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ABSTRACT 

Diabetic nephropathy (DN) is one of the most common complications in patients 
with diabetes. It is a chronic disease that progressively affects kidney function and 
can potentially lead to renal impairment. Digitalization has allowed hospitals to store 
patients’ information in electronic health records (EHRs). The application of ML 
algorithms to this data can allow the prediction of the risk in the evolution of these 
patients leading to better management and treatment of the disease. The main 
objective of this work is to create a predictive model taking advantage of the patient's 
history present in the EHR data. To achieve this goal, the largest Portuguese dataset 
from patients with DN followed for 22 years by the Associação Protectora dos 
Diabéticos de Portugal (APDP) was applied in this work. A longitudinal approach 
was developed in the data preprocessing phase, enabling the data to be used as input 
for sixteen distinct ML algorithms. After evaluating and analyzing the respective 
outcomes, the Light Gradient Boosting Machine was identified as the optimal 
model, exhibiting good predictive capabilities. This conclusion was supported not 
only by assessing several classification metrics on train, test, and unseen data, but 
also by evaluating its performance for each stage of the disease. Moreover, the 
models were analyzed using feature ranking plots and a comprehensive statistical 
analysis. Furthermore, the interpretability of the results through the SHAP method 
and the deployment of the model using Gradio and Hugging Face servers are also 
presented. Through the integration of ML techniques, an interpretation method and 
a web application that provides access to the ML model, this research offers an 
effective approach that may anticipate DN evolution, empowering healthcare 
professionals to make informed decisions for personalized patient care and disease 
management. 

 

Keywords: Diabetic Nephropathy, Electronic Health Records, Machine Learning, 
Longitudinal Analysis, Risk Prediction 
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RESUMO 

A nefropatia diabética (ND) é uma das complicações mais comuns em doentes com 
diabetes. Trata-se de uma doença crónica que afeta progressivamente os rins, 
podendo resultar numa insuficiência renal. A digitalização permitiu aos hospitais 
armazenar as informações dos doentes em registos de saúde eletrónicos (RSE). A 
aplicação de algoritmos de Machine Learning (ML) a estes dados pode permitir a 
previsão do risco na evolução destes doentes, conduzindo a uma melhor gestão da 
doença. O principal objetivo deste trabalho é criar um modelo preditivo que tire 
partido do historial do doente presente nos RSE. Foi aplicado neste trabalho o maior 
conjunto de dados de doentes portugueses com DN, seguidos durante 22 anos pela 
Associação Protetora dos Diabéticos de Portugal (APDP). Foi desenvolvida uma 
abordagem longitudinal na fase de pré-processamento de dados, permitindo que 
estes fossem servidos como entrada para dezasseis algoritmos de ML distintos. Após 
a avaliação e análise dos respetivos resultados, o Light Gradient Boosting Machine 
foi identificado como o melhor modelo, apresentando boas capacidades de previsão. 
Esta conclusão foi apoiada não só pela avaliação de várias métricas de classificação 
em dados de treino, teste e validação, mas também pela avaliação do seu 
desempenho por cada estádio da doença. Para além disso, os modelos foram 
analisados utilizando gráficos de feature ranking e através de análise estatística. 
Como complemento, são ainda apresentados a interpretabilidade dos resultados 
através do método SHAP, assim como a distribuição do modelo utilizando o Gradio 
e os servidores da Hugging Face. Através da integração de técnicas ML, de um 
método de interpretação e de uma aplicação Web que fornece acesso ao modelo, 
este estudo oferece uma abordagem potencialmente eficaz para antecipar a evolução 
da ND, permitindo que os profissionais de saúde tomem decisões informadas para 
a prestação de cuidados personalizados e gestão da doença. 

Palavras-chave: Nefropatia Diabética, Registos de Saúde Eletrónicos, Machine 
Learning, Análise Longitudinal, Previsão de Risco 
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1 INTRODUCTION 

Diabetes is a prevalent public health challenge that has an impact on quality of life 
and mortality rates. The number of people with diabetes increased from 108 million 
to 422 million between 1980 and 2014 [1]. In Europe, 6.2% of adults had diabetes 
in 2019, with Cyprus, Portugal, and Germany having the highest rates [2]. Most 
patients with both type 1 and type 2 diabetes struggle to achieve proper metabolic 
control, leading to complications such as retinopathy, neuropathy, and nephropathy 
[3]. 

Diabetic Nephropathy (DN) is a chronic disease in which the function of the kidneys 
deteriorates, reducing their ability to remove wastes and toxins from the bloodstream 
while also affecting the water balance in the body. DN is considered a progressive 
disease that usually worsens over time until the kidneys cannot function on their 
own, which is known as end-stage renal disease (ESRD) [4]. In developed countries, 
half of all cases of ESRD are due to DN, and the cost of treating ESRD patients is 
very high [5]. 

Digitalization has allowed hospitals to store the complete history of patient 
appointments in a database, resulting in the availability of EHRs. These data are 
longitudinal because they are collected over time and include multiple patient records 
at different points in time. The application of Machine Learning (ML) techniques to 
analyze EHR data can provide valuable insights and enable the development of ML 
models that can predict the risk of DN evolution, aiding physicians in the diagnosis 
and ultimately improving the quality of healthcare [6], [7]. 

Founded in 1926, the Portuguese Diabetes Association (Associação Protectora dos 
Diabéticos de Portugal), commonly known by its acronym APDP, is the world’s 
oldest diabetes association and dean of the International Diabetes Federation (IDF) 
member associations. APDP is involved in studies and projects with national and 
international entities focused on diabetes and associated complications such as DN 
[8]. The EHR data used in this study were provided by the APDP and were collected 
from patients with diabetes followed for 22 years in their facilities. Furthermore, all 
the steps presented throughout this study have been validated by a physician 
associated with APDP to ensure clinical validity and significance of all the developed 
approaches. 

1.1 Objectives 

The objective of this work is to develop a predictive model using ML techniques 
applied to EHR data, with the aim of accurately identifying the progression risk of 
DN.  



Francisco Gabriel Fonseca Mesquita 

2 

It seeks to use a longitudinal approach that can take advantage of the temporality 
associated with the EHR data. The incorporation of the patient's history provides 
information on the patient's evolution over time, which is essential for an accurate 
risk assessment and management of DN.  

Furthermore, this work presents a simple and intuitive way of interpreting each 
prediction made so that there is transparency and understanding of the model. 

1.2 Main contributions 

This dissertation’s main contributions are: 

- In-depth exploration of both the clinical aspects concerning DN disease and 
the technical aspects related to ML. The valuable collaboration and ongoing 
support from APDP enabled the inclusion of clinical validation and guidance. 
Through this close collaboration, we established a well-defined approach to 
address the research problem. 

- Exploration and application of several preprocessing steps considering the 
longitudinal nature of EHR data. The methodology was designed with the 
purpose of taking advantage of the patient's history and appropriately 
preparing the data to feed the ML models.  

- The experimental setup was based on recommendations and guidelines 
defined in the literature as those that ensure better validation of the 
performance results of the ML models. In addition, a detailed analysis of 
performance by disease stage is presented, which we believe is essential and 
rarely presented in the literature. 

- A simple and intuitive interpretation method is proposed using the SHapley 
Additive exPlanations (SHAP) method. It allows the user to understand the 
logic behind the result given by the ML algorithm. In addition, the model is 
deployed, and a web application is developed, enabling readers to access and 
use the model, obtaining both prediction outcomes and their corresponding 
interpretations. 

1.3 Task management 

This study was carried out over approximately one year (September 2022 to July 
2023). Five main tasks can be identified from its realization: 

- Task 1: Understanding the problem, surveying the state of the art, and writing 
the literature review. 

- Task 2: Exploration and analysis of data made available by APDP. 



Risk Assessment for Progression of Diabetic Nephropathy Based on Patient History Analysis 

3 

- Task 3: Development of an approach using the data. Implementation, 
combination, and comparison of different techniques. 

- Task 4: Consistent validation of the implemented models. 

- Task 5: Writing the master's thesis. 

Table 1.1 shows the time distribution of each of the tasks over the one-year period 
of this work: 

Table 1.1: Timeline of tasks undertaken. 

 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul 
T1                       
T2                       
T3                       
T4                       
T5                       

 

1.4 Document structure 

This document is structured in 7 different chapters: 

Chapter 2 presents the theoretical background knowledge on disease (DN) and 
Artificial Intelligence (AI).  

Chapter 3 presents the challenges inherent in EHR data, an overview of ML applied 
to EHR in a clinical setting, and a review of the literature made specifically on the 
application of ML to predict the evolution of DN.  

Chapter 4 describes the entire methodology defined, with all steps presented in 
detail.  

Chapter 5 provides a comprehensive presentation of the results using classification 
metrics to assess model performance both overall and by disease stage. 

Chapter 6 presents a comprehensive critical analysis of the results, accompanied by 
a detailed exploration of the findings and inherent limitations of this research. 

Chapter 7 concludes this work with a summary of the study and its findings, as well 
as different research directions that can be explored in the future. 
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2 BACKGROUND KNOWLEDGE 

The application of Artificial Intelligence (AI) algorithms in the healthcare field opens 
many doors to better and more efficient medical services, increasing the quality of 
the service provided, consequently raising people's quality of life.  

The first sub-section provides an overview of DN, including its epidemiology, 
pathophysiology, risk factors, clinical manifestations, and other several aspects. The 
second sub-section provides a brief background on AI and ML, covering 
fundamental concepts such as the origins of these algorithms, the steps involved in 
their construction, and important aspects like interpretation and potential 
applications. Understanding the intersection of ML and DN is crucial to developing 
accurate predictive models and helping clinicians make informed decisions. By 
combining these two areas of knowledge, it is possible to uncover insights that can 
contribute to early intervention and better management of this condition. 

2.1 Diabetic Nephropathy 

Diabetes is a chronic disease characterized by high levels of glucose in the blood, 
which can cause serious damage to the heart, veins, eyes, nerves, and kidneys.  Type 
1 diabetes is characterized by an autoimmune response that impairs the ability of the 
pancreas to produce sufficient insulin. On the other hand, type 2 diabetes occurs 
when the body becomes resistant to the effects of insulin, resulting in reduced 
glucose uptake by cells. Eventually, the pancreas may produce less insulin, worsening 
the condition [9]. Gestational diabetes is another type of diabetes that occurs during 
pregnancy, leading to high blood sugar levels in affected women [10]. 

Diabetes is one of the most prevalent diseases in the world, with the World Health 
Organization (WHO) estimating that 422 million suffered from diabetes in 2014. 
This corresponds to an increase of 314 million affected people compared to 1980 
[1]. Numerous complications can result from this disease, and these can be classified 
into macrovascular or microvascular. Cardiovascular disease, heart stroke, and 
peripheral vascular disease are examples of macrovascular complications. 
Microvascular complications are mainly nerve damage (neuropathy), eye damage 
(retinopathy), and kidney damage (nephropathy) [11]. Although the various 
complications are serious and reduce the patient’s quality of life, DN will be 
discussed more specifically in this study. 

The kidneys are two bean-shaped organs (10 to 15 centimeters long). Normally, 
people live with two, but it is possible to live a quality life with only one functioning 
kidney. On very rare occasions, it is even possible to be born with 3 kidneys and 
remain equally healthy. They play an essential role in filtering out undesirable 
products and excess fluids. Not only that, but they also act in maintaining the body's 
acid-base balance and regulating the levels of water, salts, and important minerals 
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such as sodium, calcium, phosphorus, and potassium in the bloodstream. Each 
kidney is made up of a large number of filtration units called nephrons. Each 
nephron filters a tiny portion of blood. Each nephron is made up of a filter called a 
glomerulus. In the glomerulus, unnecessary products and extra fluids that the body 
does not need are filtered out. It is these components that will make up the urine, 
while the cleaned and filtered blood is returned to the body [12]. 

Prolonged exposure of the glomerulus to blood with great sugar levels can cause 
high damage to these filters leading to DN or diabetic kidney disease (DKD). In 
DN, the damaged blood vessels in the kidneys become leaky, allowing proteins like 
albumin to pass into the urine, a condition known as proteinuria. Initially, the loss 
of small amounts of albumin, called microalbuminuria or incipient nephropathy 
(about 30 to 300mg per day), is not easily detectable. However, as the disease 
progresses, more albumin is excreted (>300mg per day), leading to 
macroalbuminuria or overt nephropathy, which can indicate a decline in kidney 
function and the severity of DN.  

2.1.1 Epidemiology 

When looking at the epidemiology of DN, there are several important pieces of 
information to highlight. The probability of patients with diabetes developing DN 
is approximately 1.75% (95% CI: 1.62-1.89) [13]. DN is the most common cause 
leading to end-stage renal disease (ESRD), that is, the final stage of kidney disease 
in which the kidneys are no longer capable of functioning and the patient needs 
dialysis or a kidney transplant. It is also associated with increased morbidity and 
mortality among patients with DN [14]. Portugal has one of the highest incidences 
of dialysis in Europe and ranks among the highest in the world [15]. Although the 
reasons are unknown, there is also other alarming data. According to a 2008 study, 
about 17% of the population with diabetes in Portugal also suffered from DN [16]. 
Nevertheless, the prevalence rate is still below that reported worldwide, where about 
20 to 40% of patients with diabetes also have DN [17]. Deng et al. present a 
comprehensive report on the evolution of DN worldwide from 1999 to 2019 [18]. 
As of 2019, DN is seventh in terms of prevalence, fourth as the leading cause of 
mortality, and sixth as the cause of disability on a global scale. There are differences 
between patients with DN associated with Type 1 Diabetes and patients with DN 
associated with Type 2 Diabetes. Although statistically differentiated in the work of 
Deng et al., both increased significantly in terms of number of patients, deaths, and 
disability adjusted life years (DALYs). 

2.1.2 Pathophysiology 

The pathophysiological mechanisms in the development of DN are multifactorial. 
Hyperglycemia or high blood glucose is the factor responsible for structural and 
functional changes in the kidneys [19]–[21]. Persistent high blood sugar levels trigger 
inflammation and oxidative stress within the kidneys. Inflammation is the body's 
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response to injury or infection, but in the case of DN, it becomes chronic. This 
ongoing inflammation contributes to further damage to the kidneys. Oxidative stress 
occurs when there is an imbalance between harmful molecules called reactive oxygen 
species (ROS) and the body's antioxidant defenses. Excess ROS production in DN 
leads to damage to kidney cells. Furthermore, the kidneys' hormonal system called 
the renin-angiotensin-aldosterone system (RAAS) becomes activated. This system 
helps regulate blood pressure and fluid balance in the body. However, in DN, 
activation of RAAS can cause constriction of blood vessels within the kidneys, 
leading to reduced blood flow. This, in turn, worsens kidney damage. 

Over time, continued injury, inflammation, and oxidative stress cause scarring and 
fibrosis in the kidneys. This fibrosis disrupts the normal structure and function of 
the kidneys, impairing their ability to effectively filter waste products from the blood. 
As a result, kidney function gradually declines, and, if left untreated, it can progress 
to ESRD. 

Management of diabetes by controlling blood sugar and blood pressure is essential 
to slow the progression of DN. In addition, interventions targeting inflammation, 
oxidative stress and the RAAS system can also be used to mitigate kidney damage 
and maintain kidney function. 

2.1.3 Clinical presentation 

The clinical presentation of DN can vary depending on the stage of the disease. In 
earlier stages, symptoms may go unnoticed. As the condition worsens, there are 
several clinical conditions that may become evident. DN is typically defined by the 
presence of proteinuria or a decline in renal function, indicated by a reduced 
glomerular filtration rate (GFR). It is important to note that patients with modest or 
no albuminuria may progress to ESRD. DN progresses through different states, 
each representing a different level of damage and decline in kidney function. These 
different stages of DN are shown in Figure 2.1. 
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Figure 2.1: Different stages of DN, based on [22]. 

2.1.4 Risk factors 

There are several risk factors that can contribute to the onset and progression of 
DN. Some factors are modifiable, which means that they can be changed or 
controlled by changing lifestyle, behavior, or through medical intervention. Others 
are non-modifiable, meaning that they are inherent characteristics of the individual 
that cannot be controlled. From reading several papers [23]–[31] resulted Table 2.1 
where the main modifiable and non-modifiable DN risk factors are presented. 
Although many other factors have been identified, these are the ones that appeared 
almost unanimously in the various papers reviewed. 

Table 2.1: Main modifiable and non-modifiable DN risk factors. 

Modifiable factors Non-Modifiable 

Hyperglycemia 
High blood pressure / Hypertension 
Dyslipidaemia 
Obesity 
Proteinuria 
High body mass index 
Smoking 

Insulin resistance 
Race 
Age 
Long duration diabetes 
Genetic factors 
 

 

2.1.5 Diagnosis 

Diagnosis of DN involves a careful assessment to determine the presence and 
severity of kidney damage in individuals with diabetes. It is crucial to detect this 
condition early, as it allows for timely intervention and management.  
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One common test is to check for the presence of protein in the urine, known as 
proteinuria. This is done by analyzing a sample of the person's urine. Proteinuria is 
a key indicator of kidney damage and can be an early sign of DN. Additionally, blood 
tests are conducted to measure creatinine and estimate the GFR, which reflects how 
well the kidneys are functioning. 

Another alternative test that can be performed is the analysis of the 
albumin/creatinine ratio (ACR). Healthy kidneys filter creatinine from the blood, 
which is a chemical waste product. The ratio between the two measures indicates 
the amount of albumin excreted in relation to the amount of creatinine. A higher 
ACR value suggests increased albuminuria and is indicative of kidney damage or 
dysfunction. 

Imaging tests, such as ultrasound, may be recommended in some cases to further 
assess the structure and identify any abnormalities. These tests help healthcare 
professionals understand the extent of kidney damage and determine the appropriate 
course of treatment. In some specific cases, a kidney biopsy may be necessary to take 
a sample of its tissue for further examination under a microscope [32]. 

2.1.6 Treatment 

To prevent or slow the progression of DN, there are usually different treatments 
that patients can and are medically advised to follow: 

- Glycemic control: The control of blood sugar levels so that they remain 
stable within values considered healthy. Although even with good glycemic 
control there may be progression in DN [33], several studies point out that 
strict control of blood sugar levels may be able to delay the onset or 
development of DN [34]–[36]. This control, when done too intensively, can 
lead to adverse reactions, which is why there are now international guidelines 
that recommend a unique and careful analysis of each individual and adapt 
the treatment to the patient's characteristics. Medications such as metformin, 
sulfonylureas, and insulin are commonly prescribed to achieve optimal 
glycemic control [37]. 

- Blood pressure control: Due to the nature of the disease, intraglomerular 
hypertension is of great importance for DN. Similarly to glycemic control, 
more individualized treatment according to the characteristics of the patient 
to avoid hypotensive episodes [38]. Medications called angiotensin converting 
enzyme inhibitor (ACEI) and angiotensin receptor blocker (ARB) are 
commonly used to lower blood pressure and protect the kidneys [39]. 

- Reduce high cholesterol: Cholesterol-lowering drugs, called statins, are 
used to treat high cholesterol, and reduce protein in the urine. Shen et al. [40] 
concluded that statins decrease albuminuria and urinary albumin excretion 
rates, but its effectiveness is time-dependent (duration of treatment) and also 
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depends on the type of diabetes the patients have, being most effective in type 
2 diabetes. 

For the purpose of increasing the effectiveness of these treatments, some changes 
in habits and lifestyle are usually suggested to complement medical treatment. Such 
changes may include exercising more to maintain a balanced weight combined with 
physical exercise, eating healthier, quitting smoking, and reducing salt intake, among 
other suggestions [41]. 

If the patient is in the latter state, already in renal dysfunction, the doctor is likely to 
suggest other, more severe treatment options: 

- Kidney dialysis: Dialysis is a medical procedure that removes waste products 
and excess fluids from the bloodstream when the kidneys cannot perform 
that function. There are two main types: hemodialysis and peritoneal dialysis. 
Hemodialysis involves externally filtering the blood using a machine. In 
contrast, peritoneal dialysis utilizes the body's own abdominal lining 
(peritoneum) to filter the blood internally. 

- Transplant: A surgical procedure that consists of transferring a healthy 
kidney from a living or deceased donor to a person whose kidneys no longer 
function. 

2.1.7 Complications 

DN is a complication resulting from diabetes, but DN itself can lead to several other 
complications in the human body. When not detected early or properly treated, it 
can be the source of several other associated complications. Just as DN develops 
over months or years, so do the various associated complications: 

- Cardiovascular disease: DN patients are more likely to have cardiovascular 
problems and the risk is greater as the patient's nephropathy progresses [42].  

- Anemia: DN usually causes a decrease in red blood cells, leading to anemia. 
It is recognized as a frequent DN complication that can increase the risk of 
cardiovascular and microvascular complications [43]. 

- Bone mineral metabolism disorders: Minerals imbalances such as calcium 
and phosphorus can occur in DN patients.  In Chen et al. work, patients with 
Type 2 diabetes mellitus show an imbalance in bone mineral metabolism and 
that DN makes this worse [44]. 

- Pregnancy complications: Even with good blood glucose control, women 
with DN have a higher risk of maternal complications, such as preeclampsia 
and the need for cesarean birth [45]. 

- Increased infections: With the immune system weakened and kidney 
function affected, DN can cause patients to be affected by various infections, 
especially urinary tract infection (UTI) [46]. 
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2.1.8 Prognosis: clinical risk score models 

Strategies for assessing the patient's DN stage discussed earlier, such as urine testing, 
estimating GFR, or measuring ACR are useful, but clinically they do not provide the 
information needed to determine the risk of onset or progression of kidney disease. 
Identifying patients at increased risk for the onset or progression of DN can help to 
prevent disease progression more effectively and greatly alleviate the burden created 
in healthcare systems. 

Clinical risk score models are the solution and bring great value as risk assessment 
and stratification tools. These models use a combination of clinical variables and 
biomarkers to predict the likelihood of developing DN or its progression to more 
severe stages. These models are created from studies and validation processes that 
lead to a standard way of predicting individual risk based on clinical evidence. 

The main example of this type of model is the kidney disease: Improving Global 
Outcomes (KDIGO) guidelines. By estimating the GFR (eGFR) and using 
albuminuria value, this model can assess the risk of developing DN. The risk is 
stratified into low risk,, moderate risk, high risk and very high risk [47]. The model 
can be seen in Figure 2.2. 

 

Figure 2.2: KDIGO model, based on [47]. 

Although widely applied and the standard test for predicting future kidney function 
decline, the KDIGO model fails with some regularity, especially when there is a need 
to make risk predictions over an extended time period. This is shown by the 
PromarkerD blood test. It is a recent test that can predict the risk of a patient with 
type 2 diabetes developing DN over the next 4 years, and also estimates the risk of 
patients having DN at the time of the test. The test uses three biomarkers: ApoA4, 
CD5L, IGFBP3, and three clinical factors: Age, HDL cholesterol, and eGFR. The 
results presented by this test show improved performance and the ability to predict 
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the risk of DN over the next four years [48]. The result of the test is shown in the 
Figure 2.3.  

Despite these results, the fact that this is still a recent test and that it is a proprietary 
algorithm must be considered, and no detail has been found on how the data are 
analyzed to arrive at the risk score presented. 

 

Figure 2.3: PromarkerD test results, based on [48]. 

Another proprietary algorithm is the one used by the KidneyIntelX model, used in 
Renalytix laboratories across EUA. It is an innovative diagnostic platform that uses 
ML algorithms to assess the risk and progression of kidney disease. It is a test for 
adult patients with type 2 diabetes and kidney disease at stage 1 to 3 who are at low, 
intermediate, or high risk for rapid progressive decline in kidney function. This risk 
is calculated using ML, three biological factors: TNFR1, TNFR2, KIM-1, and eight 
clinical factors: eGFR, ACR, also called UACR, serum calcium, HbA1c, systolic 
blood pressure, platelets, and AST enzyme. Along with the risk 
guidelines/recommendations are given on what the patient should do to improve 
their clinical situation. Several studies have been carried out in clinical validation of 
the KidneyIntelX test [49]–[51]. This test result is illustrated on Figure 2.4.  

 

Figure 2.4: KidneyIntelX risk of progressive decline in kidney function, based on [52]. 

A simpler alternative is to use the kidney failure risk equation (KFRE) originally 
proposed by Tangri et al. in 2011 [53]. KFRE is capable of predicting kidney failure 
at 2 and 5 years in patients with stage 3 to 5 kidney disease. It uses 4 clinical variables: 
ACR, gender, age, and GFR, but additional information can give a better and more 
trustworthy result. The predicted risk may be non-existent, low, or medium-high.  It 
is not a proprietary algorithm, and anyone can access the predictions through the 
online calculator provided on their website [54]. Although the KFRE has been 
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validated in more than 30 countries around the world, there is no available 
information on its official application in any healthcare center or clinic. 

All the information presented throughout this chapter is essential to give context 
and background knowledge for the practical case that will be presented throughout 
this document. After presenting the basic knowledge of DN, it will be used from 
here on in a more direct way applied to the problem we want to solve in particular. 
The next subchapter presents the background knowledge about AI and ML. 

2.2 Artificial Intelligence and Machine Learning 

Throughout history, there has been a great deal of debate about the definition of AI 
[55]. It can have different meanings, and there is no widely accepted definition. In 
simple terms, we can say that AI is a field within computer science and technology 
that aims to build machines with intelligence, enabling them to perform tasks that 
typically rely on various aspects of human intelligence. It involves developing 
algorithms, models, and systems that can analyze and interpret data, learn from 
experiences, make informed decisions, and solve complex problems. 

The emergence of the term AI as non-fictional takes us back to the early 1950s when 
different scientists and researchers considered the possibility of having machines 
capable of human-like intellectual abilities [56]. One of these scientists was Alan 
Turing, a British mathematician, who proposed the question "Can machines think?" 
in the famous paper "Computing machinery and intelligence" [57]. Alan Turing 
proposed the Turing test as a means to assess whether a machine can demonstrate 
intelligent behavior that is indistinguishable from that of a human. The test involves 
a scenario where an individual engages in conversations with both machines and 
humans, with the twist that they are unaware of the identity of each participant. The 
goal is for that person to guess whether they are talking to a machine or a human. It 
concludes that a machine is capable of thinking if it succeeds in the imitation game, 
that is, if it can pass itself off as a human by giving believable, well-constructed 
answers that usually require human-like intelligence. Later, in 1956, John McCarthy 
officially introduced the term "Artificial intelligence (AI)" at a conference at 
Darthmouth College. This was a major milestone that gave birth to the scientific 
field of AI [58]. 

Since then, the advancement of AI has been extensive, resulting in a heightened level 
of curiosity and the emergence of AI researchers and practitioners throughout the 
globe. Within the wide-ranging spectrum of AI, one of the most prominent areas is 
ML. Often used almost synonymously, AI and ML, although related, have different 
meanings. ML is a subset of AI that studies algorithms and techniques that allow a 
machine to learn from data and make predictions without being explicitly 
programmed to do so. ML algorithms can analyze and identify patterns, 
relationships, and insights from large datasets, allowing computers to recognize 
complex patterns, make predictions, and solve problems [59]. Within ML algorithms 
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there is also a sub-domain called Deep Learning (DL). These algorithms will be 
presented below, but it is possible to see the relation between AI, ML and DL in the 
Figure 2.5. 

 

Figure 2.5: AI, ML and DL. 

There are essentially 3 types of learning [60]:  

- Supervised Learning: The objective is to solve a problem using a set of 
labeled examples. These examples consist of input data (x) and the 
corresponding output labels (y). The objective is to train an ML model (f(x) 
= y) by learning from these input-output pairs. The model adjusts its 
parameters to approximate the underlying function that connects the inputs 
to the desired outputs, allowing the model to take predictions on new 
instances based on the learned patterns. 

- Unsupervised Learning: Unsupervised ML algorithm is used to analyze data 
and reveal concealed patterns without depending on pre-established labels or 
specifications. The training data consists only of variables x, and the algorithm 
aims to extract significant information and effectively cluster similar data 
points together. 

- Reinforcement Learning: Here, we do not have either predefined inputs or 
outputs. Instead, we just describe the current situation, set a goal, and provide 
a list of possible actions along with their limitations. Through trial and error, 
the model learns which actions lead to a greater reward and will be penalized 
for wrong actions. 

Figure 2.6 shows a representation of the various types of learning. 
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Figure 2.6: Types of learning in ML. 

This work is exclusively focused on supervised learning, that can be divided into two 
main branches: classification and regression. Simply put, regression algorithms seek 
to predict a numerical value, while classification algorithms seek to predict 
predefined classes or categories. 

A classification or regression problem consists of several main steps such as data 
preprocessing, training, evaluating, and selecting the best model and, if necessary, 
implementing interpretation methods to analyze and understand the prediction 
made. In the next chapter, the various preprocessing techniques will be introduced. 

2.2.1 Data preprocessing 

The construction of a predictive ML model is strongly influenced by a number of 
decisions made in data preparation, transformation, and cleaning. This is an essential 
step that directly impacts the quality of the model, especially in areas where data is 
more subject to poor quality, as is the case in the clinical area [61]. 

The required algorithms to circumvent the most frequent problems vary depending 
on the nature of the data we are working with, but there are essentially four main 
categories of preprocessing, as described by García et al. [62]:  

- Data cleaning: Handle noisy and inconsistent data. 

- Data integration: Different data sources should be combined. 

- Data transformation: Conversion of raw data into a more appropriate 
format to be supplied to a given ML model. 

- Data reduction: Select a subset with the most important features, retaining 
only the essential information for ML modeling. 
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For each category there are many different techniques and algorithms. Which is best 
depends on the nature of the data and the problem. Figure 2.7 summarizes the 
different categories and algorithms used in each. 

 

Figure 2.7: Data preprocessing main categories and respective techniques. 

2.2.2 Model training, evaluation, and selection 

After preparing the data, we move on to the ML modulation phase, where we 
develop, evaluate, and select the best algorithm to construct our ML model and 
address our problem effectively. In the field of ML, there are many different types 
of algorithms. One specific category is called DL, which is focused on using neural 
networks with multiple layers. These neural networks are designed to work in a 
similar way to how our brains process information. These networks can 
autonomously learn complex patterns in the data, where the layers closest to the 
input are used to learn the most basic patterns, and the layers closest to the output 
learn the more complex patterns, often abstracted to the human eye. A complete 
overview of the ML and DL methods can be found in the work of Sarker [63] and 
Shinde et al. [64]. 

There are a tremendous number of ML algorithms. Some of the most commonly 
used classification ML algorithms found in the literature are: Artificial Neural 
Networks (ANNs), K-nearest neighbors (K-NN), Support Vector Machine (SVM), 
Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), Naïve Bayes 
(NB), Gradient boosting (GBM), Extreme Gradient Boosting (XGBoost), Adaptive 
Boosting (AdaBoost), Light gradient boosting (LightGBM), K Nearest Neighbor 
(KNN), and Linear Discriminant Analysis (LDA) [65], [66]. 

When training an algorithm, it tries to learn the patterns associated with the data and 
their associated class or target. This will allow the model to predict the class after 
being trained and applied to new instances. The performance of these algorithms is 
measured through several metrics resulting from the comparison between the 
predicted values and the real values of the class present in the data. This comparison 
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is usually presented in the form of a confusion matrix. Considering a binary problem 
where class can be positive (1) or negative (0), the respective confusion matrix can 
be represented by the one shown in Figure 2.8. 

 

Figure 2.8: Confusion matrix example. 

Through the matrix, different metrics with different meanings can be derived. These 
are essential to understand the effectiveness of the model in solving a given problem. 
The most commonly used metrics in classification problems are presented in Table 
2.2. 

Table 2.2: Most commonly used classification metrics. 

Metric Explanation Formula 

Accuracy 
Proportion of correctly classified instances out of the 
total number of instances given. 

(𝑇𝑃 +  𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 

Recall / 
Sensitivity 

Proportion of positive instances correctly identified. 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

Precision 
Proportion of correctly identified positive instances 
out of all positive predicted instances. 

𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

F1-Score 
It measures the effectiveness of a model in terms of 
simultaneously correctly predicting positive instances 
(precision) and capturing all positive instances (recall). 

2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

AUC 
Area Under Curve – it measures how well the model 
separates classes using True Positive Rate values 
(TPR) and False Positive Rate values (FPR). 

N/A 

MCC 

Matthews Correlation Coefficient – it measures the 
quality of binary classification predictions by 
assessing the balance between true and false positives 
and negatives. 

(𝑇𝑃 ∗  𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁)

√
(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗
(𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)

 

 

Regardless of the nature of the problem and the type of prediction, there is always 
one main goal in building a predictive model: predicting something based on the 
inputs provided. To achieve this, the model should be able to generalize its 
predictions beyond the data on which it was trained. There are several techniques to 
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make that possible, which are presented in detail in Raschka's work [67]. In general, 
the recommended techniques evaluate the model in three different sets. Training, 
validation, and testing: 

- Training set: Used to train the model, containing examples with input 
features and respective label/target. Moreover, it is possible to measure the 
model's performance during training. 

- Testing set: It is a portion of data used to evaluate model performance after 
the hyperparameter tuning process. It prevents the model from overfitting 
and overestimating results after adjusting its parameters. 

- Validation set: Unseen data in the training and validation phase. Its purpose 
is crucial, as it enables the evaluation of the model's ability to generalize and 
perform well on real-world data. 

2.2.3 Model Interpretation 

The use of ML models has been growing dramatically and is now in almost all fields 
of our society, from the technology used in people’s daily lives to health, finance, 
transportation, industry, and many other fundamental sectors. As the ability of 
models to perform complex tasks increases, it is essential that there is also an increase 
in their transparency and interpretability. From this extreme necessity comes the 
field of Explainable Artificial Intelligence (XAI). 

If the medical field was seen as an example, AI decision support systems offer a 
powerful opportunity to improve clinical care around the world. But all this decision-
making power must have a logical basis that is perceivable to the person who will 
ultimately make the decision, the physician. This is something that XAI researchers 
have been introducing and working on for the past few years [68]–[70]. 

The purpose of XAI is to show the logic and reason behind a prediction made by 
the ML model to a person in a way that the person can clearly understand the output 
[71]. Normally, explainability is divided into 3 different degrees: Pre-modeling 
explainability, interpretable model, and post-modeling explainability [72]. Figure 2.9 
presents a representation of these three different types of interpretabilities. 
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Figure 2.9: Representation of the three main types of explainability. 

The use of each of these approaches often depends on several factors, such as the 
nature of the problem, the type of data, the models chosen, and the practical 
application the prediction will have. These types of explainability can be defined as 
follows: 

- Pre-modeling explainability: Refers to all the knowledge and 
understanding that precedes the construction of the ML model. It involves a 
series of processing steps aimed at gaining knowledge of the domain, the data 
and all the steps needed to properly build a training set. Exploratory data 
analysis, transformation, and summarization techniques are part of this 
process. 

- Interpretable model: This is a type of interpretability associated with the 
model, where it is possible to understand a certain result just by looking at the 
summary and parameters of the algorithm. On the one hand, this 
explainability can be inherent to the model, as, for example, in linear models 
or decision trees. On the other hand, we can have a hybrid model, which 
combines an inherently unexplainable model (black-box) with a model 
possessing inherent explainability (white-box). For example, a hybrid model 
could combine a black box model like neural networks or SVM with 
interpretable rule-based models such as decision trees and logistic regression 
[73]. 
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- Post-modeling explainability: This type of explainability technique aims to 
address the black box nature of complex ML models, which are often difficult 
to interpret due to their high dimensionality and complex internal processes, 
often amounting to trillions of parameters [74]. These are divided into model-
agnostic and model-specific approaches. As the name implies, the first type 
of approach is model independent and can be applied to any ML algorithm, 
such as the Local Interpretable Model-agnostic Explanations (LIME) [68] and 
the SHAP techniques [75]. Model-specific approaches are model-specific 
techniques such as Grad-CAM (Gradient-weighted Class Activation 
Mapping) for Convolutional Neural Networks (CNNs) [76] or the attention 
mechanism in Recurrent Neural Networks (RNNs).  

Although efficient interpretability techniques already exist, there is still a lot of 
difficulty in building a fully transparent and interpretable AI system with great 
predictive performance. This is due to several challenges and limitations that still 
persist. One of them is the general inability of the current algorithms to actually 
provide a concrete reason behind the prediction, which justifies the low acceptance 
of AI systems in healthcare settings [77]. The well-known trade-off between accuracy 
and interpretability is another reason for why this is very difficult to achieve. 
Generally, more complex models such as deep neural networks get better results but 
are much less explainable than simple models of an interpretable nature such as a 
decision tree. Effectively communicating complex AI models and their explanations 
to non-expert users is a challenge. The explanations should be presented in a format 
that is understandable, meaningful, and induces trust. Bridging the gap between 
technical concepts and user comprehension is essential for successful adoption and 
acceptance of AI systems. 

Explainability depends on all steps and decisions made throughout the ML pipeline. 
Despite the existing limitations, if we make optimal decisions for a given problem, 
it is possible to create a predictive system that performs well and is understandable, 
providing good result explanations. Explainable Artificial Intelligence (XAI) is a field 
that has experienced significant advancements in recent years. Given the expanding 
presence and impact of AI in society, it is certain that XAI will continue to be a 
highly researched topic in the upcoming years. 

2.2.4 Applications 

With the birth of the digital age, there has been an exponential increase in the amount 
of data generated and stored. This was the main driver for technical developments 
in IA, and today there are systems supported with ML models in almost all areas of 
society. Using different algorithms, ML enables data-driven decision-making, 
automation, and optimization. Several benefits may arise from the increased 
investment and growing performance associated with these systems, making them 
able to solve some of the most difficult challenges in education, finance, 
manufacturing, healthcare, military, cybersecurity, and many others. 
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One of the main branches where AI has the greatest potential and applicability is in 
education. It can adapt learning to each student through their background (adaptive 
learning) and personalize the learning experience by identifying the most efficient 
methodology for each student (personalized learning). Holmes et al. [78] describe 
many other ways in which AI can have a great impact on education. 

Financial institutions use ML algorithms to analyze market trends, predict stock 
prices, and detect fraudulent activities. By applying advanced models to vast amounts 
of financial data, AI systems have enhanced risk assessment, improved trading 
strategies, and enabled real-time fraud detection. The work of Lin shows the brutal 
impact that AI had not only on finance, but also on the law system [79]. 

In cybersecurity, ML is used to detect and prevent cyber threats. By analyzing 
network traffic, user behavior, and system logs, ML algorithms can identify 
anomalies, detect intrusions, and improve threat intelligence, strengthening the 
security posture of organizations and individuals. 

The impact that ML has had on manufacturing is also very considerable. These 
algorithms power the development of branches such as predictive maintenance, 
quality control, failure detection, process optimization, supply chain management, 
and even product management, design, and innovation. 

Among the various fields harnessing AI's capabilities, the medical field stands out as 
an area with immense disruptive potential. The application of AI in medicine has 
two main branches: the virtual branch and the physical branch. The virtual branch 
consists of the application of ML and DL to create systems (software) for physician 
decision support, as well as patient management and treatment. The physical branch 
focuses more on real and tangible objects, medical devices, with strong ties to the 
area of robotics [80]. 

Current applications of ML in medicine can be found in the areas of cardiology, 
pulmonary medicine, endocrinology, nephrology, gastroenterology, neurology, 
cancer, and general image-based diagnostics [81].  There are multiple clinical aspects 
in which the application of ML has grown greatly and may have a significant impact 
in the near future.  

ML algorithms are capable of analyzing X-ray, magnetic resonance (MRI), and 
computerized tomography (CT) images to assist in diagnosis. This allows a fast and 
automated detection of anomalies, tumors or other types of problems that could go 
unnoticed by the human eye. ML algorithms focused on medical imaging have been 
extensively researched, with several significant advances in recent years [82]. 

The rapid prognosis and diagnosis of a disease is crucial to start treating and 
mitigating its effects as early as possible. By analyzing large amounts of patient data, 
an ML model may be able to learn to identify certain patterns that may indicate the 
presence of a disease even before it manifests or progresses to more advanced stages. 
A clear case of this is the progress that has happened when ML is applied to 
electronic health records (EHRs). This allows professionals to create decision 
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support systems to predict adverse events, evolution of a disease, possible 
unexpected reactions to medications, and even suggest a possible treatment path to 
follow [83], [84]. This opens the door to AI-supported medicine guided by patient 
data. 

Another medical area where ML algorithms can make a huge impact is in drug 
discovery and development. The application of ML can accelerate this process by 
analyzing chemical, biological, and other types of data. Not only that, but potentially 
predict the efficiency of a drug still being studied, identify possible new therapies, 
and also optimize drug creation both in terms of components and efficacy [85]. 

With the increase in portable devices that people carry around on a daily basis and 
the amount of data they continuously generate, there is a great opportunity to use 
ML for remote patient monitoring. Through vital sign data, activity level, and other 
health indicators, ML algorithms can alert in real time to different health risks, bad 
behaviors, or even positive feedback for each activity that contributes to patient 
treatment [86]. 

The closer the primary health care systems are to the people, the better chance they 
have of accessing this essential service. Health chatbots and virtual assistants have 
the potential to dramatically reduce this distance to the virtual branch and, therefore, 
in a sense, almost instantaneous. These apps can provide basic health advice, 
schedule, and manage appointments, check symptoms, and do something similar to 
a triage service, among other potential functions. This can not only help patients but 
also reduce the burden on healthcare professionals [87]. 

Throughout this section, it was presented the background knowledge needed to 
understand the necessary context about AI, ML and DL. The next chapter presents 
a literature review where the concepts of AI and ML are combined with DN in order 
to create predictive models capable of tracing the risk of disease evolution in various 
patients. 
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3 LITERATURE REVIEW 

This chapter focuses on the integration of ML techniques with EHR data to develop 
a predictive model to assess the risk of DN onset or progression. Chapter 3.1 sets 
the stage by providing a comprehensive overview of the general medical context in 
which ML techniques are applied to EHR data. Chapter 3.2 provides a review of the 
literature that explores previous studies proposing different approaches to create 
predictive ML models for the risk of onset or evolution of DN using EHR data.  

3.1 Context 

Digitalization has allowed hospitals to store the complete history of patient 
appointments in a database, resulting in the availability of EHRs. These data are 
longitudinal because they are collected over time and include multiple patient records 
at different points in time. Due to the progressive nature of many diseases, a 
longitudinal approach is usually required to fully assess their development and 
impact [88]. Given the chronic and long-term nature of diseases such as DN, it is 
crucial to consider the temporal dimension of patient data and not overlook its 
importance [89]. The timely implementation of a DN risk assessment may delay or 
even prevent its progression, which would certainly reduce the number of people 
with ESRD [90]. 

EHRs can be defined as longitudinal electronic records that capture a wide range of 
patient health information from multiple care delivery settings. This covers a range 
of data, including patient demographics, progress notes, medical issues, prescribed 
medications, vital signs, medical history, immunization records, laboratory results, 
radiology reports, and potentially other types of data [91].  

While the potential in the use of EHR data is very high for advances in the predictive 
ability of ML models, the various challenges associated with this type of data must 
be taken into account. Some major challenges found in the literature [92], [93] 
include the following: 

- Data irregularity: Irregular time intervals between recordings present a 
significant challenge to ML models, as they lack a consistent structure both 
across different patients and within individual patients. This temporal 
irregularity, although potentially containing valuable information, is not easily 
handled by most ML architectures, which are designed for data with fixed and 
regular time intervals. As a result, effectively incorporating and leveraging this 
irregular temporal aspect becomes a major obstacle in building accurate ML 
models for EHR data analysis. 

- Data sparsity: A record in the context of EHR data represents a medical 
event or data input, such as a medical appointment or examination. However, 
it is important to note that these records often lack information on some 
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variables. Additionally, it is observed that patients who are in better overall 
health tend to have fewer medical visits compared to those who are in poorer 
health. This discrepancy in healthcare utilization leads to incomplete or non-
existent patient information within the records. Even when information is 
present, it often varies significantly between different patients, making it 
challenging to establish consistent and comprehensive patient profiles across 
the EHR dataset. 

- Data heterogeneity: EHR data encompasses a wide range of patient records 
and can represent diverse conditions and varying outcomes. Within this rich 
and heterogeneous dataset, the identification of patient sub-cohorts, 
characterized by more closely related groups of individuals, holds the 
potential to enhance downstream analyses such as cohort analysis and 
personalized medicine. 

- High-Dimensionality: Usually, this type of data contains several types of 
information, which leads to high dimensionality. This is a challenge when 
creating predictive models due to the higher complexity and also the "curse 
of dimensionality”, which states that as the number of variables increases, it 
becomes more difficult to make meaning of the data and draw reliable 
conclusions [94]. 

Despite these limitations, different ML algorithms have been applied to EHR data 
to create systems capable of being of practical use in medical assistance. These 
algorithms can have an impact on disease diagnosis, risk stratification, decision 
support systems, and even allocation of clinical resources. 

ML models are used to assist in the diagnosis of various diseases using EHR data. 
They learn patterns and associations in the data to help identify potential diagnoses 
or assist in differential diagnosis. Garcelon et al. [95] has reviewed the use of EHR 
data and ML algorithms to create predictive models that can identify rare diseases in 
patients. Although general models capable of identifying several diseases are very 
difficult considering both the inherent characteristics of the data and the nature of 
the problem, several approaches capable of identifying a specific disease are 
presented for both tabular data and clinical images. Guo et al. present an approach 
capable of applying ML models to predict heart failure using variables derived from 
EHR data, which include demographic records, medical notes, lab tests, and images 
[96]. Another example can be seen in the work of Sun et al., who presents a 
comparison between five ML algorithms applied to EHR data to diagnose diabetic 
retinopathy [97]. There are also many other works that have succeeded in training 
ML algorithms on EHR data to create predictive models applied to different 
diseases, e.g. diabetes disease [98], chronic myelogenous leukemia [99], pulmonary 
hypertension [100], and neurodegenerative diseases [101]. 

ML models use EHR data to stratify patients into different risk groups based on 
factors such as disease prevalence, comorbidities, and genetic markers. This helps to 
target preventive measures and personalized interventions. There is some work that 
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applies ML algorithms to various EHR data sets in order to create models that can 
predict to which risk group a patient belongs. Zeiberg et al. trained a risk 
stratification ML model capable of predicting the likelihood of acute respiratory 
distress syndrome (ARDS) at different points during a patient’s stay in the hospital 
[102].  In another approach, Yang et al. propose an ML-based stratification system 
to identify pregnant women at risk of hyperglycemia, which means developing 
gestational diabetes [103]. Some other work could be mentioned, such as an ML 
model capable of stratifying hospitalized patients by the risk of developing acute 
kidney injury (AKI) [104], risk stratification of patients with chest pain using ML 
dimensionality reduction techniques [105] or the use of time series and ML models 
to stratify individuals into nonalcoholic fatty liver disease (NAFLD) [106]. 

ML models help healthcare professionals make evidence-based decisions by 
analyzing EHR data. They can provide recommendations for treatment plans, 
medication selection, and drug development. There are several studies done in this 
area. Christopoulou et al. presented a study showing the ability of DL methods 
applied to EHR data to identify drugs, associated medication entities, and 
interactions among them. This is essential to prevent adverse drug events [107]. In 
another study made by Issa et al. [108] it is discussed the use of computational 
strategies, particularly ML and DL methods to model biological processes, identify 
new disease-relevant targets, and discover associations between drugs and their 
effects. The idea presented consists of using these methods for drug repurposing in 
oncology. Other works can be highlighted, such as prediction of treatment effect 
[109], and predict the outcome of antidepressant treatment in patients with 
depression [110].  

Another function of ML models applied to EHR data can be to optimize resource 
allocation, such as predicting patient demand, optimizing hospital bed utilization, 
and improving procedure scheduling. This is shown in the work of Avati et al. where 
ML is applied to EHR data to improve access to palliative care and facilitate timely 
interventions for patients in need [111]. In another study, Levin et al. showed that 
using ML based hospital discharge predictions can support multidisciplinary rounds 
and decrease hospital length of stay [112]. Works like the use of ML techniques to 
predict duration of hospitalization in COVID-19 patients [113] or to predict the 
demand for inpatient beds [114] could also be covered here. 

Everything presented in the previous paragraphs shows that there is a multitude of 
possibilities in which ML applied to EHR data can improve healthcare, both for 
patients and for physicians, nurses, and medical staff. However, this work focuses 
on the use of ML models combined with EHR data and applied to DN. In the next 
chapter, we will present the literature review applied to our specific case study. 
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3.2 ML Models to Predict Diabetic Nephropathy 

Within the scope of this master’s thesis, a literature review was conducted in order 
to identify different longitudinal approaches used to create an ML model capable of 
predicting the development or onset of DN over time. This article entitled “Machine 
Learning techniques to predict the risk of developing diabetic nephropathy: a literature review” has 
been submitted to the Journal of Diabetes & Metabolic Disorders [115], but the 
publication is still pending on the acceptance of the reviewer. This paper can be 
consulted in Appendix A. 

The application of ML techniques to analyze EHR data can provide valuable insights 
and enable the development of ML models that can predict the risk of developing 
DN or progressing to higher stages, aiding physicians in the diagnosis and ultimately 
improving the quality of healthcare [116], [117]. There are many studies done on the 
use of ML to identify cases of DN. However, the focus of this research is to identify 
and study the approaches used in clinical EHR data collected over a period of time 
and the corresponding risk prediction of DN progression.  

This literature review aims to answer the following research question: 

- RQ: What are the most effective machine learning techniques used to 
construct a model that uses the temporal information in diabetic patients' 
EHR data to predict the development of DN or progression to higher stages? 

3.2.1 Materials and methods 

Three databases were used for this literature review: Scopus, Web of Science, and 
PubMed. These are three of the most popular and reliable sources of scientific 
information [118]. Only articles written in English and published between January 
2015 and December 2022 were included. The search query used was:  

- “((diabetes) AND ((machine learning) OR (deep learning)) AND ((time) OR 
(temporal) OR (time series)) AND (predict) AND ((kidney disease) OR 
(nephropathy)))”. 

Figure 3.1 describes the methodology used throughout the process. The first step 
(Identification) resulted in a total of 164 papers. Based on the references of some of 
these papers, a further 11 were identified as potentially important, resulting in 175 
papers for further analysis. These 11 additional articles were referenced by papers 
identified in the first stage. During the screening phase, 48 duplicates were removed. 
In addition, 85 papers were excluded by title and 14 by abstract. These were removed 
because they did not relate to the intended topic; this phase reduced the original 175 
to 28 papers. Of these, only 11 were eligible according to the various criteria defined.  
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Figure 3.1: Methodology. 

Table 3.1 shows a summary of the excluded articles, the criteria, and a brief 
explanation of the exclusion criteria.  

Table 3.1: Papers excluded according to defined criteria. 

Papers Criteria Brief explanation 

[119]–[125] Non-temporal data 

Excluded papers did not include temporal data, 
i.e. data from patients followed up during a 
specific time window with information 
collected during that time. 

[126]–[132] No risk model for DN 

We select articles that predict the risk of 
progressing or developing DN. Articles that 
only classify whether patients have the disease 
or not were excluded. 

[133], [134] 
Thesis / Review / 
Opinions / Letters 

As these papers are reviews of the literature, 
this type of paper is not included. 

[135] No ML approach 

This paper has used a scoring system that 
defines the factors that contribute most to the 
development of DN. Although it is a risk 
model, it is not an ML approach. 

It should be noted that although the keyword "deep learning" was included in the 
search query, none of the 11 selected papers used DL techniques to solve the 
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problem. With this in mind, we will focus only on approaches that use ML 
algorithms. 

Following the procedure outlined in Figure 3.1, 11 articles were included in this 
review. AI applied to temporal clinical data has the potential to improve the way a 
patient with diabetes is managed according to their risk of developing DN. The 
different approaches are presented according to different questions: i) which features 
are most important, ii) what kind of ML models have been created, iii) which ones 
perform better, and iv) other relevant aspects. The papers selected for this review, 
together with a summary of their main aspects, are listed in Table 3.2. It is possible 
to note that most of the articles were published in the last 2-3 years, showing a rapid 
growth in the application of ML to the management of diabetes-related conditions, 
taking advantage of the available large amount of clinical data. For the selected 
articles, information is provided on the source of the data, the importance of the 
variables for prediction, the approaches used to create the risk models, their 
interpretation methods, and their performance. 

3.2.2 Data Sources 

As mentioned earlier, EHR data can contain several types of data. The selected 
papers, in addition to clinical variables, use, in some cases, Omics-based biomarkers. 
These can be defined as a molecular signature that is identified using omics data and 
used to predict the presence or risk of a particular disease or condition, or to monitor 
the response to a particular treatment. Omics can be divided into different research 
areas such as proteomics (proteins), transcriptomics (RNA), genomics (genes), 
metabolomics (metabolites), lipidomics (lipids), and epigenomics (methylated DNA) 
[136]. 

The integration of omics data with clinical data can significantly improve the ability 
to analyze and predict complex diseases using ML. Such integrated analysis can help 
create models that can clearly explain diseases, enabling real knowledge that leads to 
improved treatment and a better quality of life for patients [137]. The work of Al-
Sari et al. [138] is a very good example of the benefits of combining Omics data with 
clinical data. The performance of some of the models, which had previously been 
built using only clinical data, increased significantly when Omics data were included. 
In this case, metabolites, ketones, and sugar derivatives were used. In general, the 
integration of molecular data will lead to better prognostic models, as demonstrated 
in several works [139]–[142]. Despite the many benefits of integrating this type of 
data, there are some challenges. Sometimes, even when these data are available, they 
are very difficult to handle, process, analyze, and finally integrate. This requires 
specialized knowledge in the branches of mathematics, statistics, biology, and 
computer science [143]. 
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Table 3.2: Summary of studies included in this review. 

Paper Dataset Pre-processing ML Model Performance 

Singh et al. 
(2015) [144] 

EHR data of patients in the 
Mount Sinai Hospital and Mount 
Sinai Faculty Practice Associates 
in New York City. From 6435 
patients, 12 337 examples were 
extracted. 

Feature selection and generation.  Numerical 
predictors discretization into four bins based 
on the quartiles of the corresponding predictor 
and then map them into binary variables. 

Multitask 
Logistic 
Regression 
(MLTR) 

≈ 68.3% AUC for 
Threshold of 10% 
≈ 71.2% AUC for 
Threshold of 20% 

Dagliati et al. 
(2018) [145]  

943 T2DM patients in charge of 
the ICSM hospital and followed 
for more than 10 years. 

Data imputation with the MissForest technique 
and some variables were not considered 
because imputation errors were too high. 

LR 
3 years: 70.1% AUC 
5 years: 73.4% AUC 
7 years: 72.1% AUC  

Makino et al. 
(2019) [146]  

Dataset with 64 059 T2DM 
patients. From that, authors 
extracted structural, text, and 
longitudinal data. 

Under sampling minority class, several data 
transformation steps are used to summarize the 
last 180 days EMR records and create 
longitudinal data variables.  

LR AUC: 74.3% 

Romero et 
al. (2019) 
[147]  

Data were provided by the 
NHLBI, sponsor of the 
ACCORD trial. There were 10 
251 T2DM patients from 77 
clinical centers in the United 
States and Canada.  

SMOTE technique used to balance target, 
feature selection using the information gain 
metric. 

RF  88.7 % Accuracy 

Sarkosh et 
al. (2020) 
[148]  

Clinic of Imam Khomeini 
Hospital Complex (IKHC) 
dataset with 10 636 T2DM 
patients followed from 10 years 
(2012-2021). 

Feature selection using Recursive Feature, 
elimination (RFECV) and RF method, 
imputation or drop missing values 

LR  75.5% AUC 

Aminian et 
al. (2020) 
[149] 

287 438 T2DM patients from 
Cleveland Clinic’s EHRs 
followed between 1998 and 
2017. Two different groups were 
created: 2287 patients 
undergoing metabolic surgery 
and 11 435 matched non-surgical 
patients. 

Missing data imputed using multivariate 
imputation by chained equations (MICE), 
variables with more than 25% missing values or 
no predictive value were removed.     

RF 

Surgical patients: 
73% AUC 
Nonsurgical patients: 
76% AUC 

Song et al. 
(2020) [150] 

University of Kansas Medical 
Center’s HERON clinical data 
repository with 35 779 T2DM 
patients. 

Features with less than 1% representation were 
removed and missing values imputed.  

GBM 

AUC: 83%, 78% and 
82% in predict DN 
in 2, 3 and 4 years, 
respectively. 

Chan et al. 
(2021) [151] 

BioMe Biobank at the Icahn 
School of Medicine at Mount 
Sinai and the Penn Medicine 
Biobank data sources. Population 
of 1146 T2DM with both EHR 
data and biomarkers. 

Data harmonization, only variables in more 
than 70% participants were included, feature 
selection based on SHAP values, and missing 
data imputation.   

RF AUC: 77% 

Allen et al. 
(2022) [152]  

111 046 EHRs of T2DM 
patients that represents more 
than 700 healthcare sites from 
USA between 2007 and 2020. 

Standardization, impute missing values. RF 

74.8% AUC for any 
DN stage, 82.3% for 
stage 3-5, 82.1% for 
stage 4-5 

Dong et al. 
(2022) [153]  

Data from PLA General 
Hospital with 2809 T2DM 
patients that were followed from 
2008 to 2019.  

Drop features with missing data > 25%, 
missing values imputation with RF, feature 
selection using RFE. 

LightGBM AUC: 81.15% 

Al-Sari et al. 
(2022) [138]  

T1D cohort in Steno Diabetes 
Center Copenhagen (SDCC) 
with 537 patients with follow-up 
data. Later, blood molecular data 
with 965 features was also 
included. 

Remove high correlated features, outliers, and 
clinical variables with no predictive power on 
metabolic data.  
Feature selection based on SHAP values. 

RF 

DN model with only 
clinical data: 92% of 
AUC, DN model 
with clinical and 
omics: 99% AUC  
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3.2.3 Feature Importance 

Most of the selected studies used different methods to understand which variables 
have the greatest influence on the outcome when predicting risk. Some of these 
techniques were used to perform feature selection to remove redundant and 
irrelevant variables, which can potentially lead to better performance [154]. 

The work of Chan et al. [151] and Al-Sari et al. [138] used SHAP to understand how 
each feature contributes to the model's predictions by estimating the amount that 
each variable contributes to the predicted value of an output.  This allows them to 
ensure that they are selecting the most optimal set of variables for the task. 

Recursive Feature Elimination (RFE) is an iterative method that can recursively 
remove the least important features from a dataset and build a model on the 
remaining attributes. It iterates until the desired number of features is obtained. As 
presented in Sarkosh et al. [148] and Dong et al. [153], this technique is very useful 
for selecting a subset of features that aggregates the most important features from a 
larger dimensional space. In both cases, a variant of this method, Recursive Feature 
Elimination with Cross-Validation (RFECV), is applied. It uses cross-validation to 
evaluate the performance of the model at each iteration.  

A very similar approach was adopted by Makino et al. [146] and Dagliatti et al. [145] 
with their LR stepwise feature selection method based on the Akaike information 
criterion (MLC). Stepwise feature selection is a method of selecting a subset of 
features by iteratively adding or removing variables. The MLC is a trade-off between 
model goodness and complexity, and measures the relative quality of a statistical 
model [155]. It can be used in stepwise feature selection to evaluate the performance 
of the model at each step and decide which feature to add or to remove. Although 
it appears similar to the RFE method, this technique trains on the selected subset of 
features at each step and can use either forward selection or backward elimination, 
whereas RFE trains on all features and removes the least important feature at each 
step.  

Aminian et al. [149] computed the relative importance of each feature in the final 
model using MLC for the regression models and the Concordance index (C-Index) 
for the RF models. The C-Index is a metric that considers the temporal dependence 
associated with the model result and can be used to rank features by importance or 
even to analyze the global performance of the model.  

A simpler and faster approach based on Univariate feature selection to select the 
most relevant variables was proposed by Singh et al. [144]. These features are 
selected based on univariate statistical tests between the feature and the target 
variable and do not consider dependencies and relations between features.  

Song et al. [150] adopted a slightly different approach, using the GBM classifier 
because it uses an embedded method of feature selection during model training. This 
allows the most important features to be selected and the model retrained using only 
these variables.  
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Table 3.3 shows the clinical variables that were mentioned in more than three papers 
as one of the most prominent variables able to give high predictive power to the 
model for analyzing the emergence or development of DN, and their respective 
importance.  

Table 3.3: Most important clinical variables identified. 

Papers Feature Meaning 

[138], [147], [151], 
[153] 

eGFR or 
GFR 

Glomerular filtration rate (GFR) measures how well the 
kidneys work. eGFR is an estimate, usually calculated using the 
Modification of Diet in Renal Disease (MDRD) equation and 
the Chronic Kidney Disease Epidemiology Collaboration 
(CKD-EPI) equation. 

[138], [147], [151], 
[153] 

UAlb or 
Alb 

Albumin levels in the blood. Low levels of this protein are 
called hypoalbuminemia, and high levels are known as 
hyperalbuminemia 

[138], [145], [148], 
[153] 

HbA1c 
Glycated hemoglobin (HbA1c) measures glucose levels over 
the past 2 to 3 months. 

[147]–[149], [151] 
UACR or 
ACR 

Laboratory tests are used to detect proteinuria, the presence of 
protein (usually albumin) in the urine. 

[148]–[150], [153] Age 
In some articles, it is the age of the patient, in others it is the 
age at which the patient started to be followed. 

[145], [148], [149], 
[153] 

BMI 
Body Mass Index uses a person's height and weight to 
calculate an estimate of body fat. 

 

3.2.4 Cross-sectional studies 

Cross-sectional studies are a type of observational research design that aims to 
collect information about a population or a specific group at a certain moment in 
time. In this context, this chapter describes various approaches for constructing an 
ML model capable of predicting the risk of developing DN. However, it is important 
to note that the presented approaches focus primarily on cross-sectional or static 
methods, which do not fully exploit the temporal aspect of the EHR data. Only an 
overview of these methods will be given, as there is more interest in presenting 
details for longitudinal methods in Chapter 3.2.5. These methods attempt to deal 
with the time factor associated with the EHR data and are therefore of greater 
importance to this study. 

Dong et al. [153] used data from non-DN patients at baseline who were followed 
for three years. It used baseline features, and the binary classification predicts the 
presence or absence of DN within 3 years. Romero et al. [147] followed a similar 
strategy, but defined eight different time windows for the 7 years of patient follow-
up data. Each window corresponds to one year of data, except for the first two 
windows, which correspond to only 6 months each. Dagliatti et al. [145] also used a 
binary outcome variable but for three different time thresholds of 3, 5, and 7 years 
to predict the risk of DN. 
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Aminian et al. [149] used data from both surgical and non-surgical patients with 
T2DM. Multivariate time-to-event regression and RF ML models were created to 
predict the 10-year risk of developing DN. The 10-year risk of morbidity and 
mortality was estimated for patients with and without metabolic surgery. Chan et al. 
[151] uses clinical data and biomarkers to generate risk probabilities. The authors 
named the whole system IntelKidneyX, presented before in Chapter 2.1.8. 

Al-Sari et al. [138] and Makino et al. [146] did almost the same as the previously cited 
papers. The former designated the outcome as progressor or non-progressor, while 
the latter classified it as worsening or stable. 

Unlike the works presented above, Allen et al. [152] are able to predict 3 different 
outcomes, DN progression to any stage, DN progression to stages 3-5, and DN 
progression to stages 4-5.  

Figure 3.2 provides a general overview of the different approaches described above. 

 

Figure 3.2: Non-temporal/Static approaches. 

3.2.5 Longitudinal studies 

Longitudinal studies, in contrast to cross-sectional designs, track participants or 
entities over an extended period, collecting data at multiple time points. These 
studies enable researchers to observe changes, trends, and patterns over time, 
making them valuable for understanding the dynamic nature of DN variables. 
Different temporal approaches have been proposed to deal with EHR and provide 
risk prediction for DN. Within the remaining selected articles, the following 
approaches were used: stacked temporal, multitask temporal, discrete survival, and 
landmark boosting. 

The stacked temporal technique was used in both Singh et al. [144] and Song et al. 
[150] work. It aggregates the data within each time window and uses the data from 
all time windows to make a final, unique prediction. The T time windows, with F 
features in each, result in only one time window with T multiplied by F features. 
One of the disadvantages of this technique is that the larger the temporal space 
considered, the higher the dimensionality of the data, which can lead to a large 
overfitting. In Figure 3.3, the physician appointments within each time window are 
aggregated to form a one-dimensional space, which is then fed into the model and a 
prediction is obtained. 
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Figure 3.3: Stacked temporal approach. 

The multitask temporal method was also proposed in the paper of Sing et al. The 
authors decided to predict the outcome for each time window separately. Each time 
window must have at least five physician appointments within that time. When 
predicting the risk of DN for a new patient, each time window with five or more 
appointments is used, and the result is the average of the different results obtained 
in each time window. This stratification of the problem is shown in Figure 3.4, where 
it can be seen that the ML model operates independently in each time window, and 
the result is the average of the different results obtained. 

 

Figure 3.4: Multitask temporal approach. 

Discrete survival and landmark boosting are two techniques mentioned in the paper 
by Song et al. The first makes an individual prediction in each time window, with no 
overlap between windows. A disadvantage of this technique is that it assumes that 
there is no relationship between examples in different time windows, even if they 
come from the same patient. This can be seen in Figure 3.5. 

 

Figure 3.5: Discrete survival classification. 

On the other hand, landmark boosting is very similar to discrete survival, but in each 
time window T, the prediction made in the previous time window T – 1 is also 
considered. In effect, there is a transfer of knowledge between the time windows, 
making each prediction more accurate. This can be seen in the representation of the 
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approach shown in Figure 3.6, where each model receives not only the features 
corresponding to a time window, but also the prediction made in the previous time 
window. 

 

Figure 3.6: Landmark boosting classification. 

3.2.6 Performance and Interpretation 

This chapter discusses the types of models most commonly used to predict the onset 
or development of DN. It also presents the main interpretation techniques used and 
a performance comparison. 

Considering the selected papers, five different classifiers were proposed: RF, LR, 
LightGBM, GBM, and Multi-Task Logistic Regression (MTLR). In Figure 3.7, we 
can see that the method most selected was RF, followed by LR, and finally 
LightGBM, GBM, and MTLR, which were selected only once. 

 

Figure 3.7: Most used ML classifiers in proposed methods. 

It is possible to identify three main techniques to interpret the results generated by 
the predictive model: i) SHAP values, ii) monograms, and iii) decision tree 
visualization.  

SHAP values were proposed by Lundberg et al. in 2017 to analyze the model 
predictions [156]. It calculates the importance of each feature for a given prediction, 
where each feature can have a positive or negative impact on that specific prediction. 
The contribution of features can be local (each observation) or global (set of 
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observations). In this particular case, local explanations aim to show the reasons that 
lead to a certain result generated by the model for a specific patient. On the other 
hand, global explanations aim to show which variables were most important for the 
overall predictions of the model. These are calculated by aggregating the different 
local explanations.  

Nomograms are graphical representations of LR models. They work like scoring 
systems, where each feature is assigned a certain number of points according to its 
value, and the result varies according to the number of points accumulated in the 
sum of the different features [157].  

Finally, some of the articles used only tree-based models because they can be 
interpreted directly by visual inspection of the associated decision tree. RF is an 
ensemble of many independent trees, and the output is based on the outputs of 
multiple decision trees. By looking at the different decision trees, it is possible to see 
which features are used to make predictions, the importance of each feature, and the 
overall patterns of predictions [158]. 

Some papers predict the onset of DN, some predict the worsening, and some 
authors predict the worsening for specific stages of the disease. In addition, there 
are papers where the result corresponds to only one specific time window, while 
others implement a different prediction for each time window, considering a certain 
number of years. This heterogeneity makes it difficult to compare their performance 
directly. Table 3.4 provides detailed information on each of the proposed methods. 

Table 3.4: Details and performance of proposed methods. 

Method Time range Outcome variable Performance metrics 

RF [152] 5 Years 
Multiclass (DN advance to any stage, DN 
advance to stage 3-5, and DN advance to 
stage 4-5) 

Any stage - AUC: 0.748, Sensitivity: 
0.7, Specificity: 0.662. 
DN stage 3-5 - AUC: 0.823, 
Sensitivity: 0.750, Specificity: 0.739. 
DN stage 4-5 - AUC: 0.821, 
Sensitivity: 0.751, Specificity: 0.712 

RF [149] 10 Years 
Binary target (morbidity 
and mortality risks) 

AUC: 0.76 

RF [151] 5 Years Binary (ESRD or no ESRD) AUC: 0.77 

LR [145] 3, 5 and 7 years Binary (development or absence of DN) 

3, 5 and 7 years. 
Best result (3 years): Accuracy: 0.647, 
Sensitivity: 0.820, Specificity: 0.730 
and AUC: 0.808. 

LightGBM 
[153] 

3 years Binary (DN presence or absence) 
Accuracy: 0.768, Sensitivity: 0.741, 
Specificity: 0.797 and AUC: 0.815. 

LR [146] 6 months Binary (DN stable or aggravation) Accuracy: 0.701, AUC: 0.743 

RF [138] Non-defined Binary (DN progression or no progression) Accuracy: 0.96, AUC: 0.96 

RF [147] 
8 time-windows at 
a max of 7 years 

Binary on each time window (development 
or absence of DN) 

Accuracy: 0.887 

LR [148] 5 years Binary (DN presence or absence) AUC: 0.758 

MLTR [144] 
5 years – time 
windows of 6 
months 

Binary on each time window (development 
or absence of DN) 

≈ 68.3% AUC for Threshold of 10% 
≈ 71.2% AUC for Threshold of 20% 

GBM [150] 2, 3 and 4 years 
Binary on each time window (development 
or absence of DN) 

Best result (2 years): AUC: 0.830 
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The main findings that have emerged from this review of the literature are the 
following: 

• There is very little work that takes full advantage of the time factor inherent 
in the EHR data. The works of Sing et al. [144] and Song et al. [150] are an 
exception. In fact, the landmark boosting method proposed in the Song et al. 
paper was the approach that took more advantage of the time factor. It not 
only predicts the risk in each time window, but also takes into account the 
result produced in the previous time window.  Although this approach 
attempts to exploit the full temporal potential of EHR data, it could still be 
improved, as it considers all records as independent, but, in fact, they are not 
because the patient has multiple records (appointments). 

• Combining omics data with clinical data can help better predict the risk of 
DN over time, as confirmed in the work of Al-sari [138]. Soon, this type of 
data will be linked to disease risk models because the information they contain 
is really valuable to increase the predictive power of the different risk models. 

• Another important concern with clinical risk models is interpretability. 
Almost all the proposed models were selected not only because of their good 
performance, but also because they allow interpretation of the respective 
results.  

• The vast majority of selected articles have been published recently (in the last 
3 years), demonstrating the importance of studying existing clinical data 
(EHR) through longitudinal analyses, and the potential that these approaches 
can have in supporting patient follow-up and medical decision making. 

Despite the great capabilities and improvements that these proposed models can 
potentially bring to medical care, the several papers reviewed have limitations that 
are clearly stated by the authors. Some of the most cited limitations are as follows: 

• The patient sample was clinic-based rather than population-based, which 
means that the model was only tested on a particular dataset, extracted from 
the population of a particular hospital/clinic. Furthermore, in most studies, 
there is no external validation dataset, leading to great uncertainty about 
generalization to a wider population. Cabitza et al. [159] show how external 
validation is essential to build robust predictive models in medicine.  

• Small data samples, too much missing data and missing important features. 
Models trained on a small amount of data can result in poor generalizability 
and lead to incorrect conclusions being drawn. Too much missing data can 
affect the consistency of the data across different visits by a given patient.  

• Most selected papers assume independence among examples, which is 
inaccurate since multiple records from a single patient are present. 
Considering inter-record dependency is crucial to unlock the potential of 
temporal EHR data, leading to more powerful and accurate predictive 
models. Song et al. [150] simulated some inter-record dependency by passing 
the prediction between time windows. 
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The reviewed literature suggests that despite the potential of using ML techniques 
to fully exploit the temporal dimension of EHR data to predict the risk of developing 
or progressing to DN, this has not yet been fully achieved. Many of the techniques 
studied have limited use of the temporal dimension and richness of patient records 
available in EHR data. Many of these works have limited temporal use and fail to 
take into account the richness of patient records in EHR data. Approaches that rely 
solely on baseline values or aggregate different clinical visits into a single record 
neglect the temporal aspect. Some longitudinal approaches are in some way 
incomplete, with predictions separated by time windows and lacking inter-window 
correlation. However, the Landmark Boosting approach by Song et al. stands out by 
establishing correlations between time windows, predicting the disease state in the 
current window based on the previous window. 

In summary, all the papers included in this review were generally able to arrive at a 
workable risk model for the onset or development of DN using a variety of 
techniques. There are a small number of longitudinal studies in the area of DN that 
translate into the creation of a predictive ML model capable of performing well, 
being interpretable, and properly validated for clinical application. There is also a 
need for these approaches to consider the patient's history, adding the temporal 
factor, which can be a key element to achieve not only better results, but also more 
reliable ones. 

This review of the literature is of great importance to this work and serves as a 
fundamental pillar upon which the research is built. It plays a crucial role in 
establishing the context and justifying the significance of the chosen research topic. 
By conducting a comprehensive review of existing scholarly works, it was possible 
to gain a deeper understanding of the current state of knowledge in ML applied to 
DN disease. This examination helps identify gaps or limitations within the existing 
literature, setting the stage for this study.  
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4 MATERIALS AND METHODS 

This chapter provides a comprehensive description of the data used in the study, 
along with the exploratory data analysis (EDA) performed. Furthermore, the 
preprocessing steps used to prepare the data for the ML algorithms are presented. 
The subsequent stages, which involve the creation and interpretation of the ML 
models, are also elaborated upon.  

4.1 Methodology 

The developed methodology comprises 5 main phases (Figure 4.1): 

 

Figure 4.1: Methodology. 
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- Explorative data analysis: Several analyses are needed to understand the 
data. The process of examining and visualizing the data will serve to start 
designing the solution to the problem. 

- Data preprocessing: Clean, transform and organize the raw data in order to 
be able to shape the solution and provide the data to the ML models. 

- ML Model: Train diverse ML models on labeled data, tune hyperparameters 
and evaluate performance on different steps. 

- Model interpretation: Understand and explain the predictions made by the 
ML model, presenting relevant information in an intuitive way that clearly 
shows the logic behind the process. 

- Model Deployment: Make the trained ML model available to be accessed by 
anyone and operational to make predictions in real time. 

In the upcoming chapters, the methodology will be presented in detail, specifically 
applied to the data used in this study. Nevertheless, it is crucial to emphasize that 
the methodology can be extended and applied to other EHR datasets as well. 

4.2 Explorative data analysis 

The dataset applied in this study was provided by APDP - Associação Protectora 
dos Diabéticos de Portugal. This organization maintains an electronic database that 
stores clinical and patient information. Annually, APDP treats an average of 18 000 
patients, conducting over 200 000 medical appointments.  

The APDP dataset offers a rich and diverse representation of DN patients. It 
contains demographic information and medical examination results from patients 
treated at APDP facilities. No external information from other EHR banks was 
included. The complete dataset provided corresponds to 413 097 clinical records of 
21 284 patients, followed over 22 years (1998 to 2020). The data was delivered in an 
excel sheet, where each row represents a doctor's appointment for a particular 
patient. The extensive nature of this dataset provides a solid foundation for 
conducting in-depth analyses and drawing meaningful insights related to DN. 

4.2.1 Feature analysis 

The data consists of 39 columns. Table 4.1 shows an analysis of all the characteristics 
present in the data (features). It is important to note that MDRD (Modification of 
Diet in Renal Disease indicator) and CKD-EPI (Chronic Kidney Disease 
Epidemiology collaboration) are both essential variables that estimate the glomerular 
filtration ratio (eGFR). However, the calculation behind each one is different, 
depending on several factors such as the age and gender of the patient [160]. This 
study assigns more emphasis to the CKD-EPI since it is more recent than MDRD 
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as well as a more recommended way to calculate the eGFR [25]. Therefore, it is an 
essential variable to determine whether the patient has DN and in which stage. 

Table 4.1: Dataset feature description. 

Feature Data type Description 
Unique 
values 

Missing 
data (%) 

ID Number Patient identification 21 284 0% 

Race Text Patient Race 6 0% 
Age Number Patient age 71 518 0% 

Sex Text Patient gender 2 0% 
Diabetes duration Number Years since diabetes onset 68 629 0% 

Date of registration Date Appointment date 6023 0% 
Weight Number Patient weight 1679 38% 

Abdominal circumference Number Patient abdominal perimeter 264 40% 
BMI Number Patient body mass index 210 50% 

Systolic BP Number Systolic blood pressure 157 97% 
Diastolic BP Number Diastolic blood pressure 97 97% 

Pulse pressure Number Pulse pressure 237 27% 
Potassium Number Potassium 435 57% 

Total cholesterol Number Total cholesterol 3052 70% 
LDL Number low-density lipoprotein cholesterol 3892 68% 

HDL Number high-density lipoprotein cholesterol 1056 71% 
Non-HDL Number Non-HDL Cholesterol 3581 71% 

Triglycerides Number Triglycerides 6391 70% 
Hba1c Number Glycated Hemoglobin 1041 44% 

Albuminuria Number Urine albumin 29 584 76% 
Proteinuria Number Urine protein 2389 28% 

Creatinuria Number Urine creatinine 17 239 88% 
Creatinine Number Serological creatinine 891 48% 

MDRD Number Glomerular filtration rate estimate 170 51% 
MDRD Stage Text MDRD Staging 5 51% 

Delta MDRD Number MDRD variation since last visit 168 56% 
Delta MDRD /t Number MDRD variation over time 193 56% 

CKD-EPI Number Glomerular filtration rate estimate 83 090 48% 
Medicacion (ATC) Text ATC-coded pharma drugs 122 276 29% 

Medicacion (CFT) Text CFT-coded pharma drugs 153 241 29% 
Medicacion (active principle) Text Set of active principle of drug 145 272 30% 

Ophthalmic complications Boolean Ophthalmological complications 2 83% 
Cardiovascular complications Boolean Cardiovascular complications 2 83% 

Podiatric complications Boolean Podiatric complications 2 83% 
Neurological complications Boolean Neurological complications 2 83% 

Peripheral vascular disease Boolean Peripheral vascular disease 2 83% 
Nephrological complications Boolean Nephrological complications 2 83% 

Other complications Text Indicates other complications 5263 97% 

Table 4.2 shows the analysis of the variable that gives us information about the stage 
of the disease in each record (target). 

Table 4.2: Stages of nephropathy. 

CKD CKD-EPI (eGFR) Description 

Stage 1 ≥ 90 Normal condition 

Stage 2 60-89 Light 

Stage 3 45-59 Light to moderate 

Stage 3.5 30-44 Moderate  

Stage 4 15-29 Serious 

Stage 5 <15 Terminal (ESRD) 
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Considering all the 413 097 records encompassing 21 284 patients in the dataset, 
approximately 48% of them, equivalent to 198 156 records, had missing values for 
the target variable (CKD). Figure 4.2 shows the distribution of this variable. These 
missing values were then imputed using the last available disease stage for each 
patient. This process is presented in Chapter 4.3.4. 

 

Figure 4.2: Original target distribution. 

In order to understand the relationships between the different variables present in 
the data, the correlation matrix was used. This matrix presents in terms of a statistical 
metric (correlation) how two variables are linearly related. A direct correlation 
indicates that as one variable increases, the other tends to increase as well, and this 
correlation is greater the closer the value is to 1. When one variable exhibits a 
tendency to decrease alongside the other, it signifies an inverse correlation, and this 
correlation is smaller the closer the value is to -1. The closer the value is to zero, the 
less relationship there is between the two variables. The correlation matrix can be 
seen in Figure 4.3. 

An analysis of the correlation matrix reveals interesting patterns and confirms the 
clinical relationships between the variables. It is possible to see that clinically related 
measures or measures that belong to the same domain are strongly correlated, such 
as weight, abdominal circumference, and BMI. Another example can be given by the 
features HDL, Non-HDL, and Triglycerides. Through correlation, it is possible to 
see the impact of the numerical variables on the target (CKD). The features Age, 
Abdominal circumference, Systolic BP, Potassium, Albuminuria, and Creatinine are 
variables with considerable direct correlation to disease stage. On the other side, 
Diastolic BP, Pulse pressure, MDRD and CKD-EPI have a considerable inverse 
correlation with the target as well. 
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Figure 4.3: Correlation matrix. 

4.2.2 Patient analysis 

In order to conduct various data analyses, a new variable is generated to indicate the 
time window in which the doctor's appointment is scheduled. The time window is 
defined in years and represents the time that has passed from the day the patient 
started being followed until the date of the appointment. The patients were followed 
for 22 years, and therefore there are 22 different time windows. Figure 4.4 shows an 
example of defining the time windows for a patient with a total of six visits. 

 

Figure 4.4: Example of how time windows are defined. 

The distribution of patient medical visits over the years can be seen in Figure 4.5. It 
is possible to see that during the first year of follow-up there is a higher volume of 
consultations, and then this number tends to decrease over time due to various 
reasons, such as the patient's lack of interest, a stable situation that does not need 
constant follow-up, or in extreme cases the patient's death. 



Francisco Gabriel Fonseca Mesquita 

42 

 

Figure 4.5: Medical appointments over the 22 years of follow-up. 

Figure 4.6 shows that the same tendency holds when we look at the number of 
patients over the various time windows. In the initial time window, the data contains 
the entire patient population with approximately 21 284 individuals. However, in the 
final time window, only 144 patients remained, indicating a substantial 99.3% 
decrease in the number of patients followed over the course of 22 years. No new 
participants were introduced to the study; the original cohort of 22 284 patients was 
continuously monitored from the beginning to the end. 

 

Figure 4.6: Number of patients per year during the 22-year follow-up. 
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On average, each patient has about 19 records. The maximum number of 
appointments for a patient is 247, while the minimum is 2 appointments. The ten 
patients with the highest number of consultations are shown in Figure 4.7. 

 

Figure 4.7: Patients with the highest number of appointments. 

The data was explored in depth to understand the population and have as much 
knowledge as possible to shape future decisions to be made when designing the 
solution. In the next chapter, the diverse analysis performed within the scope of 
disease progression are presented. 

4.2.3 Disease progression 

Understanding patterns and crucial insights regarding the evolution of the dependent 
variable is a fundamental aspect of data analysis. The target variable in this study 
denotes the stage of DN in the patients, and several analyses were conducted to 
enhance comprehension of the problem at hand. 

DN is a progressive disease that tends to worsen over time. This is evidenced by the 
percentage-based evolution of patients in different stages of the disease presented in 
Figure 4.8. There is an observable increase in the number of patients in advanced 
stages (3 or above), accompanied by a corresponding decrease in the earlier stages 
(1 and 2). 
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Figure 4.8: Evolution of DN stage over time. 

Although often portrayed as such, DN is not always sequential in its evolution, and 
the patient may skip stages, and despite being uncommon, it is possible for a patient 
in stage 1 to worsen to more advanced stages without passing through intermediate 
stages such as stages 2 and 3. Figure 4.9 shows the most common disease 
developments within one year. From the analysis of this graph, it is possible to see 
that normally a patient in a time window of one year remains on same stage, but 
there may be cases in which the patient advances or moves back several stages. This 
shows some of the non-linear nature of the problem. 

 

 

Figure 4.9: Most common disease developments within 1 year. 
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The analyses conducted in this chapter have provided invaluable initial insights into 
the data, its significance, the characteristics of the population under study, and the 
longitudinal aspects associated with it. The findings have greatly enhanced the 
understanding of the underlying problem, playing a crucial role in shaping, and laying 
the foundation for the next chapters. 

4.3 Preprocessing 

Data preprocessing is a crucial step in ensuring the quality and reliability of the data 
used in any research study. Throughout this chapter, the various methods used to 
clean, integrate, transform, and reduce data will be presented. All these steps were 
taken to create a carefully prepared dataset that shapes the proposed solution and 
allows it to be used with ML algorithms. 

4.3.1 Exclusion criteria 

Through the literature review presented in Chapter 3, it was possible to see that all 
approaches included the creation of time windows to solve the problem of 
irregularity associated with the EHR data. Most of the works create annual time 
windows, but it is possible to observe that in some cases 6-month time windows 
were created. Taking this into account, all patients with a follow-up time of less than 
6 months were removed from this study. Therefore, 1374 patients were discarded. 
Additionally, patients with fewer than three consultations have hardly any associated 
temporality, and therefore they were discarded. Thus, a total of 366 patients were 
removed.  

In addition to the establishment of the exclusion criteria for patients, the number of 
variables present in the data was also minimized. The characteristics Medication 
(ATC), Medication (CFT), Medication (active principle) and Other complications 
are made up of text, and it is necessary to apply natural language processing 
techniques (NLP) to derive value from them. Although the information from these 
features is potentially interesting for the problem, the high cardinality associated with 
them makes it very difficult to apply and extract information from them using NLP 
methods [161]. For this reason, they were discarded for this study.  

All features related to MDRD have been removed because CKD-EPI equation is 
also present in the data, being recognized as more accurate [25]. Therefore, MDRD, 
MDRD Stage, Delta MDRD and Delta MDRD/t variables were not considered. 
Features whose information has no value for the creation of the predictive model 
have also been removed, these being the ID and the Registration date. 

After applying these criteria, 19 544 from the initial 21 284 patients and 29 from the 
initial 39 features were considered in the development of this work.  
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4.3.2 Feature encoding 

Categorical features represent qualitative characteristics or groupings, but many ML 
algorithms require numerical input. By encoding these features, we ensure that the 
algorithms can effectively understand and analyze the data. This is extensively 
explored and demonstrated in [162]. 

Encoding was applied to both the Sex and Race characteristics. The first was 
transformed into a binary variable. If the patient is male, then the value is zero. If 
the patient is female, then the value of the variable is equal to 1. On the other hand, 
the race feature was transformed into a numeric feature. The six categories were 
transformed into integer values (0, 1, 2, 3, 4, 5). This transformation was done 
linearly due to the low number of categories (low cardinality). If the feature had large 
cardinality, other encoding techniques could be considered, such as one hot 
encoding. 

4.3.3 Outlier handling 

Outliers are data points that deviate significantly from the majority of observations 
in a dataset. Detecting and handling these values is one of the most important 
processes in an ML problem. If not handled properly, outliers can affect the 
performance and reliability of the data analysis and model performance [163]. By 
properly handling outliers, it is possible to improve the integrity and quality of the 
dataset, ensuring that subsequent analyses and ML algorithms are not influenced by 
these extreme values. 

In the clinical context, and, more precisely in the context of this study, it is necessary 
to distinguish between an outlier in the study population and a clinical outlier. An 
outlier within the study population refers to a patient with non-normal values in a 
specific variable, which may still hold medical validity. On the other hand, a clinical 
outlier represents an extreme value that deviates significantly from the expected 
range within the broader clinical setting. These clinical outliers present values that 
are very abnormal or even impossible to occur from a clinical perspective. This 
distinction is necessary because the outliers in the study population must be retained 
to ensure diversity in the data. Clinical outliers should be removed because they may 
consist of insertion errors, measurement failures, or other types of problems. 

To detect the outliers, a combination of different methods was used. 

- Distribution analysis: The statistical distribution of the variables is analyzed 
with the objective of identifying extreme values that should be considered 
outliers. For this purpose, both histograms and box plots were used. 

- Z-Score: It is a test used to detect outliers on univariate data. The z score tells 
how many standard deviations from the mean your score is. The threshold 
value is then set for which a certain value is considered an outlier. For this 
study, a threshold value of 3 was set, which means that all values whose z-



Risk Assessment for Progression of Diabetic Nephropathy Based on Patient History Analysis 

47 

score is greater than 3 or less than -3 will be considered outliers. The optimal 
value for the threshold depends on the data and the problem to be worked 
on, but in general a value of 3 is used [164]. 

𝑍𝑠𝑐𝑜𝑟𝑒 (𝑖) =
𝑥𝑖 −  �̅�

𝑆𝐷
 (4.1) 

- Interquartile Range (IQR): It identifies outliers based on the spread of data 
within the middle 50% of a distribution, specifically the range between the 
first quartile (Q1) and the third quartile (Q3). This range is called the 
interquartile range (IQR). An outlier is detected when it lies more than λ times 
(usually 1.5 times) in the interquartile range from the median [165]: 

|𝑥𝑖| > (�̃� +  𝜆𝑖𝑞𝑟) (4.2) 

These methods were used to visualize and analyze each feature. Figure 4.10 shows 
an example of the application of these methods to the BMI variable.   

 

Figure 4.10: Outlier detection techniques. 

The decision to consider a value as an outlier was made based on this analysis and 
on the clinical guidelines consulted. To ensure that no plausible values were treated 
as an outlier, a longitudinal analysis was performed to see if those values made sense 
given the temporal evolution of the feature. Figure 4.11 shows a representation of 
this longitudinal analysis. 

 

Figure 4.11: Representation of the longitudinal analysis performed in the treatment of outliers. 
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A total of 620 outliers were identified. Table 4.3 illustrates the distribution of these 
outliers across various features and the corresponding percentage they represent. 
When calculating the outlier percentages for each feature, missing values are 
excluded from consideration. 

Table 4.3: Outliers detected in each feature and their proportion. 

Feature Outliers detected Corresponding percentage 

BMI 262 0.13% 
Pulse pressure 102 0.03% 
Total cholesterol 31 0.03% 

LDL 60 0.05% 
HDL 16 0.01% 
Non-HDL 29 0.02% 
Triglycerides 28 0.02% 

Hba1c 30 0.01% 

Albuminuria 1 <0.01% 
Proteinuria 61 0.71% 

All detected outliers will be changed through imputation strategies defined and 
presented in the next chapter. This allows all the information to be kept and no data 
needs to be removed. 

4.3.4 Data imputation 

The high number of missing data in both the independent variables (features) and 
the dependent variable (target) presented in the chapter 4.2.1 leads to the need for 
data imputation. There are essentially three types of missing values [166]: 

- Missing completely at random (MCAR): Missing values occur completely 
randomly throughout the dataset. It is independent of observed and 
unobserved data, that is, there is no concrete difference between patients with 
missing values and patients without any missing values. For example, the 
doctor may forget to record a certain value during a consultation. 

- Missing at random (MAR): Missing values can be explained or predicted 
by other variables in the dataset. In other words, the probability of 
missingness depends on the observed data but not on the missing data. For 
example, elderly people usually tend to measure their blood pressure regularly. 
In this case, missing blood pressure values can be age-related. 

- Not missing at random (MNAR): Missing values depend on both the 
missing values and the observed values. For example, people with low 
cholesterol levels tend to measure their cholesterol less often. 

These three types of missing values are represented in Figure 4.12. 
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Figure 4.12: three types of missing data mechanisms: MCAR, MAR, and MNAR. The data includes 
variables X (observed values) and Y (missing values). Z represents the cause of missing values and 
R is an indicator variable that distinguishes missing and observed values in Y, in other words, 
missingness. Based on [167]. 

Alternatively, the Figure 4.12 can be represented mathematically: 

𝑀𝐶𝐴𝑅 = 𝑃(𝑃|𝐴) (4.3) 

𝑀𝐴𝑅 = 𝑃(𝑅|𝑋, 𝑍) (4.4) 

𝑀𝑁𝐴𝑅 = 𝑃(𝑅|𝑋, 𝑌, 𝑍) (4.5) 

The data presented in this study have missing values of the MNAR type. Missingness 
is associated with unobserved factors and missing data itself. Certain clinical 
measurements are made in only a few consultations, depending on multiple 
unobservable factors such as the effectiveness of the patient's treatment, the patient's 
willingness to undergo a certain exam, the doctor's opinion, the necessity of making 
a certain measurement considering the patient's condition, and other factors. In 
addition, it may also depend on the missing values themselves, for example, a patient 
with normal triglyceride values tends to measure this value less often than a patient 
with high or low values. 

Missing values or null values in EHR data are a direct result of the temporality 
associated with it. It would be very complicated to measure all variables in each 
patient visit, resulting in a large number of measurements that are left undone when 
looking at the data from an overall perspective. Taking this into account, the 
proposed solution, medically validated on the APDP side, involves assuming that 
when a value is missing, the most recent available value should be considered as 
unchanged. In other words, any missing value is assumed to remain the same as the 
value measured on the previous visit, or, if not available, the most recent visit where 
the value was measured.  In cases where no previous value is available, the logic is 
reversed and the immediately following value is used.  

This logic is described by the forward and backward fill techniques. These 
techniques were applied to both the features and the target. It is important to 
emphasize that these techniques were implemented for each patient, and that there 
is no relationship between data from different patients. Figure 4.13 shows an 
example of the application of these algorithms. 
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Figure 4.13: Forward and Backward fill technique to impute data. 

Using this strategy, all the missing values related to the target problem, the DN stage, 
were successfully imputed. This imputation process did not change the distribution 
of our target variable, as evidenced by the unaltered distribution displayed in Figure 
4.14. 

 

Figure 4.14: Target distribution after imputation of missing values. 

Although this strategy has filled most of the missing values, there are, however, 
patients in whom a particular variable did not have a single value available, making 
the application of forward and backward propagation unfeasible. In these cases, two 
different strategies were applied according to the type of variable. For the binary 
variables, the negative value was imputed in all records, assuming that if there is no 
value it is because the patient does not suffer from any of the conditions indicated 
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by the binary variable, such as neurological, podiatric, ophthalmological, among 
other complications.  

For numerical features, an imputation strategy was applied through a stratified mean 
by disease stage, also medically validated by APDP. Initially, the average is calculated 
for each feature grouped by disease stage, that is, for each feature six different 
average values are obtained (one for each disease stage). Then the imputation of the 
values to the patient data is done by looking at the stage to which each record 
corresponds. In Figure 4.15, it is possible to visually perceive how this method 
works. 

 

Figure 4.15: Stratified mean imputation technique. 

Categorical features did not need imputation as they did not have any missing values. 
This can be seen in Table 4.1 on chapter 4.2.1. A total of 250 patients were excluded 
from the analysis due to missing or negative values in the variable representing 
diabetes duration. Imputing or inferring these values using the same stratified mean 
technique employed earlier was deemed inappropriate, considering the nature of the 
variable. As a continuous measure indicating the duration of diabetes for each 
patient, it is not meaningful or advisable to impute it based on average values across 
different disease stages. 

After this imputation process, there are now 19 294 patients with 29 fully filled 
features. However, the data are still high in dimensionality and too poorly shaped to 
be fed into an ML model. The next chapters present the steps taken to solve this. 

4.3.5 Time window aggregation 

Time windows are implemented in the EHR data to introduce some structure and 
organization. Typically, data of each patient is segmented into time windows, ranging 
from 2 to 22 years. If a patient has 22 consecutive time windows, it indicates that 
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they have had at least one annual visit for 22 years. However, it is not mandatory for 
patients to have consultations every year, resulting in scenarios where a patient may 
have, for example, three non-consecutive time windows. These time windows might 
correspond to the first year, the fifth year, and the tenth year of follow-up, 
highlighting the irregularity in their visit pattern. Not only that, but the number of 
appointments per time window or year can vary, from one to dozens or even 
hundreds. This chapter presents the strategy created to aggregate visits within the 
time window, resulting in only one record per year for each patient. 

Looking at the literature review Chapter 3.2, it can be observed a tendency in the 
works regarding the creation of time windows and the aggregation of visits within 
each respective window. Aggregation within time windows reduces the complexity 
of the data by condensing multiple records into summarized information for each 
window. This simplification enables data analysis and the identification of trends, 
patterns, and changes over time.  

For this purpose, aggregations using statistical measures were used. Different 
aggregations were used: 

- Numerical aggregation: To aggregate numerical variables, the median was 
used. The median was used instead of the mean because of its greater 
robustness to extreme values [168]. 

- Binary aggregation: Binary variables are variables that mark the appearance 
of other types of complications in patients. While the patient does not suffer 
from the complication, the value of the variable is always negative. When the 
patient presents symptoms of a certain complication, the variable associated 
with it becomes positive. Therefore, in this case, it is essential to use the last 
available record available to avoid losing information about the appearance of 
new complications at the end of the time window. 

- Target aggregation: For the target, the statistical mode was used. This 
measure allows extracting the most common patient condition during the 
time window. When two values have the same frequency, the most recent is 
chosen. This statistical measure is used due to the clinical character of the 
disease, where in a time span of less than a year it is very unlikely to have 
major evolutions in staging, and therefore the use of statistical mode will not 
lead to great loss of important information. 

Although the choice of statistical measures was made to minimize information loss, 
it is inevitable that important information is discarded in this step. This is the "price 
to pay" to be able to shape the data and give it structure and constant temporality. 
Figure 4.16 shows a representation of the different aggregation techniques. 
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Figure 4.16: Types of values aggregation per time window based on statistical measures. 

All patients now have the same number of records per time window, but between 
them there are still different numbers of time windows. An ML algorithm is trained 
with several examples, all in the same format, with the same number of variables, 
and the same prediction objective. The next chapter will show the steps taken to 
shape data. 

4.3.6 Shaping Data 

Before transforming and shaping the data to be served to ML models, it is necessary 
to define the temporality to be used in the proposed solution. The data to be 
considered must be sequential, specifically consisting of consecutive temporal 
windows. Consequently, an analysis was performed to determine the number of 
patients with a range of 2 to 22 consecutive time windows. It is important to 
remember that there is only a defined temporal window if the patient has had at least 
one visit in that time frame. In addition, it is important to denote that the analysis 
was done by looking at any sequence throughout the patient's records, two 
consecutive years of data does not necessarily indicate that they represent the initial 
two years; they can be situated within any temporal segment of the patient's records. 
This analysis is presented in Figure 4.17. 
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Figure 4.17: Analysis of patients with consecutive years of data ranging from 2 to 22 years of 
follow-up. 

The longer the patient’s history with consecutive years with data is considered, the 
fewer patients we have available and the more complicated it is to transform the data 
to fit a possible solution to the problem at hand. On the basis of this analysis and in 
agreement with the APDP, it was then defined that the solution would be to predict 
the risk of the disease's evolution in the next year, i.e., considering a history of x 
years, predict the stage of the disease in the following year. This is beneficial because 
the greater the temporal range in the prediction, the smaller the amount of data. At 
the clinical level, it is also more important to predict risk in a short period of time to 
be more reliable, and the annual range is adequate for the patient to take action to 
minimize potential predictions of worsening of the DN. 

Considering the temporality associated with the data is something defined as a goal 
in this study. However, after the analysis presented in Figure 4.17, it is noticeable 
that considering a very high patient history will greatly reduce the amount of data 
and consequently the predictive ability of the model. Additionally, if a long time 
period is considered, it will be difficult for the model to have great clinical 
applicability because it will require that the patient be followed for a long period of 
time and consecutively, which is rather unusual. Taking all this into account, it was 
decided to use two years of the patient’s history to predict the patient's DN stage in 
the following year. 

To shape data, 3 years of records are used, two years of patient history where all 
variables are considered, and the third year that gives the stage of the disease in the 
following year, that is, the target of the problem.  Out of the total number of patients, 
only 13 316 individuals had records in three consecutive years, as illustrated in Figure 
4.17, and these patients were subsequently taken into consideration. Any sequence 
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of 3 consecutive years of each patient was considered independently, a concept that 
will be referred to hereafter as the patient journey. This is represented in Figure 4.18. 

 

Figure 4.18: Shaping data - extracting data instances or patient journeys from one patient. 

Each extracted patient journey or instance will correspond to an example for the 
model to train. From the 13 316 patients, a total of 79 822 different instances were 
extracted. The data has been transformed into a format suitable for inputting into 
an ML model. However, each data instance now consists of 58 variables, where 29 
features are from the first year and another 29 corresponding to the second year of 
history. The target corresponds to the disease stage in the third year, the following 
year. Not only is there this high dimensionality, but there is also the need to balance 
the target, and this will be explored in the next chapter. 

4.3.7 Target imbalance 

Target balancing is an important piece in ML problems, having significant 
implications for the development of accurate and reliable models. It is a common 
occurrence, especially in real-world data, that leads to disproportionality in the class 
distribution. This unbalance of classes leads to biased models with overestimated 
and not properly validated performances. 

Solving this class unbalancing is essential for two main reasons [169]: 

- Fair treatment of all classes: Helps the model not to favor one class over 
another. By having the same number of examples for each class, the model 
learns equally about each output, usually benefiting its performance. 

- Robustness and generalizability: The low representation of some classes 
over others leads to the model becoming unable to learn about minority ones 
and then unable to generalize that knowledge to unseen data. 

This kind of unbalance in the class can easily be evidenced by looking at the 
distribution of the target in the data resulting from the previous processes. More 
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advanced stages such as 3.5, 4 and 5 show extremely low representation when 
compared to the earlier stages. This is represented in Figure 4.19. 

 

Figure 4.19: Target distribution after shaping data. 

Different balancing approaches have been considered to try to minimize the impact 
of unbalancing, such as: 

- Undersampling original target: The classes remain the same six, but the 
majority classes are randomly reduced to the same number as the minority 
class. In the end, all classes are left with about 766 instances. Making a total 
of 4596 patient records. 

- Undersampling three-class target: The classes are transformed into a set 
of 3 other classes: increase, maintain, or decrease. After that, the majority 
classes are randomly reduced to the same number as the minority class. In the 
end, each class is left with 14 329 instances. This makes 42 987 data points in 
total. 

- Undersampling binary class target: Classes are transformed into 2 other 
classes: stable and aggravation. Stable patients are those who maintain or 
retreat from a stage of DN, while worsening patients are those who advance 
to a higher stage of DN. After the majority class (stable) is reduced through 
random undersampling, each class has 12 348 instances. In total 24 696. 

The first approach where the original target is used proved to be extremely 
inefficient because besides the large amount of discarded data when balancing the 
classes, there is also a larger number of classes to predict, substantially increasing the 
complexity of the problem and leading to a huge drop in performance. For this 
reason, the approach was discarded. 

Between the three-class target approach and the binary target approach, the binary 
approach was selected. In the literature study done and presented in chapter 3, ten 
of the eleven papers used a binary target to solve the problem, as can be confirmed 
in that same chapter, in Table 3.4. Additionally, in a meeting with an APDP 
physician, this choice was medically validated. 
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This approach forces patients in renal dysfunction or stage 5 to be discarded. 
Patients at this stage of disease cannot worsen and therefore this type of model is 
not applicable. There were 603 patients at stage 5, but out of these, only 79 retreated 
to a lower stage, showing a clear tendency for the patient to remain at stage 5. 
Clinically, there is no need to apply a predictive model to patients already in renal 
dysfunction because they are already at a stage where medical care has already 
identified the problem and the patient is being treated by available and indicated 
methods. 

Although the balancing was done from the reduction of the majority class, this 
process is not 100% random. The majority class (Stable) has 67 065 instances, while 
the minority class has 12 348 instances. If the process were totally random, there 
could be stages of the disease without any representation as shown in Figure 4.20. It 
is important to note that the stage shown in the figure corresponds to the last stage 
of the patient. The importance of having diversity in the training examples of 
patients in the various stages is high, considering not only the generalizability of the 
model but also the nature of the DN. To counteract this, a partially random 
approach was then applied when reducing the majority class. This strategy called 
partially random undersampling is presented in Figure 4.21. 

 

Figure 4.20: Random undersampling of binary target. 
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Figure 4.21: Partially random undersampling of binary target. 

What has been presented will consist of what will be called approach A from now 
on. This approach turned out to have some flaws during the validation of its ML 
model, so a second approach B is proposed. This new approach applies a slightly 
different balance. 

Approach A balances in such a way that patients in the reduced class (stable) are 
equally distributed over the last stage of the disease, but this approach has a major 
flaw: the data when grouped by last stage are not balanced in the binary class. This 
can be seen in Figure 4.22.  

 

Figure 4.22: Unbalancing of the target by disease stage. 

This is a problem because there are classes with virtually no representation per state. 
Aggravation from stage 4 to stage 5 has practically no representation, and therefore 
approach A is unable to predict such an event. As a solution, approach B is 
proposed, which consists of balancing by considering the equality of the class in each 
stage of the disease. This is done by removing the number of instances for each stage 
from the majority class in order to match the minority class. In the end, each stage 
has the same number of instances in which the patient remains stable and worsens. 
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This reduces the bias of the model and brings greater validity and confidence in the 
results. Figure 4.23 presents the logic behind this new approach. 

 

Figure 4.23: Approach B – balance target through class majority undersampling and balancing 
per DN stage. 

This process represents a perfect equality of the target at each DN stage, with exactly 
the same number of occurrences for each event. The perfectly balanced distribution 
can be seen in Figure 4.24. 

 

Figure 4.24: Target balanced by disease stage. 

This difference in balancing the data by last stage is not only visible in the training 
and test data, but is also noticeable in the unseen data, as seen in Figure 4.25. 
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Figure 4.25: Difference between class distribution by disease stage in unseen data 

Two different approaches were thus defined. Although the data are almost ready, 
they still contain a very large number of variables, 29 for each year in the patient’s 
history, making a total of 58 in total. The selection of features with the goal of 
reducing the high dimensionality of the data is presented in the next chapter. 

4.3.8 Feature selection 

As mentioned in chapter 3, high dimensionality is one of the biggest challenges of 
EHR data. The larger the number of variables, the more difficult it becomes to 
extract knowledge from the data [94]. Not only that, but a model that requires a lot 
of data to make a prediction makes its application either unfeasible or very poorly 
applicable because it is unlikely that a patient has all the necessary records available 
to feed the predictive model. 

To make the feature selection, five subsets of variables were selected based on 
different criteria. These being: 

- Correlation analysis: Analysis of the correction matrix in order to 
understand the variables most correlated with the stage of the disease. 

- Literature review: The literature review conducted as part of this study 
revealed several variables that are essential to predict the stage of DN. This 
information is presented in Chapter 3, Table 3.3. 

- Feature ranking: Several experiments were conducted, and the features with 
the greatest impact on prediction were evaluated. This impact was calculated 
using algorithms based on impurity (Gini index or entropy) or information 
gain for each feature. Additionally, the global feature ranking generated with 
SHAP values was also used.  

In addition to these three criteria, we initially considered dynamic algorithms for 
feature selection such as recursive feature elimination (RFE), but these algorithms 
are not adapted to deal with the temporality associated with the problem. The 
features corresponding to the first year of patient history must also be present in the 
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second year, and this would not be considered when using more dynamic and 
automated techniques for selecting the optimal features. This problem can be seen 
through the illustration in Figure 4.26.  

 

Figure 4.26: Feature selection taking into account the temporality of the variables. 

Table 4.4 shows the five subsets created following the various criteria presented 
above. It is important to note that all subsets have the CKD feature that indicates 
the stage of the disease. Both this and all variables will have two different values 
afterward, one for the first year of the patient's history and another for the second 
year, in order to predict the patient's stage in the following year. 

Table 4.4: Subsets of data created based on different defined criteria. 

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 

Age 
Race 
Gender 
Duration of diabetes 
Abdominal 
circumference 
CKD 

Age 
Race 
Gender 
Duration of diabetes 
Abdominal 
circumference 
Nephrological 
complications 
Cardiovascular 
complications 
CKD 

Age 
Race 
Gender 
Duration of diabetes 
Abdominal 
circumference 
Systolic BP 
Total cholesterol 
Albuminuria 
Proteinuria 
Potassium 
CKD-EPI 
CKD 

Age 
Duration of diabetes, 
Abdominal 
circumference, 
Systolic BP 
Pulse pressure 
Potassium 
Total cholesterol 
HDL 
Albuminuria 
CKD-EPI  
Nephrological 
complications 
Cardiovascular 
complications 
CKD 

Ckd-epi 
Albuminuria 
HbA1c 
Proteinuria 
Age 
BMI 
CKD 

 

Among the various subsets considered, subset 5 was chosen because it includes all 
the variables identified in the literature review as the most important to predict the 
evolution of DN. Subset 5 not only uses fewer variables than most of the other 
subsets, but also allows ML models to perform better. This selection of features was 
further validated by APDP. 

The data is now in a format capable of solving many of the original problems present 
in EHR databases. Time windows have been used to address the irregularity of the 
data. With the imputation of data and aggregation of annual records, part of the 
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problem of data sparsity has been solved. With the feature selection presented, the 
data also has low dimensionality. Figure 4.27 illustrates the final dataset that will be 
used to create the predictive model. This process will be detailed in the Chapter 4.4. 

 

Figure 4.27: Format of the final dataset to be used to modulate the solution and create the 
predictive ML model. 

4.3.9 Data normalization 

An important step in the data preprocessing pipeline is data normalization. Its 
purpose is to scale numerical data features to a uniform range. It ensures that all 
features have similar scales, making it easier for ML algorithms to process the data 
effectively and produce accurate results. Data normalization takes each feature and 
transforms it so that they all fall within a common range, such as 0 to 1 or -1 to 1. 
In this way, the ML algorithm treats all features equally, preventing any single feature 
from dominating the learning process simply because of its larger scale [170]. 

Although there are several algorithms to normalize the data, Z-Score was chosen 
[171]. This technique transforms all numerical values into a range between 0 and 1.  
Figure 4.28 illustrates the Z-Score technique used for data normalization. 

 

Figure 4.28: Representation of z-score normalization technique 

Now, all the features are on the same scale and the data are ready to be supplied to 
the ML model. All the details about the creation of the model are presented in the 
next chapter. 
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4.4 ML Model 

This chapter introduces the experimental setup used to construct the ML models. 
The process of training, hyperparameter tuning, and evaluation of the algorithms 
will be described in detail. To complement this, the reasoning behind the choice of 
the best model will be presented, including how the analysis of the classification 
metrics, the results produced by the model and the statistical significance between 
them was performed. 

4.4.1 Experimental setup 

The entire experimental setup was performed using the PyCaret framework in 
version 3.0.1 and Python in version 3.7. PyCaret uses several embedded ML libraries 
such as scickit learn, Catboost, LightGBM, Optuna, and others. It is considered one 
of the best low code ML frameworks [172]. 

At the beginning, the dataset was divided into two separate sets: 5% was allocated 
for validation/unseen data, while the remaining 95% was used for training and 
testing purposes. The training and test data were then divided into 70% for training 
and 30% for test. This ratio of 3:7 is the most recommended to use at this step [173]. 
This resulted in 1235 instances that will not be part of the model training and testing 
process, being unseen data. 16422 instances for the model to train and 7039 for 
testing. 

Sixteen ML algorithms were tested: DT, Catboost, RF, Extra Trees (ET), Ridge, 
XGBoost, LR, LightGBM, GBM, LDA, Multilayer Perceptron (MLP), NB, KNN, 
AdaBoost, SVM and Quadratic Discriminant Analysis (QDA). Initially, all these 
classifiers were trained with the default hyperparameters. 

From these sixteen algorithms tested, the top five were chosen based on their 
performance in the training data. Cross-validation (CV) with K=10 was used to train 
the models. This corresponds to 10 iterations where in each, 90% of the data is used 
for training and 10% for testing. This allows for greater robustness and reliability of 
the results obtained [67]. Even using the CV method to train models, there was a 
need to have a test set with 30% of the data so that there is no data in the training 
that is also used in the testing (data leakage), leading to a false generalizability of the 
model [174]. Therefore, it is essential to ensure that training, test, and unseen data 
are used independently in each of the model training and evaluation phases.  

After training the models, the five classifiers with the best performance were chosen 
to go through the hyperparameter tuning phase. From these models, those that show 
a large performance loss in the test set were discarded, this being a sign of overfitting 
the model [175]. 

After training, optimizing the parameters, and testing the different algorithms, they 
were all retrained with the full data (train and test) in order to increase the number 
of instances on which the model trains (totaling 23461 data points). The selection of 
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the best classifier was done based on the performance evaluation in all three steps, 
train, test, and unseen data. Not only that, but several analyses were taken into 
account, such as analysis of the result grouped by stage, statistical significance, and 
distribution of importance of the variables for prediction. Figure 4.29 shows all the 
steps made in the experimental setup of this study. In the next chapters, more details 
will be given about some steps such as hyper parameter tuning, model evaluation, 
and statistical analysis. 

 

Figure 4.29: Experimental setup. 

4.4.2 Hyperparameter tuning 

This crucial aspect, known as hyperparameter tuning or model tuning, has been 
highlighted by Probst et al., showing its significant impact on performance [176]. 
For this purpose, the RandomGridSearch algorithm was used. This algorithm 
randomly selects different combinations of hyperparameters within predefined 
ranges and then tests the performance of the algorithm for each combination [177]. 

When choosing the tuning method, different characteristics such as efficiency, 
flexibility, performance, and popularity were considered. RandomizedSearchCV was 
the algorithm that met these criteria and was therefore chosen to be used in this 
study. 

To determine the optimal parameters, cross-validation using K = 10 folds was used. 
The use of cross-validation during the hyper parameter adjustment phase is a widely 
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adopted practice [178]. The tuning process was applied to both approach A and 
approach B. The default hyper parameters and the new tuned hyperparameters of 
each of the models for each of the approaches is presented in Appendix B.  

4.4.3 Model evaluation 

The way in which the models are trained has already been described, and this chapter 
describes how the models were evaluated at each stage of the experimental setup.  

The following metrics were used to evaluate the performance of the models: 
Accuracy, Recall, Precision, F1 Score and AUC. Each of these metrics gives us 
valuable information about the performance of the models, but in a clinical context 
there is a need to give more importance to the Recall metric, also referred to as 
sensitivity. In predicting the evolution of a disease, it is essential to predict all patients 
who worsen. If worsening patients are defined as positive and those who remain 
stable as negative, the detection of a negative patient as positive is not as penalizing 
as the opposite. This is demonstrated in several medical studies in the literature 
[179]–[181]. 

In both training and testing, performance was evaluated exclusively based on the 
classification metrics. In the end, the models are subjected to validation on unseen 
data in the training and testing processes. Here, performance is evaluated not only 
in terms of general performance metrics, but also through an evaluation by patient's 
last disease stage, because a model can have very good results but be unable to 
predict the evolution of a disease that is in a certain stage. It is this analysis that leads 
to the creation of two different approaches (A and B).  

4.4.4 Statistical significance 

When comparing the performance of different classifiers, it is important to consider 
statistical significance. This helps to determine whether any observed differences in 
performance are due to random chance or whether they are truly meaningful. 

McNemar's test [182] is used as the statistical test. This test is used to see the 
statistical difference in performance between two classifiers. It involves constructing 
a contingency table in the form of a 2x2 matrix. This matrix represents the correct 
and incorrect predictions made by both models. Figure 4.30 shows a representation 
of this matrix. The null hypothesis can then be translated as P(B) = P(C), which 
means that the two models have equivalent performance. If the test rejects the null 
hypothesis (p value < 0.05) then the hypothesis that the performance of the models 
is equal is rejected. 
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Figure 4.30: McNemar’s contingency table, based on [182].  

In this study, McNemar's test version with the continuous correction proposed by 
Edwards et al. is used [183]. To calculate McNemar’s test statistic, commonly 
referred to as ‘chi-squared’, we can use the following formula: 

𝑥2 =  
(|𝐵 − 𝐶| − 1)2

(𝐵 + 𝐶)
 (4.6) 

If the calculated test statistic value exceeds the critical value of 3.84 in a 95% 
confidence interval, it can be concluded that the two methods exhibit significant 
differences in their performance [184]. After assigning a significance threshold, 
usually a value of 0.05, it is also possible to obtain the exact p-value [185]: 

𝑝 = 2 ∑ (
𝑛
𝑖

) 0.5𝑖(1 − 0.5)𝑛−𝑖

𝑛

𝑖=𝑏

 (4.7) 

This test helps to analyze the results of the various models. If two models reject the 
null hypothesis, then there are differences in their performance, which means that 
there is a difference between choosing one or the other. Otherwise, the choice of 
the best model should be based on factors other than just performance because then 
they are equivalent. 

4.5 Model Interpretation 

In addition to a good performance, it is essential to be able to show the logic behind 
the prediction made. An interpretable model is essential in sensitive applications 
such as medicine. SHAP method was selected to interpret model. It is a method 
proposed by Lunderg et al. [68] being able to explain the importance of each variable 
for each observation (local interpretation) or for a set of observations (global 
interpretation). Although it has specific interpretation algorithms for tree-based, 
linear, and neural network models, it also has a model agnostic interpretation 
method, which means that it can be applied to any ML algorithm. It is one of the 
most widely applied interpretation methods and has been implemented several times 
in predictive models based on clinical data [186]–[188]. 



Risk Assessment for Progression of Diabetic Nephropathy Based on Patient History Analysis 

67 

Global interpretations were used to understand the internal associations of the 
model, which features were more important overall to the target. This type of 
interpretation is very useful to understand any possible bias or problem inherent to 
the model. Local interpretation, on the other hand, is essential to provide 
interpretability and justification for the prediction given for each patient. This type 
of interpretation should be focused on the physician or patient as a way to be able 
to understand the logic behind each output, and it must be presented in an 
understandable format. This difference can be evidenced in Figure 4.31. 

 

Figure 4.31: Global vs local interpretation, based on [189]. 

The SHAP method decomposes the output predicted by the model as the sum of 
the impact of the different features. A feature can have a positive or negative 
contribution to the result. Each contribution has an associated weight, and the 
greater the weight, the more important the associated feature is in the prediction. 
This is illustrated in Figure 4.32. 

 

Figure 4.32: Representation of SHAP values use on interpret model or single instance. 

4.6 Model deployment 

To provide access to the ML model through an interactive interface, a powerful 
Python library called Gradio is used. Through a simplified form, Gradio allows you 
to create interactive interfaces where users provide their inputs (data) and receive 
the model's prediction in real time. Gradio version 3.36.1 was applied [190]. 
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The purpose of deploying the model in this study is not only to give the user the 
possibility to make predictions with the data provided itself but also to provide the 
actual explanation behind this result. Gradio has several ways to publicly share the 
application with anyone, and there are two main ways to do this. The first is to use 
a proxy to the local server and create a public link that is accessible by anyone. This 
is done automatically by Gradio, but the link expires in 3 days. This method is 
represented in Figure 4.33. The second method uses the Hugging Face (HF) spaces 
for the application host, where all the necessary infrastructure is on the HF side. 
This allows for a permanent link to the application. Figure 4.34 illustrates this 
process. 

The second method was used by hosting the Gradio application on the HF spaces 
in order to allow access to anyone who is interested in trying the ML predictive 
model proposed in this study1. 

 

Figure 4.33: Gradio ML model hosted on local server, based on [190]. 

 

Figure 4.34: Gradio ML model hosted on HF servers, based on [191]. 

  

 

1 Application is available at: https://huggingface.co/spaces/Fmesquita17/DN_Evolution 
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5 RESULTS 

This chapter presents the results obtained in all the steps of the experimental setup. 
Initially, the results of approach A are presented, clearly showing the associated and 
detected issues. Then the results of the second proposed approach, named approach 
B, are presented.  In approach A, the problem target is balanced by having an equal 
number of records for patients who worsen and those who remain stable. On the 
other hand, in approach B, it improves upon approach A by balancing the target 
with respect to the current disease stage of the patient. This ensures an equal number 
of examples for patients who worsen and remain stable at each stage of the disease. 
Once the different results are presented, the interpretation of the proposed model 
and its deployment is shown. 

5.1 Approach A: Balanced target distribution 

Sixteen ML classifiers were initially trained. Their performance on the training data 
is presented in Table 5.1.  

Table 5.1: Performance of ML algorithms on train set – approach A. 

Model Accuracy Recall Precision F1 Score AUC MCC 

GBM 0.7583 0.7836 0.7452 0.7639 0.8346 0.5175 

Catboost 0.7575 0.7816 0.7450 0.7628 0.8344 0.5158 

LightGBM 0.7570 0.7895 0.7407 0.7642 0.8317 0.5153 

MLP 0.7561 0.7819 0.7431 0.7619 0.8306 0.5131 

Adaboost 0.7541 0.7724 0.7454 0.7576 0.8242 0.5087 

RF  0.7536 0.7691 0.7454 0.7570 0.8228 0.5076 

ET 0.7490 0.7603 0.7427 0.7514 0.8224 0.4981 

XGBoost 0.7457 0.7704 0.7325 0.7519 0.8188 0.4922 

LR 0.7362 0.7137 0.7464 0.7297 0.8116 0.4728 

LDA 0.7336 0.7073 0.7457 0.7260 0.8115 0.4678 

Ridge 0.7324 0.7060 0.7446 0.7248 0.0000 0.4655  

QDA 0.7320 0.7648 0.7174 0.7397 0.8033 0.4655  

SVM 0.7228 0.6833 0.7415 0.7109 0.0000 0.4472  

KNN 0.6839 0.6678 0.6890 0.6781 0.7374 0.3681 

DT 0.6697 0.6607 0.6718 0.6661 0.6697 0.3395  

NB 0.6309 0.7296 0.6085 0.6634 0.6601 0.2677 

 

Even with all the default hyperparameters, there are already classifiers with good 
results, especially in terms of Recall and AUC. The five best models are chosen for 
parameter tuning. For this choice, the various metrics are considered, with a major 
focus on Recall. Taking this into account, the models chosen for parameter tuning 
were: GBM, Catboost, LightGBM, MLP and Adaboost. The performance of these 
models after parameter tuning on the test set is shown in Table 5.2 
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Table 5.2: Performance of ML algorithms after hyperparameters tuning on test set – approach A. 

Model Accuracy Recall Precision F1 Score AUC MCC 

GBM 0.7552 0.7753 0.7446 0.7597 0.8400 0.5109 

Catboost 0.7544 0.7679 0.7469 0.7573 0.8394 0.5090 

LightGBM 0.7532 0.7714 0.7436 0.7572 0.8383 0.5069 

MLP 0.7554 0.7397 0.7628 0.7511 0.8403 0.5109 

Adaboost 0.7539 0.7622 0.7490 0.7556 0.8329 0.5080 

 

By comparing the results obtained on the training set with the results obtained on 
the test set after parameter tuning, it can be observed that the overall performance 
remained similar. It is possible to denote a considerable drop in the Recall of the 
MLP model, but the other metrics have persisted very much the same. Given these 
results, the five models were then retrained with the training and test data to be then 
tested on the unseen data. The results of these models on unseen data can be seen 
in the Table 5.3. 

Table 5.3: Performance of ML algorithms on unseen data – approach A. 

Model Accuracy Recall Precision F1 Score AUC MCC 

GBM 0.7377 0.7679 0.7380 0.7527 0.8255 0.4740 

Catboost 0.7368 0.7741 0.7341 0.7536 0.8253 0.4724 

LightGBM 0.7417 0.7726 0.7414 0.7567 0.8238 0.4821 

MLP 0.7393 0.7632 0.7424 0.7527 0.8240 0.4773 

Adaboost 0.7377 0.7617 0.7409 0.7512 0.8167 0.4741 

 

In general, a slight drop in performance is noticeable for all models when applied to 
unseen data. Despite this, the results remain acceptable and do not seem to be 
indicative of an inability to generalize the knowledge learned by the ML model. An 
optimal predictive model should be able to distinguish between stable and worsening 
regardless of the patient's disease stage. To validate the ML model's performance, 
an analysis was conducted, considering the patient's disease stage. Figure 5.1 - Figure 

5.5 present the performance, as well as the confusion matrix of the five classifiers by 
current stage of the disease. 
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Figure 5.1: GBM classifier performance by current patient stage – approach A. 

 

 

Figure 5.2: Catboost classifier performance by current patient stage – approach A. 
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Figure 5.3: LightGBM classifier performance by current patient stage – approach A. 

 

 

Figure 5.4: MLP classifier performance by current patient stage – approach A. 
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Figure 5.5: Adaboost classifier performance by current patient stage – approach A. 

The results of the different models by the last available stage of the patient (current 
stage) show the inability of the different models to predict the evolution of the 
disease in the following year when patients are in certain stages. The classifier has a 
clear tendency to predict that the patient worsens when the patient is in earlier stages 
(1 and 2) and a clear tendency to predict that the patient remains stable when the 
patient is in more advanced stages (3,5 and 4). This is a result of the way the data is 
distributed in the training and test set and in the unseen data, as shown in chapter 
4.3.7. To try to bring a predictive capability to any patient at any disease stage, 
approach B was created, and is presented in the next chapter. 

5.2 Approach B: Balanced target distribution by disease stage 

This approach, compared to the previous one, brings a total balance in the training 
and test set and in the unseen data set per disease stage. This allows to train the 
model with the same number of instances of patients that worsen and that remain 
stable for each stage of the disease. In the unseen data that serves as validation for 
the generalization of the model, there are the same number of instances for each 
stage and the same number of instances that remain stable and worsen. This allows 
for no bias in the results, and the model can predict any worsening of the disease at 
any stage. 

The same classifiers applied in approach A were trained, and their performance on 
the training set is shown in Table 5.4.  
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Table 5.4: Performance of ML algorithms on train set – approach B. 

Model Accuracy Recall Precision F1 Score AUC MCC 

GBM 0.7139 0.7213 0.7111 0.7160 0.7902 0.4281 

Catboost 0.7119 0.7220 0.7081 0.7148 0.7865 0.4241 

MLP 0.7109 0.7240 0.7056 0.7145 0.7846 0.4221 

LR 0.7101 0.7315 0.7018 0.7162 0.7798 0.4208 

LightGBM 0.7101 0.7153 0.7084 0.7116 0.7939 0.4205 

LDA  0.7098 0.7197 0.6983 0.7083 0.7796 0.4205 

Ridge 0.7095 0.7197 0.6978 0.7081 0.0000 0.4198 

Adaboost 0.7085 0.7189 0.7046 0.7115 0.7768 0.4173 

RF 0.7026 0.7015 0.7033 0.7022 0.7716 0.4054 

SVM 0.7019 0.7077 0.7011 0.7032 0.0000 0.4051 

ET 0.7016 0.6988 0.7029 0.7007 0.7696 0.4033 

XGBoost 0.6990 0.7072 0.6961 0.7014 0.7677 0.3983 

KNN 0.6465 0.6307 0.6513 0.6407 0.6936 0.2931 

DT 0.6257 0.6226 0.6265 0.6244 0.6257 0.2516 

QDA 0.5943 0.2611 0.7850 0.3889 0.7596 0.2533 

NB 0.5522 0.2639 0.6251 0.3696 0.6216 0.1285  

The five models chosen for hyperparameter tuning were: GBM, Catboost, MLP, LR 
and LightGBM. Other models could have been chosen because their performance 
is quite similar, such as LDA, Ridge and even Adaboost, but algorithms such as LR 
and LightGBM are more frequently proposed in the literature. The results of the 
selected models in the test set after parameter tuning are presented in Table 5.5. 

Table 5.5: Performance of ML algorithms after hyperparameters tuning on test set – approach B. 

Model Accuracy Recall Precision F1 Score AUC MCC 

GBM 0.7092 0.7233 0.7035 0.7133 0.7791 0.4185 

Catboost 0.7064 0.7267 0.6983 0.7122 0.7768 0.4130 

MLP 0.7073 0.7261 0.6999 0.7128 0.7789 0.4150 

LR 0.6978 0.7222 0.6887 0.7050 0.7678 0.3961 

LightGBM 0.7093 0.7250 0.7030 0.7138 0.7764 0.4189 

The test results after parameter tuning generally show a slight drop in performance 
metrics, but nothing considerable, with some occasions even showing an increase. 
All models were thus retrained with all available data (train and test set), and their 
performance evaluated on unseen data. The results are presented in Table 5.6. 

Table 5.6: Performance of ML algorithms on unseen data – approach B. 

Model Accuracy Recall Precision F1 Score AUC MCC 

GBM 0.7142 0.7488 0.7000 0.7236 0.7836 0.4294 

Catboost 0.7036 0.7245 0.6952 0.7095 0.7732 0.4077 

MLP 0.7101 0.7647 0.6858 0.7275 0.7887 0.4239 

LR 0.6858 0.7374 0.6681 0.7011 0.7602 0.3737 

LightGBM 0.7166 0.7342 0.7089 0.7213 0.7806 0.4335 

The results on unseen data generally remained similar, and even improved for some 
algorithms such as LightGBM and MLP.  

As with approach A, this does not necessarily mean that the model has predictive 
power for all patients, regardless of their disease stage. The performance of the 
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different models by disease stage is shown in Figure 5.6 - Figure 5.10. The difference 
in the validation and results obtained when compared to approach A is easily 
noticeable. These results increase the guarantee of generalization of the model 
regardless of the stage of the disease in which the patient is. 

 

Figure 5.6: GBM classifier performance by current patient stage – approach B. 

 

 

Figure 5.7: Catboost classifier performance by current patient stage – approach B. 
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Figure 5.8: MLP classifier performance by current patient stage – approach B. 

 

 

Figure 5.9: LR classifier performance by current patient stage – approach B. 
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Figure 5.10: LightGBM classifier performance by current patient stage – approach B. 

5.3 Proposed model 

After analyzing all the results shown above on approach B, the selection of the best 
model was based on its performance across the training set, test set, and unseen data, 
with more emphasis on the results of the performance metrics obtained on the 
unseen data. Furthermore, beyond the overall performance, the examination of 
performance based on different disease stages was considered. To facilitate this 
analysis, the statistical significance analysis between the performance of the different 
models, as presented in Appendix C.1, and the ranking of features provided in 
Appendix C.2, were also taken into careful consideration. 

That said, the model considered to have the best performance is the LightGBM. It 
was able to maintain its performance throughout the various stages of the 
experimental setup. It is also the best model to predict the outcome of the disease 
in more advanced stages, also maintaining good performance in earlier and 
intermediate stages.  

5.3.1 Interpretation 

The interpretation can be divided into global and local aspects. To assess the 
importance of features for the final output, the beeswarm SHAP plot is commonly 
employed, which represents a prevalent form of global interpretation facilitated by 
the SHAP library [192].  
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As can be seen in Figure 5.11, the beeswarm plot presents the features with the most 
significant impact and identifies how their values influence the model's output. A 
negative impact on the output raises the likelihood of predicting a negative (stable) 
class, while a positive contribution enhances the probability of predicting a positive 
(aggravation) class. High values in features such as age, albuminuria_2 and HbA1c 
lead to an increased risk of worsening DN. On the other hand, it is possible to 
observe that the higher the patient's current stage (ckd_2), the lower the probability 
of worsening. 

 

Figure 5.11: Global interpretation using Beeswarm SHAP plot. 

As a local interpretation, that is, for an individual prediction, two different plots were 
used: waterfall and force plot. Both present the same information but with different 
layouts. The waterfall plot can be seen in Figure 5.12 and the force plot in Figure 
5.13. Like the beesworm SHAP plot, both the waterfall and the force plot present 
the impact of a feature as positive (in red) or negative (in blue). 
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Figure 5.12: Local interpretation using SHAP waterfall plot. 

 

Figure 5.13: Local interpretation using SHAP force plot. 

 

5.3.2 Web application deployment 

To allow the model to be tested by those who wish to do so, a web application was 
created using Gradio and the HF servers. The user provides the variables needed for 
the predictive model, that is, 14 features in total, 7 for each year. After submitting 
the necessary data, the user has access to the forecast (stable or aggravation), the 
confidence that the model has associated with this forecast (in percentage) and the 
two local interpretation graphs presented in the previous chapter. 

A random patient present in the unseen dataset was used as an example. The data 
input for this example patient can be seen in Figure 5.14. In the application ten 
examples are already provided, randomly taken from the unseen data. The example 
presented here is among those ten and can be viewed in detail in the app. 
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Figure 5.14: Example of data input in the created application. 

After submitting the data, it will be processed and passed through the ML pipeline 
where the values are normalized and provided to the ML model. The user receives 
on his side, in a few seconds, the prediction, the certainty associated with this result 
and the two SHAP local interpretation plots. The output is shown in Figure 5.15. 

 

Figure 5.15: Example of output generated by created application. 
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6 DISCUSSION 

This study presents an approach capable of predicting the risk of evolution of DN 
within one year, considering two years of patient history. During this work, the 
literature on DN was examined in detail to gain insights into various approaches 
employed for similar issues. This knowledge helped and grounded several steps, such 
as data analysis and preprocessing, as well as the creation and comparison of several 
ML models. 

Approach A presents models with interesting results on classification metrics when 
performing a general analysis of training, test, and unseen data. Initially, these models 
demonstrate the ability to predict the evolution of DN in one year. However, a more 
detailed analysis of their performance, considering the stage of the disease, reveals a 
limitation in predicting aggravation events in more advanced stages. This limitation 
is due to the data distribution in the training, test, and unseen data sets. 

To address this limitation, Approach B modifies the data distribution on train, test, 
and unseen data. This results in a more robust model, capable of maintaining 
performance regardless of patient characteristics. Although the overall results of 
Approach B may fall slightly behind those of Approach A, a significant difference is 
observed when examining the results by disease stage. Approach B consistently 
maintains its predictive ability across different stages, showing a slightly higher 
predictive ability for the more advanced stages such as stages 3.5 and 4. 

By analyzing the SHAP plots and feature rankings, it becomes evident that certain 
variables hold significant importance in the predictive model. The current stage of 
the disease in the second year of the patient's history (ckd_2) and the calculated 
eGFR values (ckd_epi and ckd_epi2) have high relevance on prediction. Also, it is 
noticeable that the model considers the difference in eGFR from one year to the 
next. A drop in the eGFR value (variable ckd_epi) indicates in most cases a strong 
likelihood of disease aggravation. 

The main findings of this work were: 

- Temporal importance in DN risk prediction: When assessing a patient's 
risk for DN evolution, doctors consider the patient's history and the temporal 
changes in certain clinical values. This study highlights the significance of 
temporality and the impact it may have on creating better predictive models. 
This importance of temporality is evident in Figure 5.12 and Figure 5.13, 
where the prediction indicates the patient's aggravation, primarily based on 
the decrease in ckd_epi over one year. 

- Better and more in-depth analysis of ML models: This study highlights 
the necessity of further validating the performance of predictive models. It is 
crucial to remember that good results alone do not guarantee a high predictive 
capacity [193]. Therefore, careful validation of the results is essential to 
identify and mitigate any biases associated with the model, ensuring its clinical 
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applicability. It is also necessary to emphasize the need to validate the results 
presented by using one or several different data sets. Through this external 
validation it is possible to ensure that the proposed model is able to generalize 
what it has learned [194]. 

- End-to-end ML data pipeline: From data preprocessing to model training, 
evaluation and deployment, each step was carefully designed to take into 
account the temporal patterns and dependencies present in the data. This end-
to-end pipeline enables us to effectively capture the temporal dynamics of 
DN progression and utilize it for accurate predictions using ML techniques.  

6.1 Strengths and Limitations of the Study 

This study has several strengths and limitations. As strengths, it is possible to identify 
the following: 

- Clinical context: This study as well as all the review of the literature were 
carried out together with the constant support of APDP. This close 
collaboration allowed us to understand the various aspects of DN, which 
enabled the formation of a step-by-step approach that aligned with the 
specific problem's characteristics and underlying nature. 

- Selection of the proposed model: The entire experimental setup was 
designed to follow the best practice recommendations for training ML models 
[67]. Also, an analysis of performance by patient stage was also made, resulting 
in two different approaches. In addition to performance, statistical 
significance and ranking of features were also considered. This brings greater 
confidence in the results, leading to a proposed model that is more robust and 
better prepared to make predictions on new data. 

- ML model interpretation and deploy: Making the model accessible to 
anyone through a simple and intuitive interface is essential, but, in some ways, 
a complex task as described in [195]. Not only has this been done in this study, 
but the user is also provided with interpretability plots that show the logic 
behind a particular prediction. Access to the model and the interpretation of 
the results produced by it leads to greater transparency of the study [196]. 

Despite the various strengths presented, this study also has some associated 
limitations: 

- Inability to take full advantage of temporality: The architecture of the 
implemented ML models leads to the need to adapt the data to be less sparse, 
more uniform and with well-defined structures. This has led to a great 
difficulty in taking advantage of all the temporality associated with the 
patient's history. With a greater exploitation of the temporality and evolution 
associated with each patient, better and more robust ML classifiers can be 
created [197]. 
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- Loss of information in data: Despite considering a time frame of just 2 
years, it was necessary to condense multiple consultations within a year into a 
single record. This approach aimed to mitigate information loss, although this 
loss is unavoidable, particularly for patients with numerous records within a 
specific year. It is likely that greater use of all of a patient's historical 
information will lead to better predictive performance and therefore loss of 
information is indicated here as a limitation to the work. 

- Performance of ML models: Despite undergoing various optimization 
phases, including adjustments to data distribution and hyperparameters 
tuning, the proposed model ultimately falls short of achieving optimal 
performance. The accuracy results indicate a success rate of approximately 
72%, implying that it fails to make accurate predictions roughly one out of 
every three attempts. While achieving high performance with real EHR raw 
data can be challenging, it is important to acknowledge that the modest 
performance of the model remains a limitation in this study. 

- Dataset shift: The model in this study is trained using data exclusively from 
patients treated at the APDP clinic. It is crucial to understand that this model 
may not perform as effectively in individuals from different populations. This 
limitation is known as "dataset shift," where the model's performance can be 
affected by differences between the training data and the target population 
[198]. 

Despite the limitations presented, it is possible to state that the proposed model 
seems to be able to predict the evolution of DN in one year with acceptable 
effectiveness considering 2 years of patient history.  
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7 CONCLUSION 

Patients with type 1 or type 2 diabetes suffer from various complications, with DN 
being one of the most severe. It is the major cause of ESRD worldwide leading to a 
lower quality of life and a huge burden on both individuals and health systems. The 
possibility of risk profiling of patients may lead to better control of DN and 
consequently to a significant decrease of patients in advanced stages of the disease. 
The objective of this study was to develop a predictive ML model capable of 
predicting the risk of DN progression using patients' EHR data. For this purpose, a 
dataset from APDP was used, encompassing 21,284 patients who were followed for 
over 22 years, resulting in approximately 413,097 recorded visits. 

This study proposes a predictive model able to predict the evolution of DN in one 
year using information related to the last two years of the patient. ML model 
architectures are not designed to deal with temporal and sequential data, and 
therefore it was necessary to shape and structure the data in order to create models 
with good predictive ability. This was possible through a longitudinal approach 
where several data preprocessing steps were done considering the nature of EHR 
data and the temporality associated with patient history. In addition, the 
performance of the proposed model was validated in multiple steps, ensuring that it 
has good predictive capacity and remains constant regardless of the patient's stage. 

Just as important as a model with predictive ability is the ability to show the reason 
behind a prediction. For this, the SHAP method was used, which shows in a visual 
and intuitive way which variables contributed either positively or negatively to the 
predicted outcome. To finalize the work, the model was deployed so that any user 
could access it, make a prediction, and have access not only to the outcome 
predicted, but also to its interpretation. 

Overall, this study presents a significant contribution in the field of DN risk 
prediction by developing a predictive ML model using EHR data. The longitudinal 
approach, robust model performance, interpretability, and user-friendly deployment 
create the basis for improved disease management and enhanced patient outcomes.  

7.1 Future research directions 

As future work, several different directions can be suggested: 

- Use of DL architectures: As mentioned earlier, classical ML architectures 
were not designed to handle temporal and sequential data. DL has 
demonstrated success in health risk prediction, especially for patients with 
chronic and progressing conditions like DN [199], [200].  Stage-Aware Neural 
Networks (StageNet) [200] and Time-aware LSTM networks [201] are two of 
the architectures identified as having the greatest potential to better 



Risk Assessment for Progression of Diabetic Nephropathy Based on Patient History Analysis 

85 

incorporate the time factor and mitigate the challenges of EHR data. This can 
consequently lead to better performing models. 

- Incremental Learning: With the increase in data and especially its diversity, 
ML models can be expected to perform better. The ability of a model to learn 
new knowledge without forgetting what it has previously learned is referred 
to as continual, lifelong, or incremental learning. This type of approach would 
allow the model to continuously learn by adapting to new data as it becomes 
available [202]. 

- Make use of information from text features: In this work, textual features 
were discarded due to the need to apply NLP techniques and the high 
cardinality of these variables. However, it is expected that the full utilization 
of these features will enrich the data and bring relevant information capable 
of improving the predictive capacity of the classifiers. 

- Overcome the “curse of dimensionality”: Different feature dimension 
reduction techniques can be explored in order to understand if it is possible 
to keep most of the information available while maintaining and even 
improving the ability of ML algorithms to learn and detect patterns in the 
data. Some works have tried to overcome the "curse of dimensionality" by 
using these techniques [203]–[205]. 
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APPENDICES  

Appendix A – Literature review paper 

This chapter presents the article entitled "Machine Learning techniques to predict the risk 
of developing diabetic nephropathy: a literature review". This article was carried out within 
the framework of this dissertation with the aim of identifying the work carried out 
that applies a longitudinal ML approach on EHR data to predict the evolution of 
DN.  
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V   

ABSTRACT 

 

Purpose: Diabetes is a major public health challenge with 

widespread prevalence, often leading to complications such 

as Diabetic Nephropathy (DN) - a chronic condition that 

progressively impairs kidney function. Machine learning 

models can exploit the inherent temporal factor in clinical 

data to better predict the risk of developing DN faster and 

more accurately than traditional clinical models. 

Methods: Three different databases were used for this 

literature review: Scopus, Web of Science, and PubMed. Only 

articles written in English and published between January 

2015 and December 2022 were included. 

Results: We included 11 studies, from which we discuss a 

number of algorithms capable of extracting knowledge from 

clinical data, incorporating dynamic aspects in patient 

assessment, and exploring their evolution over time. We also 

present a comparison of the different approaches, their 

performance, advantages, disadvantages, interpretation, and 

the value that the time factor can bring to a more successful 

prediction of diabetic nephropathy. 

Conclusion: Our analysis showed that some studies ignored 

the temporal factor, while others partially exploited it. Greater 

use of the temporal aspect inherent in Electronic Health 

Records (EHR) data, together with the integration of omics 

data, could lead to the development of more reliable and 

powerful predictive models. 

Keywords 

Diabetic nephropathy, kidney disease, clinical data, risk 

prediction, machine learning.  

I. INTRODUCTION 

The widespread prevalence of diabetes is still a major 

public health challenge, with a significant impact on people's 

quality of life and an increase in mortality. Between 1980 and 

2014, the number of people with diabetes increased almost 

fourfold, from 108 million to 422 million, according to the 

World Health Organization [1]. In the European scenario, 

6.2% of adults had diabetes in 2019. Cyprus, Portugal, and 

 

 

Germany were the countries with the highest levels, around 

9% or more [2]. In addition, the metabolic control needed to 

delay diabetes complications is not achieved by the majority 

of patients. As a result, diabetes can cause many 

complications, including eye problems (retinopathy), nerve 

damage (neuropathy), and kidney problems (nephropathy) 

[3].  

Diabetic Nephropathy (DN) is a chronic disease in which 

the function of the kidneys deteriorates, reducing their ability 

to eliminate wastes and toxins from the bloodstream and 

affecting the water balance in the body. DN is considered a 

progressive disease that usually gets worse over time until the 

kidneys can no longer function on their own, which is known 

as end-stage renal disease (ESRD) [4]. It is a disease that is 

usually considered irreversible although it has been observed 

that with long-term normalization of the diabetic 

environment, the architecture of the kidney can undergo 

significant remodelling and the lesions associated with 

diabetic nephropathy can be reversed [5]. In developed 

countries, half of all ESRD cases are due to DN, and the cost 

of treating ESRD patients is very high [6]. 

 Digitalization has allowed hospitals to store the complete 

history of patient appointments in a database, resulting in the 

availability of EHRs. These data are longitudinal because they 

are collected over time and include multiple patient records at 

different points in time. Due to the progressive nature of many 

diseases, a longitudinal approach is usually required to fully 

assess their development and impact [7]. Given the chronic 

and long-term nature of diseases such as DN, it is crucial to 

consider the temporal dimension of patient data and not 

overlook its importance [8]. The timely implementation of a 

DN risk assessment may delay or even prevent its 

progression, which would certainly reduce the number of 

people with ESRD [9]. 

The dream of machines that can one day be self-learning 

without explicit programming is an old one [10]. Machine 

learning (ML) has its roots in the Artificial Intelligence (AI) 

movement of the 1950s, with a strong emphasis on practical 

goals and applications, focusing on tasks such as prediction 

and optimization [11]. In very simple terms, ML uses various 

algorithms to learn the patterns and relationships present in a 

dataset and ultimately predict an outcome. We are now 

experiencing a major and rapid transformation, brought about 

by significant advances in ML, which is exponentially 

increasing automation in many areas of society [12]. 

ML applied to medicine has great potential to support 

diagnosis by using a significant amount of patient data and 
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processing it in a fast and intelligent way, helping physicians 

to make more informed decisions [13]. In fact, ML algorithms 

can potentially play a crucial role in a faster and more reliable 

way to diagnose complications associated with diabetes such 

as DN [14]. The application of ML techniques to analyze EHR 

data can provide valuable insights and enable the 

development of ML models that can predict the risk of 

developing DN or progressing to higher stages, aiding 

physicians in the diagnosis and ultimately improving the 

quality of healthcare [15], [16]. 

There are many studies done on the use of ML to identify 

cases of diabetic nephropathy. However, the focus of this 

research is to identify and study the approaches used on 

clinical EHR data collected over a period of time and the 

corresponding risk prediction of developing diabetic 

nephropathy.  

This work aims to answer the following research question: 

RQ: What are the most effective machine learning 

techniques used to construct a model that uses the temporal 

information in diabetic patients' EHR data to predict the 

development of DN or progression to higher stages? 

This literature review was done in a systematic way to 

ensure that the results are transparent and reproducible, 

minimizing the bias that would result from the specific choice 

of studies (cherry-picking) [17]. 

The main contributions of this work are the following: 

• We present and compare different temporal 

approaches used in clinical data to develop a 

predictive model that can accurately identify the 

risk of developing DN or progressing to higher 

stages in the future. By providing a 

comprehensive overview of these approaches, 

we aim to encourage the development of 

effective predictive models that can help 

physicians improve patient outcomes. 

• We contribute to the understanding of the impact 

that the temporal factor can have on the 

prediction of DN by reviewing and comparing 

static and dynamic approaches.  

• We identify the limitations of static and dynamic 

approaches and highlight the need for further 

research to improve the accuracy of risk 

prediction. 

• We show that it is already possible to see that the 

integration of omics data can potentially improve 

the results and increase the credibility of 

predicting DN risk. 

The remainder of this paper is organized as follows. 

Section II describes the methodology used to select the 

articles to be reviewed. Section III presents the results 

obtained. A discussion of the main findings arising from these 

results is presented in Section IV. Threats to the validity of 

this literature review are presented in Section V, while 

possible future research directions are outlined in Section VI. 

Finally, Section VII presents the main conclusions. 

II. MATERIALS AND METHODS 

Three databases were used for this literature review: 

Scopus, Web of Science, and PubMed. These are three of the 

most popular and reliable sources of scientific information 

[18]. Only articles written in English and published between 

January 2015 and December 2022 were included. The search 

query used was: 

 “((diabetes) AND ((machine learning) OR (deep 

learning)) AND ((time) OR (temporal) OR (time series)) 

AND (predict) AND ((kidney disease) OR (nephropathy)))”.  

Figure 1 describes the methodology used throughout the 

process. The first step (Identification) resulted in a total of 164 

papers. Based on the references of some of these papers, a 

further 11 were identified as potentially important, resulting 

in 175 papers for further analysis. These 11 additional articles 

were referenced by papers identified in the first stage. During 

the screening phase, 48 duplicates were removed. In addition, 

85 papers were excluded by title and 14 by abstract. These 

were removed because they did not relate to the intended 

topic; this phase reduced the original 175 to 28 papers. Of 

these, only 11 were eligible according to the various criteria 

defined.  

Table 1 shows a summary of the excluded articles, the 

criteria, and a brief explanation of the exclusion criteria. 

It should be noted that although the keyword "deep 

learning" was included in the search query, none of the 11 

selected papers used Deep Learning (DL) techniques to solve 

the problem. With this in mind, we will focus only on 

approaches that use ML algorithms. 

 

 
Figure 1: Methodology 
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TABLE 1 PAPERS EXCLUDED ACCORDING TO DEFINED CRITERIA. 

Papers Criteria Brief Explanation 

[19]–[25] 
Non-Temporal 
Data 

Excluded papers did not include 
temporal data, i.e. data from patients 
followed up during a specific time 
window with information collected 
during that time. 

[26]–[32] 
No Risk model 
for DN. 

We select articles that predict the risk 
of progressing or developing DN. 
Articles that only classify whether 
patients have the disease or not were 
excluded. 

[33], [34] 
Thesis / Reviews 
/ Opinions / 
letters 

As these papers are reviews of the 
literature, this type of paper is not 
included. 

[35] No ML approach 

This paper has used a scoring system 
that defines the factors that contribute 
most to the development of DN. 
Although it is a risk model, it is not an 
ML approach. 

 

III. RESULTS 

Following the procedure outlined in Figure 1, 11 articles 

were included in this review. Artificial intelligence applied to 

temporal clinical data has the potential to improve the way a 

diabetic patient is managed according to their risk of 

developing DN. The different approaches are presented 

according to different questions: i) which features are most 

important, ii) what kind of ML models have been created, iii) 

which ones perform better, and iv) other relevant aspects. The 

papers selected for this review, together with a summary of 

their main aspects, are listed in Table 2. Looking at Table 2, 

we can see that most of the articles were published in the last 

2-3 years, which shows a rapid growth in the application of 

ML to the management of diabetes-related conditions, taking 

advantage of the large amount of clinical data available. For 

the selected articles, information is provided on the source of 

the data, the importance of the variables for prediction, the 

approaches used to create the risk models, their interpretation 

methods, and their performance. 

A. Data Sources 

With the emergence and growth of available data, ML 

models have increased the predictive potential in a wide range 

of tasks in several application areas. With digitalization, all 

patient’s data is stored in computer databases. In fact, 

Electronic Health Records (EHRs) contain vital information 

about the patient, such as their medical history, illnesses, 

medications, treatment plans, allergies, and other highly 

relevant information. This type of data helps clinical research 

enormously by making it easier to access and track patient 

data [47]. It also allows for temporal and longitudinal analysis 

of the data, leading to different approaches and more accurate 

and correct predictive capabilities [48]. 

In addition to clinical variables, Omics-based biomarkers 

are often used. These can be defined as a molecular signature 

that is identified using omics data and used to predict the 

presence or risk of a particular disease or condition, or to 

monitor the response to a particular treatment. Omics can be 

divided into different research areas such as proteomics 

(proteins), transcriptomics (RNA), genomics (genes), 

metabolomics (metabolites), lipidomics (lipids) and 

epigenomics (methylated DNA) [49].  

The integration of omics data with clinical data can 

significantly improve the ability to analyze and predict 

complex diseases using ML. Such integrated analysis can help 

create models that can clearly explain diseases, enabling real 

knowledge that leads to improved treatment and a better 

quality of life for patients [50]. The work of Al-Sari et al. [46] 

is a very good example of the benefits of combining Omics 

data with clinical data. The performance of some of the 

models, which had previously been built using only clinical 

data, increased significantly when Omics data were included. 

In this case, metabolites, ketones, and sugar derivatives were 

used. In general, the integration of molecular data will lead to 

better prognostic models, as demonstrated in several works 

[51]–[54]. Despite the many benefits of integrating this type of 

data, there are some challenges. Sometimes, even when these 

data are available, they are very difficult to handle, process, 

analyze, and finally integrate. This requires specialized 

knowledge in the branches of mathematics, statistics, biology, 

and computer science [55]. 

B. Feature Importance 

There are a number of factors that can lead to the onset or 

development of DN, such as demographic and genetic factors, 

clinical measurements, laboratory tests, and medical history. 

Most of the selected studies used different methods to 

understand which variables had the greatest influence on the 

final outcome when predicting risk. Some of these techniques 

were used to perform feature selection to remove redundant 

and irrelevant variables, which can potentially lead to better 

performance [56].  

The work of Chan et al. [43] and Al-Sari et al. [46] used  

SHapley Additive exPlanations (SHAP) to understand how 

each feature contributes to the model's predictions, by 

estimating the amount that each variable contributes to the 

predicted value of an output.  This allows them to ensure that 

they are selecting the most optimal set of variables for the 

task. 

Recursive Feature Elimination (RFE) is an iterative 

method that can recursively remove the least important 

features from a dataset and build a model on the remaining 

attributes. It iterates until the desired number of features is 

obtained. As presented in Sarkosh et al. [40] and Dong et al. 

[45], this technique is very useful for selecting a subset of 

features that aggregates the most important features from a 

larger dimensional space. In both cases, a variant of this 

method, Recursive Feature Elimination with Cross-

Validation (RFECV), is applied. It uses cross-validation to 

evaluate the performance of the model at each iteration. 
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TABLE 2: SUMMARY OF STUDIES INCLUDED IN THIS REVIEW. 

A very similar approach was adopted by Makino et al. [38] 

and Dagliatti et al. [37] with their logistic regression (LR) 

stepwise feature selection method based on the Akaike 

information criterion (MLC). Stepwise feature selection is a 

method of selecting a subset of features by iteratively adding 

or removing variables. The MLC is a trade-off between model 

goodness and complexity, and measures the relative quality 

of a statistical model [57]. It can be used in stepwise feature 

selection to evaluate the performance of the model at each 

step and decide which feature to add or to remove. Although 

it appears similar to the RFE method, this technique trains on 

the selected subset of features at each step and can use either 

forward selection or backward elimination, whereas RFE 

trains on all features and removes the least important feature 

at each step.  

Aminian et al. [41] computed the relative importance of 

each feature in the final model using MLC for the regression 

models and the Concordance index (C-Index) for the RF 

models. The C-Index is a metric that considers the temporal 

dependence associated with the model result and can be used 

to rank features by importance or even to analyze the global 

performance of the model. 

Singh et al. [36] use a simpler and faster approach based 

on Univariate feature selection to select the most relevant 

Paper Dataset  Pre-processing  ML Model Proposed Performance 

Singh et al. 
(2015) [36] 

EHR data of patients in the Mount 
Sinai Hospital and Mount Sinai 
Faculty Practice Associates in New 
York City. From 6,435 patients, 
12,337 examples were extracted. 

Feature selection and generation.  
Numerical predictors discretization into 
four bins based on the quartiles of the 
corresponding predictor and then map 
them into binary variables. 

Multitask Logistic 
Regression (MLTR) 

≈ 68.3% AUROC for 
Threshold of 10% 
≈ 71.2% AUROC for 
Threshold of 20% 

Dagliati et al. 
(2018) [37] 

943 T2DM patients in charge of the 
ICSM hospital and followed for 
more than 10 years. 

Data imputation with the MissForest 
technique and some variables were not 
considered because imputation errors 
were too high. 

Logistic Regression (LR) 
3 years: 70.1% AUC 
5 years: 73.4% AUC 
7 years: 72.1% AUC  

Makino et al. 
(2019) [38] 

Dataset with 64,059 T2DM patients. 
From that, authors extracted 
structural, text, and longitudinal 
data. 

Under sampling minority class, several 
data transformation steps are used to 
summarize the last 180 days EMR records 
and create longitudinal data variables.  

Logistic Regression (LR) AUC: 74.3% 

Romero et al. 
(2019) [39] 

Data were provided by the NHLBI, 
sponsor of the ACCORD trial. There 
were 10,251 T2DM patients from 
77 clinical centers in the United 
States and Canada.  

SMOTE technique used to balance target, 
feature selection using the information 
gain metric. 

Random Forest  88.7 % Accuracy 

Sarkosh et al. 
(2020) [40]  

Clinic of Imam Khomeini Hospital 
Complex (IKHC) dataset with 10,636 
T2DM patients followed from 10 
years (2012-2021). 

Feature selection using Recursive Feature, 
elimination (RFECV) and RF method, 
imputation or drop missing values 

Logistic Regression (LR)  75.5% AUC 

Aminian et al. 
(2020) [41] 

287,438 T2DM patients from 
Cleveland Clinic’s EHRs followed 
between 1998 and 2017. Two 
different groups were created: 
2,287 patients undergoing 
metabolic surgery and 11,435 
matched non-surgical patients. 

Missing data imputed using multivariate 
imputation by chained equations (MICE), 
variables with more than 25% missing 
values or no predictive value were 
removed.     

Random Forest 

Surgical patients: 73% 
AUROC 
Nonsurgical patients: 
76% AUROC 

Song et al. 
(2020) [42] 

University of Kansas Medical 
Center’s HERON clinical data 
repository with 35,779 T2DM 
patients. 

Features with less than 1% representation 
were removed and missing values 
imputed.  

Gradient Boosting 
Machine (GBM) 

AUROC: 83%, 78% and 
82% in predict DN in 2, 
3 and 4 years, 
respectively. 

Chan et al. 
(2021) [43] 

BioMe Biobank at the Icahn School 
of Medicine at Mount Sinai and the 
Penn Medicine Biobank data 
sources. Population of 1146 T2DM 
with both EHR data and biomarkers. 

Data harmonization, only variables in 
more than 70% participants were 
included, feature selection based on 
SHapley Additive exPlanations (SHAP) 
values, and missing data imputation.   

Random Forest AUC: 77% 

Allen et al. 
(2022) [44] 

111,046 EHRs of T2DM patients 
that represents more than 700 
healthcare sites from USA between 
2007 and 2020. 

Standardization, impute missing values. Random Forest. 

74.8% AUROC for any 
DN stage, 82.3% for 
stage 3-5 82.1% for 
stage 4-5 

Dong et al. 
(2022) [45] 

Data from PLA General Hospital 
with 2809 T2DM patients that were 
followed from 2008 to 2019.  

Drop features with missing data > 25%, 
missing values imputation with RF, feature 
selection using RFE. 

LightGBM AUC: 81.15% 

Al-Sari et al. 
(2022) [46]  

T1D cohort in Steno Diabetes 
Center Copenhagen (SDCC) with 
537 patients with follow-up data. 
Later, blood molecular data with 
965 features was also included. 

Remove high correlated features, outliers, 
and clinical variables with no predictive 
power on metabolic data.  
Feature selection SHapley Additive 
exPlanations (SHAP) values. 

Random Forest 

DN model with only 
clinical data: 92% of 
AUROC, DN model 
with clinical and 
omics: 99% AUROC  



Risk Assessment for Progression of Diabetic Nephropathy Based on Patient History Analysis 

107 

 

variables. These features are selected based on univariate 

statistical tests between the feature and the target variable, and 

do not take into account dependencies and relations between 

features. 

Song et al. [42] adopted a slightly different approach, 

using the Gradient GBM classifier because it uses an 

embedded method of feature selection during model training. 

This allows the most important features to be selected and the 

model retrained using only these variables. 

Table 3 shows the clinical variables that were mentioned in 

more than three papers as one of the most prominent 

variables able to give high predictive power to the model for 

analyzing the emergence or development of DN, and their 

respective importance. Two of the reviewed articles include 

omics data and select the molecular variables that contribute 

the most to the outcome of the model, thus increasing its 

predictive capacity.  

Table 4 details the three plasma biomarkers selected by Chan 

et al., while Table 5 shows the five molecular variables selected 

by Al-Sari, (2 ketones and 3 sugar derivatives). 

 
Table 3: MOST IMPORTANT CLINICAL VARIABLES IDENTIFIED 

Papers Feature Meaning 

[39], [43], 
[45], [46] 

eGFR or 
GFR 

Glomerular filtration rate (GFR) measures 
how well the kidneys work. eGFR is an 
estimate, usually calculated using the 
Modification of Diet in Renal Disease (MDRD) 
equation and the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) 
equation. 

[39], [43], 
[45], [46] 

UAlb or 
Alb 

Albumin levels in the blood. Low levels of this 
protein are called hypoalbuminemia, and 
high levels are known as hyperalbuminemia 

[37], [40], 
[45], [46] 

HbA1c 
Glycated hemoglobin (HbA1c) measures 
glucose levels over the past 2 to 3 months. 

[39]–[41], 
[43] 

UACR or 
ACR 

Laboratory tests are used to detect 
proteinuria, the presence of protein (usually 
albumin) in the urine. 

[40]–[42], 
[45] 

Age 
In some articles, it is the age of the patient, 
in others it is the age at which the patient 
started to be followed. 

[37], [40], 
[41], [45] 

BMI 
Body Mass Index uses a person's height and 
weight to calculate an estimate of body fat. 

 
Table 4: MOST IMPORTANT OMICS IDENTIFIED BY CHAN ET AL. [43] 

Molecular feature Meaning 

TNFR1 

Tumor necrosis factor receptor 1 is a 
protein found on the surface of cells that 
binds to TNF (tumor necrosis factor), a 
signaling molecule involved in 
inflammation and cell death [58]. 

TNFR2 

Protein related in structure and function 
to the TNFR1 protein and also related to 
TNF, which plays a role in inflammation 
and cell death [58]. 

KIM1 

Kidney injury molecule 1 is a protein 
produced in the kidney that is considered 
a biomarker of acute kidney injury and 
plays a role in the repair and 
regeneration of kidney cells [59]. 

Table 5: MOST IMPORTANT OMICS IDENTIFIED BY AL-SARI ET AL. [46] 

Molecular feature Meaning 

3,4 dihydroxybutanoic 
acid 

Chemical compounds are found in 
many foods and also produced by 
the human body as a byproduct of 
some amino acids.  

2,4 dihydroxybutanoic 
acid 

Also, a chemical compound like 3,4-
dihydroxybutanoic acid with only 
small molecular differences. 

ribitol 

It is a five-carbon sugar alcohol used 
as sweetener. Naturally occurring 
compound found in small amounts 
on fruit and vegetables. 

ribonic acid 

Also found in small amounts on fruit 
and vegetables, but it is also a 
metabolic pathway intermediate and 
a byproduct of xylose fermentation. 

myo-inositol 

Six-carbon cyclic sugar alcohol. A 
naturally occurring compound found 
in some foods, particularly fruits and 
nuts. It is also produced by the 
human body as a byproduct of 
glucose metabolism.  

C. Risk Models 

This section systematizes several approaches to building a 

model that can predict the risk of developing diabetic 

nephropathy. Some approaches do not fully exploit the time 

factor inherent in the data (static approaches), while others 

manage to make better use of this factor (dynamic/temporal 

approaches). 

1) Static approaches 

Dong et al. [45] used data from non-DN patients at baseline 

who were followed for three years. The authors then used 408 

patients who remained without DN and 408 patients who 

developed DN after the follow-up period. This data was used 

to build the model, it contains all the characteristics that the 

patient presented at baseline and the variable to predict is 

whether or not they developed the disease after the three years 

of follow-up. The patients were divided into training and test 

sets with the size of 652 and 164, respectively. Binary 

classification was performed using seven different ML 

classifiers: Light gradient boosting machine (LightGBM), 

eXtreme gradient boosting (XGBoost), Adaptive boosting 

(AdaBoost), Artificial Neural Networks (ANNs), Decision 

Tree (DT), Support Vector Machine (SVM), and Logistic 

Regression (LR). This binary classification predicts the 

presence or absence of DN within 3 years.  

There are several other papers that have taken a similar 

approach and transformed the problem into a binary 

classification.  Romero et al. [39] followed a similar strategy, 

but defined eight different time windows for all the 7 years of 

patient follow-up data. Each window corresponds to one year 

of data, except for the first two windows, which correspond to 

only 6 months each. The tree-based classifiers OneRule, J48, 

and RF were chosen for their simplicity, speed of classification, 

and user-friendly graphical presentation.  
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Dagliatti et al. [37] used a binary outcome variable but for 

three different time thresholds of 3, 5, and 7 years to predict the 

risk of DN. Logistic Regression (LR), Naïve Bayes (NB), 

Support Vector Machines (SVMs), and Random Forest (RF) 

were tested.  

Aminian et al. [41] used data from both surgical and non-

surgical patients with T2DM. Multivariate time-to-event 

regression and random forest machine learning models were 

created to predict the 10-year risk of developing DN. The 10-

year risk of morbidity and mortality was estimated for patients 

with and without metabolic surgery.   

Sarkosh et al. [40] trained an LR-based risk score in 1907 

diabetic patients, of whom 763 developed DN within five years. 

The outcome variable was also binary, as in the papers cited 

above. The authors used multivariate LR analysis to generate 

risk scores and divided patients into four different groups based 

on their respective risk of DN: low, moderate, high, and very 

high.  

Chan et al. [43] used the same binary outcome in a train/test 

set of 686 patients and a validation test of 460 patients. Using 

clinical data and biomarkers, the authors generated risk 

probabilities using the final RF model and scaled the results to 

a continuous score between 5 and 100. The authors named the 

whole system IntelKidneyX. It stratified patients as follows: 

low risk (46%), intermediate risk (37%) and high risk (17%) of 

developing DN within 5 years. 

Al-Sari et al. [46] and Makino et al. [38] did almost the 

same as the previously cited papers, but instead of defining 

outcome as absence or presence, it was defined as progressor 

or non-progressor in the Al-Sari paper and as worsening or 

stable in the Makino et al paper. Al-Sari et al. used data from 

190 patients who had no progression of DN and 190 patients 

who had progression of DN during a mean follow-up of 5.4 

years. He used the RF classifier to predict whether the patient 

would progress to DN during the follow-up period. On the other 

hand, Makino et al. extracted clinical features from 

longitudinal, textual, and structural data. LR models were 

trained using data from 15,422 stable patients (remaining DN 

stage 1) and 15,388 patients who experienced disease 

progression at some point (from DN stage 1 to DN stage 2-5).  

Unlike the works presented above, Allen et al. [44] are able 

to predict 3 different outcomes, DN progression to any stage, 

DN progression to stages 3-5, and DN progression to stages 4-

5. Three different models were created for each possible 

outcome, each predicting the risk of progression to DN over the 

next 5 years. RF and XGBoost were used as classifiers with a 

training and test set of 62,994 and 7,656, respectively. 

Figure 2 provides a general overview of the different 

approaches described above. 

 

 
Figure 2: Non-temporal approaches. 

2) Dynamic approaches 

Different temporal approaches have been proposed to deal 

with EHR and provide risk prediction for DN. Within the 

remaining selected articles, the following approaches were 

used: stacked temporal, multitask temporal, discrete survival, 

and landmark boosting.  

The stacked temporal technique was used in both the work 

of Singh et al. [36] and Song et al. [42] work. It aggregates the 

data within each time window and uses the data from all time 

windows to make a final, unique prediction. T time windows, 

with F features in each, result in only one time window with T 

multiplied by F features. One of the disadvantages of this 

technique is that the larger the temporal space considered, the 

higher the dimensionality of the data, which can lead to a large 

overfitting. In Figure 3, the physician appointments within each 

time window are aggregated to form a one-dimensional space, 

which is then fed into the model and a prediction is obtained. 

 

 
Figure 3: Stacked temporal approach. 

The multitask temporal method was proposed in the paper 

by Sing et al. The authors decided to predict the outcome for 

each time window separately. Each time window must have 

at least five physician appointments within that time. When 

predicting the risk of DN for a new patient, each time window 

with five or more appointments is used and the final result is 

the average of the different results obtained in each time 

window. This stratification of the problem is shown in Figure 

4, where it can be seen that the ML model operates 

independently in each time window and the result is the 

average of the different results obtained. 

 

 
Figure 4: Multitask temporal approach. 

Discrete survival and landmark boosting are two 

techniques mentioned in the paper by Song et al. The first 

makes an individual prediction in each time window, with no 

overlap between windows. A disadvantage of this technique 

is that it assumes that there is no relationship between 

examples in different time windows, even if they come from 

the same patient. This can be seen in Figure 5. 
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Figure 5: Discrete survival approach. 

On the other hand, landmark boosting is very similar to 

discrete survival, but in each time window t, the prediction 

made in the previous time window t – 1 is also considered. In 

effect, there is a transfer of knowledge between the time 

windows, making each prediction more accurate. This can be 

seen in the representation of the approach shown in Figure 6, 

where each model receives not only the features 

corresponding to a time window, but also the prediction made 

in the previous time window. 

 

 
Figure 6: Landmark boosting classification. 

D. Used models, interpretation, and performance. 

This section discusses the type of models most commonly 

used to predict the onset or development of DN. It also presents 

the main interpretation techniques used and a comparison of 

performance. 

Taking into account the selected papers, five different 

classifiers were proposed: Random Forest (RF), Logistic 

Regression (LR), LightGBM, GBM, and Multi-Task Logistic 

Regression (MTLR). From Figure 7, we can see that the 

method most selected was RF, followed by LR, and finally 

LightGBM, GBM, and MTLR, which were selected only once. 

Performance is the most important individual factor that 

defines the classifier, but it is not the only aspect to consider. 

RF was the most used classifier because the decision trees that 

make it up can be interpreted and the final result can be 

explained [44]. However, as a whole, these methods are often 

difficult to interpret, especially when the number of decision 

trees is large. It has a good classification speed and can be 

represented graphically [39]. It is therefore a classifier with a 

good balance between speed, complexity, and interpretability. 

Logistic regression has also been proposed several times 

because it provides a clear interpretation of its coefficients, 

which are usually represented graphically by nomograms, 

concepts with which physicians are very familiar [37], [60]. 

GBM was chosen by Song et al [42] because of its robustness 

and effectiveness in predicting DN risk, as demonstrated in 

previous work. In addition, it incorporates feature selection. 

Multitask logistic regression was proposed by Singh et al [36] 

because it was appropriate for the type of solution proposed 

in their multitask temporal methodology. It consists of a 

multitask learning approach where learning is performed in 

parallel, and tasks are related to each other [61]. In this case, 

there is a learning task for each time window, and this 

approach is used to capture the dependency between tasks.   

 

 
Figure 7: Most used ML classifiers in proposed methods 

It is possible to identify three main techniques to interpret 

the results generated by the predictive model: i) SHapley 

Additive exPlanations - SHAP values, ii) monograms, iii) 

decision tree visualization. SHAP values were proposed by 

Lundberg et al. in 2017 to analyze model predictions [62]. It 

calculates the importance of each feature for a given 

prediction, where each feature can have a positive or negative 

impact on that specific prediction. The contribution of 

features can be local (each observation) or global (set of 

observations). In this particular case, local explanations aim 

to show the reasons that lead to a certain result generated by 

the model for a specific patient. On the other hand, global 

explanations aim to show which variables were most 

important for the overall predictions of the model. These are 

calculated by aggregating the different local explanations. 

Nomograms are graphical representations of LR models. 

They work like scoring systems, where each feature is 

assigned a certain number of points according to its value, and 

the result varies according to the number of points 

accumulated in the sum of the different features [63]. Finally, 

some of the articles used only tree-based models because they 

can be interpreted directly by visual inspection of the 

associated decision tree. RF is an ensemble of many 

independent trees, and the output is based on the multiple 

decision tree outputs. By looking at the different decision 

trees, it is possible to see which features are used to make 

predictions, the importance of each feature, and the overall 

patterns of predictions [64]. 

Some papers predict the onset of DN, some predict the 

worsening, and some authors predict the worsening for 

specific stages of the disease. In addition, there are papers 

where the result corresponds to only one specific time 

window, while others implement a different prediction for 

each time window, taking into account a certain number of 

years. This heterogeneity makes it difficult to compare their 

performance directly. Table 6 provides detailed information 

on each of the proposed methods. 
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Table 6: DETAILS AND PERFORMANCE OF PROPOSED METHODS 

IV. DISCUSSION 

To the best of our knowledge, this is the first review in the 

literature to explore what is available on the use of EHR data 

from patients followed over a period of time to create a 

predictive risk DN model also for a defined period of time. 

This paper can be used as a basis for further work that will 

be able to analyze and take full advantage of the time factor 

and create a system with a high predictive capacity, with full 

knowledge of the patient's history and what is likely to be their 

future.  

There are several approaches in the literature for handling 

EHR data that are collected over time and then used to build 

a model to predict the risk of the onset / development of 

diabetic nephropathy within a given time period. This is a 

very heterogeneous area of research, where there is no well-

defined approach to achieving the previous goal. As Fletcher 

points out, heterogeneity can be, and usually is, a good thing 

and can be beneficial [65]. 

The main findings that have emerged from this work are as 

follows:  

• There is very little work that takes full advantage of 

the time factor inherent in EHR data. The works of 

Sing et al. [36] and Song et al. [42] are an exception. 

In fact, the landmark boosting method proposed in 

the Song et al. paper was the approach that took more 

advantage of the time factor. It not only predicts the 

risk in each time window, but also takes into account 

the result produced in the previous time window.  

Although this approach attempts to exploit the full 

temporal potential of EHR data, it could still be 

improved, as it considers all records as independent, 

but in fact, they are not because the patient has 

multiple records (appointments). 

• Combining omics data with clinical data can help 

better predict the risk of DN over time, as confirmed 

in the work of Al-sari [46]. In the near future, this 

type of data will be linked to disease risk models 

because the information they contain is really 

valuable to increase the predictive power of the 

different risk models. 

• Another important concern with clinical risk models 

is interpretability. Almost all of the proposed models 

were selected not only because of their good 

performance but also because they allow 

interpretation of the respective results.  

• The vast majority of the selected articles were 

published recently (within the last 3 years), 

demonstrating the importance of studying existing 

clinical data (EHR) through longitudinal analyses, 

and the potential that these approaches can have in 

supporting patient follow-up and medical decision 

making. 

Proposed method Time range Outcome variable Performance metrics 

Random Forest [44] 5 Years 
Multiclass (DN advance to any stage, DN advance 
to stage 3-5, and DN advance to stage 4-5) 

Any stage - AUROC: 0.748, Sensitivity: 0.7, 
Specificity: 0.662. 
DN stage 3-5 - AUROC: 0.823, Sensitivity: 
0.750, Specificity: 0.739. 
DN stage 4-5 - AUROC: 0.821, Sensitivity: 
0.751, Specificity: 0.712 

Random Forest [41] 10 Years 
Binary target (morbidity 
and mortality risks) 

AUC: 0.76 

Random Forest [43] 5 Years Binary AUC: 0.77 

Logistic Regression 
[37] 

3, 5 and 7 years Binary 

3 years - Accuracy: 0.647, Sensitivity: 0.820, 
Specificity: 0.730 and AUC: 0.808. 
5 years - Accuracy: 0.693, Sensitivity: 0.750, 
Specificity: 0.616, AUC: 0.734. 
7 years - Accuracy: 0.686, Sensitivity: 0.714, 
Specificity: 0.643, AUC: 0.721. 

LightGBM [45] 3 years Binary (DN presence or absence) 
Accuracy: 0.768, Sensitivity: 0.741, 
Specificity: 0.797 and AUC: 0.815. 

Logistic Regression 
[38] 

6 months Binary (DN stable or aggravation) 
Accuracy: 0.701 
AUC: 0.743 

Random Forest [46] Non-defined Binary (DN progression or no progression) 
Accuracy: 0.96 
AUC: 0.96 

Random Forest [39] 
8 time windows at a 
max of 7 years 

Binary on each time window Average Acc: 0.887 

Logistic Regression 
[40] 

5 years Binary (DN presence or absence) AUC: 0.758 

Multitask Logistic 
Regression [36] 

5 years with time 
windows of 6 months 

Binary on each time window 
≈ 68.3% for Threshold of 10% 
≈ 71.2% for Threshold of 20% 

GBM [42] 2, 3 and 4 years Binary on each time window 
2 years - AUROC: 0.830 
3 years - AUROC: 0.780 
4 years - AUROC: 0.820 
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Despite the great capabilities and improvements that these 

proposed models can potentially bring to medical care, the 

various papers reviewed have limitations, that are clearly 

stated by the authors. Some of the most commonly cited 

limitations are as follows:  

• The patient sample was clinic-based rather than 

population-based, which means that the model was 

only tested on a particular dataset, extracted from the 

population of a particular hospital/clinic. 

Furthermore, in most studies, there is no external 

validation dataset, leading to great uncertainty about 

generalization to a wider population. Cabitza et al. 

[66] show how external validation is essential for 

building robust predictive models in medicine.  

• Small data samples, too much missing data and 

missing important features. Models trained on a small 

amount of data can result in poor generalizability and 

lead to incorrect conclusions being drawn. Too much 

missing data can affect the consistency of the data 

across different visits by a given patient. This 

consistency is essential to build a model that can deal 

with the time factor and make a prediction. In 

addition, several papers have highlighted various 

missing demographic, clinical, and laboratory 

variables that may be essential to improve outcomes. 

• Almost all of the selected papers assume that the 

examples are independent of each other, which is 

inaccurate because multiple records belonging to a 

single patient have been obtained. The ability to 

account for this inter-record dependency is key to 

unlocking the potential that may exist in the 

temporal value of EHR data and can lead to models 

with greater and better predictive ability. 

Considering this relationship, Song et al. [42] 

simulated some inter-record dependency by passing 

the prediction made in each time window to the 

prediction of the next time window. 

Using the information obtained from the selected articles, 

we are now able to answer the proposed research question. 

RQ: What are the most effective machine learning 

techniques used to construct a model that uses the temporal 

information in diabetic patients' EHR data to predict the 

development of DN or progression to higher stages? 

The reviewed literature suggests that despite the potential 

of using ML techniques to fully exploit the temporal 

dimension of EHR data to predict the risk of developing or 

progressing to DN, this has not yet been fully achieved. 

However, this provides an opportunity for further research 

and development in this area, with the aim of achieving more 

effective and accurate predictions in the future. Many of the 

techniques used have limited use of the temporal dimension 

and richness of patient records available in EHR data. 

Approaches that use only the values available for each patient 

at baseline or that use statistical operations on the data to 

combine aggregations of different clinical visits into a single 

record are valid but completely ignore the temporal potential. 

There are also some approaches that try to make a longitudinal 

study of the data, but often in a somewhat incomplete way. 

For example, the forecasts are separated by time windows (1 

year from now, 2 years from now, etc.) and in some cases 

these forecasts are completely independent of each other. This 

completely breaks with the value of time and creates a 

shortcut to a result that is not very different from the first 

approach. The Landmark Boosting approach proposed by 

Song et al. was able to stand out because it creates time 

windows and tries to establish a correlation between these 

windows by predicting the disease state in the current window 

based on the state predicted in the previous window. 

In summary, all the papers included in this review were 

generally able to arrive at a workable risk model for the onset 

or development of DN using a variety of techniques. All of 

them have attempted, either statically or dynamically, to make 

partial use of the temporal factor. 

V. THREATS TO VALIDITY 

This section discusses all the potential threats to the 

validation of this work, and the various biases and weaknesses 

that could in any way jeopardize the results obtained. 

This review uses only three different databases, and the 

search was done with only one query (although it included all 

relevant keywords). This may introduce a selection bias, 

meaning that our sample of studies may not be representative 

of the population studied. If more papers had been included, 

we would be more likely to have different approaches that 

could add value to the discussion and possibly change the 

conclusions drawn. 

The heterogeneity of the studies also threatens the validity 

of this paper. The data differ in quantity, in time of collection, 

demographic, social and cultural characteristics of the 

patients, and in some cases even in the meaning of the 

dependent variable (outcome). Some of them had multiple 

disease outputs and were not specifically designed to predict 

the risk of DN. This results in different training and validation 

data between the different articles selected. They also do not 

have a standardized way of presenting the results. In addition, 

some papers omit important information, which can lead to 

inaccurate or inconsistent results and conclusions. This is 

commonly referred to as measurement bias. 

The study provides a broad and consistent approach to 

models capable of creating a predictive model of DN using 

EHR data and their respective time factors. However, it is 

important to consider that these errors and biases may have 

altered or influenced the results obtained and the conclusions 

drawn from them.  

VI. FUTURE RESEARCH DIRECTIONS 

Given the small number of works that have been done in 

this area, there is a great need for future research to have a 

clearer perspective on the impact that temporal data analysis 

could have on medical support systems [67]. In the coming 

years, it is expected that there will be a huge growth in this 

type of work, as shown by the trends in the studies selected 

for this review. Therefore, the following future research 

directions can be outlined: 

• Fully exploit the time factor: Developing strategies 

that take advantage of the time factor and the 
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dependency between different visits for the same 

patient, not only to obtain more data, but also to 

allow the algorithm to access and consider the data 

as a healthcare team would normally do. 

• ML with omics data: Further and better research into 

the impact that omics data can have on DN 

prediction by ML models should be explored so that 

it is possible to measure the impact of the respective 

integration. With the advent of modern 

biotechnologies and the great potential of ML, there 

is a great opportunity to bring together ML and 

omics data to significantly improve current systems 

[68]. 

• Apply Deep Learning (DL) techniques: Future 

research should focus on addressing the temporal 

nature of EHR data, as most traditional machine 

learning models are limited in their ability to handle 

this factor. One promising approach is the use of DL 

algorithms, which are well suited for detecting 

hidden patterns in large volumes of data and have 

greater flexibility and generalizability [69]. 

Therefore, the application of state-of-the-art DL 

techniques in future studies could potentially unlock 

the full temporal potential of EHR data and 

significantly improve predictive ability.  

VII. CONCLUSION 

This review focused on approaches that can use 

longitudinal data (EHR) to create ML models capable of 

predicting the risk of onset or development of DN. The 

findings suggest that the time factor inherent in the data has a 

clear potential to create a better predictor of DN risk. In 

addition, the combination of clinical and omics data can help 

us to achieve better results with greater credibility and 

generalizability. Furthermore, it is possible to test the concern 

of the authors of the different papers to create interpretable 

models whose results can be easily explained and understood 

by healthcare professionals. 

It is important to emphasize that the studies varied in 

population, type and amount of data, outcome, and even 

purpose of the study, which may lead to limitations in the 

findings of this review. Further research is needed to address 

these limitations and to monitor how this area of temporal 

analysis of longitudinal data develops in the coming years. 

Currently, there are only a few studies that have partially 

used the temporal information from EHRs to improve the 

accuracy of predictive ML models. However, we believe that 

using these temporal data will have a significant impact, 

especially in the detection of chronic diseases that take a long 

time to develop symptoms. Physicians use a patient's medical 

history to diagnose such diseases, and it is important for ML 

models to do the same. Therefore, incorporating temporal 

data from EHRs into ML risk prediction models has the 

potential to be a valuable support tool in healthcare, 

particularly in the diagnosis and management of chronic 

diseases, such as DN. 
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Appendix B – hyperparameters of ML models 

This chapter presents some of the most important hyperparameters associated with the ML 
models trained in both approach A and B. Table 7.1 displays all the default hyperparameters 
initially used in the training process. Additionally, Table 7.2 outlines the hyperparameter 
configurations after tuning the models in approach A, while Table 7.3 presents the tuned 
hyperparameters for approach B. 
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Table 7.1: Default hyperparameters of ML models before tuning in approaches A and B. 

Model Hyperparameters Values 

GBM 

Loss 
Learning rate 
N_estimators 
Criterion 
Max_depth 

Logloss 
0.1 
100 
friend_mse 
3 

Catboost 

Learning rate 
Depth 
N_estimators 
Evaluation metric 
Score function 

0.03 
6 
10 
Logloss 
Cosine 

MLP 

Hidden layers size 
Activation function 
Solver 
Learning rate 
Max iterations 

[100] 
Relu 
Adam 
Constant 
200 

LR 

Penalty 
C 
Solver 
Max iterations 

L2 
1.0 
Lbfgs 
100 

LightGBM 

Boosting type 
Num leaves 
Max depth 
Learning rate 
N_estimators 

Gbdt 
31 
-1 
0.1 
100 

Adaboost  

Base estimator 
N_estimators 
Learning rate 
Algorithm 

Decision Tree 
50 
1.0 
SAMME.R 

 

 

 

 

 

 

 

Table 7.2: Hyperparameters of ML models after tuning in approach A. 

Model Hyperparameters Values 

GBM 

Loss 
Learning rate 
N_estimators 
Criterion 
Max_depth 

Logloss 
0.1 
100 
friend_mse 
3 

Catboost 
Learning rate 
Depth 

0.03 
4 
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N_estimators 
Evaluation metric 
Score function 

190 
Logloss 
Cosine 

MLP 

Hidden layers size 
Activation function 
Solver 
Learning rate 
Max iterations 

[50, 50] 
logistic 
Adam 
Constant 
500 

LightGBM 

Boosting type 
Num leaves 
Max depth 
Learning rate 
N_estimators 

Gbdt 
20 
-1 
0.05 
80 

Adaboost  

Base estimator 
N_estimators 
Learning rate 
Algorithm 

Decision Tree 
190 
0.4 
SAMME.R 
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Table 7.3: Hyperparameters of ML models after tuning in approach B. 

Model Hyperparameters Values 

GBM 

Loss 
Learning rate 
N_estimators 
Criterion 
Max_depth 

Logloss 
0.1 
100 
friend_mse 
3 

Catboost 

Learning rate 
Depth 
N_estimators 
Evaluation metric 
Score function 

0.03 
2 
110 
Logloss 
Cosine 

MLP 

Hidden layers size 
Activation function 
Solver 
Learning rate 
Max iterations 

[50] 
Relu 
Adam 
Adaptive 
500 

LR 

Penalty 
C 
Solver 
Max iterations 

L2 
6.246 
Lbfgs 
1000 

LightGBM 

Boosting type 
Num leaves 
Max depth 
Learning rate 
N_estimators 

Gbdt 
31 
-1 
0.1 
100 
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Appendix C – ML models analysis 

This chapter presents the supplementary material used in the analysis of the models trained 
and selected on approach B to assist the analysis of the results presented in Chapter 5.3. 
Appendix C.1 presents all the plots concerning the feature importance of the various models. 
The MLP algorithm was excluded from the analysis since there's no scikit-learn method to 
determine feature importance for it. Consequently, as PyCaret utilizes scikit-learn algorithms, 
feature ranking for this method couldn't be displayed. Appendix C.2 presents the results 
obtained in the statistical analysis performed between the ML models using the McNemar’s 
statistical test. 
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Appendix C.1 – Feature importance 

 

Figure 7.1: Feature importance on GBM model 

 

 

Figure 7.2: Feature importance on Catboost model 
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Figure 7.3: Feature importance on LR model 

 

 

Figure 7.4: Feature importance on LightGBM model 
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Appendix C.2 – Statistical Significance 

 

Figure 7.5: Statistical significance of ML models' performance using McNemar's test. 
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Figure 7.6: P-value between the different trained ML models 
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