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Abstract: Communication between Deaf and hearing individuals remains a persistent challenge
requiring attention to foster inclusivity. Despite notable efforts in the development of digital solutions
for sign language recognition (SLR), several issues persist, such as cross-platform interoperability and
strategies for tokenizing signs to enable continuous conversations and coherent sentence construction.
To address such issues, this paper proposes a non-invasive Portuguese Sign Language (Língua Gestual

Portuguesa or LGP) interpretation system-as-a-service, leveraging skeletal posture sequence inference
powered by long-short term memory (LSTM) architectures. To address the scarcity of examples during
machine learning (ML) model training, dataset augmentation strategies are explored. Additionally, a
buffer-based interaction technique is introduced to facilitate LGP terms tokenization. This technique
provides real-time feedback to users, allowing them to gauge the time remaining to complete a sign,
which aids in the construction of grammatically coherent sentences based on inferred terms/words.
To support human-like conditioning rules for interpretation, a large language model (LLM) service
is integrated. Experiments reveal that LSTM-based neural networks, trained with 50 LGP terms
and subjected to data augmentation, achieved accuracy levels ranging from 80% to 95.6%. Users
unanimously reported a high level of intuition when using the buffer-based interaction strategy for
terms/words tokenization. Furthermore, tests with an LLM—specifically ChatGPT—demonstrated
promising semantic correlation rates in generated sentences, comparable to expected sentences.

Keywords: sign language recognition (SLR); Portuguese Sign Language; video-based motion
analytics; machine learning (ML); long-short term memory (LSTM); large language models (LLM);
generative pre-trained transformer (GPT); deaf-hearing communication; inclusion
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1. Introduction

Ensuring full participation of individuals in every aspect of life, regardless of back-
ground, gender, culture, age, or condition is one of the great goals of inclusion. More
particularly, in the case of Deaf persons, it is of utmost importance to adapt environments
and develop interaction models for bridging them with the rest of society, enabling suitable
integration where the lack of auditory sense is no longer an issue. The Convention for
Portuguese Sign Language (Língua Gestual Portuguesa or LGP), established in 1823 and with
origins associated with Casa Pia, Lisboa [1], has evolved over time, combining gestures
involving hand configurations, movements, facial expressions, and body postures for com-
munication. While LGP is widely used within the Deaf Portuguese community, it remains
unfamiliar to individuals with auditory capabilities, emphasizing the need for strategies to
promote better inclusion.

In this context, technology offers promising solutions, as shown in the prequel of
this work [2], focused on acquiring LGP videos, constructing datasets, and conducting
preliminary tests using long-short term memory (LSTM)-based approaches, wherein an 86%
accuracy rate in image-based gesture/sign recognition was achieved. While similar works
in the literature share the goal of sign language recognition (SLR), it is crucial to distinguish
between static and moving signs. Static signs involve hand and body poses that remain
stationary throughout the action, while moving signs incorporate gesture-based procedures
with changing hand and body positions over time, until the accomplishment of a required
expression. While [3] has classified video frame-by-frame to obtain the highest probability
associated with a sign, in practice it disregards the motion analytics underlying video
sequences. Various approaches exist using invasive devices, such as sensor gloves [4] or
non-mainstream technology such as RGB-Depth (RGB-D) sensors [5]. Others, which yielded
promising results, focus on sequence analysis, utilizing LSTM networks [4], 3D convolution
with LSTM networks [6], or transformer models [7]. Approaches such as [8] have focused
on hand features, particularly landmarks, achieving high accuracy with extensive datasets.
To address continuous SLR, [9] proposed a multi-information spatial-temporal LSTM (ST-
LSTM) fusion technology, processing videos of uninterrupted sign communication and
making text-based inferences. Despite progress in this field, the development of SLR-as-
a-service remains under-explored in the literature, with few publicly available solutions
(e.g., [10]). As for computer-based pattern mapping centered on training inference models,
there is a wide set of publicly available datasets (e.g., contributions [11,12]) targeting
distinct sign languages that vary from country to country, and which can be categorized
into single-word and multiple-word collections.

Furthermore, with recent groundbreaking advancements in natural language genera-
tion, particularly with the development of large pre-trained language models (LLMs) such
as Bidirectional Encoder Representations from Transformers (BERT) [13] and ChatGPT
(v.4) [14], the conditioned transformation of clouds of vague, although, semantically relat-
able concepts—such as those resulting from sign recognition tasks—into grammatically
coherent sentences is a tangible reality, widely disseminated and available to anyone with
an internet connection and a web browser access.

In light of the aforementioned challenges and opportunities, this paper documents
the research and implementation activities carried out to propose a novel sign language
interpretation approach for LGP supported by both generative and predictive AI-based
strategies, with the following fine-grained goals in mind: (a) to develop a web-based LGP
recognition solution, as-a-service; (b) to propose a fully original 50 sign dataset composed
of dynamic LGP sings; (c) to explore different data augmentation strategies aiming to
improve inference models learning skills; (d) to compare LSTM variants for textual term
inference from video-based signs; (e) to propose a frame buffer-based human-computer
interaction (HCI) technique for word segmentation; and (f) to harness LLM (ChatGPT)
generation capabilities to build semantically meaningful sentences, conditioned by rules.

The paper is organized as follows: the second section presents related work, while the
third section details the system proposal. The fourth section covers implementation, the
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fifth section presents tests and results, and the sixth and final section summarizes the work
and outlines potential future research paths.

2. Related Work

In the domain of SLR, several noteworthy approaches and technologies have emerged
in recent years. These efforts aim to bridge the communication gap between Deaf and hear-
ing individuals while addressing the challenges posed by the diversity of sign languages
and the intricacies of interpreting gestures.

Many works in the literature focus on recognizing sign language through different
modalities, including image-based recognition, and sensor-based approaches, most of
them resorting to machine or, even, deep learning techniques to perform word/term
recognition/association. Regarding body motion dynamics, some studies have explored
the recognition of static signs using image-based techniques. For example, in [5], the
authors concentrate on alphabet letters and numbers, primarily static gestures. While these
approaches can be simpler than dealing with motion analytics, they may not capture the
nuances of dynamic signs and can be sensitive to environmental conditions, as highlighted
in [15].

Some works require the use of specific devices for SLR. In [4], signs were collected
through a sensor glove, providing precise data but involving an invasive approach. Al-
ternatively, in [5], a Microsoft Kinect with RGB-Depth (RGB-D) sensors was utilized,
which, while effective, may not represent a mainstream technology, at least, compara-
tively to the popular RGB webcams that can be commonly found integrated with laptops
or smartphones.

Recognizing the sequence of signs, especially the dynamic ones, has gained attention
in recent research. Approaches involving LSTM networks [4] or combining 3D convolution
with LSTM networks [6] have demonstrated high accuracy. Transformers have also been
applied to SLR tasks, as seen in [7], where body landmarks and pose vectors were used to
achieve good performances, as well.

The development of publicly available sign language datasets has been essential
for training and evaluating SLR systems. For example, the Indian Lexicon Sign Lan-
guage Dataset (INCLUDE) [16], the Word-Level American Sign Language (WLASL) [11],
the Argentinian Sign Language with 64 examples (LSA64) [12], the RWTH-PHOENIX-
Weather2014T [17], the How2Sign [18], and the Língua Brasileira de Sinais from Univer-
sidade Federal de Ouro Preto (LIBRAS-UFOP) [19] have provided valuable resources
for researchers.

Despite these advancements, the concept of SLR-as-service remains relatively unex-
plored in the literature. Few publicly available solutions have been developed, such as
SLAIT [10] and PopSignAI [20], which focus, respectively, on sign interpretation assistance
and teaching, both encompassing American Sign Language (ASL). However, since these
solutions serve commercial purposes, there is no technical or scientific information openly
accessible to deepen the knowledge regarding the research and implementation carried out
to support the respective applications. Consequently, issues intrinsically associated with
architectures capable of providing PSL as-a-service, including concerns that extend to data
formats and communication strategies for tackling bandwidth limitations and, therefore,
ensuring (near) real-time operationalization, still require further study and exploration.

Furthermore, the integration of large pre-trained language models (LLMs), such
as BERT [13] or ChatGPT [14], offers exciting possibilities for generating grammatically
coherent sentences based on sign language inputs. These models have shown impressive
abilities in capturing and leveraging linguistic-aware capabilities, which may be explored
through prompting approaches that allow to regulate outputs, and to customize responses
in tasks ranging from text generation to translation, as well as summarization, unleashing
new frontiers for natural language applications.
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Recent studies have introduced innovative prompting techniques, showcasing the
versatility of LLMs in various language tasks. For instance, [21] presents methodical
prompting that enhances linguistic structure capture through sequence tagging using GPT-3.
This approach aims to evaluate whether the language skills of LLMs are primarily linked to
generalizable linguistic understanding or surface-level lexical patterns. In [22], a systematic
approach using the Socratic method to develop prompt templates was proposed, leading
to improved interaction with LLMs. For example, while definition, elenchus, and dialectic
methods are suitable to clarify user queries, maieutics, and counterfactual reasoning are
more helpful to stimulate story writers’ creativity. Another work [23] conducted a case
study on prompting for machine translation using GPT-3, demonstrating its effectiveness
in enhancing translation quality. Furthermore, in [24], an approach to building chatbots
was proposed by leveraging LLMs and accepting natural language prompts, contributing
to more accurate and contextually relevant natural language processing applications.

In summary, while significant progress has been made in SLR and the integration
of LLMs, there remains room for exploration in SLR-as-service and the development of
coherent sentence-generation models.

3. LGP-to-Text System Specification

In the context of developing digital solutions that are grammar-sensitive and aligned
with the LGP structure, crucial knowledge resources are available for reference, includ-
ing [25]. Additionally, Portuguese organizations such as the Associação Portuguesa de Surdos
(APS) offer valuable insights into the LGP grammatical structure. Specific rules that pertain
to this work can also be found in a previous contribution [2]. With this background in
mind, Section 3 is dedicated to presenting the concept and specification of the proposed
Deaf-hearing communication system.

3.1. Main Architecture

The main architecture of the SLR solution, illustrated in Figure 1, comprises four
essential modules: (i) raw data collection; (ii) dataset construction; (iii) AI; and (iv) frontend.
The raw data collection module encompasses the processes for recording and storing
labeled sign language videos contributed by users. As for the dataset construction, it
involves a series of subsequent operations on the labeled raw videos, including:

• Extraction of relevant features, namely anatomical landmarks points sets;
• Normalization of these points sets into a structure compatible with AI processing;
• Application of augmentations to both video frames and extracted point sets.

The AI module is implemented as a service accessible through Representational State
Transfer (REST)-based Application Programming Interface (API). Finally, the frontend
module provides a user-friendly interface for Deaf individuals to interact with the system,
ensuring seamless compatibility with the REST API methods. These interoperable capabili-
ties allow external parties to use the proposed SLR-system-as-a-service, offering flexibility
and scalability.
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Figure 1. Main architecture for the proposed Deaf-hearing communication system, composed of
four modules: (i) raw data collection consisting of the recording of labeled videos; (ii) dataset
construction for structuring the raw data into an AI-complaint organization; (iii) AI consortium of
logical entities responsible for inferring words/terms out of LGP signs-based anatomical landmarks,
and for outputting well-structured sentences, in a rule-based conditioned manner by resorting to an
LLM; and (iv) frontend, for interfacing with the Deaf individuals.

3.2. Acquisition Campaign and Steps for Structuring Data

Due to the scarcity of publicly available LGP datasets, especially those involving
language signs procedures’ motion dynamics, a data collection campaign based on video
recordings was carried out. Central to this effort was the meticulous labeling of each
recorded video, a crucial step in this supervised approach to performing SLR. To ensure the
fidelity of the data, LGP experts were engaged as contributors. These experts, including
LGP interpreters, LGP teachers, and Deaf individuals who rely on well-formed LGP for
daily communication, were instrumental in capturing precise body, hands, arms, and facial
postures, as well as motion-specific features and sequences. As part of this collaborative
effort, several APS associates were included to perform a great part of the recordings of the
signs that ultimately formed the basis of the final datasets. To guide their contributions, the
following instructions were provided:

• Contributors should position themselves at the center of the camera’s frame, ensuring
roughly the same space at both lateral margins (left and right);

• Their background should be kept free of other people or visible elements that could
resemble people, besides themselves;

• Gestures should be made calmly and slowly, allowing the camera to capture most of
the motion details;

• The place chosen for acquiring the videos should be uniformly illuminated, avoiding
excessive darkness while also preventing overexposure caused by strong and direct
source lights;

• Videos should be labeled in agreement with the recorded signs.

To aid in increasing the number of labeled examples, non-expert contributors were
also requested to faithfully reproduce LGP signs, by assisting, analyzing, and trying to
imitate the sequences expressed in the videos already recorded by the LGP experts, while
following the same instructions. For signs that lacked examples to follow, non-experts were
instructed to refer to an official source, namely the online LGP dictionary of Infopedia [25].
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With the aim of achieving a sufficient lexical range to shape up an adequate variety
of sentences in the context of commerce, tourism, and health, a list of 50 Portuguese
terms/words has been specified for the data collection campaign. Table 1 presents that list,
which includes the respective English translations.

Table 1. Set of 50 alphabetically sorted Portuguese terms/words to record during the collection
campaign. This list includes adverbs, verbs, subjects, definite/indefinite articles, substantives,
prepositions, as well as several pronouns (personal/demonstrative/indefinite), among others, and
targets shopping, tourism, and medical care contexts.

Portuguese English (Terms 1–25) Portuguese
English (Terms

26–50)

1/um one não No
2/dois two obrigado thank you
3/três three países countries
azul blue pao Bread
beber to drink passar (receita) to prescribe

bom dia good morning poder to be able to
chapéu hat procurar to search
código code quando when

desconto discount quanto custa
how much does it

cost
desde since quarto room

desporto sports querer to want
disponível available quinta-feira Thursday
enxaqueca migraine reservar to reserve

eu I sair to leave
experimentar to try sandálias sandals
fim de semana weekend sardinhas sardines

frango chicken sentir to feel
fresca fresh sim yes
grande large t-shirt t-shirt
haver to have telefonar to call
hotel hotel ter to have

internet internet tomar (comprimido) to take (a pill)
levar to take tu you (informal)

mostrar to show tudo bem okay
muito bom very good vinho wine

Table 2 summarizes the key statistics related to the data collection campaign and the
initial data structuring process, which served as the basis for subsequent preprocessing
steps, leading to the final dataset assembly. A total of 33 examples were recorded for each
of the 50 specified signs. Subsequently, it was determined that, for each sign, 28 examples
would be randomly selected for training the AI models, while the remaining five would be
used for evaluating inference capabilities. Within the training set, ≈65% was established as
the reference rate for the models’ training process, leaving the remaining ≈35% allocated
for validation purposes.

Table 2. Summary of the campaign carried out to collect 1650 LGP videos focusing on the context of
shopping, tourism, and medical care, resulting in a total of 33 examples for each of the 50 LGP signs.

Total of
Examples

Data per Sign

Videos
Testing
Videos

Train/Validation
Videos

Train
Percentage

Validation
Percentage

1650 33 5 28 ~65% ~35%
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3.3. Strategy for Data Preparation: From Augmentation to Dataset Arrangement

After dividing data, several additional steps are necessary (Figure 2), including video-
based augmentation, anatomical landmarks-based points extraction, per-example points
set size normalization, and data augmentation upon landmarks-based points. These steps
lead to the formation of the final dataset.

 

ff

tt

Figure 2. Pipeline for data preparation, including a few data augmentation strategies (video- and
point-based), as well as normalization steps, until the consolidation of the final dataset.

To enhance data diversity through video-based augmentation, various transformations
can be applied to simulate different conditions, particularly focusing on the sensor (camera)
capturing perspectives. For instance, introducing distortions to the video frames can
generate synthesized and valuable data.

When it comes to landmark-based point extraction it is essential for capturing key
anatomical landmarks from each frame to characterize signs based on their motion and
spatial attributes. During this extraction step, it is beneficial to crop frames in a way that
preserves the visual information of the contributor’s body, with their head approximately
aligned with the center of the horizontal axis. These procedures contribute not only to
favor data normalization (e.g., by keeping contributors at the center of the frames) but also
to work with filtered data, eventually more resilient to environmental conditions (e.g., by
reducing contributors’ background). Additionally, it is worth noting that points are only
extracted when at least one of the hands is detected. Frames that do not allow the detection
of such points are considered unusable and, therefore, are discarded.

The next step in the pipeline focuses on data augmentation centered around landmarks-
based points. This aims at enhancing the dataset quantity—by introducing synthesized
variations—while retaining the inherent landmarks’ significance, which is more associated
with data quality. One operation that contributes to consistency-oriented data augmentation
is horizontal flips. These help mitigate bias that may be induced by contributors’ lateral
dominance, meaning their proneness to perform signs according to their dominant side.
Additionally, operations involving displacement noise, such as random radial shifts (RRS),
and interpolations, specifically spline-based interpolation (SBI) are performed as depicted
in Figure 3. RRS resorts to the normalized original positions of the skeletal-based landmarks
and applies small-intensity displacement entropy to each anatomical group (hands, arms,
face, and torso). On the other hand, SBI involves multiple passes to add intermediate
coordinates in the middle of the existing ones, extending the data. After this extension,
SBI creates N groups evenly populated with sequences of points, wherein N matches the
number of expected point sets as defined by the cardinality of the normalized data, and,
per group, selects randomly a point to be part of the final series.

The RRS operations are detailed in the pseudo-code shown in Algorithm 1, and the
pseudo-code associated with the BSI approach is presented in Algorithm 2.
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(a) (b) 

Figure 3. Data augmentation operations applied to original key points: (a) illustrates the RRS
process, and (b) depicts the SBI process. In both cases, semi-transparent red dots represent actual
anatomical key points (collected from contributors), while purple/blue dots represent augmented
key points. For simplicity, the anatomical key points of a single hand are shown, for each presented
data augmentation operation.

Algorithm 1: Pseudo-code responsible for skeletal landmarks-based key points RRS

Input:
landmarks_groups: a dictionary containing groups of key points (x,y) lists.
radius_range_norm: a range of radii for performing RRS (default [0.01, 0.05])
Output:
landmarks_rrs: a dictionary containing groups of key points induced with RRS variation
Begin

1. Initialize landmarks_rrs as a copy of landmark_groups.
2. For each group in landmarks_rrs:

a. Generate a random radius within radius_range_perturb.
b. Generate a random angle between 0 and 2π.
c. Calculate perturbation values for x and y coordinates:

i. perturbation_x = radius ∗ sin(angle)
ii. perturbation_y = radius ∗ cos(angle)

d. For each key point as kp in the current group of landmarks_rrs:

i. Perturb the x-coordinates of kp by adding perturbation_x.
ii. Perturb the y-coordinates of kp by adding perturbation_y.

3. Return trimmed landmarks_rrs.

End
Notes: (1) landmarks_groups contains groups of key points that are normalized from 0..1; (2) the
radius_range_norm must take into account the previous assumption, and adequate the
perturbation range accordingly; (3) trimming the landmarks will prevent out (normalized) values
to be out of range;
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Algorithm 2: Pseudo-code responsible for skeletal landmarks-based key points SBI

Input:
landmarks_groups: a dictionary containing groups of key points (x,y) lists.
n_points: limit of points to interpolate for each coordinate set.
groups_per_point: limit of groups to split the key points augmented.
Output:
landmarks_sbi: a dictionary representing the interpolated and normalized sequence of key points
and coordinates.
Begin

1. Initialize landmarks_sbi as a copy of landmarks_groups.
2. For each group in sbi _rrs:

a. Set filtered_interpolated_values as an empty array.
b. Set listValues with the list of key points of the current group.
c. Set interpolated_values with the result of

interpolate_spline_normalized(listValues, n_points × groups_per_point).
d. Split interpolated_values into evenly spaced groups esg, with a division

matching groups_per_point.
e. For each esg, select a random interpolated key point and

append it to filtered_interpolated_values.
f. Update the coordinates set of the current group with

filtered_interpolated_values.

3. Return trimmed landmarks_rrs.

End
Notes: (1) landmarks_groups contains groups of key points that are normalized from 0..1; (2)
interpolate_spline_normalized is a recursive function that performs spline interpolation in a
sequence of x,y points until a given limit (in this case, n_points × groups_per_point);

Based on the assumption that the key points associated with hand/arm landmarks
typically describe a curve trajectory, spline interpolation seems to be the proper math-
ematical technique to add intermediary points for SBI-based data augmentation. This
technique approximates a curve that passes through a given set of points and estimates
complementary data between them. In this work, two uni-variate approaches were used,
considering the key point sets: one to estimate the intermediate points in the x component
and another to do the same for the y component. One commonly used type of uni-variate
spline is the cubic spline, whose formula in a specific interval [xi, xi+1] can be expressed as
in Equation (1).

Si(x) = ai + bi(x − xi) + ci(x − xi)
2 + d(x − xi)

3 (1)

where:

Si(x) is the cubic spline function in the interval [xi, xi+1].
ai, bi, ci, and di are coefficients specific to the i-th interval.
xi is the starting point of the interval.
x is the input value within the interval.

The next step involves normalizing the data in terms of size. Indeed, all the extracted
sets of points are normalized for each sign example, aiming to create uniform groups
of landmark-based positions. For each sign collected in the previous landmarks-based
points extraction step, a fixed number of intermediate sets are considered to facilitate the
normalization process. After completing all the steps, a data lake is constructed that aligns
with the results of the previously mentioned steps. The main outcome is the creation of a
comprehensive and balanced dataset that complies with ML techniques to be applied in
subsequent stages.
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3.4. ML Powered by LSTMs for LGP Recognition

In the context of LGP communication, sign language involves a spatio-temporal
relationship, where the chaining of sequences is of upmost importance. LSTM stands
out as a reliable strategy, as demonstrated in previous works such as [8], for ML tasks.
LSTM is a type of recurrent neural network (RNN) architecture specifically designed to
handle sequences and time-series data. Unlike traditional RNNs, which may struggle with
capturing long-range dependencies in sequences, LSTM networks have a unique structure
comprising memory cells, gates, and input/output connections. This unique design enables
them to selectively remember and forget information over extended periods, making them
well-suited for various tasks, including natural language processing, speech recognition,
time-series prediction, and more.

3.5. Tokenization Strategy—A Conditioning Interaction-Based Approach

To address one of the most significant challenges in LGP communication, which
involves knowing the start and the end of a given term/word-related sign in a continuous
conversation, an interaction technique is proposed. It is based on a visual representation of
the filling progress of a (landmarks-based) key points set buffer. This approach conditions
the user’s input and is depicted in Figure 4. Specifically, an ML-based detection approach to
track the user’s skeleton is incorporated to recognize landmarks of the torso, arms, hands,
and face, returning their respective x,y points. When at least one of the user’s hands is
detected, points of the entire body, out of a predefined universe of 88 points, are collected
into a buffer with a set limit. Any key points outside the frame range are assigned a value
of −1 for both the x and y components. Simultaneously, visual feedback elements are
provided to intuitively inform the user about the progress of the sign. The primary goal is
to offer interactive guidance, enabling the user to synchronize each sign with the visual
progress feedback, as a means of tokenizing the terms or words. When the key points
set buffer reaches its limit, the points are sent to an LSTM-based inference service that
returns the most statistically meaningful term or word from a previously learned set. In
such cases, a reset of the key points set buffer is performed. Another method for resetting
the buffer—causing it to discard all accumulated points without transmitting any data to
the inference service—involves the use of a time counter process. This process accumulates
milliseconds across consecutive frames in instances where the user’s hands are not detected
by the skeleton detection model. Once a predefined threshold is reached, a reset to the key
point set buffer occurs. This is particularly useful when the user wishes to cancel a sign
that was started by mistake or went wrong during execution.

−

ff

ff

ff
tt ff tt

ff

 

ffFigure 4. Flow diagram representing anatomic key points set buffer-based process, along LGP
expression capturing.
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3.6. LLM-Based Sentence Construction

While interpreting LGP motion analytics is essential to extract words or terms that
may provide guidance to the communication intentions of the LGP user, the resulting
vocabulary often lacks grammatical structure, hindering the creation of meaningful sen-
tences for clearer communication. Although natural language processing (NLP) commonly
focuses on textual decomposition, analysis, and knowledge extraction [26]—it has been
bringing significant developments to the machine-based understanding of content typically
produced by humans, including in applications for translating European Portuguese to
LGP-compliant gloss [27]—the challenge of constructing well-structured and meaningful
sentences from word clouds requires generative approaches that go beyond typical NLP
goals. Recent developments in computational syntax and semantics, particularly in LLMs
have opened possibilities for natural language generation (NLG). These advancements en-
able AI agents to autonomously produce coherent conversations and interpret user-defined
rules to provide contextually relevant outputs. Whether using traditional n-gram models
or more advanced neural network-based models such as GPT, LMMs have the capability
to assemble loose terms and words into human-like textual excerpts, ensuring contextual
coherence along multiple iterations, if needed.

In the context of LGP communication, LLM tools, such as those supporting GPT-
3.5 [28], can be employed to construct sentences from LGP gloss. These models can also
be fine-tuned with human-readable parameters to optimize their output, with human
regulators playing a vital role in providing guidelines to enhance LLM responses, as
needed. This work integrates LLM in the proposed LGP interpretation pipeline, as depicted
in Figure 5. This diagram illustrates end-to-end interactions between an LGP user, a
(detachable) frontend layer, an ML service for inferring terms and words based on user
motion analytics, and an LLM service that constructs sentences using a vocabulary set as
input. The process begins with the Deaf user providing LGP expressions to the frontend,
captured through a camera sensor. Landmarks based on facial features, arms, hands, and
torso are acquired up to a certain limit, which is visually indicated to the user. When the
sign ends, these landmarks are sent to the ML service, which performs inferences and
returns corresponding words or terms. After assembling a satisfactory set of words or
terms, the user can request the construction of a sentence. The frontend then sends the
vocabulary set to the ML service, which attaches rules for querying the LLM model. The
LLM constructs a sentence and the message travels back through all modules until it reaches
the frontend, where it is presented to the user. Finally, this message can be forwarded to
any video-calling service.

To sum up, this section outlines a system for LGP interpretation, covering video
acquisition, data engineering for building an LGP knowledge pool, ML architectures for
sign-by-sign training and inference, a sign tokenization-oriented interaction tool, and the
integration of LLM for constructing sentences from inferred words and terms. The next
section will delve in the implementation details.



J. Imaging 2023, 9, 235 12 of 30

tt
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(b) 

Figure 5. Communication sequence for LGP interpretation and sentence construction: (a) depicts the
interaction of the user with the proposed LGP system and LLM service, through a frontend interface;
(b) illustrates the interaction between LLM and the service requesters, involving a set of words and
conditioning rules, resulting in the generation of coherent sentences.

4. LGP-To-Text System Implementation

This section provides details regarding the implementation of the LGP-to-Text pro-
posed in this paper, according to the specification above.

4.1. Web-Based Tool for Raw Data Collection

The collection of examples of LGP plays a vital role in training and refining models
designed for LGP interpretation and generation. This undertaking involves the intricacies
of LGP’s gestures, movements, and linguistic nuances. To address this challenge, an
initiative was taken to develop a frontend application using Vue.js (Vue.Js—The Progressive
JavaScript Framework|Vue.Js, available in https://vuejs.org/, accessed on 14 September
2023), operating within a Node.js (Node.js, available in https://nodejs.org/en, accessed on
14 September 2023) Docker container. The primary objective of this application is to provide
an online platform for LGP experts to record videos featuring LGP examples. To operate
effectively, this platform incorporates the MediaPipe (MediaPipe|Google for Developers,
available in https://developers.google.com/mediapipe, accessed on 14 September 2023)
library, which facilitates the detection of contributors’ pose skeletons and provides visual
feedback to confirm the successful acquisition of key points.

In terms of visual/interactive elements, as depicted in Figure 6, this application dis-
plays the unprocessed camera feed alongside the MediaPipe-based skeletal and facial
detection view. Below, there is a drop-down menu populated with classes (signs) that
require recording, prioritized based on the number of examples (videos) available. Users
can select a class from the drop-down and initiate recording by performing the correspond-

https://vuejs.org/
https://nodejs.org/en
https://developers.google.com/mediapipe
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ing sign. The application waits for the detection of key points corresponding to hand
landmarks, triggering the start of the recording. During this process, if hand detection
ceases, a predefined timeout period begins. If there is no subsequent hand detection within
this period, the recording is considered concluded. The resulting video is stored in the web
browser cache and added to a list on the application’s interface. Within this list, users have
the option to review, delete, and upload the recorded video to the server.

tt
tt

ff

tt

 

Figure 6. Screenshot of the interface of the gesture video recording application. The video stream
on the right-side overlaps with visual elements representing the recognized skeletal key-points (red
dots) and the corresponding connections between them (green lines).

To complement this platform, a process was defined to allow contributors access to
more than one means of recording sign examples, using a shared Google Drive folder
created for this purpose. However, this strategy has a few drawbacks: (a) it does not
provide immediate insight into whether the gestures were recorded to capture qualitative
information regarding contributors’ landmark recognition; (b) it lacks guidelines to ensure
proper recording, unlike the previous platform, which starts and stops video acquisition
based on hand detection; (c) it does not offer an easy and intuitive way to review videos
from a single recording session; and (d) it does not implement features for data security
and responsibilities, as anyone with the shared folder link can upload, move and remove
all the videos inside. Nevertheless, many contributors preferred the Google Drive option.

4.2. Data Engineering toward the Construction of ML-Compliant Datasets

After successfully acquiring all fifty LGP signs, each with 33 examples (as detailed
in Tables 1 and 2), the subsequent steps involved a series of data analysis, augmentation,
and structuring processes. To achieve this, various Python 3.8 (Python Release Python
3.8.0|Python.org, available in https://www.python.org/downloads/release/python-380/,
accessed on 14 September 2023) scripts were developed, making use of essential libraries
such as OpenCV (OpenCV-Open Computer Vision Library, available in https://opencv.o
rg/, accessed on 14 September 2023), Numpy (NumPy, available in https://numpy.org/,
accessed on 14 September 2023), and Tensorflow/Keras (TensorFlow, available in https://
www.tensorflow.org/, accessed on 14 September 2023). Additionally, the operations related
to reading and saving structured comma-separated value (CSV) files in this subsection
are executed via Pandas library (Pandas-Python Data Analysis Library, available in https:
//pandas.pydata.org/, accessed on 14 September 2023).

4.2.1. Step 1: Splitting Data into Train/Validation and Test Subsets

The initial step in managing the acquired LGP sign videos involves their catego-
rization into two distinct subsets: the train/validation subset and the test subset. The
train/validation subset serves as the primary dataset used to train the inference models,

https://www.python.org/downloads/release/python-380/
https://opencv.org/
https://opencv.org/
https://numpy.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
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allowing them to learn the distinctive patterns characterizing each LGP gesture. In contrast,
the test set is reserved for evaluating models’ performance on previously unseen data. To
ensure the effectiveness of this evaluation, it was essential to establish certain criteria for
the testing videos. Specifically, each test video needed to contain a substantial number
of landmark-based points sets, with a minimum requirement of 10 sets. To meet this
requirement, the MediaPipe library was integrated into the process, which enabled the
analysis of each testing video to collect landmark-based points from individual frames.
Only frames in which at least one of the hands is detected are considered for this purpose.
After analyzing the videos, if the sets of points fell short of the required 10, the video is
replaced by another from the train/validation subset and subject to the same assessment.
The ultimate objective was to have a minimum of five valid videos for testing the models
associated with each LGP sign.

4.2.2. Step 2: Video-Based Data Augmentation

After appropriately dividing the data, the process of augmenting train/validation
videos is initiated by implementing shear transformations applied to individual frames.
This augmentation process involves extracting all frames from each video in the raw data
folder and subjecting them to shear-based distortions. The transformed frames are then
reassembled into a new video file, which is saved alongside the original source. Shear trans-
formations are applied by default within a range of −16◦ and +16◦, resorting to Keras’s Im-
ageDataGenerator (tf.keras.preprocessing.image.ImageDataGenerator|TensorFlow v2.14.0,
available in https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/ima
ge/ImageDataGenerator, accessed on 14 September 2023). Table 3 confronts original vs.
transformed frames.

Table 3. Video-based data augmentation, with shear transformation. The top row displays the
appearance of the original video frames, while the subsequent rows depict the frames’ appearance
after shear transformations at −16◦ and 16◦, respectively.

Transformation State Frames Aspect

Original

−

     

−

 

 

 

Shear −16◦

−

−

     

 

 

 

Shear 16◦

−

−

     

 

 

 

4.2.3. Step 3: Landmark-Based Sequence Points Extraction with Lateral Dominance Balance

Following the data division, another essential process involves the extraction of human
landmarks-based points from both the original and augmented videos. This extraction
process relies on the MediaPipe library to identify the x,y coordinates of 88 face, hands,
arms, and torso landmarks, with a particular focus on the following groups and their
respective components:

• Pose landmarks: including right eye, left eye, right shoulder, left shoulder, right elbow,
and left elbow;

• Left/right hand landmarks: encompassing various parts, such as the wrist, thumb
carpometacarpal joint, thumb metacarpophalangeal joint, thumb interphalangeal

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
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joint, thumb tip, index finger metacarpophalangeal joint, index finger proximal in-
terphalangeal joint, index finger distal interphalangeal joint, index finger tip, and
corresponding components for the middle, ring and pinky fingers;

• Face landmarks: covering a total of 66 points situated around the upper and
lower lips.

An analysis of the frames of each video within a specific sign class folder is involved in
the process that resorts to MediaPipe to extract the sequence of positions of the designated
landmarks, ensuring that contributors’ motion features are captured. This procedure
also includes an additional data augmentation operation that entails horizontally flipping
frames to mitigate issues related to lateral dominance (Table 4). Therefore, extraction
occurs in both the original video and a corresponding mirrored version. However, if, for
any reason, 10 or more sets of 88 points cannot be retrieved by MediaPipe in at least one
video within the normal/flipped pair, both videos are discarded to prevent contributing to
lateral dominance bias. On the contrary, if the necessary points can be extracted, they are
locally saved as independent entries in a CSV file. This file is stored in the same folder as
the sign class being processed and contains specific fields for each point set, including a
unique subject identification (ID), frame number, 176 x,y values representing the landmark
positions, and the associated sign label.

Table 4. Video-based data augmentation, with horizontal flipping operations, used to obtain the
flipped points from the original video, and, therefore, tackle lateral dominance that may bias the
models’ training process.

Transformation State Frames Aspect

Original

     

Horizontal flip

     

4.2.4. Step 4: Point-Based Data Augmentation, Normalization, and Dataset Consolidation

This subsection covers the additional steps required for data preparation, culminat-
ing in the creation of a well-structured dataset. These steps encompass point-based data
augmentation, implemented in Python, utilizing the previously introduced RRS and SBI
techniques. These techniques leverage mathematical libraries such as Numpy to achieve
dataset balancing, enlargement, and controlled randomness to enhance diversification.
Another critical aspect involves data dimension normalization, aimed at selecting uni-
formly spaced intermediate points from sign-related data chunks of varying sizes. This
normalization process ensures the data’s consistency and readiness for analysis. Finally, all
the prepared data are consolidated into a single, comprehensive CSV file. This file contains
essential information, including details about the subjects (contributors), labels (signs),
and the filtered landmark-based points sourced from both the original records and the
augmentation elements.

4.3. LSTM Models Training and Deployment

The training of machine learning models was conducted using the TensorFlow/Keras
framework. Initially, the CSV containing the tabular dataset is loaded. The dataset is then
divided into training and validation subsets through a random split, with a fixed seed to
ensure consistent division for the sake of experimental reproducibility. In this work, two
LSTM-based structures were used for mapping LGP gestures and motion dynamics, as
shown in Figure 7. One structure consisted of three LSTM layers, while the other combined
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a single 1D Convolutional layer with LSTM. Both accepted an input of 10 sequences, each
comprising 176 values representing the positions of landmarks on the torso, arms, hands,
and face. For the output, a Dense layer with 50 units was used to match the number of
recognizable signs.

 
(a) 

 
(b) 

 

−

 

 
tt

−

 

 

 

 

 

Figure 7. LSTM architectures set up for landmarks-based LGP interpretation. While (a) depicts an
architecture composed of three simple LSTM nodes, (b) shows an architecture with a single layer
combining 1D Convolutions and LSTM.

Monitoring and optimizing the training of the models are vital aspects of model
development. To facilitate this, three essential callbacks were implemented:

• Early stopping: it halts the training process after a specified number of consecutive
epochs without significant learning improvements. In this work, the threshold—also
known as patience—was set to 30 epochs, the loss associated with validation data
was monitored, and a minimum fluctuation of 1 × 10−4 was required to consider
further learning.

• Model checkpoint: this callback saves models after each training epoch, with a des-
ignated format name, allowing for easy tracking of model progressed. Again, the
variable to monitor the learning status is the loss associated with validation. It also
includes a flag to save models that exhibited improved learning.

• Graphical monitor—TensorBoard (TensorBoard|TensorFlow, available in https://ww
w.tensorflow.org/tensorboard, accessed on 14 September 2023): this tool logs essential
training progress, including training accuracy, training loss, validation accuracy, and
validation loss, among other metrics. It provides valuable insights and can be accessed
through a web-based application.

Consistent training parameters were maintained across all sessions for sign learning.
The initial training rate was set to 1 × 10−4. The number of training epochs was fixed at
1000, and the batch size used was 128. The Adam optimizer was selected to regulate the
learning rate during training. All ML activities were performed on a computer with the
following specifications:

• Processor: 11th Gen Intel®Core™ i7-11800H @ 2.30GHz (Intel Co., Santa Clara,
CA, USA);

https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard
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• Random Access Memory (RAM): 32GB @ 2933MHz SODIMM (Corsair Gaming, Inc.,
Milpitas, CA, USA);

• Graphic Card: Nvidia®GeForce RTX 3080 (laptop edition), 16.0GB GDDR6 RAM
(Nvidia Co., Santa Clara, CA, USA);

• Storage: 1TB, 3500MB/R, 3300MB/W (Samsung Electronics Co., Ltd., Suwon, Republic
of Korea);

• Operative System: Windows 10 Home 64 Bit (Microsoft Co., Redmond, WA, USA).

4.4. Sentence Construction Powered by Chat-GPT

Up to this point, the proposed sign interpretation solution can only recognize LGP,
producing individual words/terms (tokens) as its classification output. However, the
implementation requires an approach to construct sentences with improved grammatical,
syntactical, and morphological structure using these generated tokens. This transformation
is aimed at facilitating more coherent communication with potential recipients on the other
end of the conversation spectrum. To address this requirement, the utilization of emerging
LLM-based tools with NLP and NLG capabilities was considered. A prominent example of
such a tool is ChatGPT [14], renowned for its multifaceted application as an AI-powered
chat-bot. ChatGPT is proficient at crafting context-aware textual content and can be tailored
to follow user-specified guidelines or instructions, thus conditioning the underlying LLM
to generate outputs that align with specific criteria. Available through both a web-based
chatroom and a REST-based API, ChatGPT showcases remarkable versatility, making it well-
suited for enhancing sentence construction within the proposed LGP recognition solution.
By incorporating the advanced capabilities of ChatGPT API, the proposed LGP platform
gains the functionality to create sentences that not only adhere to linguistic conventions
but also align with the specialized needs of SLR. Building upon the ChatGPT API, a set of
dynamic and static rules were defined to query ChatGPT3.5 LLM:

• Dynamic rules: “To generate a concise sentence considering the following words/terms
and punctuation from the given set Stokens”, where Stokens represents a sequence of
words/terms, optionally ended by a punctuation mark, more specifically, a “.” or
a “?”.

• Static rules: (a) “To ignore repeated words/terms”; (b) “To restrain, as much as
possible, to the tokens that there are in the given set, avoiding to add more”; (c)
“To consider the present indicative by default;” (d) “If a personal pronoun is not
indicated, to conjugate the verbs in the first person singular”; (e) “To perform only
minimal transformations to the words¨, with the goal of ensuring grammatical cor-
rectness”; (f) “To perform spelling corrections, whenever necessary”; (g) “To correct
gender and number agreement inconsistencies”; and, finally h) “To interpret numbers
as quantifiers”.

This rule set was initially tested and refined within the chatroom provided for direct
interaction with ChatGPT’s LLM. Subsequently, an API-based bridge was established
for the proposed LGP recognition platform to integrate this NLG tool, which returns
ready-to-use and straightforward answers without the need for additional parsing.

4.5. Web-Based Central Service Layer

To bring all the components of the proposed LGP system together within a harmonized
response/request communication context, a prototyped web-service was developed with
the FastAPI (FastAPI, available in https://fastapi.tiangolo.com/, accessed on 14 Septem-
ber 2023) framework on a Uvicorn-enabled Docker container (Uvicorn—Docker FastAPI
projects 0.0.2 documentation, available in https://docker-fastapi-projects.readthedocs.io
/en/latest/uvicorn.html, accessed on 14 September 2023). This framework, allows the
definition of Web API logic within a single script, making it easy to create consumable
endpoints. With a common Python-based environment to bridge external requests with
Tensorflow and Keras libraries and their functionalities, as well as with third-party REST
APIs, the integration of features, such as deployed models for sign inference and com-

https://fastapi.tiangolo.com/
https://docker-fastapi-projects.readthedocs.io/en/latest/uvicorn.html
https://docker-fastapi-projects.readthedocs.io/en/latest/uvicorn.html
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munication with ChatGPT extended sentence-building capabilities, occurs smoothly and
seamlessly. After the server initialization and the loading of LGP inference models, a series
of endpoints are made accessible, as listed below:

• config—provides an external service consumer with the current prediction configura-
tions, offering information about the available vocabulary sets and LGP models to use,
as well as the expected landmarks to monitor, assuming MediaPipe data formats;

• vocab_selector—allows the switching between existing vocabulary and model combina-
tions (compliant with the data provided by config endpoint);

• mp_estimator—returns word/expression predictions upon a provided list of coordi-
nates sent by an external service consumer;

• sentence_GPT—when provided with a list of words from an external service consumer,
this endpoint generates a prompt for ChatGPT API, yielding a simple but semantically
and grammatically consistent sentence integrating the referred list of words.

The multiple references to “external service consumer” should be interpreted as an
independent application layer that needs to communicate with the LGP core services to
obtain inferences. An example of an external consumer will be given in the following
subsection, which presents a frontend tool that resorts to a video feed from the camera
of a given device in use to obtain user landmarks’ positions and perform requests to the
inference capabilities gathered by this central web-service layer.

4.6. Deaf-Side Frontend Experimental Tool

To demonstrate the interoperability with the central web-service layer and its inference
capabilities, an independent Javascript-based frontend application was experimentally
developed. As shown in Figure 8, this application features a minimalistic design and
interaction. It seamlessly integrates the Javascript version of MediaPipe to facilitate user
landmark detection through camera feed processing and connects with endpoints specified
in the previously presented service layer, including config, vocab_selector, mp_estimator, and
sentence_GPT.

 

Figure 8. Layout of the experimental frontend for interoperating with the proposed LGP recognition
platform.

In terms of the frontend’s functionalities, users are initially required to wait for Me-
diaPipe to load, resulting in the camera feed becoming available to capture user actions.
Subsequently, users can choose their preferred speed from options such as “slow” (by
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default), “medium”, and “fast” based on their experience and dexterity. When the camera
detects the user’s hands, landmark-based points start to be collected into an array, while
a progress bar begins filling up according to the selected speed. This process encourages
users to synchronize their actions with the visual element. Once the bar is fully filled, it
signifies the completion of the LGP term. The collected data are then forwarded to the
prediction model through a dedicated endpoint (as previously described in mp_estimator),
and the most relevant term from the learned vocabulary is returned. Upon accumulating
a satisfactory list of terms, users can request a simple yet properly articulated sentence
through a dedicated endpoint established for this purpose (as described in sentence_GPT).

The following section will present the primary tests and their corresponding results,
covering various aspects of the LGP platform, such as landmark-based points extraction
features (before dataset consolidation), LGP inference capabilities (after model training),
and the ability to construct sentences, among others.

5. Tests and Results

Several tests were conducted to assess the proposed LGP interpretation solution,
focusing on the distinct perspectives that are worthy of focus, from dataset preparation
to AI-related features for language sign-based word/term recognition and
sentence generation.

5.1. Landmark-Based Points Extraction

After executing the process for feature extraction based on human landmarks detected
from LGP videos provided by contributors, an overall success rate of 74.6% was attained
across the examples recorded for each of the 50 signs. The plot in Figure 9 provides
an overview of the extraction results, wherein poor percentages can be noticed for the
words/terms “fresh” (fresca), “very good” (muito_bom), “bread” (pao), and “How much does
it costs” (quanto_custa), in contrast with “2” (dois), “3” (três), “sports” (desporto), “available”
(disponível), “weekend” (fim de semana), “chicken” (frango), Internet (the same in Portuguese),
”countries” (países), and “sardines” (sardinhas).

tt

 

tt

ff

tt

Figure 9. Overview of the percentage of the usable train/validation signs, after video-based data
extraction process. Terms fresca, muito_bom, pao, and quanto_custa were the only ones below 50%.
Most of the signs, more specifically, 36 of them, were above the rate of 70%.

Therefore, significant class balancing is needed, besides regular data augmentation.
For the results yet to be shown with direct regard to dataset usage, this need is an aspect to
consider, to mitigate the production of largely biased and, therefore, unusable models.
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5.2. LGP Models Parameters

To better understand word/term inference models’ performances presented subse-
quently, inspecting models’ trainable parameters can be insightful. Hence, Table 5 presents
the data regarding not only that information, but also the average time spent per training
epoch, for both of the LSTM-based architectures used to produce LGP inference models,
more specifically, one combining pure LSTM layers with different configurations at the
filter level (SimpleLSTM) and, another, structurally simpler, that has a top layer combining
LSTM with convolutional features (ConvLSTM). While, in the former, 13.221.554 trainable
parameters were detected, in the latter, that number reached 15.548.850.

Table 5. Data regarding the training parameters found for each LSTM model presented previously:
(a) Simple LSTM; and (b) Convolutional LSTM.

Model Total Parameters Trainable Parameters
Non-Trainable

Parameters

SimpleLSTM 13.221.554 13.221.554
0ConvLSTM 15.548.850 15.548.850

Notwithstanding, nothing can be concluded regarding their inference capabilities,
comparatively to each other. To address this specific topic, the next subsection presents
the results of empirical tests conducted with various models derived from the previously
identified LSTM architectures. These tests involved varying training conditions, mainly
associated with specific operations aimed at optimizing the dataset for the achievement of
enhanced inference models.

5.3. LGP Terms Inference Accuracy

In this subsection, a series of tests conducted with models trained with both presented
architectures (SimpleLSTM and ConvLSTM) are detailed, and the respective results are
shown. To start, the simpler architecture, i.e., SimpleLSTM, was submitted to a series of
tests/assessments involving several variations of the LGP dataset, as shown in Table 6.
For comparison purposes, the pair of datasets adjusted with the dominant side calibration
induced by the horizontal flips (HF) and then, combining the former transformation with
shear operations (SO) were not balanced/augmented. For the remaining datasets involving
RRS, SBI, or both, augmentations aiming at balancing examples and improving diversity
were carried out. To establish a ceiling for augmentations affecting the component of the
dataset used for training, Equation (2) was defined:

Limitclass = CN × DE × NP + CN (2)

where:

Limitclass is the limit for data augmentation, per class;
CN represents the number of elements, per class (in unbalanced data, the class with the
higher number of examples is the reference);
DE stands for the number of dataset augmentation transformers, besides the use of original
data;
NP is the number of passages specified for applying dataset augmentation transformers.

Therefore, the following set of specific values was considered to constrain the data
growth induced by the aforementioned augmentations:

• CN = 28 signs × 2 (from HF) × 2 (from SO) = 168;
• DE = 1, even for the dataset involving inline RRS/SBI augmentation, wherein both RRS

and SBI are carried out combined in the same operational flow for data transformation;
• NP = 5, regarding the number of passages to apply DE.
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Table 6. Results of the tests conducted using SimpleLSTM, resorting to several variations of the
achieved LGP dataset.

Model
Augmentation

Conditions
Augmentation

Limit
Accuracy Loss Final Epoch

SimpleLSTM

Horizontal flips
(HF), not

augmented (NA),
not balanced.

N/A 80% 1.23 155

HF + shear
operations (SO),
not augmented,
not balanced.

N/A 87% 0.98 100

HF + SO + RRS
augmentation,

balanced.
1008 94.8% 0.47 110

HF + SO + SBI
augmentation,

balanced.
1008 92% 0.72 100

HF + SO + inline
RRS/SBI

augmentation,
balanced.

1008 93.8% 0.444 75

Hence, 168 × 1 × 5 + 168 = 1008 examples, including original and augmented data.
As it can be observed from Table 6, the dataset variants involving RRS transformations
were the ones that contributed to obtaining the top-2 SimpleLSTM versions, when testing
the resulting models against unseen data. In the next stage, these RRS-based variants were
chosen to test ConvLSTM, instead of utilizing all the dataset versions, therefore avoiding
running unnecessary training sessions. The respective results can be found in Table 7.

Table 7. Results of the tests conducted using ConvLSTM, resorting to RRS-based data augmentations.

Model
Augmentation

Conditions
Augmentation

Limit
Accuracy Loss Final Epoch

ConvLSTM

HF + SO + RRS
augmentation,

balanced.
1008 95.6% 0.647 85

HF+ SO + inline
RRS/SBI

augmentation,
balanced.

1008 94.4% 0.455 150

In direct comparison with SimpleLSTM, more specifically, considering homologous
datasets, ConvLSTM achieved better results. Moreover, one can observe that training with
datasets transformed resorting to HF + SO + RRS led to more accurate models than using
the RRS/SBI combination in both architectures.

Focusing on the top-1 models of SimpleLSTM and ConvLSTM architectures, the
hit rates for the 50 collected LGP signs, i.e., the percentage of correct observations per
word/term after submitting the respective unseen data (videos) to inference, were mea-
sured. To that end, the inference results were organized by grouping the words/terms
into three observed accuracy scales, more specifically, 1, 0.8, and 0.6 (Figure 10). LSTM-
Conv model had more words/terms predicted seamlessly (i.e., 82% of the signs), but, also,
a higher hit rate in the most lossy group (i.e., 4% of the signs predicted with only 60%
of accuracy).
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Figure 10. Hit rate comparison for SimpleLSTM vs. ConvLSTM, considering the dataset augmented
with HF, SO, and RRS: (a) SimpleLSTM hit rate plot; and (b) ConvLSTM hit rate plot.

Regarding SimpleLSTM, the words/terms that were seamlessly classified are 2, 3,
azul, chapéu, desconto, desde, desporto, disponível, enxaqueca, eu, fim de semana, frango, fresca,
grande, hotel, internet, levar, mostrar, obrigado, países, pão, passar_receita, procurar, quando,
quanto_custa, quarto, querer, quinta-feira, reservar, sair, sandálias, sardinhas, sentir, t-shirt,
telefonar, tomar_comprimido, tudo_bem, and vinho. The ones that attained 80% of accuracy
are 1, beber, bom dia, código, haver, muito_bom, não, poder, sim, ter, and tu. With 60% of
match, a single word remained: experimentar. As for the ConvLSTM, 1, 2, 3, azul, beber,
chapéu, desconto, desde, desporto, disponível, enxaqueca, eu, fim de semana, frango, fresca, grande,
haver, hotel, internet, levar, mostrar, obrigado, países, passar_receita, poder, procurar, quando,
quanto_custa, quarto, querer, quinta-feira, reservar, sair, sandálias, sardinhas, sentir, t-shirt,
telefonar, tomar_comprimido, tudo_bem, and vinho, were the words/terms with full matching
against the testing set. Having 80% of correspondence, were identified bom dia, código,
muito_bom, não, sim, ter, and tu, while the ones with worst the matching rate (60%) were
experimentar, and pão.

Next, the NLG capacities of ChatGPT for the articulation of sentences based on a set of
prespecified conditions and tokens will be carried out, in alignment with the requirements
of the proposed LGP platform.

5.4. Tests to Chat-GPT Restriction Rules for Conditioned Sentence Generation

After acquiring the terms/words (tokens) from LSTM models, the construction of
well-structured and contextualized sentences can be carried out by using an LLM, more
specifically, the one that supports ChatGPT. To assess its NLG capabilities for the intended
task, a testing environment was defined, considering the following steps: (i) selection of
three conversation contexts, commerce, tourism, and health care; (ii) definition of declara-
tive or interrogative sentences for each defined context, containing only the words/terms of
the lexical field supported by the previously presented LSTM models, also used as ground
truth (i.e., expected LLM outcome); (iii) obtention of ChatGPT-generated text, by querying
it using the tokens defined for each previously defined sentence along with a preestablished
set of conditioning rules, identified in Section 4.4; and (iv) semantic comparison between
the expected sentences and the responses given by ChatGPT. For assessing the expected
sentences against the output, the model kit of the universal sentence encoder [29] was
used. It can make semantic-aware mapping of sentences into embeddings that correspond
to vectors of continuous values, numerically comparable. The recommended metric to
perform these comparisons and measure similarities, accordingly with [29], must first take
into account the computation of cosine similarity of the two sentence embeddings, and, then,
the arccos to convert the cosine similarity into an angular distance, as shown in Equation (3).
Semantic correlation results can be found in Table 8.

sim (u, v) = 1 −
arccos

(

u.v
‖u‖‖v‖

)

π

(3)
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where:
u and v represent the embeddings of the sentences involved in the assessment.

Table 8. Evaluation of ChatGPT’s NLG capacities, according to the requirements of the proposed LGP
recognition platform. The universal sentence encoder [29] was used to retrieve semantic correlations
between expected sentences and ChatGPT responses (“semantic similarity” column), in a scale from
0 to 1, wherein 1 means a perfect match.

Context LGP Gloss
Expected
Sentence

ChatGPT
Sentence

Semantic
Similarity

Commerce

FRANGO
QUERER

Quero frango. Eu quero frango. 0.79

QUANTO.CUSTA? Quanto custa? Quanto custa? 1.00
PÃO TRÊS LEVAR Levo três pães Levo três pães. 1.00

SARDINHAS
HAVER?

Há sardinhas? Há sardinhas? 1.00

SARDINHA DOIS
QUERER

Quero dois
sardinhas?

Eu quero dois
sardinhas.

0.67

T-SHIRT
DESPORTO

HAVER?

Há t-shirts de
desporto?

Há uma T-shirt de
desporto?

0.75

AZUL GRANDE
TER?

Tu tens azuis,
grandes

(tamanho)?

Tu terás um
grande azul?

0.37

Tourism

QUARTO
DISPONÍVEL

QUINTA.FEIRA
TU TER?

Tu tens quarto
disponível para
quinta-feira?

Tu terás um
quarto disponível
na quinta-feira?

0.59

RESERVAR
QUERER

Quero reservar. Quero reservar. 1.00

HOTEL
INTERNET TER?

O hotel tem
Internet?

Ter internet no
hotel?

0.74

CÓDIGO TU TER? Tu tens o código? Tu tens código? 0.91
FIM.DE.SEMANA
TU DISPONÍVEL?

Tu estás disponível
no fim de semana?

Tu tens disponível
o fim de semana?

0.80

PAÍS (TAMBÉM)
HOTEL TU

PROCURAR

Procuras país e
hotel?

Tu procuras hotel
no país?

0.62

SAIR QUANDO?
Quando é para

sair?
Quando saio? 0.70

T-SHIRT CHAPÉU
SANDÁLIAS TU

LEVAR

Tu leva chapéu,
t-shirt e sandálias.

Eu levo a T-shirt,
o chapéu e as

sandálias.
0.59

VINHO
SARDINHAS

FRESCAS
EXPERIMENTAR

QUERER

Quero
experimentar

vinho e sardinhas
frescas.

Quero
experimentar

vinho e sardinhas
frescas.

1.00

Heath care

ENXAQUECA
SENTIR

QUINTA-FEIRA
DESDE

Sinto enxaqueca
desde quinta-feira.

Sinto enxaqueca
desde quinta-feira.

1.00

TU PAS-
SAR.RECEITA?

Tu passas receita
(médica)?

Tu passas a
receita?

0.91

VINHO BEBER
PODER?

Posso beber
vinho?

Posso beber
vinho?

1.00

Average Similarity: 0.81
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5.5. Tests with an End-User

As previously explained, the tokenization of terms/words is accomplished through an
interaction technique involving synchronization with a progress bar-like visual feedback
component while performing a sign. Therefore, a series of pilot tests to evaluate participants’
intuition regarding the use of such an interaction-based tokenizing approach was carried
out. A total of 12 participants with academic degrees in diverse backgrounds, including
Civil and Electrotechnical Engineering, Climatology, Computer Sciences, Forest Planning
and Management, and Geographic Information Systems (GIS), were recruited from a
university context. Out of the participants, seven were male adults, while the rest were
female adults.

In terms of procedures, the tests were conducted in two main stages: pretraining and
effective evaluation. During the pretraining stage, participants familiarized themselves with
a frontend layout developed to interface with the proposed LGP platform. They were also
introduced to some signs and the synchronization progress bar under evaluation. In this
stage, participants were instructed to position themselves in front of the camera, ensuring
they were at the center of the frame (verifiable by a camera-related image rendering). They
were informed that gesture capture only occurred when at least one of their hands was
within the camera’s viewport. Additionally, the progress bar feature was explained, and
participants were given access to a couple of sign videos, including pão (bread) and querer
(to want), for analysis and practice. This exercise aimed not only to enhance participants’
understanding of the reception of inferred terms/words and graphical user interface (GUI)
updates but also to familiarize them with the dynamics of the progress bar. After reaching a
level of comfort to move on to the next stage, the participants were invited to, autonomously
perform signs in a certain order, from a new set of examples—chapéu (hat), experimentar
(to try), and querer (to want)—which were provided for being freely consulted. During
this second stage, synchronization and inference errors were registered. Finally, they were
asked to fill out a very small and pragmatic questionnaire that, besides demographic
data, and consent confirmation, had a single question, regarding their felling about the
intuition provided by the proposed interaction technique for performing synchronized
signs and, therefore, achieving effective tokenization, by resorting to a Likert scale of five
levels, wherein the higher one corresponds to plain satisfaction. Participants’ feedback is
consolidated in the plot of Figure 11.

ff

ff

 

ff
Figure 11. Participants’ feedback regarding the intuition provided by the proposed progress bar-
based interaction technique for performing synchronized signs for effective tokenization.

As observable, there is a clear tendency for the top levels of intuition in the usage
of the proposed progress bar-based interaction. Of the 12 participants, 11 reported plain
intuition feeling, while only one responded with the fourth level. In terms of the errors
made during the effective evaluation stage, the following data were registered:

• Total of synchronization errors: 1 (0.08 of mean);
• Total of inference errors: 14 (1.27 of mean).
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Overall, the proposed interaction technique seems to be suitable for sign tokenization.
As for the inference errors, they can be explained by the lack of experience in LGP that
characterized the sample. Moreover, the several observational tests carried out with a Deaf
person of APS corroborate the same conclusions that were drawn in the tests made with
these 12 participants, since that user did not present any difficulties in interacting with
the progress bar while performing signs. Although a pre-operational familiarization stage
seems to be recommendable before effective utilization.

5.6. Integrated Frontend Layer Functional Testing

A few tests were carried out to assess the interoperability potential of the proposed
LGP platform, along with the interactive and visual features provided through an individ-
ual frontend that was developed and incorporated to consume endpoints on the platform’s
side, as previously detailed. The tests consisted of going through the whole process for LGP
interpretation until meaningful sentence production from the user’s perspective. Therefore,
the first step is to perform signs, term-by-term, to the frontend, allowing the camera to
capture the user while the respective anatomic landmarks are processed via MediaPipe and
collected for an array of point sets, in a synchronous manner with the progress bar. Each
sign’s data flow to the remote LGP platform that responds with a matching word/term.
After gathering a comfortable vocabulary set, the user requests the production of a sentence
to the NLG service, using the LGP platform, that consults ChatGPT API using not only
that group of terms/words but also a prespecified set of conditioning rules. Finally, the
sentence is shaped up and returned to the user, closing the process. Figure 12 depicts one of
the tests made with the words “t-shirt”, “azul” (blue), “2”, “querer” (to want), “quanto_custa”
(how much does it costs?).

ff
 
 

ffi

ff

   
(a) 

 
(b) 

tt

ffi

Figure 12. Layout of the frontend used to perform functional tests on the proposed LGP platform. In
(a) there is a user gradually performing signs that are converted in words/terms by inference of the
ConvLSTM model incorporated in the proposed platform; in (b), a well-structured sentence can be
observed, which resulted from submitting the inferred list of terms/words to ChatGPT’s API service,
via proposed platform.

In terms of system efficiency, the landmark-based points set have a smooth recognition
rate, between 20–30 frames per second (FPS) while working with MediaPipe for the recog-
nition of a single skeleton, using a laptop with the specifications identified in Section 4,
plugged into the electrical outlet, i.e., not relying on the computational profile when solely
powered by a battery. In smartphones, depending on the computational capabilities, a
drop in FPS is likely to be experienced. As for the LGP platform’s LSTM-based service
responsible for the conversion of signs into text, usually, times of response take less than
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500 milliseconds, between the frontend request and the reception of the result. Moreover,
the sentence generation functionality, through ChatGPT, performed reasonably well with a
user-based on-demand request strategy (by button-clicking interaction), with responses
taking less than 1s, in general. Although, with the implementation of an intensive gen-
eration functionality, responsive to changes in the word list at the frontend side, a hang
problem with the endpoint was identified, probably, due to OpenAI servers overloading,
which results in considerable execution locks, of several minutes, sometimes. Therefore, it
is advisable to leave the responsibility of querying ChatGPT to the user instead of relying
on the system every time a change in the list of words occurs.

After the presentation of the main results obtained from the several tests made to the
LGP platform, a discussion will take place in the following section.

6. Discussion

There are two points of discussion aligned for this section: the first one provides a
global appreciation of the obtained results in this work, and the second one includes a
comparative analysis regarding the solution proposals reported in the literature.

For starters, landmarks extraction from video examples will be addressed, wherein a
mean rate of 74.6% was achieved. The issues associated with losses in more than 25% of the
signs provided by contributors may have several explanations: (a) the length of the videos,
which in some cases was too short to allow the capturing of sufficient point sets; (b) the
poor capturing conditions that were noticed in many of the recorded videos that may have
hampered the detection of landmarks; and (c) limitations associated to MediaPipe itself,
more specifically, in situations wherein more demanding poses are verified (for instance, if
the hand assumes a position relative to the camera viewport in such a way that anatomical
points may look as if overlapped, causing the detector to malfunction). Despite these
more challenging occurrences, most of the examples were able to consistently provide
valuable data, in both quality and quantity, for being used in the steps subsequent to
point extraction.

Regarding models’ production for individual vocabulary inference, ConvLSTM could
retrieve more trainable parameters than SimpleLSTM, in spite of being structurally simpler.
Underlying this observation may be the convolutional layer associated with LSTM archi-
tectures, which seems to have promoted a deeper dataset inspection. On the other hand,
ConvLSTM was able to outperform SimpleLSTM in terms of accuracy (95.6% vs. 94.8%),
but with significant implications for training time, which was, on average, 17.5 times higher.
Hence, trainable parameters and training times seem to have a correlation with accuracy,
which, however, cannot be confirmed without performing more tests. Moreover, among
the datasets engineering strategies that contributed more to obtaining the inference models
with the higher performances were data balancing combined with RRS-based augmenta-
tion. The SBI data augmentation permitted to increase in the accuracy of the models built
from both adopted LSTM architectures comparatively to the ones that were trained with
non-augmented datasets, but it was not as effective as RRS.

In terms of sentence construction, the tests conducted with ChatGPT were success-
fully completed, yielding promising results that confirm the LLM’s ability to consistently
generate valid sentences from sets of LGP words/terms. A key factor contributing signif-
icantly to this performance is the predefined set of regulatory specifications (rules) that
serve as effective directives for the LLM. Quantitatively, the sentences produced by the
LLM matched the expected ones with an accuracy of around 81%. Further refinements
to the rules for conditioning ChatGPT outcomes could potentially lead to even higher
correlation rates.

The tests made to the tokenization approach based on the proposed progress bar
interaction technique showed unanimous agreement among 12 participants, all of whom
classified it as highly intuitive. However, some time to allow the user to become accustomed
may be advisable before the effective utilization of the graphical interface implementing
this strategy. Moreover, while the proposed LGP platform stands as independent from an
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operative frontend, the responsibility of performing a proper implementation of the inter-
action dynamics is transferred to the programmers entrusted with coding the intermediary
user interface, leading, in turn, to the need of being aware of the intricacies underlying the
interoperability requirements.

In regard to the tests conducted to evaluate the interoperability potential of the pro-
posed LGP platform with an external user interface tool developed for that purpose, the
results indicated high responsiveness. Terms/words can, indeed, be instantaneously in-
ferred and delivered to the requester, and sentences can be promptly assembled, especially
under conditions of non-intensive usage of the ChatGPT API.

Comparatively to other works’ main features, the proposed LGP platform stands out
for being non-invasive and for not requiring special motion acquisition devices, oppositely
to [4], which resorts to a sensor glove, or to [5], wherein a Microsoft® Kinect is used.
Regarding image stream-based recognition accuracies, [6] reached 98% with 10 categories,
while, in [7], 100% accuracy was reported during tests with LSA64, by reserving 90% of the
data for the training subset. For the Persian dataset, the correspondence rate reported in [8]
was 99.5%. While most of these works seem to present higher accuracies compared to the
solution proposed in this paper, the differences in the datasets’ overall characteristics must
be considered, for a fairer assessment, namely:

• In [6], only 10 classes were regarded in the study—a categorical complexity 80% lesser
than the proposed LGP dataset;

• In [7], the reference dataset was LSA64, having 3200 usable examples distributed
among 64 classes—28% more classes than those composing the proposed LGP dataset,
but, also, around twice of the exemplifying videos, from which 90% was assigned for
training subset;

• Finally, in [8], the Persian dataset composed of 100 examples per 100 signs was used–
twice of the classes composing the proposed LGP dataset, but 8 times more exemplify-
ing videos, as well.

Others [9], aiming at tackling issues that include sentence segmentation and word
alignment, addressed continuous SLR in a dataset composed of 25K videos involving
(human) sign language interpreters and managed to achieve 81% sentence recognition
matching. With similar goals, the sentence-building approach implemented in the context
of the proposed LGP interpretation solution was able to achieve comparable results, more
specifically, in the semantic correlation between computer-generated and human-defined
expected sentences. This was accomplished through a combination of strategies, including
the integration of an interaction-based technique for the tokenization of signs representing
words/terms and, also, ChatGPT with advanced grammatical and semantic capabilities,
forged to provide human-like text generation. The primary advantage of this approach,
compared to [9], seems to lie in its ability to adapt and enhance the interpretation of
words/terms for sentence articulation through simply fine-tuning the conditioning rules
of ChatGPT, which can be made without the necessity for additional labeling, training
sessions, etc.

To conclude the current section, some features that stand out in this work compara-
tively to others are noteworthy to highlight. Firstly, other proposals in the literature with
such a volume of LGP vocabulary dataset, i.e., 50 non-statical signs, corresponding to
actual words and terms, and not only numbers or alphabet letters, could not be found.
Furthermore, aspects associated with dataset engineering (for example, RRS vs. SBI) that
may be valuable for other works as well (for example, human–computer interaction for
robotics) are posed and addressed, while perspectives regarding approaches for dataset
configurations and sequence-sensitive neural networks (LSTM with and without convolu-
tion layers combined) are also provided. Moreover, the proposed LGP platform focuses not
only on image stream-based word/term inference but also sentence construction, resorting
to novel available LLM approaches, covering the full spectrum of a dialog intention, which
is a range that seems to be rarely found in the other literature works. Even scarcer are
the considerations related to the design of service-oriented architectures (SOA) within the
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context of Deaf inclusion, particularly with regard to paving the conditions for streamlining
service integration, distribution, and broad-scale adoption.

7. Conclusions and Future Work

This paper has presented a comprehensive LGP interpretation system, designed as
a service (SOA-oriented), that leverages ML-driven motion analytics approaches for the
interpretation of LGP signs extracted from video/camera image streaming. To sustain the
ML approaches, a substantial LGP dataset, comprising 50 unique terms, was meticulously
curated to facilitate the model training process. However, the acquisition endeavor resulted
in a data shortage that had to be properly addressed with strategies for dataset enhance-
ment/augmentation. Therefore, RRS and SBI approaches were implemented and compared.
The former demonstrated superior efficacy over the latter, contributing to more accurate
and robust inference models, derived from two main LSTM architectures: ConvLSTM and
SimpleLSTM. ConvLSTM emerged as the standout performer, surpassing the SimpleLSTM,
reaching an accuracy rate of 95.6%. Addressing the tokenization of LGP vocabulary, real-
time visual feedback for providing the user a means for monitoring sign-by-sign execution
was proposed. This dynamic progress indicator allows users to gauge the remaining time
required to complete an LGP expression, enhancing intuition, as corroborated by tests
made with participants. Furthermore, the integration of an LLM in the proposed LGP
platform, more specifically ChatGPT, showcased its proficiency in constructing coherent
and semantically accurate sentences from the terms/words inferred by the LSTM models.
The successful integration of ChatGPT adds an extra layer of sophistication to the LGP
interpretation system, enabling seamless sentence assembly from individual components.
In the end, an independent testing graphical interface developed to bridge with the LGP
platform, with the aim of testing all the services implemented, allowed us to conclude that
the resulting system has a suitable responsiveness, for both word/terms inference and
conditioned sentence construction, with quite acceptable response times.

In the future, there are several avenues to explore for further advancing the proposed
LGP interpretation system. Firstly, expanding the LGP vocabulary beyond the initial 50
terms and, also, increasing the number of examples per sign, could significantly enhance
the system’s usability and applicability. The inclusion of a more diverse range of terms
would offer a more comprehensive interpretation of LGP signs, catering to a broader array
of communication needs. Additionally, the exploration of alternative data augmentation
techniques remains an intriguing prospect. Experimenting with novel augmentation strate-
gies could potentially address scenarios where scarcity of examples persists, thus bolstering
models’ ability to generalize and infer accurate interpretations. Further advancement could
be achieved by venturing into alternative neural network architectures, such as Trans-
formers. These architectures have demonstrated remarkable success in various natural
language processing tasks and could offer valuable insights into improving the precision
and efficiency of LGP interpretation. Moreover, refining the conditioning rules of ChatGPT
presents an opportunity to enhance the quality of generated sentences. By fine-tuning
ChatGPT’s responses through continuous feedback and iterative training, it is possible to
achieve more contextually accurate and linguistically refined outputs, thereby elevating
the overall coherence and semantics of the assembled sentences.
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