
Using CBR for Portuguese Question Generation

Daniel Diéguez1,2, Ricardo Rodrigues1, and Paulo Gomes1

1 CISUC, University of Coimbra, Portugal,
2 Higher School of Computer Engineering, University of Vigo, Spain,

danielsda@gmail.com, {rmanuel,pgomes}@dei.uc.pt

Abstract. In this paper, we propose a new architecture for Question
Generation for the Portuguese Language. This architecture aims at the
automatic generation of questions, to be used later, for instance, in au-
tomatic question answering by means of predictive question generation.
Our approach combines a case-based reasoning system and a module for
question generation. The question generation module uses manually built
rules that are fed to the case-based reasoning engine for selecting which
ones should be used. This is accomplished by comparing the answer and
the sentence part-of-speech tag sequences. An identical tag sequence on
sentences and answers usually implies a similar sequence on the corre-
sponding questions. We discuss the details of this architecture, how it
performs and the results obtained so far.

Keywords: automatic question generation, case-based reasoning, nat-
ural language processing.

1 Introduction

In recent years, Question Generation (QG) [14, 12] has received significant at-
tention by researchers in the field of Natural Language Processing (NLP) [8],
becoming an important research area with potential for use in advanced learn-
ing technologies, such as intelligent tutoring systems [17], dialogue systems [5],
and educational technologies [4].

QG aims to analysing text, identifying sentences and topics that are then used
to formulate questions regarding those same sentences and their topics. QG also
allows to validate knowledge. For instance, Wolfe [17] presents a “computer aid
to independent study”, which applies QG for tutoring systems. In this system,
questions are generated to be used later in the evaluation of students knowledge
about a given topic.

In this work, we use a Case-Based Reasoning (CBR) [1] system for gener-
ating questions, using similarity between part-of-speech (POS) tag sequences
of answers to FAQ3 questions and sentences in a corpus, assuming there are
similarities also between the questions on FAQs and those to be automatically
generated.
3 We use the term FAQ (Frequently Asked Questions) in a broader sense, representing

question-answer pairs.

EPIA'2011 ISBN: 978-989-95618-4-7

328

In this paper, we start by introducing background knowledge about QG and
CBR. In section 3, we present how to carry out the construction of CBR system
for QG. Section 4 dicusses the results obtained evaluation. Section 5 provides
related work. And finally, in Section 6 we present some concluding remarks.

2 Background Knowledge

This section presents a summary of the fundamental concepts and the technol-
ogy employed in our work. The two main topics we will discuss are: Question
Generation and Case-based Reasoning.

2.1 Question Generation

In the field of QG [14, 12], there are several approaches for carrying out the
task of generating questions. In many cases, the nature of automatic question
generation depends on the task within which it is embedded. Automatic QG
deals with the analysis of text, identifying sentences and topics, that are then
used to formulate questions regarding those same sentences and their topics.
Nowadays, automatic question generation is used in multiple situations, such as
pedagogical environments, intelligent tutoring systems, conversation with virtual
agents and information retrieval.

Over the last years this topic has seen renewed interest. However it remains
mainly in the domain of advanced learning technologies, such as intelligent tu-
toring systems, inquiry-based environments, and game-based learning environ-
ments, extending only what had been done before. These systems continue to
be used essentially to evaluate students [15, 3].

2.2 Case-Based Reasoning

CBR [1] is a problem-solving paradigm that uses specific knowledge from pre-
vious experiences, i.e., situations of a particular problem (cases). When a new
problem arrives it is compared to the existing base in search of similar cases. If
found, the existing cases are reused for the current situation. Adicional benefit
of such situation is that after solving a problem the CBR systems add it to their
knowledge base thus extending their capabilities in context of future queries.

CBR has been formalized for purposes of computer reasoning as a four-step
process [1]:

1. Retrieve: this step retrieves the most similar case or cases which are con-
tained in knowledge base. A case consists of a problem, its solution, and,
typically, annotations about how the solution was derived.

2. Reuse: this step reuses the information and knowledge (obtained in the
previous step) in that case to solve the problem.

3. Revise: this step comprises the task of revising the proposed solution by
the previous step, making the necessary changes for correcting mistakes in
the solution from the previous step.

EPIA'2011 ISBN: 978-989-95618-4-7

329

4. Retain: this step retains the useful experience for future reuse, and the case
base is updated by a new learned case, or by modification of some existing
cases.

3 Question Generation Using CBR System

For the task of QG, we propose the architecture shown in Fig. 1. We can see in
it the four modules that compose our system. The Annotation Module anno-
tates the corpus written in natural language. After that, this module generates
documents with the annotated corpus. The CBR Module is composed by the
CBR system, which uses a knowledge base for solving the cases resulting from
the first module. A case in our CBR system comprises an answer and a ques-
tion. The goal of the CBR system is to generate a question for each case. For
this, the CBR system uses the Question Generation Module, which tries to
generate a question through an answer. This module is based in rules. Finally,
the Pattern search Module discovers patterns in the annotated corpus that
facilitate the task of building rules.

DocumentAnnotated
corpus

Annotated
corpus

Annotated
corpus

Annotated
corpus

Annotated
corpus

Natural
language text

Annotation Module

Annotating of the text

Pattern Search Module

Question Generation

Question Generation Module

Knowledge
Base

CBR system

CBR Module

Patterns
discoveredQuestion

Answer

Case

Operator

Builds

Rules

Uses

Correct case

Trash

Incorrect
case

Search patterns

Fig. 1. System Global Architecture.

EPIA'2011 ISBN: 978-989-95618-4-7

330

3.1 Annotation Module

For annotating the corpus, we use multiple NLP tools. These tools are a POS
tagger, a lemmatizer and a sentence splitter. Our goal is to use these tools for
doing a depth analysis of a whole corpus. This provides the possibility of creat-
ing data structures containing knowledge about the different levels of analysis
existing in the whole corpus, such as morphological analysis, syntactic analysis
and semantic analysis. Once the text is separated in sentences and annotated, we
deploy a sentence parser for identifying the subject, the main verb, the predicate
and the predicate complements. The sentence parser also determines the voice
of the sentences, which will later help on the process of generating questions.
Identifying the sentence voice is an important fact because it is not the same to
generate a question for sentences on active voice than for sentences on passive
voice.

To understand better the annotation process, we present an example of a
sentence extracted from a text of the corpus that we used. The sentence is
“Diogo está a ter aulas de dicção para ficar com pronúncia americana” (Diogo
is attending to a pronunciation class for practising the american accent) and the
annotated sentence is shown in Table 1.

Table 1. Example of an annotated sentence by Annotation Module.

Sentence Diogo está a ter aulas de dicção para ficar com pronúncia americana.

Subject Diogo

Main verb está a ter

Predicate está a ter aulas de dicção para ficar com pronncia americana

Voice Actice voice

Words Diogo está a ter ... americana .

Tags prop v-fin prp v-inf ... adj punc

Lemmas Diogo estar a ter ... americano .

Once these tasks finish, all the information obtained through this process is
stored in files for feeding the next modules. We store this information in files
because the time spent annotating the corpus is large and most of the time, it
only has to be done once – in fact, we use the output of this module as input to
the CBR Module and to the Pattern Search Module.

3.2 CBR Module

In the first step, we apply a similarity metric for determining if there are similar
cases in the knowledge base to the problem that we want to solve. The similarity
metric used for determining the similarity is based in the Damerau-Levenshtein
distance algorithm[7]. Our goal is to calculate the distance between two sentences
(a sentence in the corpus and an answer in the FAQ) at the level of the POS

EPIA'2011 ISBN: 978-989-95618-4-7

331

tags of each word in the answer, for determining the syntactic similarity of both
sentences.

Our reasoning is based on the assumption that given a question Q, with an
answer A, if a sentence A’ has the same POS tag sequence of A, it could probably
become an answer to an automatically generated question Q’, using the sentence
elements found in A’.

At this point, we have to make a decision regarding what is the correct dis-
tance between two answers at the level of the POS tags? This is something that
can vary, mostly if other metrics are applied to below or simply if other tech-
niques are used in the reuse step of CBR cycle for determining if the case to solve
can generate a question. In Section 4, we explain the results obtained applying
different distances between answers and we also explain the reason we have chose
those distances.

In the second step we check if the retrieval process was successful, i.e, if
similar cases were recovered from the knowledge base. If so, then we know that
the case to solve is a candidate for generating a question. Then this case will
be analyzed by the module of QG which will try to build a question. Once that
happens, we have two possible results: a generated question or no generated
question. If the first situation occurs, this means that we have a solved case and
the CBR system should analyze it in the next step (revise step) to be validated.
Otherwise, the CBR system discards the current case and tries it with another
case until finishing all the cases.

The third step is responsible of reviewing the solved cases previously. Cur-
rently, we are performing this process manually, because we still do not have the
resources for automatic validation. This step allows the CBR system to learn. If
the solved case is correct, it is marked for the next step (retain process).

The fourth step consists simply in adding to the knowledge base the cases
which were reviewed successful in the previous step. When that happens, the
CBR system increases the number of cases as examples for resolving new prob-
lems. This will allow to the CBR system to identify new cases.

3.3 Question Generation Module

The question generation module is composed of two different parts. The first
part focuses on what is really necessary for formulating a question in natural
language – in this case, for Portuguese. For instance, the questions “Para que
serve um computador?” (What is the purpose of a computer?), “Onde mora
o Presidente da República Portuguesa?” (Where does the President of the Por-
tuguese Republic live?) and “Quem ganhou?” (Who has won?) can be structured
as shown in Fig. 2.

Observing the different questions of the figure and other questions, we con-
sider that a question, at least for the Portuguese Language, can be composed by
the following elements:

– Preposition: a preposition that precedes the interrogative pronoun.
– InterrogativePronuon: any interrogative pronoun.

EPIA'2011 ISBN: 978-989-95618-4-7

332

Para que serve um computador ?

prepostion interrogative
pronoun

verb object question
mark

 Onde mora o Presidente da República Portuguesa ?

interrogative
pronoun

verb object question
mark

Question

Question

Question
Structure

Question
Structure

Question

Question
Structure

 Quem ganhou ?

interrogative
pronoun

verb question
mark

Fig. 2. Examples of questions with its question structure.

– Verb: main verb of a eventual answer.
– Object: subject, predicate or predicate complements of an answer.
– ?: question mark.

Regarding the elements that can compose a question, we define the following
question structure shown in Fig. 3. This structure defines the preposition and
the object as optional elements and the interrogative pronoun, the verb and the
question mark as mandatory elements.

[$preposition] $interrogativePronoun $verb [$object] ?

Fig. 3. Question structure

Examples that use the question structure are shown in Fig. 2, where we
can see as the question “Onde mora o Presidente da República Portuguesa?”
does not have the preposition component, but has the remaining components:
interrogative pronoun, verb, object and question mark. On the other hand, the
question “Para que serve um computador?” has all the elements defined in the
question structure.

The second part of the question generation module is composed of the ques-
tion generation algorithm and the rules that allow the transformation of an
eventual answer into a question, using the question structure previously defined.
The process for getting a question consists of applying the algorithm until finding
a rule that transforms an eventual answer into a question. On the other hand,
if there is not a rule that transforms an eventual answer into a question, the
question generation module sends a failure to the reuse step of the CBR system,
indicating that the case to be solved does not have a solution.

EPIA'2011 ISBN: 978-989-95618-4-7

333

Before we describe the algorithm, we must define what a rule is, and how it
is built. A rule comprises a search pattern and a operation set. A search
pattern is a combination of word(s), tag(s) or lemma(s), i.e, a different com-
binations of the elements that exist in an annotated answer. For instance, “ser
adj” (“ser” is the lemma of the verb to be and “adj” is a tag that means ad-
jective) is a combination of a lemma and a tag. An operation set is composed
by several actions that allow the transformation of an answer into a question.
To undertand better how rules work, we can observe in Fig. 4 how a rule with
the search pattern “começar em” (“começar” is the lemma of the verb to start
and “em” is a preposition that means in) transforms the sentence “A Segunda
Guerra Mundial começou em 1939” (The Second World War began in 1939) into
a question applying the operation set.

Answer A Segunda Guerra Mundial começou em 1939

Search pattern começar em

Operation set Apply NER about predicate
NER finds a date (1939)
preposition = (empty)
interrogative pronoun = Quando
verb = começou
object = a Segunda Guera Mundial

Question structure $preposition $interrogativePronoun $verb $object?

Question Quando começou a Segunda Guerra Mundial?

Fig. 4. Example of transformation of an answer into a question.

In the operation set, we use Named Entity Recognition (NER) [11] on the
subject or predicate (depending on how the rule is built) for determining the
interrogative pronoun of the question. In this example, we apply NER on the
predicate. As NER recognizes a date, the interrogative pronoun is substituted by
“Quando” (when). After that, we replace the verb by “começou” and the object
by the subject of the sentence in this case “A Segunda Gerra Mundial”. Once
applied the operation set of the rule, we obtain the question “Quando começou
a Segunda Guerra Mundial?” (When did the Second World War begin?). The
rules are an important part of the module of question generation, but a major
problem arises in the construction of the rules. The problem is that it is hard to
identify the search patterns. To resolve this problem, we created the Pattern
Search module, which is described in Section 3.4.

After introducing what a rule is, we can explain how the question generation
algorithm works. The algorithm aims to discover search patterns in a structure
composed of words, tags and lemmas. Its structure is basically an array of anno-
tated words. An annotated word is an object with a word, a tag and a lemma.
For instance, the word “foi” (was) corresponds to the following annotated word:
word(foi), tag(v-fin), lemma(ser).

EPIA'2011 ISBN: 978-989-95618-4-7

334

The strategy of the questions generation algorithm is the following. For all
input cases of the module of question generation, it is built an array with all the
annotated words that an answer contains. For each search pattern, we check if
they exist in the array. If the search pattern is found, the next step is to apply the
operation set of the rule to which belongs the search pattern, for transforming
the answer into a question. Otherwise, if the search pattern is not found, the
question generation module sends a failure to the reuse step of the CBR system.

In algorithm 1 is shown the pseudocode of the algorithm.

Algorithm 1 Algorithm for Automatic Question Generation
Require:

Eventual Answer answer
Rule set R = {r1, . . . , rn}
Annotated Word set W = {p1, . . . , pn} from answer

Ensure: question
sp = ∅ (a pattern search)
os = ∅ (a operation set)
result = ∅
question = ∅
for all ri in R do

sp← search pattern from ri

result← search(sp, W)
if result true then

os← operation set from ri

question← apply(os, answer)
return question

end if
end for
return question

An example of the search function from the algorithm 1 is shown in Fig. 5. In
this example, the search function tries to discover the search pattern “começar
em” in the array of the annotated words. When a search pattern is found and
then, the operation set is applied for generating the question.

3.4 Pattern Search Module

The rules used by the Question Generation Module are built manually, but
the search pattern of each rule is discovered automatically by this module. This
module uses an algorithm for searching patterns in the annotated corpus. The
algorithm discovers the number of times that different combinations of words,
tags or lemmas are repeated in the whole corpus. For this, we use the annotated
words that were defined previously.

The strategy of the algorithm is as follows. Select a sentence from the anno-
tated corpus. For each sentence, the algorithm chooses the possible combinations

EPIA'2011 ISBN: 978-989-95618-4-7

335

Annotated word: 1

word: A

lemma: o

tag: art

Annotated word: 2

word: segunda

lemma: segundo

tag: adj

Annotated word: 3

word: guerra

lemma: guerro

tag: n

Annotated word: 4

word: mundial

lemma: mundial

tag: adj

Annotated word: 5

word: começou

tag: v-fin

Annotated word: 6

lemma: em

tag: prp

A segunda guerra mundial começou em 1939 (The Second World War began in 1939).Sentence:
Pattern rule: começar(lemma) word(em).

Annotated word: 7

word: 1939

lemma: 1939

tag: num

Array of Annotated word built through of the sentence.

Search:

lemma: começar

word: em

começar em

Fig. 5. Example of working question generation algorithm.

from the annotated word corresponding to the verb and its following next an-
notated words. Once a combination is selected, the algorithm looks for it in the
rest of the sentences of the corpus. The goal is to count the number of times
that a combination is repeated in all the corpus. When the algorithm finishes, it
is made a rank of the combinations discovered, specified by the number of times
that a combination is repeated in all the corpus.

The combinations become patterns and the next step is to store them in a
file. This file is reviewed manually for us for building the rules that will be used
by the question generation algorithm.

An example of a pattern found by the algorithm is “ser adj”. We use this
pattern for building the rule in Fig. 6.

Search pattern ser adj

Operation set preposition = (empty)
interrogative pronoun = Como (How)
verb = sentence verb
object = sentence subject

Question structure Como $verb $object?

Fig. 6. Rule example.

As we can observe, this pattern indicates that all sentences that end with the
verb “ser” (to be) followed by an adjective automatically generate the question
structure of the Fig. 6. For instance, if we apply the rule of the Fig. 6 to the
sentence “o concerto do Rui Veloso foi espectacular” (Rui Veloso’s concert was
spectacular) we obtain the question “Como foi o concerto do Rui Veloso?” (How
was the concert of Rui veloso?).

EPIA'2011 ISBN: 978-989-95618-4-7

336

4 Experiments

To perform the experiments, our initial idea was to build a knowledge base using
several collections of FAQs extracted automatically from Internet. But when we
made the first tests, we observed that the results were not as good as expected.
Many of the generated questions were odd or did not make any sense. This hap-
pens because FAQs sometimes contain question-answer pairs that are not related
correctly. Sometimes, the answers do not begin with the appropriate words or, in
other cases, the answers are very long. Usually, this information is not directly
related to the question, and therefore our approach generated odd questions.
Another important aspect is that FAQs usually do not have all question types
(“When”, “Who” and “Where”, questions are unusual in FAQs”). These are
some of the reasons why we did not have good results using this procedure.
Therefore, we considered the possibility of building a knowledge base manually,
with questions and answers written and tagged by us. We also considered that
all questions should have a concrete answer, i.e., the answers are entirely re-
lated to the questions. An example of a question-answer pair built manually is:
“Quem é o Presidente da República Portuguesa?” (Who is the President of The
Portuguese Republic?) “O Presidente da República Portuguesa é Cavaco Silva”
(The President of the Portuguese Republic is Cavaco Silva).

With the new approach, two different experiments were done, having different
distances in the Levenshtein distance algorithm. In the first experiment, we used
a distance of 1 and on the second experiment a distance of 2. The reason we
chose these distances and not others is simple. The answers that we have in
our knowledge base have an average of 7 tokens by answer. Knowing this, we
considered an error margin no bigger than 30% for avoiding over matching. As
such, the determined distances were 1 and 2. With distance 1, we assume an
average error of an 14% and with the distance 2, we assume an error of an 28%.
The corpus used as input to the CBR system is the same for both experiments.
The corpus is extracted from Newspaper Público available through CHAVE [13].
The knowledge base is manually created, and it contains ten question-answer
pairs. The knowledge base is also the same for the two experiments. The results
obtained are shown in Table 2.

Table 2. Number of generated cases

Experiment Number of generated cases

1 686

2 4317

To validate the cases, we used a sample with a confidence level of the 95%
and a confidence interval of the 5%. Data obtained are showed in Table. 3. The
samples were distributed to five persons. The criterion used for validating the
cases is as follows:

EPIA'2011 ISBN: 978-989-95618-4-7

337

Table 3. Data of the sample sizes determined

Experiment 1 Experiment 2

Confidence level 95% 95%

Confidence interval 5% 5%

Population 686 4317

Sample size 246 353

– Incorrect case: an incorrect case is a case that contains an incorrect ques-
tion and incorrect answer. An incorrect question is one that has no meaning
at the semantic level or its construction is incorrect at the syntactic level.

– Correct question: cases where the question is correct but the pair is not
totally correct, i.e., the answer does not answer correctly to the question. A
correct question is one that is built correctly both at the semantic level and
the syntactic level.

– Correct case: a correct case is a case that contains a correct question and
a correct answer.

After validating the cases, the results are presented in Table 4.

Table 4. Results obtained

Experiment 1 Experiment 2

Incorrect cases 16% 27%

Correct question 25% 19%

Correct cases 59% 54%

Total correct generated questions 84% 73%

As we can see, the results for experiment 1 are better in all aspects than
experiment 2. This is because the distance used on the experiment 1 is lower
than the experiment 2. Therefore, we observe that the shorter the distance, better
results are obtained. But an important fact is that the number of generated cases
in the experiment 2 is greater than the experiment 1. This is because in this case,
the distance used is greater and therefore more case are examined. In experiment
1, the CBR system generated 686 cases, while experiment 2 generated 4317 cases.

5 Related Work

Regarding related work, Aliet al. [2] describe a QG system where given a sen-
tence, the system generates a set of questions for which the sentence contains,
implies, or needs answers. For this, they build elementary sentences from the
input complex sentences using a syntactic parser. Later, to encode necessary
information of each sentence, they use NER, a POS tagger and classify the sen-
tences based on their subject, verb, object and preposition for determining the

EPIA'2011 ISBN: 978-989-95618-4-7

338

possible type of questions to be generated. Kalady et al. [9] in their work present
an approach to question generation based on syntactic and keyword modeling
and describe how to generate different types of question from a single input
sentence. In Heilman and Smith [6] it is presented an extensible approach to
generating questions for the purpose of reading comprehension assessment and
practice.

Other researchers such as Wang et al. [16] generate the questions automati-
cally based on question templates witch are created by training on many medical
articles. Silveira et al. [14] describe a general framework for characterizing and
situating efforts to automatically generate question from free text. That work
proposes to generate questions regardless of the domain and language used. How-
ever, other researchers such as Nielsen and Buckingham [10] define a question
taxonomy based on a priori educational research and the analysis of tutoring
transcripts form multiples domains which is totally dependent of the domain
in that case, tutoring education systems. Other works also follow the lines of
Nielsen and Buckingham [10] in terms of domain dependence. In [3], an inter-
esting approach is described to automatically generate questions for vocabulary
assessment.

6 Conclusions

In this paper, we propose a new architecture for automatic QG. Our system
uses a CBR system for determining which sentences can be used by a module of
question generation. The module of QG transforms the sentences into questions.
After that, we obtain cases with question-answer pairs. The architecture here
proposed generates question without defining any specific domain. Other impor-
tant aspect is that this architecture can be used with other languages, at least,
languages that follow a subject, verb and object structure. For this, only the file
of rules should be changed. Also, This system serves for creating a corpus of
question-answer pairs for the Portuguese Language through its knowledge base
which increases with each run.

Regarding the results obtained, we consider that these results are a good start
for this approach, because we get to generate many correct questions, concretely
a 84% in the experiment 1 and 73% in the experiment 2.

One challenge for this new architecture proposed for automatic QG will be
feeding to a Automatic System Question Answering, through the knowledge
base, with the aims of improving the results already obtained by this kind of
systems. The current system can also be improved by adding more and better
rules, we only are using a small set of rules. So one of the goals is to incorporate
new rules that permit generate more questions.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Commun pp. 39–59 (1994)

EPIA'2011 ISBN: 978-989-95618-4-7

339

2. Ali, H., Chali, Y., , Hasan, S.A.: Automatic question generation from sentences:
a preliminary approach. In: Conference on Traitement Automatique de la Langue
Naturelle. Montreal, Canada (19-23 july 2010)

3. Brown, J.C., Frishkoff, G.A., Eskenazi, M.: Automatic question generation for
vocabulary assessment. In: Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Language Processing. pp. 819–826.
HLT ’05, Association for Computational Linguistics, Stroudsburg, PA, USA (2005),
http://dx.doi.org/10.3115/1220575.1220678

4. Graesser, A.C., Chipman, P., Haynes, B.C., Olney, A.: AutoTutor: an intelligent
tutoring system with mixed-initiative dialogue. IEEE Transactions on Education
48(4), 612–618 (2005), http://dx.doi.org/10.1109/TE.2005.856149

5. Graesser, A.C., VanLehn, K., Rosé, C.P., Jordan, P.W., Harter, D.: Intelligent
tutoring systems with conversational dialogue. AI Mag. 22, 39–51 (October 2001),
http://portal.acm.org/citation.cfm?id=567363.567366

6. Heilman, M., Smith., N.A.: Question Generation via Overgenerating Transforma-
tions and Ranking. Tech. rep., Language Technologies Institute, Carnegie Mellon
University (2009)

7. Hyyrö, H.: A bit-vector algorithm for computing levenshtein and dam-
erau edit distances. Nordic J. of Computing 10, 29–39 (March 2003),
http://portal.acm.org/citation.cfm?id=846090.846095

8. Jurafsky, D., Martin, J.H.: Speech and Language Processing. Pearson Education
International, Inc., Upper Saddle River, New Jersey, USA, second edn. (2008)

9. Kalady, S., Elikkottil, A., Das, R.: Natural language question generation using syn-
tax and keywords. In: Proceedings of QG2010: The Third Workshop on Question
Generation. Kerala, India (2010)

10. Nielsen, R.D., Buckingham, J., Knoll, G., Marsh, B., Palen, L.: A Taxonomy of
Questions for Question Generation. In: Rus, V., Graesser, A. (eds.) Proceedings of
the Workshop on the Question Generation Shared Task and Evaluation Challenge.
Arlington, Virginia, USA (September 2008)

11. Poibeau, T., Kosseim, L.: Proper Name Extraction from Non-Journalistic Texts.
In: Daelemans, W., Sima’an, K., Veenstra, J., Zavrel, J. (eds.) Proceedings of the
11th Computational Linguistics in the Netherlands Meeting (CLIN 2001). pp. 144–
157. Editions Rodopi B.V., Amsterdam, New York, USA (2001)

12. Rus, V., Graesser, A.C. (eds.): The Question Generation Shared Task and Evalu-
ation Challenge. The University of Memphis (2009)

13. Santos, D., Rocha, P.: CHAVE: topics and questions on the Portuguese
participation in CLEF. In: Peters, C., Borri, F. (eds.) Cross Lan-
guage Evaluation Forum: Working Notes for the CLEF 2004 Workshop
(CLEF 2004). pp. 639–648. IST-CNR, Pisa, Italy (15-17 September 2004),
http://www.linguateca.pt/documentos/SantosRochaCLEF2004WN.pdf, revised
as Santos & Rocha (2005)

14. Silveira, N.: Towards a Framework for Question Generation. In: Rus, V., Graesser,
A. (eds.) Proceedings of the Workshop on the Question Generation Shared Task
and Evaluation Challenge. Arlington, Virginia, USA (September 2008)

15. Stanescu, L., Spahiu, C.S., Ion, A., Spahiu, A.: Question Generation for Learning
Evaluation. In: Proceedings of the International Multiconference on Computer Sci-
ence and Information Technology. pp. 509–513. IEEE Press, Wisa, Poland (October
2008)

16. Wang, W., Hao, T., Liu, W.: Automatic question generation for learning evaluation
in medicine. In: Leung, H., Li, F., Lau, R., Li, Q. (eds.) Advances in Web Based

EPIA'2011 ISBN: 978-989-95618-4-7

340

Learning ICWL 2007. Lecture Notes in Computer Science, vol. 4823, pp. 242–251.
Springer Berlin Heidelberg (2008)

17. Wolfe, J.H.: An Aid to Independent Study through Automatic Question Generation
(AUTOQUEST). Tech. rep., Navy Personnel Research and Development Center,
San Diego, California, USA (October 1975)

EPIA'2011 ISBN: 978-989-95618-4-7

341

