Ws € Gpji—0.—1,—n-
In these conditions we have |G,;| = 1 and |G,,\(G; UG_;)| = 1. Since |G,,| > 5,

We m | j|—o|—-l|—n We m | j |—o|—-l|—n
Wz i m | —j5| [ n | —k Wz lm | —j| 1 o | —n
We | m | —j| k| —n| —o
We im | —j| 1| n | —k

we get |G, —;| > 3. However, by Lemma 2.2, we conclude that |G, ;| = 3 and,

consequently, |G,,| = 5.

Let us characterize the possible index distributions for Wz, Ws, Wy € G,,, ;. Con-

sidering the partition Q as well as the codewords already known and Lemma 1.5, we

get the following possible index distributions for the codewords of G, _;, presented in

Table 6.60.
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W W Ha
Fo Tl I S b el B il e B3 -
| | k| F | - mla|d| k| -»
mo| - k| m | | m| |- | e
mo || B || e |m| ]| o~
mo| 2| k| 4| oA ma || S R I, L . 0 EL)
mo| 1| = -1

Table 6.60: Possible index distributions for the codewords of G,, _;.

Next step consists in finding out all possible index distributions for the respective
codewords of F,,. We note that, since the codewords of G,, are such that |G,,| = 5 and
|Gm.—i| = 3, we could adapt the results derived in Subsection 6.1.1 and apply them in
the analysis of the codewords of F,,,. However, as at this moment there exists many
information about the index distribution of the codewords of G; U F; U G,,, we can

quickly analyze the set F,, using another strategy, as we will see.

Suppose, for instance, that W7, Wg, Wy € G, _; are such that: W7 € G, _i _k1.—0;
Ws € Gm—ijmo; Wo € G —i—jk-n. Let us characterize the codewords of F,,. As
|Gm.—i] = 3, by Lemma 2.15, 8 < |F,,,| < 10. Since |F.i| = 3, we get |F,\Fi| > 5.
In the schemes presented bellow, all possible index distributions for the codewords
U € F,\F; are given. These index distributions were obtained having in mind Lemma

1.5 and all codewords of G; U F; U G,, already known.

lm [ ] | | (e & | [
-k { i x a -a - b o] -
\ A Y | |
] || (w1 2] [ ]
'\.L_._Y__..ﬂ \ ;
-f » = fo: b -% o
L

Figure 6.14: Possible index distributions for U € F,,\ F;.
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Analyzing the schemes in Figure 6.14 we conclude that if U € F,,\F;, then
U S fm,—j,—k U fm,—j,l U Fm,—l,n U fm,—n,o-

Taking into account Lemma 1.5, it follows that |F,,\F;| < 4, which is a contradiction.
So, the considered index distribution for the codewords of G,,, contradicts the definition

of PL(7,2) code.

In the majority of the cases, such as shown in this illustrative example, it is not
possible to describe all codewords of F,,. Considering all the hypotheses presented
in Table 6.60, for only one of them it is possible to characterize completely the in-
dex distribution of the codewords of F,,. This happens when: W7 € G, _ik _in;
Ws € G —ij—ko; Wo € Gm—i—ji—n. Producing the corresponding schemes we con-
clude that, in this case, |F,,| = 8 and the codewords Uy, ..., U3 € F,,,\F; must satisfy

one of the following index distributions:

Uy |m | —j| kK | —o Uy |m | —j| k | —o
Uog|m | k| —mn| o Uo|m | k| —mn| o
Ui | m | =kl | | —o Ui | m | =kl I | —o
Uy | m | I n 0 Uy | m | I n 0
Us | m | —j| —k| —I Us | m | —j| —k

Table 6.61: Possible index distributions for the codewords of F,,\F;.

Since we can characterize completely the codewords of G; U F; U G,, U F,,, we must
continue our analysis verifying what happens with another element of Z\{i, m}. For
that purpose, it will be helpful to analyze an element o € Z\ {7, m} for which |G;, UG, |
is the lowest possible, implying the identification of more codewords of G, and helping
in the search of a contradiction. As —j € Z is one of the elements a € Z\{i,m} for
which |G, UG is the lowest possible, with |G; _;UG,, ;| = 2, we will concentrate our
attention on this element. We will analyze simultaneously both distributions presented
in Table 6.61, considering only the common codewords. We begin by characterizing all
possible index distributions for the remaining codewords of G_;. As, by Corollary 5.1

|G_;| > 5, we get |G_;\(G; UG,,)| > 3. To identify the codewords of G_;\(G; UG,,), we
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will consider the partition R of Z\{i, j, —j,m} induced by the codewords W;5 € G, _;
and Ug, U4, Us € E,—j:

Ri1=A{k,n,0}, Ro={—o0,—k}, Ry ={l,—m}, Ry={-1l,—n}, Rs={—i}. (6.4)

Combining the elements of the partition R, and taking into account Lemma 1.5 and

all codewords of G; U F; UG,,, U F,,, we conclude that if W € G_;\(G; UG,,), then
W e gfj,o,fk,fm,fl U gfj,fi,fm,fo,n ) gfj,fi,fm,fk,n'

By Lemma 1.5, |G_;\(G; U G,,)| < 2 and, consequently, |G_;| < 4, which is a contra-

diction.

Letting Ws € G,,\(G; UG_;) assume any other index distribution described in Table
6.58 and applying the reasoning described in the presented illustrative example, we

will always end up in a contradiction.

2) Suppose |G, \(G;UG_;)| = 2.

Let Ws, W7 € G,,\(G; UG_;). Considering the hypotheses presented in Table 6.59,
we are going to assume that Wy € Gy, ;01— and W7 € Gy, _j 10 k-

As |G, \G-i| = 3, we must impose |G, —;| > 2. To characterize all possible index
distributions for the codewords of G,, _; we take into account the partition Q, see (6.3),
and all codewords of G; U F; U G,,,\G_; already known. We then may conclude that

|Gm.—i| =2 and Wy, Wy € G, _; satisty one of the following conditions:

W
F I T # o
P i & { n

ER Bl - ECl - o o )
sl b | ol o e | e o
| e e | e e [ || | e
[ S0 R W T S PV L R L B R 6, S O LU

L (e e et e et e [ (e e |
el

Table 6.62: Possible index distributions for the codewords of G,, _;.
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Let us consider Wy, Wy € G,,, _; satistying Ws € Gy ik —1n and Wo € Gy i i .
We note that, for all a € Z\{m,—m}, |Gmna| < 2. Since |G,,| = 5, by Proposition
2.11, 7 < |Fn| <10, As |F| = 3, then |F,,\F:| > 4. Next schemes characterize all
possible index distributions for the codewords U € F,,\ F;:

(=] T ] (e [ T ] lee [ ] [ |
i i \ F L_Y'_'J
; | | f |
i -k I o -k »n fe] I i e
l N L

Figure 6.15: Possible index distributions for U € F,,\F;.

Analyzing these schemes, we verify that |F,,,\F;| = 4 with Uy, ..., Uy € F,,\F; satis-

fying one of the following index distributions:

Uy | m | —i| j | —k Uy | m | —i| 5 | —k
Uog | m | —j| k | —o Uog | m | —j| k | —o
Ui |m | j|n | o Ui |m | j | n 0
Us m | —i1| | | —o Us m | —i| —k| —o

Table 6.63: Possible index distributions for the codewords of F,,,\ F;

In both cases we have |F,,| = 7. Accordingly, by Lemma 2.11 we get |.7-"153)] = 4.
Taking into account Lemma 2.14, the codewords Vi,..., V), € }"7(,12) satisfy
Vi € Frwrvavss- - Vi € Frvovnrvngs With v1,... v1e € Z\{m, —m} pairwise distinct.
However, in both cases, analyzing all codewords of F,,, we conclude that if U € F,,,
then

Ue FniUFnUFn o,

contradicting Lemma 2.14.
Assuming that Wy, Wy € G, _; satisfy any other hypothesis presented in Table 6.62,

we would also get a contradiction.

We have applied this same strategy to verify that all index distributions obtained

for G; U F; lead us to a contradiction. We have just prove the following theorem:

Theorem 6.1 If |G,| =5, for a € I, then |Gag| < 2 for any f € T\{a, —a}.
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6.2 |Gin| <2 for any a € 7\{i,—i}

We have just proved that if |G;| = 5 then |G;o| < 2 for any a € Z\{i, —i}. Here we
analyze the hypothesis |G;| = 5 and |G;o| < 2 for any o € Z\{i, —i}. Our aim is to
show that under such assumption the definition of PL(7,2) code will be contradicted.

Initially, we present some results which impose conditions on the index distribution
of the codewords of G;UF;. These results allow us to get all possible index distributions
for G;UF; which, apparently, do not contradict the definition of perfect error correcting
Lee code. Finally, we show that any obtained index distribution for the codewords of
G; U F; implies contradictions on the definition of PL(7,2) code when considered one

other set G, U F, with a € Z\{i}.

6.2.1 Necessary conditions for the index distribution of the

codewords of G; U F;

Let us consider O C Z\{i, —i} such that

O ={aecI\{i,—i}: |G| = 2}.
The following result restricts the variation of |O)|.
Proposition 6.7 The cardinality of O satisfies 8 < |O| < 10.

Proof. Since

Gl=1 Y G

a€T\{i,—i}

and we are considering |G;| = 5, it follows that
ST [Gial = 20. (6.5)
€T\ {i,~i}
We are assuming |G;,| < 2 for any o € Z\{i, —i}. On the other hand, |Z\{i, —i}| = 12.
Then, from (6.5), we conclude that 8 < |O] < 10. O

Note that, by Lemma 2.2, if o € O, that is, if |G;o| = 2, then |F;,| < 2. The

following proposition guarantees the existence of an element o € O so that |F,| = 2.
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Proposition 6.8 There exists o € O such that |F,| = 2.

Proof. By Lemma 2.11, if |G;| =5, then 7 < |F;| < 10. As

Fl=s 3 17l

a€T\{i,—i}
then
S | Fal 221 (6.6)
a€T\{i,—i}
On the other hand, since
1
|gz| - Z Z |gia|
a€T\{i,—i}
and |G;| = 5, then
S (Gial = 20. (6.7)
a€T\{i,—i}

Recall that from Lemma 2.2 we know that
Dia U Eia| + 2| Fial + 3|Gia| = 10, ¥V o € T\ {7, —i}. (6.8)

By Proposition 6.7 it follows that 8 < |O| < 10. We will analyze separately what

happens when |O] assumes each one of these possible values.

If |O| =8, by (6.7) and taking into account that |Z\{i, —i}| = 12, we must impose
|Gia| = 1 for any a € Z\({i,—i} U O). Consequently, by (6.8), |Fin| < 3 for any
aeZ\({i,—i} UO). As |Z\({i,—i} U O)| = 4, we conclude that

> Fal <12
aeZ\({i,—i}u0)

Accordingly, from (6.6) we get

> | Fial = 9. (6.9)

acO
Since |Gio| = 2 for any a € O, considering (6.8) it follows that |F;,| < 2 for any a € O.

As |O] =8, by (6.9) there exists, at least, one element o € O such that |F,| = 2.

Now suppose that |O| = 9. Then, taking into account (6.7), we must impose the
existence of 3,7v,0 € Z\({i, —i} U O) satisfying |G;3| = |Giy| = 1 and |G;s| = 0. Thus,
considering (6.8) we get

Y |Fal<2x3+5=1L
€T\ ({i,—i}UO)
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Consequently, by (6.6) we get

> | Fial = 10.

acO

As we are assuming |O] = 9, there exists a € O satistying | Fio| = 2.

Finally, assume |O| = 10. Considering (6.7), the elements g8,y € Z\({i,—i} U O)
are such that |G| = |G;,| = 0. In these conditions
Z | Fial <2 x5 =10.
aeZ\({i,—i}u0)
Taking into account (6.6) it follows that
> [ Fial > 11.
acO

Thus, there exists a € O satisfying | Fio| = 2. O

Considering the previous proposition, let j € Z\{i,—i} be such that j € O and
‘E]’ = 2. That iS, \Qw\ = ‘E]‘ = 2. Let Wl,WQ € gij and Ul, UQ € ‘F:ij so that:

Wl 1 ] wy | Wy | W3 Ul 1 j Uy U2

W2 i ] Wy Ws Weg U2 7 j us Uy

Table 6.64: Partial index distribution for the codewords of G;; U F;;.

with wy, ..., we,uq,...,uy € I\{i,—i,j,—7}. We note that, taking into account
Lemma 1.5, wy, ..., wqs, uq,...,us must be pairwise distinct.

Since |Z\{i, —1, j,—7}| = 10, it follows that

I\{Z7 _iajv _.7} - {w17 sy, We, ULy - - 7u4}-

The codewords Wy, W, € G;; and Uy, U, € F; induce a partition S of Z\{i, —i, j}:

S1 = {wi, wa, w3}; So = {wy, ws, we}; Sz = {ur,ua}; Sa = {us,ua}; S ={—j}.
(6.10)
As |G;;| = |Fij| = 2, then, by Lemma 2.2, the codewords Wy, Wy, Uy, Uy € G;; U Fj,
described in Table 6.64, are the unique codewords in G;; U F;;.
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As we have said before, what we have in view is the characterization of all possible
index distributions of the codewords of G;UF;. For that, taking into account the partial
index distribution of the codewords of G;; U F;;, presented in Table 6.64, we will state

in the following proposition conditions which must be satisfied by the codewords of G;.
Proposition 6.9 The cardinality of (S3U S, US5) N O satisfies

1 <|(S3USUS;)NOJ < 3.
Furthermore, W5, Wy, W5 € G;\G, are such that:

i) if |(S3US,USs) N O] =1, with {a} = (S3US; US5) N O, then

W3 1 a | T1 | To XT3
Wyl @ | a | xg| 25| T
W5 1 7 | g | g | T10

with xy,...,x10 € S U S U (S3 U S U Ss)\{a} pairwise distinct and
{‘1'17 Ce ,.1’10} = 81 U 82 U (83 U 84 U 85)\{05},'

i) if [(SsUS,;USs)NO| =2, with {c, B} = (S3US4US5) N O, then

Wi | i | a| B | 21| 22
Wyl 7 | o | 23| 24| T5
Ws | @ | B | xg| o7 | 23

with x1,...,08 € S USy U (S5 US, US5)\{, 5} and pairwise distinct;

iii) if |(S3US, USs) NO| =3, with {a, 5,7} = (S3US, US5) N O, then

Ws | i | a|pB| x| x
W4 1 o
Ws | i

XT3 | T4

-2

)
)

X5 | Tg

with x1,...,16 € S USy U (S3US, US5)\{, 5,7} and pairwise distinct.
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Proof. By Proposition 6.7 we know that |O] > 8. By assumption, j € O and
considering the partition S of Z\{i, —i, j}, see (6.10), we conclude that

(S USUS;USIUS)NO| > T

and, consequently, |(SsUS,US5)NO| > 1.

If a € (S3US83US5)N O, by the characterization of Wy, W, € G;; we conclude
that W, W’ € G,, are such that {W, W’} N {W;, Wy} = & since W1 € Gijuwpws and
Wy € Gijwswsws With {wy, ..., we} N (S3US,US5) = @.

Suppose, by contradiction, that |[(S3 U Sy U S5) N O| > 4. Thus, let us assume
{a,8,7,0} = (S3US, US5) N O. Let {Ws, Wy, W5} = G;\G;. Taking into account
what was said before, G;o, U Gig U G;, U Gis C {W3, Wy, W5}, As, by definition of O,
Gia| = |Gig| = 1Giy| = |Gis| = 2, Lemma 1.5 is contradicted.

Suppose that [(S3 U S, US5) N O] = 1 with {a} = (S3US4US5) NO. Let
Wy, Wy, W5 € G\G;. The partial index distribution of these codewords satisfies:

Ws | i | a | x| 29| 23

Wil 7 | o | x4 | x5 | 26

W5 7 7 | g | g | T10

Table 6.65: Partial index distribution of the codewords of G;\G;.

with z1,...,210 € ST US U (S3 U S, U S5)\{a}. We recall that, |G| < 2 for any
r € I\{i,—i}. Since |G;ju] = 1 for any z € & U Sy, we get |G, \G;| < 1 for any
r € § US,. On the other hand, as we are supposing {a} = (S3U S, US5) N O,
then |G;,| < 1 for any = € (S3 U Sy U S5)\{a}. Consequently, z1,...,x1¢ are pairwise
distinct. As

’81 U 82 U (Sg U 84 U 85)\{04}‘ = 10,

it follows that {xy,..., 210} = S1 US; U (S3 US4 U S;)\{a}.

Now consider [(S3 U Sy U S5) N O| = 2 with {«a, 5} = (S3 US4 US5) N O. Since
|(Gia U Gig) N G;j| = 0, having in view Lemma 1.5, the partial index distribution of
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the codewords W35, Wy and W; in G;\G; must satisfy the conditions presented in the
following table:

Table 6.66: Partial index distribution of the codewords of G;\G;.

with zq,...,28 € S US U (S3U S, US5)\{«, 5}. Following a similar reasoning to the
one applied in the previous case, we conclude that |G;;\G;| < 1 for any x € §; US, and

|Giz| <1 for any z € (S3US,US;5)\{a, 5}. Therefore, x4, ..., zg are pairwise distinct.

Now assume that [(S3U S, USs5) N O] = 3. Let {a, 8,7} = (SsUS,US5) N O.
Since [(Gia U Gip U Giy) N G;j| = 0, then, having in mind Lemma 1.5, the partial index
distribution of the codewords W5, Wy, W5 € G;\G; satisty:

Ws | i | a|pB| x| x
W4 1 «
Ws | i

XT3 | T4

)

=
-2

X5 | Tg

Table 6.67: Partial index distribution of the codewords of G;\G;.

with zy,...,26 € S USy U (S5 US4 US5)\{a, 5,7}. By the same reasons referred in

the previous cases, x1,...,Tg are pairwise distinct. [

We have in view the characterization of all possible index distributions of the code-
words of G; U F;. Until now, taking into account the previous proposition, we have
identified conditions which must be necessary satisfied by all codewords of G;. Next,
we will also concentrate our attention in the codewords of F;.

Since |G;| = 5, then by Lemma 2.11 we get 7 < |F;| < 10. If |F| = 7, then,

by the same lemma, \.E(2)\ = 4. Taking into account Lemma 2.14, the condition
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|]-"Z-(2)| = 4 restricts significantly the number of hypotheses for the index distributions
of the codewords of F;. If 8 < |F;| < 10, it will be helpful to find out conditions which
restrict the number of possible index distributions for the codewords of F;. Next,
we present a result which establishes a relation between the index distribution of the

codewords of G; and F; when 8 < |F;| < 10.

Proposition 6.10 If 8 < |F;| < 10, then there exist, at least, three elements
a € O\{j} satisfying |Gio| = |Fia| = 2.
Proof. Suppose that 8 < |F;| < 10. Since
1
Fl=5 D |Fal,
€T\ {i,—i}

we get

24< Y |Fal <30. (6.11)

€T\ {i,—i}

From Lemma 2.2 we know that:
Dia U Eia| + 2| Fial +3[Gia| = 10, V a € T\{i, —i}. (6.12)

By Proposition 6.9 we get 1 < [(S3 US,US5) NO| < 3.
Let us verify what happens when [(S; U Sy U S5) N O] assumes each one of the

possible values.

Suppose that |(S3US,US;) NO| =1, with {5} = (S3 US,US;5) N O. Taking into
account Proposition 6.9, the codewords W3, Wy, W5 € G;\G; satisfy:

Wy | i
Wy i

W5 1 7 | g | Tg | T10

XTy | g | T3

Ty | T | Tg

o™

Table 6.68: Partial index distribution of the codewords of G;\§G;.

with z,...,250 € & U S U (S5 U S U S;)\{B} pairwise distinct and
{z1,..., 210} = S1USU(S3US,US5)\{F}. Thus, considering the codewords of G;; UF;;
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as well as the codewords of G;\G;, we conclude that |G| = 2 for any o € S;US, U {5}
and, on the other hand, |G;,| = 1 for any o € (S3US, US5)\{5}. Taking into account
(6.12), we verify that |F;,| < 3 for each a € (S3 U S, U S5)\{8}. Consequently, as
(S5 USsUS)\{B} =4, we get

> | Fio| < 12.
aE(SgUS4US5)\{ﬁ}
Having in mind that |F;;| = 2, by (6.11) we must impose
> Tl =10 (6.13)
aeS1USU{B}

Since |Gin| = 2 for any a € S U Sy U {B}, by (6.12) we get |Fin| < 2 for any
a € SUSU{B}. As [SUS U{B} =7, by (6.13) we conclude that there are,
at least, three elements o € Sy U Sy U {8} satisfying |Fia| = 2.

Let us now suppose that [(S3US;US5) NO| = 2, with {#,7} = (S3US,US5) N O.
By Proposition 6.9, the codewords W3, Wy, W5 € G;\G; must verify:

W3 1 ﬁ Y| X1 | X2
W4 1 ﬁ T3 | Ty | Ty
Ws | @ | v | x¢ | o7 | 23

Table 6.69: Partial index distribution of the codewords of gi\gj.

with z1,...,28 € 8§ U S U (S3 U S U S)\{B8,7} and pairwise distinct.
Since |S; U S, U (S5 US,US;)\{B,7} =9, let us consider

{T} = [81 U 82 @) (83 U 84 U 85)\{57’}/}]\{5(]1, c. ,[Eg}.

If r € §; US,, then |Gin| = 2 for any a € (S; US)\{r} U{B,7}. On the other
hand, |G| = 1 for any @ € {r}U(S3US,US5)\{5,~}. In these conditions, considering
(6.12),

> | Fio| < 12.

ac{r}u(SsUS,USs)\{B,7}
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Since |F;;| = 2, taking into account (6.11) we must impose

> [Fia] > 10.

a€(S1US)\{r}u{B,7}
As, by (6.12), | Fial < 2forall o € (SUS\}U(8, 7}, and |(SUS\[}U{8,7} =7,
we conclude that there are, at least, three elements a € (S;US:)\{r}U{B, v} satisfying
| Fial = 2.
Now suppose that r € (S3 US4 U S5)\{B,7}. In these conditions, |G;,| = 2 for any
a € S USU{B,7}. On the other hand, |G| =1 for a € (S3US,US;)\{B,7,r}. We
note that, |G;.| = 0. Taking into account (6.12),

> |Fia| <5 +2x3=11.
046(33U34U35)\{5,’7}
Since |F;;| = 2, by (6.11) it follows that
> | Fal =1L (6.14)
a€S1U82U{ﬂ,'7}

By (6.12), |Fia| < 2 for any o € S;US,U{ 5, v} furthermore |S;US,U{ 3, v}|=8, Thus,
by (6.14), we must impose the existence of, at least, three elements o € S;US,U{f, v}
satisfying |Fia| = 2.

Finally, consider |(S3U S, USs) N O| = 3, with {5,7,0} = (S3US, US5) N O. By
Proposition 6.9, we know that W5, Wy, W5 € G;\G; must satisfy:

W3 1 5 Y| X1 | T
W4 1 5 ) T3 | T4
Ws | ¢ | v |0 |x5]| a6

Table 6.70: Partial index distribution of the codewords of G;\G;.

with z1,...,2¢ € & U Sy U (S5 U Sy U S3)\{B,7,0} and pairwise distinct. As
|S1 US, U (S3US,US)\{B,7,d}| =8, consider

{T’,S} = [81 U 82 U (83 US4 U85)\{5,’}/,(5}]\{ZE1, PN ,IG}.
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We will analyze the following hypotheses separately:
orseS USy;

oreSUSyand s € (S3USUS)\{B,7,0};

o rys € (S3USLUSy)\{B,7,6}.

Assume that r, s € §; US,. Thus, |Gio| = 2 for any a € (S; US)\{r,s} U{S,7,0}
and, on the other hand, |G;,| = 1 for any a € {r, s} U (S3 US4 US5)\{5,7,0}. Taking

into account (6.12), we conclude that
> [Fial < 12.
ae{r,s}U(S3US,US5)\{B,7,0}
Consequently, by (6.11) and having in view that |F;;| = 2,
> [Fial > 10.
a€(S1US2)\{r,s}U{B,7,0}
This implies the existence of, at least, three elements « € (S; U Sy)\{r, s} U{3,~,d}

satisfying |Fia| = 2.

Let us suppose that r € S;USs and s € (S3US,US5)\{5,7,d}. In these conditions,
|Gia| = 2 for any a € (S US)\{r} U{5,~,d}. On the other hand, |G,;,| = 1 for any
a € {rtuU(S3USsUSs)\{s,8,7,d}. We note that |G;s| = 0. Considering (6.12) we get

3 |Fia| <5+2x3=11.
ae{r}U(S3US,US5)\{B,7,0}
Consequently, by (6.11),
> [Fial = 11.
a€(S1US2)\{r}U{B,7,0}

Thus, there are, at least, three elements a € (S; USo)\{r}U{p,~,d} so that |F;,| = 2.

If r,5 € (S3US, US5)\{3,7,0}, then [Gio| = 2 for any o € S U S, U {B,7,6}.
Furthermore, |G;,| = |Gis| = 0. Accordingly, taking into account (6.12),

Z | Fia] <2 x5 =10.

ae{r,s}
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Consequently, from (6.11) it follows that
> Fal212
aeS1USU{B,7,0}
Therefore, there are, at least, three elements o € S;US,U{ 3,7, 0} satisfying | Fia| = 2.
O

6.2.2 Index distribution of the codewords of G; U F;

In this subsection we describe how we get the possible index distributions for the code-
words of G; U F;, taking into account that, by assumption, |G;| = 5 and, consequently,
by Lemma 2.11, 7 < |F;| < 10.

We begin by considering Wy, Wy € G;; and Uy, Uy € Fj; and by characterizing the
different possible index distributions for these codewords. Later, taking into account
Proposition 6.9 and considering one of the possible index distributions of the codewords
of G;; U F;;, we exemplify how we characterize the remaining codewords of G;. In the
last part of this subsection, throughout illustrative examples we show how we have
analyzed the index distributions of the codewords of G; U F; when is known the index
distribution of the codewords of G; U F;;. We note that, due to the large number
of possible index distributions for the codewords of G; U F;;, we present only some
representative examples in which we describe the methodology that we have applied

in all cases.

Taking into account what was proven in the previous subsection, let us consider

Wl,WQ S gij and Ul,UQ S Ej so that:

Wl 7 ] w1 Wao | W3 Ul 7 ] (751 (%)
W2 1 j Wy | Wy | We U2 1 ] us Uy

Table 6.71: Partial index distribution of the codewords of G;; U Fi;.

with wy, ..., we,u1,...,uy € ZI\{i,—i,j,—j} pairwise distinct. =~ We note that,

I\{Za -1, 7, _]} = {wh <o, We, UL, - - ,U4}.
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Recall that we are considering
= {27 _i7j7 _j7 k? _ka l? _l7 m,—m,n, —n, o, _0}'

Since |G;j| = |Fi;| = 2, from Lemma 2.2 we conclude that Wy, Ws, Uy and U, are

the unique codewords in G;; U F;;.

We begin by identifying different possible index distributions for the codewords of
Gij U Fij.

Suppose, without loss of generality, that Wi € G;jpp,. Taking into account Lemma

1.5, there are three possible distinct index distributions for Ws € G;;:
1) Wa€Gij—kmt—m:
2) Wo € Gij_kmim;
3) Wa € Gij_kno-

Considering the elements of Z as well as Lemma 1.5, up to an equivalent index distri-
bution, we get for each one of these hypotheses the following index distributions for

the codewords of F;;:

Uy @ | j | n 0 Uy | @+ | g o | —m
Us | 1 j | —n| —o Us | 1 j | —o| —n

Table 6.72: If W, € gi’j’_k7_l7_m. Table 6.73: If W, € g@j’_]@_l’n.

Uy | 2+ | j|—n| —o Uy| @« | j | —m]| —o

Table 6.74: If W, € gl-,j,_kmﬁ. Table 6.75: If W, € gi,j,_kmﬁ.

Since we have characterized all possible index distributions for the codewords of
G;jUF;;, next step consists in the description, for each one of the presented hypotheses,

of the remaining codewords of G;, that is, W3, Wy, W5 € G;\G;.



216 6.2. |Gio| < 2 for any o € Z\{i, —i}

e Characterization of the index distribution of the codewords of G;

Here we present the method we have used to identify the possible index distributions
for all codewords of G; when considered a certain index distribution for the codewords

of Gi; U Fi;. As example, let us consider Wy, Wy € G;; and Uy, Uy € F;; satisfying:

Wil i | g k [ m Ui | 1| g n 0
Wol @ | g |—k|—=L|—-m Uy | 2| j|—n|—o

Table 6.76: Index distribution for the codewords of G;; U F;;.

Let us consider the partition S of Z\{i, —i, j} given by:

S ={k,l,m}; So ={—k,—l,—m}; S ={n,0}; S4 ={-n,—0}; Ss ={—j}. (6.15)

The characterization of the possible index distributions for the codewords Ws, W,
and W; in G;\G; is mainly based in Proposition 6.9 from which we know that
1 < |[(S3USUS5) N O] < 3. Thus, in the study of the index distribution of the

codewords Ws3, W, and W5 we will consider the following hypotheses:

a) |(83US4US5)HO| = 1;

b) |($3U84U85)ﬁ0| :2;

C) |(83US4US5)HO‘ = 3.

We recall that O C Z is such that a € O if and only if |G| = 2.

a) Suppose that |[(S3US,US;)NO| = 1.

Let {a} = (S3US,US5) N O. In these conditions, by Proposition 6.9, the code-
words W3, Wy, W5 € G;\G; must satisfy the conditions presented in Table 6.77, where
{.1'1, Ce ,1'10} = Sl U 82 U (83 U 84 U S5)\{CK}
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W3 1 a | T | T XT3
Wil @ | a | 24| x5 | X
W5 1 7 | g | g | T10

Table 6.77: Partial index distribution for W3, Wy, W5 € G;\G;.

Considering the sets Ss, Sy and Ss, see (6.15), we distinguish, without loss of

generality, the cases:

If o = n, taking into account the codewords of G;; U F;; and Lemma 1.5, up to an

equivalent index distribution, the codewords W3, Wy, W5 € G;\G; satisty:

Wil o2 |n|—0o]| 1l | —m
Ws| ¢« | —mn| o | m]| —k

Table 6.78: Index distribution for W5, Wy, W5 € G;\G; when o = n.

If « = —j, then, as in the previous case, up to an equivalent index distribution,

W3, Wy and Wiy verify:

Ws| @+ | —j| —n| k| —I
Wyl @ | =3 o [ | —m
Ws| i | n|—o|m| —k

Table 6.79: Index distribution for W3, Wy, W5 € G;\G; when a = —j.

b) Suppose that |(S3US,US;)NO| = 2.

Let {a, 8} = (S3US; USs5) N O. By Proposition 6.9, the index distribution
of W3, Wy, W5 € G;\G; must satisfy the conditions presented in Table 6.80, where
Ty, .., 28 € ST US U (S3US4US;5)\{a, B} are pairwise distinct.
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W3 i (0% ﬁ T | T2
Wil @ | a | 23| 24 | x5
W5 i ﬁ Tg | T7 | X

Table 6.80: Partial index distribution for Ws, Wy, W5 € G;\G;.

Considering the partition S of Z\{i, —i, j}, see (6.15), without loss of generality,

there exist two possible hypotheses:
i) a =nand = —o;

i1) o« =n and = —j.

If « =n and = —o, then we get the following partial index distribution:

Ws | @ | n| —o|x| 2

Wil 2 | mn | 23 | 24 | x5

Ws | 1 | —o| x¢ | x7 | x5

Table 6.81: Partial index distribution for Wy, Wy, W5 € G;\G;.

Considering the codewords of G;; U F;; as well as Lemma 1.5 we must impose

Z1,...,Tg # —n,o0. Since
’81 U 82 U (83 U 84 U 85)\{71, —0, —nN, 0}’ = 7,

we get a contradiction.

Let us now consider &« = n and = —j. That is:

Wi | @ | n | —7|x | x

Wyl @ | n| x3 | 24 | x5

W5 7 —j T T7 | Tg

Table 6.82: Partial index distribution for Wy, Wy, W5 € G\G;.
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Since |81 U S U (S3U S, US5)\{n, —j} =9, we distinguish the cases:

— S1US, ¢ {21, ..., 28};

— 81 USQ C {xl, ...,xg}.

Suppose that S; U Sy ¢ {x1,...,2s}. Under this condition we get, up to an equi-

valent index distribution, the following hypotheses for W5, Wy, W5 € G:\G;:

Ws | @ | n|—7]|k]| —I Ws | ¢ | n| —7|k|—-m
Wil o | n| —o|l | —k Wil 2 | n| —ol|l| —k
Ws| i | —j| —mn|o]| m Ws| i@ | —j|—ml|o| m

Wyl ¢ | n|—7|k| —I

Wyl 2 | n | —o —-m

Ws| i | —j| —mjo| m

Table 6.83: Possible index distributions for the codewords of G;\G;.

If S$USy C {x1,..., x5}, then there are two different possibilities for the codewords

Wg, W4 and W5I

Wal i |n | —j| k]| -

Wil ¢ | n|—5| k| —I
Wyl @ |n | —0]| L |—m Wyl ¢
Ws | ¢ | —j| —n|m| —k Ws | ¢ | —j| o |m| —k

Table 6.84: Possible index distributions for the codewords of G;\G;.

¢) Suppose that |(S3US,US;) NO| = 3.

Without loss of generality, suppose that a, 8,7 € (S3 US4 U S5) N O are such that

a =n, f = —o and v = —j. Thus, considering Proposition 6.9, the codewords

W3, Wy, W5 € G;\G, must satisfy the conditions presented in Table 6.85, where

Ty, ..., 26 € ST USy U (S3US4US;5)\{n, —o, —j} are pairwise distinct.
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Ws | @ | n| —o|x| 2
Wyl @ | n | —J |23 | 24
W5 i —O0 —j Ty | Tg

Table 6.85: Partial index distribution for the codewords of G;\G;.

Taking into account the codewords of G;; U F;; and Lemma 1.5, we must impose
r,...,x6 # —n,o0. Consequently, {zq,...,26} = S USs. Accordingly, up to an
equivalent index distribution, Ws, Wy, W5 € G;\G; satisty:

Wal @ | n|—o| k| —I
Wyl @ |n|—j| 1 |—m

Ws| ¢ | —ol —j | m | —k

Table 6.86: Index distribution for the codewords of G;\G;.

Considering Wy € G, j 1,1, and Uy, Uy € F;; satisfying the index distribution pre-
sented in Table 6.73, as well as, Wy € G, j _r.n0 and Uy, Uy € F; satisfying, respectively,
the conditions presented in Tables 6.74 and 6.75, following a similar reasoning to the

one done before we get all possible index distributions for the codewords W3, W, and

e Characterization of the index distribution of the codewords of F;

For a certain index distribution of the codewords of G;; U F;; we have shown how we
have obtained possible index distributions for all codewords of G;. Here we describe the
method which allows us to characterize the remaining codewords of F; starting from
the knowledge of a certain index distribution of the codewords of G; U F;;.

We recall that, by Lemma 2.11, 7 < |F;| < 10. In the characterization of all

codewords of F; we analyze, separately, the hypotheses:
i) =T

i) 8 < |Fi| < 10.
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The hypothesis |F;| = 7 will be analyzed taking into account that, by Lemma 2.11,
|}"i(2)| = 4. The analysis of 8 < |F;| < 10 will be based in Proposition 6.10.

To exemplify how we characterize all codewords of F;, we will consider some possible

index distributions for the codewords of G; U F;;. We present examples in which:
1) it is not possible to describe F;;
2) it is only possible to describe F; when |F;| = T7;
3) it is only possible to describe F; when 8 < |F;| < 10;

4) it is possible to describe F; when |F;| = 7 and 8 < |F;| < 10.

Example 1: It is not possible to describe F;.

Let us consider W1, ..., W5 € G; and Uy, Uy € F;; satisfying:

Wil i | j k [ m U | i | j n 0
Wol @ | j | —=k|—=l|—m Uy| i | | —n| —o
Wil 2 |m | —0| L | —m
Wl @ | —m| o | m | —k

Table 6.87: Codewords of G; U F;;.

Suppose that |F;| = 7. By Lemma 2.11, ]}"i@)] = 4. Consequently, from Lemma
2.14 it follows that V..., V; € F\*) are such that Vi € Fiypoyes- - - Vi € Fiyropipre With
Y1, -, Y12 € I\{i, —i} pairwise distinct. Thus, there exists V € ]:i(Q) so that V € Fi;.
Since U; and U, are the unique codewords in F;;, either U; € .E(z) or U, € E(2).
Taking into account the known codewords of G; U F;; and Lemma 1.5, we verify that if
U € ]:Z-(Q), it is not possible to characterize all codewords of }}(2) without contradicting
the definition of PL(7,2) code. On the other hand, considering U; € }}(2), there exists a
unique possible index distribution for the codewords of E(Q), presented in the following

table.
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Vi=U | @ | J n 0
Vs i1 | k| —-m|—n
Vs i || =5 | —k
| i |m| =l | —o

Table 6.88: Codewords of }"i@).

We have characterized five of the seven codewords of F;. However, considering the
codewords of G; U F;; U]:Z»(Z) already known and Lemma 1.5, it is possible to add to the
set F; only one more codeword U € F; satisfying: U € F; _; _,,, .. Any other hypothesis
for U € F; contradicts Lemma 1.5. That is, |F;| < 6, contradicting Lemma 2.11.

Consider 8 < |F;| < 10. By Proposition 6.10, there are, at least, three elements
a € O\{j} satistying |Fio| = 2, that is, there are, at least, three elements v € O\{j}
such that |G| = | Fia| = 2. We begin by identifying the elements o € O\{j}:

O\{j} ={k,—k,l,—1,m,—m,n}.

Next, we check which of these elements o € O\{j} can satisfy the condition
|Fia| = 2. For that, consider the following schemes where are presented all possible

index distributions for codewords of F;, with a € O\{j}:

fa Lyl L ] Lel¥T T 1 Tl | | RIFL 1
-o-n oo -ad T S I il r o
%ﬁ/ \“:’_’__——/J
(Ll ] L ) [el=se] [ 1 [F1sl 1 1
iR,
wmoo-n o -o i k -2 o -k om

Figure 6.16: Possible index distributions for codewords of F;.

We note that, the different index distributions for codewords of F; presented in the
schemes of Figure 6.16 come from the analysis of the codewords of G; U F;;, ta-
king into account Lemma 1.5. Looking at the schemes, we verify, for example, that

| Fir] < 1, in fact, as the unique possible index distributions for codewords of Fj, are
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Ué€ Fik—m-n and U € F,r_mo, by Lemma 1.5 we conclude that is not possible
consider both codewords, U and U’, in Fj;. We may also conclude that |Fyl, |Finl,
[ Fiokls [ Fials [ Fin| < 1.

There is only one element —m € O\{j} for which it is possible to have |F; _,,| = 2.
In fact, we can consider F; _,, = {U,U'} with U € F, _, _j_n and U’ € F; _ k.0, OT,
UeFi—m—joand U € F; 5 _n. Since —m € O\{j} is the unique element satisfying

the condition |F; _,,| = 2, this contradicts Proposition 6.10.

Consequently, the considered index distribution for the codewords of G; U F;; con-

tradicts the definition of PL(7,2) code.

In the majority of the cases, likewise this example, given the codewords of G,UF;;, we
can not characterize all codewords of F; without contradicting the definition of perfect
error correcting Lee code. However, there exist index distributions for the codewords
of G; U F;; in which it is possible to have a complete admissible characterization, as we

will see in next examples.

Example 2: It is only possible to describe F; when |F;| = 7.

Suppose that the codewords of G; U F;; are such that:

WI 2 j k [ m U1 i j -1 —n
Wa | ¢ jg | k| n|o Uy | ¢ | 7 |—m]| —o
Ws | ¢« | =l |—-m|—7]| o0
Wyl @ | =l| —0o| n | k
Ws | i« | —m| —n | =k | I

Table 6.89: Codewords of G; U F;;.

We begin by characterizing the codewords of F;, assuming |F;| = 7. In these
conditions, by Lemma 2.11, we have ].7-"1-(2)\ = 4. Considering Lemma 2.14, since U; and
U, are the unique codewords in F;;, we must impose U; € .E(Q) or U; € .7:2-(2). From
Lemma 2.14 we know that there is no o € Z\{i, —i} so that |F;, N E(Q)| > 2. Taking

into account the codewords of G; U F;; and Lemma 1.5, if we assume U; € ]—"i(z) we can
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not describe all codewords of ]-"i(Q) without facing a contradiction. On the other hand,

it U, € .E(Q), then the codewords of ]-"i(Q) are such that:

Uy | @ | j|—m]|—o
Us| i | k| —n| o
Ug | @ | I | —j

Us | i« |m| —k | —I

Table 6.90: Codewords of E(Q).

As we are under the assumption of |F;| = 7, then we must identify in F; two more
codewords. Considering the schemes in Figure 6.17 all possible index distributions for
the remaining codewords of F; are given. We note that, these schemes were obtained

taking into account all codewords already known as well as Lemma 1.5.

el [ | Lelel [ | [alx[ [ | [e[]2] [ |
— | — | T—C— S S
E -k om - o - i e ol
(S -
Le 2] [ | [lwml [ ] [Elewl T ]
- — = =
no-n o -d ”
e 9

Figure 6.17: Possible index distributions for codewords U € F;.

Therefore, Us, U; € F; must satisfy one of the following conditions:
- UG € E,—jﬂm—n and U7 € «E,—j,—k7—o;
- UG € J—-.i,m,fn,fo and U? S ‘/_"i,fj,fk,fo-
Now suppose that 8 < |F;| < 10. By Proposition 6.10 we must identify in O\{j},

at least, three elements « satisfying | F;,| = 2. Observing the index distribution of the

codewords Wy, ..., W5 € G; we verify that

O\{j} ={k,—k,l,—1,—m,n,o0}.
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In the next figure all possible index distributions for the codewords of F,,, with

a € O\{j} are presented.

Le & T 1 L[el=.] [ 1 [l [ 1 [el=2] T 1]
[—— (— —_— T
_ f \f |
R S - A m -o ioon & - ko om
— [ \__J ) _J
liflw] | | [T T 1 [ElTel T 1
—— " — = of
ko on - I om -m kol om -n
| —

Figure 6.18: Possible index distributions for codewords of F;.

Taking into account the schemes in Figure 6.18 we conclude that there exist only two
elements av € O\{j} for which |F;,| = 2: —k and —[. Consequently, Proposition 6.10

is contradicted.

Example 3: It is only possible to describe F; when 8 < |F;| < 10.

Suppose that the codewords of G; U F;; satisfy:

Wl i J k [ m U1 i j -1 —n
Wol| i | j|—-k|n| o U | i | j|—-m]| —o
Ws | @ | =L| =7 |m | —k
Wyl @ | =l| —0o| k| n
Ws | ¢ | —j| —n| 0

Table 6.91: Codewords of G; U F;;.

Proceeding as in the previous examples, we conclude that it is not possible to
describe all codewords of F; when |F;| = 7. So, we will assume 8 < |F;| < 10. Taking

into account Proposition 6.10, we are going to identify the elements o € O\{j},
O\{j} = {_]7 ka _k7 lv _lu m,n, 0}7

for which it is possible to have |F;,| = 2.
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Consider the schemes bellow where are presented all possible index distributions

for the codewords of F;, with a € O\{j}:

la L2] | JIOTET T 1TETeT T 1 [GTEFT T |
ladloe] 1 1-FR.fel [ 1 (ELFEL T 3 [aTHT T 1

Figure 6.19: Possible index distributions for the codewords of F;.

By the analysis of the above schemes and taking into account the codewords of F;; we
conclude that there exist exactly three elements in O\{j} satisfying the conditions in
Proposition 6.10: —k, [ and —I. Thus, to guarantee |F; x| = |Fu| = |Fi—i| = 2, the
codewords Us, ..., U described bellow must be in F;.

Us| i |1l | =k | —o
Uy | @ Ll |-m| n
Us | i | =kl —m | —n
Us | @ | =l|—m ]| o

Table 6.92: Index distribution for codewords of F;.

As we are supposing 8 < |F;| < 10, we must identify in F;, at least, two more
codewords. Taking into account the index distribution of all codewords known at
this moment as well as Lemma 1.5, we find out the remaining codewords of F; iden-
tifying all possible index distributions for codewords in F; _;, Fu\F—_;, Fi—k\F_j,
Fa\(F_; U F, U F_y) and so on, see Figure 6.20.

By the analysis of the schemes in Figure 6.20 we conclude that there exist only two
possible index distributions for the remaining codewords of F;: U; € F; _j ) _n and

Us € Fim,—n—o- Thus, |F;| =8 and all codewords of G; U F; are characterized.
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Lelo [ [ | [GT®RT T ] GTwT T ] G T 7

k -m »n -o B R R

Le 2 1 ] BIml T | Glwl T 1

Figure 6.20: Possible index distributions for codewords of F;.

Example 4: It is possible to describe F; when |F;| = 7 and 8 < |F;| < 10.

Let us assume Wy,..., W5 € G; and Uy, U, € F;; satisfying:

Waili| j | k| 1 m Uil 7 | 1| —n
Wali| j |—k| n 0 Uy 7| 7 —-m | —o
Wsli|—-l|—0]| m n
Ws 1| —0o| —j| —n k

Table 6.93: Index distribution of the codewords of G; U F;;.

Suppose that |F;| = 7. Since by Lemma 2.11 we get |]:¢(2)| = 4, taking into account
Lemma 2.14, either U; € -7:1'(2) or U, € -7:1'(2)- Considering the hypotheses U; € ]—“Z.(Q) and
U, € E(2), having in view Lemmas 2.14 and 1.5 as well as the codewords of G; U F;,

we get, respectively, the following index distributions for the codewords of .E(Q):

U | i j -l | —n Uy i j|—m]| —o
Us|i| k| —-m| n Us || k| —I 0
U4 i l —k —0 U4 i l —j n
Us|i|m| —J 0 Us|i|m| —k | —n
Table 6.94: U; € F, Table 6.95: Uy € F,

To complete the characterization of the codewords of F;, since we are assuming
|Fi| = 7, we must identify, for each one of the presented hypotheses, two more code-

words.

Considering U; € ﬂ(z), see Table 6.94, taking into account all codewords described
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until now and Lemma 1.5, we get the following possible index distributions for the

remaining codewords Uy, U; € F;:

Lildl | | [T&®] T ] Glx[ [ 1 [Elf T
i = e - —mn—nﬂo
N - S, \"‘ﬁ"_//l_—-ﬂ"j

Le [ 4] | | [GTm] T 1 [l T ]
o -n - o
L

Figure 6.21: Possible index distributions for the codewords of F;.

By the analysis of the above schemes we verify that there are several possibilities for

the index distribution of the codewords Ug, U; € F;:

Us Iz
A e
k| om | -m
I -j ; X -# o)
-m | -n
Fl-m| e
-m|-n | o

k| om | e

I k -f o I —FH -¥
|l -n| e

-m | -n | o

I |-n]| o

ik | m |- [ |-m|-n
Fl-m| o

LEVI ISP ISR IESPIRS IESPIRY IESPR (SO ISR (SO (PR (PO [FIFR [PIFUS [P SR [PV
.
1
=
i

Table 6.96: Possible index distributions for Ug, U; € F;.

If we assume that Uy € .7:1»(2), see Table 6.95, we conclude, following a similar
reasoning to the one applied in the previous case, that the codewords Ug, U; € F; must

satisfy one of the conditions presented in Table 6.97.
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U.s U?
i - | om
A R
1 =7 b o 3 -# o
i - | -#
i P l-m| o
I | -m | @
i -k d | e
i Il =»| o
i El-m| n| ; A ET R
i Il-m| o
Po|-m| -m | @
i Il =»a| e
il k| | L2 [ -m | -n
i Fl-m| o
I |-m| -m | @

Table 6.97: Possible index distributions for Ug, U; € F;.

In this case we can characterize JF;, under the assumption of |F;| = 7, getting
several possible index distributions for the codewords of F;. Next, we show that it is

also possible characterize all the codewords of F; when we assume 8 < |F;| < 10.

Let us then assume 8 < |F;| < 10. Considering Proposition 6.10, we must identify
the elements o € O\{j} which verify |F;,| = 2. By the analysis of Wy,...,W; € G,
see Table 6.93, we get O\{j} = {—J, k, —k, —1,m,n, —o}. Next we present the possible
index distributions for the codewords of F;,, with o € O\{j}:

Lelel [ | GTwel T 1 GTx[ 1 1 [E1a] T ]
4 o-mon ik o @ I m - o okl -m
.= bl A R
il | 1 [Tl T 1 [ET41 T ]

k o -k jmo

Figure 6.22: Possible index distributions for the codewords of F;.

From the analysis of the schemes in Figure 6.22 we conclude that for any a € O\{j} it is
possible to have |F;,| = 2. By Proposition 6.10, it must exist, at least, three elements
a € O\{j} satisfying |F;n| = 2. Thus, we should identify, considering the schemes

in Figure 6.22, sets of codewords which must be in F; guaranteing the conditions of
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Proposition 6.10.

o If |Fix] = 2, then Us € Fj 1o and Uy € Fp _mn. We note that, in these
conditions, |F; ;| = 2. Thus, having in view Proposition 6.10, at least one of the

following conditions must be satisfied:
1) |Fim| = 2, with Us € Fim—_j0r Us € Fimm—ioon;
2) |Finl =2, with Us € Fi i
3) |Fi—ol =2, with Us € Fi _o _s;

We have identified the codewords in F; assuming |Fiz| = 2. Next, we apply the
same reasoning considering now the assumption |F;,| = 2, with a € O\{j,m}. We

impose | F;| # 2 since we have just analyzed this hypothesis.

o If |Fim| = 2, then Us € Fip—jo and Uy € Fipy g —pn. In this case one of the

following conditions must be satisfied:

4) | Fi—k| = |Fi—o| =2, with Us € Fi _k1,—0;

5) |Finl = |Fi—j| = 2, with Us € F; . _;; and Us € Fi 5 o —m;

6) |Fi—i| =|Fi—j| =2, with Us € Fi,—ji and Us € F; _1 k0

o Now suppose that |F; ;x| = 2. Then Us € F; 1, and Uy € F; _jm —n. We note
that, in this case, |F; _,| = 2, thus one of following conditions must be verified:

7) |Finl =2, with Us € F;,,—j; and Us € Fin g —m;

8) |Fi—i| =2, with Us € Fi _ k.0;

9) |Fi—jl =2, with Us € Fi _j 1, and Us € F; _jmo-

o If |Fin| =2, then Us € F;,,_;; and Uy € Fi, k,—m. In these conditions one of the
following hypotheses must be satisfied:

10) |Fi—i| = |Fik] = 2, with Us € F; _1 1.0}
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11) |.Fi’,o| = ‘E7,j‘ =2, with Us € J—'.i,fo,fk,l and Ug € J—'.i,fj,m,o-

o Supposing |F; ;| = 2, then Us € F; _;x, and we must impose:
12) |~F‘i,70| - ‘]:.i,fj‘ = 27 with U4 € E,fo,fk,lv U5 € f.i,fj,m,o and Uﬁ € -F.i,fj,l,n-

We will not consider the hypotheses |F; _,| = 2 and |F;_;| = 2 since one of the

previous conditions would occur.

Thus, if 8 < |F;| < 10, one of the presented sets of codewords must be in F;. Since
the previous conditions allow us to characterize at most six codewords in J;, considering
the referred subsets of codewords, we must, for each one of them, to identify other
codewords in F;. Next, considering one of the presented hypotheses, we exemplify how
we can get the remaining codewords of F;.

Let us consider Us,...,Us € F; such that:

Us | i | k| =1 o)
U4 i k —m

Us | 2+ |m| —5 | o
Us| i | =kl m | —n

Table 6.98: Index distribution of codewords of F;.

In this case, we must identify, at least, two more codewords in F;. For that we will
consider the following schemes where all possible index distributions for the remaining

codewords U € F; are presented :

Le [ [ 1 [af®[ [T | [[r[ [ |
L_V‘_) W 'fl,_
T oy -m?s-.»sloo
_J r —

Lilwm] [ | [Efam] T |

S —
o] - o
_/

Figure 6.23: Possible index distributions for U € F;.
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Analyzing the previous schemes and considering Lemma 1.5 we conclude that it is
possible to characterize all codewords of F; when we assume |F;| =8 or |F;| = 9.

If |F;| = 8, the remaining codewords Uz, Us € F; must satisfy one of the following

conditions:
iz s
I o I S
i F-m| -n
g 4| # i Fl-m| o
i 'l »n| e
|- -n | e
i F-m| -n
i ik ] i i I |-m| o
i | e
|| -n| o

Table 6.99: Possible index distributions for Uy, Ug € F;.

If | F;| =9, then Uz, Ug, Uy € F; must verify one of the following hypotheses:

U? Ullj' UQ
i Fl-m| -»
P || @ || G ||| L E Ll g
i Fl-n)| o
I -m | m| e

Table 6.100: Possible index distributions for U;, Us, Uy € F;.

If we had considered any other of the presented hypotheses for the index distribution
of the codewords of F;, by a similar reasoning to the one applied in this example we
would characterize all codewords of F;.

We note that, unlike the previous index distributions of G; U F;; presented in
Examples 2) and 3), in this case we have obtained many possible index distributions

for the codewords of F;.
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6.2.3 Analysis of the index distribution of the codewords of
Gi U F;

In the previous subsection we have shown that although for certain possible index
distributions of the codewords of G; U F;; it is not possible to characterize completely
the codewords of F;, there are cases where we can describe all codewords of G; U F;.
Apparently, it seems that in these cases no contradiction will be achieved, however, as
we will see here, such it is not true.

Here we present the method we have used to show that each one of the possible
index distributions for the codewords of G; U F; leads to a contradiction. Since there
exist many possible index distributions for G;UF;, we describe the applied methodology

presenting some illustrative examples.

Example 1

Let us consider W1, ..., W5 € G; and Uy, ..., Ug € F; satisfying the following index

distribution:

Wil @ | j k Il | m Uy | @+ | J —l | —n

Wol @ | g | —-k|n| o Uy| i | j|—-m| —o

Ws | 2 [l —j | m]|—k Us | 7 [ | =k | —o

Wyl @ | =l —0o| k| n Uy | 1 [ | —-m | n

Ws | @« | —j| —n | 0 Us | i | =kl —m | —n
Us| i | —l|—-m | o
U7 ) —j k —m
Ug| i |m | —n| —o

Table 6.101: Index distribution of the codewords of G; U F;.

Since we have described all codewords of G; U F;, we will focus our attention on
other element in Z\{i}. Our aim is to achieve a contradiction, in particular, we have
constantly in view possible contradictions of Lemma 1.5. We are interested in the
choice of an element o € Z\{:} for which the number of known codewords of G, is
minimum, since this implies the characterization of other more codewords of G,. We
note that, the bigger is the number of the other codewords which must be characterized,

more probability to contradict Lemma 1.5 exists. On the other hand, although at this
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moment it is not known any codeword of G_;, we do not give preference to this element
of Z since we do not have, throughout the known codewords of G; U F;, any information
about it.

We will analyze the considered set G; U F; concentrating our attention on —m € Z.
In fact, observing the codewords of G;, see Table 6.101, we verify that —m is such that
|Gi—m| = 0. Since, by Corollary 5.1, 5 < |G,| < 7 for any a € Z, we must identify,
at least, five codewords in G_,,. To simplify the characterization of the possible index
distributions for the codewords of G_,,, we will consider the partition X of Z\{i, m, —m}

induced by the codewords Us, Uy, Us, Us, Uz € F; _pn:

Xy ={j,—o}; Xo={l,n}; X5={-k,—n}; Xy ={-1,0}; X5 ={—j,k}; X ={—i}.
(6.16)
By Theorem 6.1, if |G_,,| = 5, then |G_,, o| < 2 for any a € Z\{m, —m}. On the
other hand, independently of the value of |G_,,|, taking into account Lemma 2.2 we
get |G_p.al < 3 for any oo € Z\{m,—m}. So, for any possible value of |G_,,| we must
impose |G_,,\G_;| > 3. As we have said before, we give preference to the codewords
which do not have —¢ in their index distributions since we do not have any information
about —i being more difficult to get contradictions. Thus, we begin by analyzing
possible index distributions for the codewords of G_,,,\G_;.
Taking into account the partition X, see (6.16), all codewords of G;UF; and Lemma
1.5, if W e G_,,\G_;, then W must satisfies one of the following index distributions:

-m| k| —-n| | | —o
—-m | k| —n| j )
—m | —o| —j | —k

-m | —o| —j | =l | —n

Table 6.102: Possible index distributions for W € G_,,\G_;.

From the analysis of the Table 6.102, if W € G_,\G_;, then W € G_,, , _,,UG_,,, _» ;.
Thus, by Lemma 1.5 we get |G_,,\G_;| < 2, which is a contradiction. Therefore, the
considered index distribution for the codewords of G; UF; does not satisfy the definition

of PL(7,2) code.
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This is an example in which, considering one other element o € Z\{i}, it is not
possible to characterize all codewords of G,, concluding immediately that such index
distribution for the codewords of G; U F; contradicts the definition of PL(7,2) code.
However, in many cases, when considered another element o € Z\{i}, we can describe
completely all codewords of G, being necessary to analyze what happens with the

codewords of F,, as we will see in the next example.

Example 2

Now consider the following index distribution for the codewords of G; U F;:

Wil @ | j | k l m Uy | 2| g o | —m
Wol @ | 5| —k| =l | n Uy| i | j | —0o| —n
Ws | @+ | —j| o n [ Us | i [l | —m | —n
Wyl @ | =5 —0 | —m | =1 Uy | 7 [ | =k | —o
Ws| 2| o|-n| —k|m Us| i« | n| m —0
Us| i@ | n k —-m
U:;| 7 | o k -1
Us| @« | —j| kK | —n

Table 6.103: Index distribution of the codewords of G; U F;.

As in the previous example, let us analyze an element o € Z\{:} for which |G;,| is
minimum. Looking at Table 6.103, we verify that |G;,| > 1 for any o € Z\{i, —i}. So,
let us consider, for example, —o € T for which |G; _,| =1 and |F; _,| = 3.

By Corollary 5.1, 5 < |G_,| < 7. Since |G, _,| = 1, we have to characterize, at least,
four more codewords in G_,. As in the previous example, independently of the value
of |G_,|, we have |G_,\G_;| > 3. As W, € G_,\G_;, we must identify, at least, two
more codewords in G_,\G_;. For that, we will consider the partition X of Z\{i, 0, —o}

induced by the codewords W, € G; _, and U,, Uy, Us € F; _,:

Xy ={—j,—m,—l}; Xy ={j,—n}; X5 ={l,—k}; Xy ={n,m};, X ={k}; X ={—i}.
(6.17)
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Taking into account this partition, the index distribution of the codewords of G; U F; as
well as Lemma 1.5, we conclude that |G_,\G_;| = 3 with Wy, W7 € G_,\G_; satisfying

one of the following index distributions:

Weg | —o| —j | —nl|l|m We | —0o| —m| j l
Wel —o|l —m| j |l | n Wel —o| kE | =l | —n|m

3

Table 6.104: Possible index distributions for Ws, W7 € G_,\G_;.

To complete the characterization of all codewords of G_,, for each one of the pre-
sented hypotheses we will identify possible codewords in G_, ;. We note that, since

|G_,\G_;| = 3 and, by Lemma 2.2, |G_, ;| < 3, it follows that 5 < |G_,| < 6.

Suppose that W € G_, _; p1m and W7 € G, 1 jin-

Let us assume |G_,| = 5. In these conditions, we must identify two codewords
Ws, Wy € G_,, ;. In the characterization of Wy, Wy € G_, _; we must have into account
Theorem 6.1, that is, the index distribution of Wy and Wy must be such that |G_, ,| < 2
for any o € Z\{o, —o}. Considering again the partition X, see (6.17), the codewords
already known and Lemma 1.5, the codewords W, Wy € G_, _; must verify one of the

following conditions:

Ws| —o| —t | j|—k|m Wg | —o| —t | j|—k| m
Wy | —o| —1 | k| —I Wy | —of —2 | k| =l ]| —n

N

Table 6.105: Possible index distributions for Ws, Wy € G_, _;.

If we suppose |G_,| = 6, then Wy, Wy, Wy € G_, _; must verify one of the conditions
presented in Table 6.106.
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Wsg | —o| =t | —-m | —n | —k Wg | —ol =2 | k& | —m | —n
Wy | —o| —i | —I 7 m Wy | —o| —i | =l | 7 m
W10 —o| —1 k —j WlO —o| —1t —j —k

3
3

Table 6.106: Index distributions for Wg, Wy, Wiy € G_, _;.

If we consider Wg, W7 € G_,\G_; so that W € G_, ;1 and W7 € G_o k1 _nms
we necessarily have |G_,| = 5 with Wy, Wy € G_, _; satisfying one of the following

index distributions:

Wg | —o| —t | —j| —n|l Ws| —o| —t | j|—k|m

Table 6.107: Possible index distributions for Ws, Wy € G_, _;.

Therefore, for the considered index distribution of the codewords of G; U F; there
exist several possible index distributions for the codewords of G_,. Next step consist in
to complete the characterization of all codewords of F_, for each one of the obtained
index distributions for G_,. We recall that, by Lemmas 2.11 and 2.12, we know,

respectively:
— if |G_o| =5, then 7 < |F_,| < 10; furthermore, if | F_,| = 7, then |F®| = 4;

— if |G_o| = 6, then 4 < |F_,| < 8: furthermore, if |F_,| = 4, then |F| = 4.
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Let us suppose that the codewords of G_,\G; satisfy:

We | —o| —j | —m | | |m
Wy | —o| —m| j [ |'n
Wg| —o| —t | 7 |—k|m
Wy | —of —i | kE | =l | n

Table 6.108: Index distribution of the codewords of G_,\G;.

We are assuming |G_,| = 5, accordingly, 7 < |F_,| < 10. As |F;,_,| = 3, we must
identify, at least, four more codewords in F_,. We can identify the index distributions
of the codewords of F_, applying the same strategy used in the previous subsection
in the characterization of the codewords of F;, however, since we know the index
distribution of many codewords we can do it easily recurring to the following schemes,
where all possible index distributions for codewords of F_, are presented, taking into

account all codewords of G; U F; UG_, already known and Lemma 1.5:

el | | [l T 1 [=ldg] T | [=]&] T |

L.__YJ_.J L S ; PPNV -
-j ! - =2 k = Bk b I m -m -m
le k] | | [=]iT T 1 [=l2] T ]

| S L L

o oem b -n % "

| |

Figure 6.24: Possible index distributions for U € F_,,.

By the analysis of the above schemes, if U € F_,\F;, then
U e F—o,—m,—n U f—o,—j,—k,n U f—o,—k,—l,—n-

Taking into account Lemma 1.5 we conclude that |F_,\F;| < 3 which implies |F_,| < 6,
contradicting Lemma 2.11. Thus, the considered index distribution for the codewords

of G; U F; UG_, contradicts the definition of perfect error correcting Lee code.
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Now suppose that |G_,| = 6, with W, ..., Wiy € G_,\G; such that:

W | —o| =7 | —n | 1 m

Wz | —o| —m| j l n

Ws | —o| —i | —m | —n | —k

Wy | —o| =0 | =L | 7 | m
W10 —o| —1 k —j n

Table 6.109: Index distribution of the codewords of G_,\G;.

Since | F; _o| = 3, by Lemma 2.12 we must identify in F_,, at least, one more codeword.
Following a similar reasoning to the one described in Figure 6.24, we conclude that if
UeF_\Fi,thenU € F_ 1. That is, |F_,| = 4. Accordingly, from Lemma 2.12
it follows that |.7:£20)| =4. As F_, = F_oiUF_o —1,—n, taking into account Lemma 2.14,
we verify that the condition |}"£20)| = 4 cannot be satisfied, which is a contradiction.
Therefore, similarly to the previous case, the index distribution considered for the

codewords of G; U F; UG_, contradicts the definition of PL(7,2) code.

In the previous index distributions for the codewords of G; U F; U G_,, the com-
plete description of the codewords of F_, leads to contradictions on necessary condi-
tions for the existence of PL(7,2) codes. Next, we present an example in which we

can characterize all codewords of F_, being necessary to analyze one other element

a € I\{i, —o}.

Let W, ..., Wiy € G_,\G; satisfying:

We | —o| —j | —m | I m

Ws | —o|l —m| g l n

Wg | —o| —i | kK | —m | —n

Wy | —o| —t | =1l | 7 m

W10 —o0| —1 —j —k n

Table 6.110: Index distribution of the codewords of G_,\G;.

As |G_,| = 6 and |F_,;| = 3, considering Lemma 2.12, we must identify, at least, one

codeword in F_,\F;. Taking into account all codewords of G, U F;, U G_,
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already known as well as Lemma 1.5, we conclude that if U € F_,\F;, then
Ué€ FokoinUF-_o—k—1-n Thus, 4 < |F_,|] < 5. Supposing |F_,| = 4, as in
the previous case, the condition ].7:£23| = 4 is not satisfied. Then, we must impose
|F_o| =5, with Us € F_, 1., and Uy € F_ _j —1—p-

Until now we have characterize a possible index distribution for the codewords of
G UF, UG ,UF_, without contradictions on the definition of PL(7,2) code. So,
in this case, we must analyze what happens when another element o € Z\{i, —o} is
considered.

We note that, considering the codewords of G; U F;, see Table 6.103, —m € 7 is such
that |G; —,| = 1 and |F; _,,| = 3. Furthermore, considering the codewords of G_,\G;,
see Table 6.110, we verify that W7, Ws € G_, _,,. Let us consider G_,,. As in the
previous examples, we must impose 5 < |G_,,,| < 7 with |G_,,,\G_;| > 3. Taking into
account the known codewords of G_,,, we verify that only one of them is in G_,,, _;, thus,
we must identify in G_,,\G_;, at least, one codeword. For that, we will consider the

following partition Y of Z\{i, m, —m} induced by W, € G; _,,, and Uy, Us,Us € F; _:

W ={—j,—o0,=l}; Ya={jof; Vs={l,—n}; Ya={nk}; Vs={-k}; Vo= {-i}.
(6.18)
Taking into account the index distribution of the codewords of G, U F; UG_, U F_,,
Lemma 1.5 and the partition ) described above, we conclude that it is not possible
characterize another codeword in G_,,\G_; without contradictions on the definition of

PL(7,2) code.

Considering any other of the presented index distributions for the codewords of
Gi U F; UG_,, and applying a similar reasoning, we verify that each one of them

contradicts necessary conditions for the existence of PL(7,2) codes.

In this section we have presented few examples to describe how to show that a
possible index distribution for the codewords of G; U F; contradicts the definition of
PL(7,2) code. Although we have obtained many possible index distributions for the
codewords of G; U F;, applying the same strategy presented before, we have shown that
each one of them implies contradictions on the definition of PL(7,2) code. In fact,

for any index distribution of the codewords of G; U F; there exists always an element
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a € I\{i} whose characterization of all codewords of G, U F, contradicts necessary
conditions for the existence of perfect error correcting Lee codes.

Therefore, we conclude that the condition |G;| = 5 and |G| < 2 for any
a € IT\{i,—i} contradicts the definition of perfect error correcting Lee code. Taking

into account Theorem 6.1, we get immediately the following theorem:
Theorem 6.2 For any a € Z, |G,| # 5.
As an immediate consequence of Theorem 6.2 and Corollary 5.1 we get:

Corollary 6.1 For anya € Z, 6 < |G,| < T.
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Chapter 7

Non-existence of PL(7,2) codes

7.1 Conclusion of the proof of the non-existence of
PL(7,2) codes

In the previous chapters we have concluded, firstly, that if there exists a PL(7,2) code
M, then G C M is such that 3 < |G,| < 8 for any a € Z. Later, we have analyzed,
separately and by this order, the hypotheses |G,| = 8, |Ga| = 3, |Ga| = 4 and |G, | = 5,
for a € Z, having verified that each one of them contradicts necessary conditions for
the existence of PL(7,2) codes, concluding that the existence of such codes imposes
6 < |Gn| <7 for any o € T.

Here, we show that the assumption 6 < |G,| < 7, for any o € Z, leads us to
contradictions, proving thus the non-existence of PL(7,2) codes.

We begin by presenting results which will help us to characterize the index distri-

bution of the codewords of G,, a € 7.

Proposition 7.1 There exists o € T such that |G,| = 7. Furthermore, if |G,| = 7,

for some o € I, then there exist, at least, four elements 5 € T\{«a, —a} satisfying
|gaﬁ| = 3.

Proof. By Corollary 6.1 we know that 6 < |G,| < 7 for any o € Z.
We recall that
1
9=161= 2>l (7.1)

ael
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Let us suppose, by contradiction, that |G,| = 6 for any a € Z. As |Z| = 14, by (7.1)

84

we conclude that g = <, which it is not possible since g must be an integer number.

Therefore, there exists o € Z such that |G,| = 7.

Let a € Z be such that |G,| = 7. We note that |G,| = 1 Z |Gas, that is,
BeT\{a,—a}

Y. 1Gasl =28 (7.2)

BeI\{a,—a}

From Lemma 2.2 it follows that |G,s| < 3 for any 8 € Z\{a, —a}. If we suppose,
by contradiction, that, at most, there are three elements § € Z\{«a, —a} satisfying
Gasl = 3, then from (7.2) it follows that > s 7, 4y [Gasl < 27, facing up a contra-
diction. Accordingly, there are, at least, four elements 8 € Z\{a, —a} such that
|Gasl = 3. O

Consider Z = {i, —1,j,—j, k,—k,l,—l,m,—m,n,—n, o, —o}. Taking into account
the previous proposition, let us assume |G;| = 7 and |G;;| = 3. From Proposition 6.2 it

follows that the codewords Wy, W, W5 € G;; satisty the following index distribution:

Wi | i | j| k I |'m
Wzij—k -1l | n

Ws 1| 5| —m | —n| o

Table 7.1: Index distribution of the codewords of G;;.

The index distribution of the codewords of G;; induces the following partition P of

I\{i, —i,j}:

Py ={k,l,m}; Py={—k,—l,n}; Ps={-m,—n,o0}; Py={—j}; Ps={—o0}.
(7.3)
Having in view Proposition 7.1 and the partition of P, next result imposes condi-

tions on the elements o € Z\{i, —i, 7} which satisfy |G;o| = 3.
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Proposition 7.2 There are, at least, two elements o, 5 € Py U Py U Ps satisfying
|Gia| = |Gig| = 3.

Proof. By Proposition 7.1 we know that there are, at least, three elements
a € I\{i, —1,j} satisfying |G| = 3.

Let us suppose that |G; ;| = |G; _,| = 3. Since, by Lemma 1.5, |G; _; _,| < 1, then
1Gi—jUGi ol >5. As G;;N (G —jUG; _,) = @ and G;; UG, _;UG; _, C G;, then |G;| > 8,
which is a contradiction.

Thus, there are, at least, two elements «, § € P;UP,UP;5 such that |G, | = |Gig| = 3.
0]

By Proposition 7.2, let us consider o € Py UPy U P53 such that |G| = 3. Analyzing

the partition P of Z\{i, —i, j }, see (7.3), we distinguish, without loss of generality, the

hypotheses:
o a=kF;
° a=1m;
e o= —m;
e =0

Our aim is to characterize all possible index distributions for the codewords of G;.

For that, we will analyze each one of the referred hypotheses.

Let us suppose that o = k, that is, |Gix| = 3. Since Wi € G, then to complete
the characterization of the codewords of G;;, we must describe the index distribution
of two more codewords of G;;. Taking into account the partition P of Z\{i, —i, 7} and
Lemma 1.5, we obtain all possible index distributions for Wy, W5 € G;., see Table 7.2.
We note that, in the table, W, on the left is matching to W5 presented on the right.
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Wyl 1 k|—73|—-l]| —n Ws | 4 k| —o|—-m| n
Wyl i k| —7 | -1 0 Ws | 1 k| —o|—m| n
Wyl ¢ k|l =71 n|—-m Ws | 1 k| —o| —n | =1
Wyl 1 k| =71 n Ws | 1 k| —o| —m| —Il
Wyl i k| =7 n Ws | 1 k| —o| —n | =l
Table 7.2: Possible index distributions for Wy, W5 € G,

If we consider aw = m, that is, |G| = 3, such as in the previous case, having in

view the partition P and Lemma 1.5, we get the following hypotheses for the index

distribution of Wy, W5 € G-

Wil 1 m | —7|o| —k Ws | 1 m | —o| —n| —I
Wil @ | m | —j o] —I Ws| i@ | m | —o| —n|—k
Wyl 1 m|—jlo| n Ws | 1 m | —o| —n| —k
Wy | i m|—jlo| n Ws | 1 m | —o| —n| —I
Table 7.3: Possible index distributions for Wy, W5 € G;,,,.

Supposing that |G; _,,| = 3, proceeding as in the previous cases we get the following

possible index distributions for Wy, W5 € G; _,:

Wyl @ | —m| —j5 | k| —I Ws | &« | —m|—o |l | —k
Wyl @ | —m| —j5 | k| = Ws| &« | —m|—o|l]| n
Wyl @ | —m| —5 | k| n Ws!| ¢ | —m| —o |l | —k
Wyl @ | —m| —5 | 1 | =k Ws| @« | —m| —o | k| —I
Wyl @ | —m| —5 | 1 | =k Wsl| @ | —m| —ol| k| n
Wyl @ | —m|—5 (1] n Ws| ¢« | —-m| —o| k| —I

Table 7.4: Possible index distributions for Wy, W5 € G; _,,.

If we suppose |G;,| = 3, following the same reasoning applied in the analysis of the

previous cases, we conclude that the characterization of the index distribution of the

remaining codewords of G;, contradicts Lemma 1.5. Therefore, |G;,| < 2.
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Thus, to characterize the possible index distributions of all codewords of G; we
consider, separately, the hypotheses |G| = 3, |Gin| = 3 and |G;_,,,| = 3, with
Wy, W5 € G; satisfying each one of the conditions presented, respectively, in Tables
7.2, 7.3 and 7.4. We note that, in any case we have characterized the index distribu-
tion of five codewords of G;. Since |G;| = 7, we must describe the index distribution of

two more codewords of G;.

As an illustrative example let us consider |G| = 3, with W, € G5, and
Ws € Gik—o—mn- Taking into account the partition P of Z\{i, —i, j}, see (7.3), the
index distribution of all known codewords and Lemma 1.5, the remaining codewords of

G, that is, Ws, W7 € G;\(G; U Gy), satisty, respectively, one of the following conditions:

Wel| ¢ | =5 1 | —k|—-m Wel @ | =5 m | o n
Wel| @« | =7 1 |—k|—m Wzl @ | —o| —n | —k| m
We | 2 | —5 | 1 | =k Wel @ | —o| —n | =k | m
We | @ | —5| [ n Wel @ | —o| —n | =k | I
Wel| ¢ |—5| 1 | n Wel @ | —o| —n | =k | m
Wel| @ |—5| 1l | n Wel @ | —o| —j | m | —k
Wel| @« | =7 |m| o | —k Wel @ | —o| —n | =k |
We!| @ | —j|m | o n Wel @ | —o| —n| —k| I
Wl 2 | —j|m| o n Wel @ | —o| —n | —k| m
We!| @ | —j|m ]| o n Wel @ | —o| —7 | 1 | =k

Table 7.5: Possible index distributions for Wy, W7 € G;\(G; U Gy).

We note that, in the above table the codeword Wg, on the left, is matching to the
respective codeword W7 presented on the right.

Until now we have characterized all possible index distributions for the codewords
of G;. Next step could consist, as in other studied cases, into identify for each one
of the presented hypotheses the index distribution of the codewords of F;. Since, by
Lemma 2.13, 2 < | F;| < 5, to characterize completely F; we have to present the index
distribution of, at least, two codewords. Accordingly, the characterization of F; will

not bring difficulties due to the small minimal number of codewords in F;. In fact, if we
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consider, for instance, Ws € G; _j; _j,—m and W7 € G; _j 1 00, then taking into account
the partition P of Z\{i, —i,j}, the index distribution of all known codewords and
Lemma 1.5, we verify that, in this case, we have |F;| = 3 or |F;| = 2. If |F;| = 3, then
the index distribution of Uy, Uy, Us € F; must satisty: Uy € F; 015 Us € Fi_jpm,—n;
Us € Fi_1m—o- On the other hand, if |F;| = 2, then Uy, Uy € F; must verify one of the

following conditions:

U | « | =l |m]| —o Uy | @ | —k| m | —n
U | « | =l |m]| —o Uy | @ | —k| —n| —o
Uy | © | =l |m]| —o Uy | i Il | —n| —o
U | ©+ | =k|lm]| —n Uy | 1 Il | —n| —o
Uy | i |—k|m|—-n Uy | @« | -l| m | —o
U | © | —k|m]| —o Uy | 1 Il | —n| —o

Table 7.6: Possible index distributions for Uy, Us € F;.

As we have seen in the previous example, we can identify different possible index
distributions for the codewords of F; without contradict the definition of PL(7,2)
code. Since our aim is to show that each one of the possible index distributions for
the codewords of G; does not satisfy necessary conditions for the existence of these
codes, instead of studying the set F;, we will focus our attention on other sets G, for
a € T\{i}.

To show how we analyze other sets G,, with a € Z\{i}, having in view achieving
contradictions, we will consider in what follows, as an illustrative example,
We, Wr € G\(G; U Gy,) satistying: W € G; ;1 . _m and W7 € G; _; ., 0. The analysis

of the remaining hypotheses presented in Table 7.5 is similar.

Thus, let us consider G;, with W1, ... , W, € G, satisfying the index distribution
presented in Table 7.7.
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Wy | ¢ J k [ m

Wa | i j | =k | =l

Wi | 1 J | —-m| —n 0

Wy 1t k| —3 | =l | —n
Ws | 4 k| —o|—-m]| n

Wel| ¢« | —7| I —k | —m
Wel @ | =5 m o) n

Table 7.7: Index distribution of the codewords of G;.

We note that, in this case, we have |G;;| = |G;_;| = |G| = |Gi—m| = |Gin| = 3.
Then, in the choice of the elements o € Z\{i} for which we will analyze G, we will
give preference to these elements, that is, « € {j, —j, k, —m,n}.

We recall that, by Corollary 6.1, 6 < |G,| < 7 for any a € 7.

Let us begin by characterizing Gi. Since, at this moment, we know the index dis-
tribution of only three codewords of Gy, W7, Wy, W5 € G, then we must characterize,

at least, three more codewords of Gi. For that, we will consider the partition I of

I\{i, k, —k} induced by Wy, Wy, W5 € Gi:
Ky ={j,l,m}; Ko={=j,—l,—n}; Ks={—0,—m,n}; Ky={o}; Ks={—i}.

Taking into account the partition IC, the index distribution of the codewords of G; and
Lemma 1.5, we verify that |Gi\G;| = 3 and Wg, Wy, Wiy € G \G; must satisfy one of

the conditions presented in the following tables:

Ws s Wiy

E |- |j|Ad| ||| |G ||k d]a| m|-»
E|l4 | I ||| k|4 |a]| m|-»n

Bl | |g|lwifldlelm | w

k|- |wm| -2 | -2

ol I I I E o8 [l | | 5 & —z: o] { -7
k||| & i

k| |m|o|npElila ! il

E|l-i|eo| & !

Table 7.8: Possible index distributions for Wy, Wy, Wiy € Gi\G;.
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W W W

klal| i || alfldilelm]|d

E|l-d|al|-m| -

k||| AEIEIREE
k|-t |m | |-l k|2 |a|-m]|{

k| <i|la|-m)| <

k|| & < b k|- |m|-0|-n kel J al
k|- |a|-m| -

k|G| d | -n| o |k |-i|lm|nw |-t k|2 ]|a|-m)|-
E|l-i|a| J -4

il il | om k|- | m|-o| | k -1: o | n | J
k|- |leae| n |-

k|- |m|-a|d k||| v | j

Table 7.9: Possible index distributions for Wy, Wy, Wi € Gi\G;.

From the analysis of Tables 7.8 and 7.9 we verify that there are many possible
index distributions for the codewords of Gx\G;. So, for each one of these hypotheses we
proceed our study characterizing other sets G, with o € Z\{i, k}. Since the reasoning
applied in the analysis of each one of the conditions presented in Tables 7.8 and 7.9 is

similar, we show how we have done it presenting three illustrative examples.

Example 1

Consider Wy, Wy, Wi € Gi\G; satisfying: Ws € Gy _ij_1.—0, Wy € Gy _i1—jn and
Wio € Gk —iom,—n- Let us analyze G_,,. Since Wi, W5, Wy € G, _,,, are the unique
codewords of G_,, already known, we must characterize, at least, three codewords of
G _m\(Gi U Gg). Such as in the analysis of Gj, we will consider the partition Q of
Z\{i,m, —m} induced by W3, W5 and W:

Ql = {]7 —TL,O}; QQ = {k7 —0, n}; Q3 = {_jv l? _k}; Q4 = {_l}; Q5{_7'} (74>

Taking into account this partition as well as the index distribution of all known code-
words and Lemma 1.5, we conclude that it is not possible to characterize, at least,

three codewords in G_,,,\ (G; U Gy) without contradictions.
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Example 2

Let us consider Wy, Wy, Wiy € Gi\G; such that: Wg € G i1 —n.—0, Wo € Gk —imun.—i
and Wip € Gi —i0,—m,—j. We begin the analysis of this hypothesis by characterizing the
remaining codewords of G,,. We note that, at this moment are known four codewords
of G, Wo, W5, W7 € Gy, and Wy € Gy _imn—- Then, we must characterize, at least,
two codewords of G,\(G; U Gx). For that, we consider the partition N of Z\{i,n, —n}
induced by Wy, W5, W7 € G-

Ny ={j, =k, —1}; No={k,—o,—m}; Ns={—j,m,0}; Ny={l}; N5={-i}.
(7.5)
Taking into account the index distribution of the codewords of G; U Gy, we conclude
that |G,\(G; U Gi)| = 2, with Wiy, Wiy € G, \(G; U Gy) satisfying one of the following

conditions:

Table 7.10: Possible index distributions for Wy, Wis € G,\(G; U Gy).

In this example, unlike the previous one, we can characterize the index distribution
of all codewords of three sets G, namely, G;, G and G,,. Next step consists into analyze
other sets G, with a € Z\{i, k, n}.

Let us consider Wiy € G, i g —0—j and Wiy € G, _;1j,. Let us analyze the index
distribution of the remaining codewords of G;. Since |G; N (G; UG, UG, )| = 4, we must
characterize, at least, two codewords in G;\(G; U G, U G,,). From the analysis of the
partition J of Z\{i, j, —j} induced by the codewords Wy, Wy, W3 € G;;:

Jr=AkLmy; o ={=k —liny; Js={-m,—n,0}; Jo={-o} J5={-i}
(7.6)
and considering the index distribution of all known codewords, we get the following

two possible index distributions for the codewords Wi3, Wiy € G;\(G; U G, U G,,).



252 7.1. Conclusion of the proof of the non-existence of PL(7,2) codes

Wis| 7 |—o|—-n| —k|m Wis| g | —t| m | —n|—k
Wi | 73 |—t|—o|-m|—=l||Wu| g |—it|—-0|-m]|—I

Table 7.11: Possible index distributions for W3, Wiy € G;\(G; U G, U G,,).

However, when we try to characterize all codewords of G_;, considering the partition

R of Z\{i, j, —j} induced by Wy, Ws, W7 € G; _;:

Ri={k,—l,—n}; Ro={l,—k,—m}; ; Ry={m,o,n}; Ry={—0}; Rs={-i}.
(7.7)
we conclude that, in both cases, it is not possible to characterize one more codeword

in G_;\(G; UG, UG, UG;) without contradictions.

If we had considered Wiy, Wiy € G, satisfying any other condition presented in
Table 7.10, following a similar reasoning we conclude again that the characterization
of the codewords of sets G,, with a € {j, —j, —m}, contradicts necessary conditions

for the existence of PL(7,2) codes.

Example 3

In the previous examples we have verified that when we consider the elements
a € T\{i, —i} satisfying |G| = 3, that is, the elements in {k, j, —j, —m,n}, although
it is possible to describe completely the index distribution of all codewords of G,
for some a € {k,j,—j, —m,n}, we have found, in the both presented examples, an
element o € {k,j,—j, —m,n} for which the characterization of the index distribution
of all codewords of G, implies contradictions. However, there exist cases in which such
does not happen, that is, there exist cases in which we can characterize completely the
index distribution of all codewords of G; UG, UG, UG_; UG_,,, UG,, as we will see in

next example.

Let us consider Ws, Wy, Wig € Gp\G; so that: Ws € G _ii—n_—0, Wo € G —imm.—i
and WIO € gk,—i,o,—m,—j‘
We begin by characterizing the remaining codewords of G;. At this moment we know

the index distribution of four codewords of G;, Wy, Wy, W3 € G;; and Wy € Gy _i j—n.—o-
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Therefore, we must describe, at least, the index distribution of two more codewords of
G;. Considering the partition J of Z\{i, j, —j}, see (7.6), and the index distribution
of all known codewords, Wiy, Wis € G;\(G; U Gi) must satisfy: Wiy € G; i jn—m and
Wis € Gj —im,o0—k-

Let us now characterize the remaining codewords of G,,. Since we already have
characterized five codewords of G,, namely Wy, W5 W7 € Gy, Wy € Grn\G; and
Wi € G;u\(Gi U Gyx), we must describe the index distribution of, at least, one more
codeword of G,,. Taking into account the partition N of Z\{i,n, —n}, see (7.5), and the
index distribution of all known codewords, we conclude that Wi3 € G,\(G; U G, U G;)

satisfies one of the following possible index distributions:

1) W13 € gn,h—k:,—o,m;

If we consider Wi3 € Gi —k —om, from the analysis of the partition R of Z\{i, j, —j}
induced by the codewords Wy, Ws, W7 € G; _;, see (7.7), we conclude that the remaining
codewords of G_;, that is, Wiy, Wi5 € G_;\(G; UG, UG, UG,) must satisfy, respectively:
Wia€G_j i _nmyand Wis € G_; ;i _, ;. However, when we try to characterize the
index distribution of the remaining codewords of G_,,,, considering the partition Q of

Z\{i,m,—m}, see (7.4), we can not do it without contradictions.

Now assume that Wi3 € G, _; _r ;. Since, at this moment, we know the in-
dex distribution of five codewords of G_;, proceeding as in the previous case we

verify that there exist two possible index distributions for the remaining codeword

Wis € G_\(G; UG UG UG,):
’L) W14 S g—j,fo,m,l,fn;
Z’l) W14 S gfj,—i,fn,m,l-

If Wiy € G_j_om,1,—n, then the remaining codeword Wi5 € G_,, must satisfy one of
the following hypotheses: Wis € G_p, 1k, —0,—n Or Wis € Gy i _1 _j—n. On the other
hand, if we consider Wiy € G_; _; _, i, then Wis € G, satisfies one of the following

conditions: W15 S g,mﬁl’,kﬁo,,n or W15 S Q,m,,i —l—k.—n-

) ) )
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In both cases we have characterized the index distribution of all codewords of
G UG,UG,UG,UG_;UG_,,. So, next step consists into analyze other sets G, for
a € I\{i,j,—j,k,—m,n}. To show how we do it, let us consider Wiy € G_; _,mi—n
and Wis € G_,, i —k.—0—n. Under this assumption, the following table recall the index
distribution of all codewords of (G,UG; UG, UG_;UG_,,,)\G; described at this moment.

We note that the considered codewords of G; are described in Table 7.7.

W | k| —1 ] 7 —n | —o
Wy | kK | =i | m n -1
Wi | k| —i| o | —m| —J
Wiy | g | —i| I -m
Wi | g | =it | m 0 —k
Wis ' n | —i|—-k| —0o | —J
Wis | =7 | —0| m { -n
Wis| —m| =l | —-k| —0o | —n

Table 7.12: Index distribution of the codewords of (G, UG; UG, UG_; UG_,,)\Gi.

Until now we know the index distribution of five codewords of G_j. Accordingly,
we must describe, at least, one more codeword of G_j. For that, we will take into ac-
count the following partition I of Z\{i, j, —j, k, —k, —m,n} induced by the codewords
Wia, Wiz € G i

K1 ={m,o}; Ko={-0}; Ks={l,-l}; Ky={-n}; K5={-i}.

Considering this partition as well as the index distribution of all known codewords
and Lemma 1.5, we conclude that we can not characterize one more codeword of
G K \(GiUG;UG_; UG, UG_,, UG,) without contradict necessary conditions for the
existence of PL(7,2) codes.

If we had considered the other referred hypotheses for W4 and W5, analyzing the

remaining codewords of G_; we would concluded the same.
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We have presented the analysis of only three possible index distributions for the
codewords of G assuming that the codewords of G; satisfy the conditions presented in
Table 7.7. However, considering each one of the presented hypotheses in Tables 7.8
and 7.9 for the index distribution of the codewords of G;\G;, proceeding as we have
shown in the illustrative examples we get always contradictions, concluding, thus, that

the considered index distribution for the codewords of G; is not valid.

Considering all possible index distributions for the codewords of G;, following a
similar reasoning we verify that each one of them leads us to contradictions. Thus, we

are in conditions to establish the main theorem:

Theorem 7.1 There exist no PL(7,2) codes.

7.2 Conclusions

As seen before, a code M is a perfect r-error correcting Lee code of word length n
over Z, shortly a PL(n,r) code, if and only if the Lee spheres of radius r centered at
codewords of M tile Z™.

The Golomb-Welch conjecture states that there is no PL(n,r) code for n > 3 and
r > 2. Many efforts have been made to prove the conjecture, however, until now, its
validity it is only proved for some particular values of n and r: 3 <n <5 and r > 2;
n=06and r = 2.

Here, we reinforce the conjecture proving the non-existence of PL(7,2) codes.

The way how the proof was built reveals how difficult was to solve the case. We have
focused our attention on words which dist three units from O = (0,...,0). Actually,
there exist many ways to try to cover all these words by codewords, and although we
have obtained many results which restrict the number of such hypotheses, in many
cases, to achieve contradictions we had to apply exhaustion methods to study a large
number of cases. This was the major hard work of the proof. In some cases we
have tried to use computational methods having in view a quick analysis of the many
cases we had to deal with, however, it would be necessary to implement an algorithm

requiring a lot of information, not being easy to do it, at least, with our knowledge.
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The reasoning behind the presented proof is faithful to the geometric idea of the
problem. We believe that the described line of thinking it is not the only one which
allow us to conclude the non-existence of PL(7,2) codes and that in the future other
faster proofs will arise.

Unfortunately, it seems to us, considering the difficulties experienced during the
proof, that this method should not be extended to the proofs of other values for the
parameters n and r.

In future we expect to continue to work on the Golomb-Welch conjecture, giving
other contributions for the unsolved cases, in particular, we would first like to investi-

gate the existence of PL(n,r) codes for n = 6,7 and r > 3.
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