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ABSTRACT

Kernel principal component analysis(KPCA) is a nonlin-
ear projective technique that can be applied to decompose
multi-dimensional signals and extract informative features
as well as reduce any noise contributions. In this work we
extend KPCA to extract and remove artifact-related contri-
butions as well as noise from one-dimensional signal record-
ings. We introduce an embedding step which transforms
the one-dimensional signal into a multi-dimensional vec-
tor. The latter is decomposed in feature space to extract
artifact related contaminations. We further address the pre-
image problem and propose an initialization procedure to
the fixed-point algorithm which renders it more efficient.
Finally we apply KPCA to extract dominant Electrooculo-
gram (EOQG) artifacts contaminating Electroencephalogram
(EEQG) recordings in a frontal channel.

1. INTRODUCTION

Kernel principal component analysis (KPCA) represents a
nonlinear projective subspace technique which can be used
to project multi-dimensional signals into mutually orthog-
onal subspaces in a meaningful way like it is done in sub-
space denoising applications [1]. But many signal process-
ing applications are based on one-dimensional signals. Clear-
ly projective subspace techniques are not available for such
one dimensional signals. However time series analysis tech-
niques rely on embedding one dimensional sensor signal
into a space spanned by their time-delayed coordinates [2].
A similar transformation is also used in singular spectrum
analysis (SSA) [3].

In this work we propose a similar strategy to remove
large amplitude, artifact related contributions to recorded
one-dimensional signals like single channel EEG record-
ings. The idea is to consider the large amplitude artifact
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as the "’signal” and the remaining signal as "sort of a broad-
band noise” in signal recordings where artifact related con-
tributions clearly dominate. With EEG signals, eye move-
ment artifacts typically dominate in frontal channel EEG
recordings just to mention an example that will be con-
sidered in this application. The methodology we present
adapts KPCA to feature extraction and denoising applica-
tions of one-dimensional signals. It follows a matrix manip-
ulation approach with special emphasis to signal reconstruc-
tion and pre-image estimation. Two methods of estimat-
ing pre-images, discussed in the literature, are considered
and a particularly suitable way of finding the starting point
of the fixed-point iterative method is suggested. Some toy
data illustrate the application of KPCA to suppress broad-
band noise (white noise) contributions to signals. In par-
ticular, the influence of the pre-image computation on the
performance of the method is considered. We also apply
our method to extract prominent artifacts like EOG in EEG
recordings.

2. KPCA FOR ONE-DIMENSIONAL SIGNAL

In practice, the goal of projective techniques is to represent
the data with reduced dimensionality by extracting mean-
ingful components while retaining the structure of the raw
data. The application of KPCA to one-dimensional time
series starts by embedding the signal in its time-delayed
coordinates, obtaining that way a multidimensional signal.
The transformation of multidimensional signals to a feature
space is never explicitly computed as long as all manipu-
lations can be based on dot products. This constitutes the
so-called kernel trick. The projective techniques are applied
in the feature space, but the reconstruction is computed in
input space only. This is accomplished by joining the recon-
struction in feature space and the pre-image calculation in
an unique step. The one-dimensional signal is obtained fi-
nally by diagonal averaging of the data matrix entries which
correspond to the denoised multidimensional signal.
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2.1. Embedding

Embedding can be regarded as a mapping that transforms a
one-dimensional time series £ = (2[0], z[1], ..., 2[N — 1])
into a multidimensional sequence of K = N —M 41 lagged
vectors

xp = [2[k—1+M—=1],...,2[k—-1]]7, k=1,...,K (1)

with M < N being the corresponding window length or
the embedding dimension. The lagged vectors then consti-
tute the columns of the trajectory matrix X = [x; ---xXg]
which represents a Toeplitz matrix. The further processing
of this data matrix X is performed by KPCA considering
each column a point in a vector space of dimension M (in-
put space).

2.2. Kernel-PCA

In kernel-PCA (KPCA) a multidimensional signal x4, k =
1...K, is considered to be mapped through a non-linear func-
tion @¢(xy ) into a feature space yielding the mapped data set
® = [p(x1)d(x2)...¢(xk)]. In feature space then a linear
PCA is performed estimating the eigenvectors and eigen-
values of a matrix of outer products, called a covariance
matrix which for zero mean data reads KC = ®®7 . It can
be shown that these eigenvectors and eigenvalues are related
to those of a matrix of inner products, called a kernel matrix
K = ®7®. Using the kernel trick [4], this kernel matrix
can be computed without explicitly mapping the data. The
latter are considered centered in feature space according to

1, ,
o= (I ~ ?mﬁ) @

where jx = [1,1,...,1]7 is a vector with dimension K X 1,
and T'is a K x K identity matrix. The centered kernel matrix
K. can be computed as K, = QZ'I’C.

Notice that each element (2, j) = k(x;,x;) of the ker-
nel matrices depends on the inner product ¢ (x;)d(x ;) which
can be computed using only the data xy, in input space. For
instance if an RBF kernel is used, k(%, §) is calculated ac-
cording to

w2
(i, §) = k(xi, %;) = exp (_M) &
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where o? is a free parameter that can be chosen according

to some data spread criterium.

Because the eigenvalues of the non-normalized covariance
matrix coincide with the eigenvalues of the kernel matrix,
their eigenvectors are related by

U=%,VvD '/? “)

where U is the matrix with L eigenvectors of the covari-
ance matrix, V is the matrix with L eigenvectors of kernel
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matrix and D is a diagonal matrix with the corresponding
I < K largest eigenvalues of both matrices. Once a data
point of the input space y; is mapped to the feature space to
obtain its image ¢(y j), the latter can be projected onto the
L eigenvectors spanning the feature space to obtain

1
Z; = D-1/2yT (I - EJK‘]%) ky, )

where

kyj = [k(X17Yj)’k(x2ayj)7"'7k(xK7yj)]T (6)

represents the vector of inner products between the train-
ing data @ and ¢(y;), naturally computed using the kernel
trick. There are many applications like classification where
the projections contain necessary and sufficient information
to characterize the problem. However, in feature extraction
and denoising applications it is needed to reconstruct any
point in feature space using the L eigenvectors and then es-
timate the position of the corresponding point in the input
space, i.e. compute its pre-image [4,5].

2.3. Reconstruction and Pre-Image

Considering the reconstructed point

7 1, . _
¢(y;) =Uz; =@ (I . Eaxﬁ) VD /?z; = &g
@)

where the entries of z; are the projections onto the L eigen-
vectors of the covariance matrix, i.e. the columns of U. In
order to avoid to work with the possibly high-dimensional
feature set @, the methods described in literature combine
the reconstruction and the pre-image computations in one
step. This goal is achieved by using the square Euclidian
distance definition which can be written using dot products
then substituted by kernel evaluations. Considering next an
arbitrary point in input space p. Its distance in feature space
to the reconstructed point (jg(yj) is defined by

& = 4(0) by = k(p.p) ~26"k, +8"Kg (®)

where the reconstructed point (jA)(yj) is obtained by eq. 7.
The entries of the vector k,, form dot products of ¢(p) with
training set images ¥ which can be computed as described
by equation 6. The two methods use the euclidian distance
definition within different strategies, and consequently the
input space point p has to be chosen accordingly.

2.3.1. Distance method

Recent work [5] to find the pre-image of a feature space
point is based on the fact that it is possible to compute the
coordinates of a new point if we know its distance to a set
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of known points. Hence, the distances of the reconstructed
point, ¢{y;), to every point in the training set @ are com-
puted. So in equation (8), the point p = Xy, is chosen as an
element of the training set. Then computing the distances
to all points of the training set, &k = 1,..., K the following
vector is obtained

d?® = diag(K) - 2¢"K + gTKg )

With certain kernels it is possible to evaluate the distance in
input space knowing the corresponding distances in feature
space. If an RBF kernel is considered, there is a simple rela-
tion between input space distances d® and corresponding
feature space distances. Once a distance in feature space
can be computed as

d® =2 (jK — exp (—

the corresponding vector of distances in input space can be
obtained from

4@

292 (10)

d® = —2621n(jx — 0.5d®) 1y

Considering a subset of neighbors of the reconstructed point
@(y;), i.e. selecting from the training set the S points with
smallest distance d®, the corresponding points in input
space are designated Q = [q1,92,...,qs]. The coordi-
nate system for the subset may be chosen from the columns
of the eigenvector matrix E of the data covariance matrix.
After centering the set of neighbors

1,7,
I- —J§Js)

5 (12)

Q.= q
the columns of the matrix W = ETQ, represent the co-
ordinates of the points Q.. Their distance to the origin is

; 2
obtained as d§? = [|| wy |I%, ]| w2 |[2,..., || ws ||2]. Then
the coordinates P of the point are given by

. 1
WTp = —(d® - a$) (13)
The pre-image p of (Z)(y]-) is finally obtained as
_ L -
p=Ep+ =Qjs =Ep +po (14)

where pg is the mean of the selected neighbors. This method
is usually applied considering that the number S of neigh-
bors is less than the dimension M of the points [5]. In that
case there are M — S null coordinates in the point p, hence
the covariance matrix of the set of points Q can have at most
S non-zero eigenvalues. Noted that if W represents a rect-
angular matrix, the SVD solution of eqn. 13 is the minimum
norm one. Then the second term of equation (14), the mean
of the set of neighbors, might constitute the dominant term
in the solution of the pre-image of ¢(y;).
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2.3.2. Fixed-point method

The central idea of this method consists in computing the
unknown p that minimizes the euclidian distance in feature
space by setting to zero the gradient of eqn. 8
ad® _ Ok(p,p) _ 2<9ng,,

op op op
Substituting the RBF kernel, the first term of the previous

equation is zero as k(p,p) = 1. Hence the zeros of the
gradient are obtained by

K
> gi(xi — p)exp (
=1

X(g0k,) —pg’k, = 0
where ¢ represents the Hadamard product. The zeroes can
be computed iteratively by the fixed point algorithm

(15)

lIxi — pll?

~ (16)

)

The starting point pg is chosen randomly and the iterative
procedure stops when |py41 — p¢/ is less than a threshold
and/or a maximum number of iterations ¢ is achieved. The
fixed-point iteration is very easy to implement. However,
in practice it is often slow or prone to numerical instabil-
ities whenever its denominator becomes too small [5] or
even turns negative causing a divergence of the algorithm.
To rectify these drawbacks we propose to choose the start-
ing point within the training set as considered in the dis-
tance method. Hence pg correspond to the second term of
equation 14. If an RBF kernel is considered, the dot prod-
uct of tf)(yj) with the training set ® can be used to find
the neighbors, avoiding the computation of euclidian dis-
tances in feature space. As the dot product of every mapped
data point in feature space is normalized to one, the clos-
est neighbors are obtained by maximizing the expression
max; (67 (y;)¢(x;)),i = 1,..., K. Computing the vector

N

of dot products of ¢(y;) with the training set ® yields
r=g’K (18)

The S closest neighbors, i.e. the ones that exhibit the high-
est dot product, are chosen. Selecting the corresponding
points Q = [qy,q2,---qs] in input space, the fixed point
iteration should start with pg = (1/5)Qjs. Notice that the
denominator of equation 17 is also a dot product between
the reconstructed point and p;. That way the numerical in-
stability on the first iteration can be avoided once pg was
chosen according to the maximal dot product criterion.

2.4. Diagonal Averaging

The last step is to transform the denoised trajectory matrix
into a one-dimensional signal with NV samples. After ap-
plying the described steps to every column of the trajectory
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matrix X, a new matrix X of the denoised data is obtained.
Notice that in general elements along each descending di-
agonal of X will not be identical like in case of the original
trajectory matrix X. This can be cured by replacing the
entries in each diagonal by their average, obtaining a new
matrix X,.. This procedure to get a matrix with all diago-
nals equal assures that the Frobenius norm of the difference
(X, - 5{) has minimum value among all possible solutions.
The noise-reduced one-dimensional signal, Z[n], is then ob-
tained by reverting the embedding of matrix X,., i.e. by
forming the signal with an entry of each descendent diago-
nal.

3. NUMERICAL SIMULATIONS

The algorithms were implemented in MATLAB using the
toolbox provided by Franc [6], where basic pattern recogni-
tion tools and kernel methods can be found. In the following
the methods discussed above will be applied to toy exam-
ples as well as EEG signals. The toy examples are mainly
used to illustrate the performance of the pre-image meth-
ods of the KPCA. Later, the EOG is extracted from a frontal
EEG following a similar methodology to the one used to the
toy example.

-
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Fig. 1. Toy example: Embedding with M 3: sinusoid
(a);sinusoid with noise (b); local SSA: 8 clusters marked alter-
natingly with stars or circles (c), reconstruction with L=1 in each
cluster (d)
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3.1. Toy example: sinusoidal time-series

The toy example to be discussed considers an artificially
generated sinusoid. The time series #[n] with N = 500
samples was contaminated with Gaussian white noise z[n]
Z[n] + r[n] to result in a signal-to-noise ratio of SNR =
20dB and was embedded in M = 3 dimensions (see Fig-
ure (1 a and b)). Using plain SSA the data can be projected
into L = 1 or L = 2 principal directions to achieve the
denoising. With L = 1 a straight line will result and with
L = 2 the reconstructed version is similar to the noisy ver-
sion. But using local SSA [7] which incorporates a cluster-
ing step in SSA an improved solution is achieved. Then,
with the maximal principal component (L = 1) in each
cluster, the underlying trajectory in phase space could be
reconstructed satisfactorily in a piecewise linear way (see
figure 1 ¢) and d)). An alternative approach to this nonlin-
ear problem is to apply to KPCA to the trajectory matrix.
KPCA was implemented using an RBF kernel with ¢

(&

©

Fig. 2. Distance Method using: S = 1 neighbors: the closest
point (a); distance method result (b);S = 5 the mean of neighbors
(¢); distance method (d).

maz; ;(||x; —x;])),i =1,...,Kand j =4,...,K. The
reconstruction in feature space was achieved using L = 2
principal components. To estimate the pre-image of every
denoised point in feature space, both the distance and the
fixed point method need a set of neighbors of a denoised
point to be selected from the training set. Pre-images were
estimated varying the number of neighbors S and using: 1)
only the mean pg of the selected neighbors (see 14); 2) the
distance method (14); 3) fixed point method using pg as
starting point. The impact of the pre-image calculation can
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be evaluated for the denoised one-dimensional signal £[n].
The mean-square error was computed between the denoised
sequence Z[n] and the original sequence #[n]. The table 3.1
shows the mean-square error between the reconstructed and
the original signal for all three methods of estimating the
pre-image. We can see that, given an embedding dimension

Table 1. Mean square error: original versus the denoised signal
with KPCA using different algorithms to compute pre-image
S | Distance | Mean | Fixed Point

1| 0.0843 | 0.0843 0.0843
2| 0.0813 [ 0.0800 0.0843
3| 0.0813 [ 0.0789 0.0843
4| 0.1138 | 0.0771 0.0843
5| 0.5381 | 0.0753 0.0843

M = 3 the number of neighbors S influences differently
the estimation methods. The strongest impact is seen in the
distance method. Fig. 2 -a) and -c) illustrate results, in the
multidimensional space, using the mean only while Fig. 2
-b) and -d) show results obtained using the distance method
(eqn. 14). Obviously the latter yields no significant im-
provement. Note that in [5] S was chosen always less than
M. Further, considering the situation § = 5 > M = 3,
the results obtained using the mean pg are now significantly
better than results using p from eqn. 14. The latter result
is still noisy and shows too many outliers. In this simple
example, the pre-image mean method is a strategy to find
the best match of ¢>(§f]) in the training set based on single
neighbor (S = 1) or by doing a kind of adaptive clustering
(S > 1) in feature space. The denoised point in input space
is obtained as the mean of points in input space which cor-
respond to the nearest neighbors in feature space. Note that
MSE decreases with increasing S (see second column of ta-
ble). The iterative fixed point algorithm exhibits a more ro-
bust performance as it is not dependent on the starting point
(see last column of table). Also notice that the underlying
trajectory of the signal is smoother than what is obtained by
the mean method (compare 3-a) and 2-a)-c)). The initial-
ization of fixed point with the mean of the neighbors, turns
algorithm faster (figure 3- b)) and avoids very low values in
the denominator of the equation 17.

3.2. EEG data

Biomedical signals are often contaminated with artifact re-
lated signals which severely distort the signals to be inves-
tigated. As an example we will study the removal of the
prominent EOG artefacts from EEG recordings. A frontal
(Fp1-Cz) EEG channel sampled at 128 Hz was used. A
segment of the signal of 12s of duration containing high-
amplitude EOG artifacts was considered and divided into 4
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(a) (b)

Fig. 3. Fixed-point method: using nearest neighbor § = 1 as
starting (a); number of iterations using random (dotted) or mean
of neighbors initialization (b).

sub-segments with N = 384 samples. KPCA was applied
separately to each sub-segment. The one-dimensional sig-
nal was embedded in M = 11 dimensions, but only L = 4
principal components were used for reconstruction in the
feature space. From the estimated pre-images the EOG was
obtained after reverting the embedding. Then the extracted
EOG signal was subtracted from the original EEG to obtain
a corrected EEG.

Visual inspection of the extracted signals confirmed that
the results strongly depend on the method to estimate the
pre-image corroborating results obtained with the toy ex-
ample. Further experiments showed that the performance
of the distance method is strongly dependent on the num-
ber S of neighbors yielding in some cases unreliable solu-
tions (see fig. 4-b)). The fixed point algorithm, on the con-
trary, leads to more stable solutions (see figure 4-a) for an
example) whatever is the number of neighbors used as start-
ing point. To provide a global overview of the performance
of the methods correlation coefficients, between a reference
signal and signals resulting from changing either the method
of estimating the pre-image or varying the number of neigh-
bors S, are calculated. Figure 5 shows the results consid-
ering as reference the signal obtained with the fixed point
method initialized with the best match in the training set
(S = 1). Note that with S = {3,6, 7,12} neighbors, the
distance method does not yield a reliable solution (see also
figure 4-b)) but also if S > M the correlation coefficients
are low. If S < 20, the result of the mean method is very
close to the fixed point algorithm. Fig. 6 shows that the
power spectral density is identical in the corrected EEG sig-
nals while the extracted EOG shows no visible difference
between the two methods.

4. CONCLUDING REMARKS

In this work we show that KPCA can be applied to ex-
tract high-amplitude components of a signal. In this case
the pre-image step influences the outcome but we show that
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(a) Fix-Point method (S = 12)
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Fig. 4. Segment of signal processed by KPCA using either a)
the fixed point or b) the distance method to estimate the pre-image
(top: the original EEG , middle: the extracted EOG signal, bottom:
the corrected EEG).
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Fig. 5. Correlation coefficient between a reference signal and all
the signals resulting from changing the pre-image method and/or
varying S.

the fixed-point initialized with the mean of neighbors is the
most robust. In a previous work [7] local SSA was also
applied and similar results were obtained: the correlation
coefficient between the extracted EOGs resulting from both
methods is 0.999 and the one between the corrected EEG is
0.833. The latter value results from the fact that local SSA

390
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Fig. 6. Power Spectral density of lefs: the original EEG and ex-
tracted EOG, right: the corrected EEG comparing the Fixed Point
vs Mean algorithm (S = 12).

also extracts the SOHz interference. The low frequency con-
tents of the corrected EEG is also affected differently by
both methods however KPCA seems to preserve more in-
formation on the low frequency contents.

5. REFERENCES

[1] P. Gruber, K. Stadlthanner, M. Boshm, F.J. Theis, E-W. Lang, A.M.
Tomé, A.R. Teixeira, C.G. Puntonet, and J.M. Gorriz Saéz, “Denois-
ing using local projective subspace methods,” Neurocomputing, vol.
in print.

[2] Chang Huai You, Soo Ngee Koh, and Susanto Rahardja, “Signal sub-
space speech enhancement for audible noise reduction,” in ICASPP
2005, Philadelphia, USA, 2005, vol. I, pp. 145-148, IEEE.

[3] M. Ghil, M.R. Allen, M. D. Dettinger, K. Ide, and et al, “Advanced
spectral methods for climatic time series,” Reviews of Geophysics,
vol. 40, no. 1, pp. 3.1-3.41, 2002.

[4

=

Berhard Scholkopf, Sebastian Mika, Chris J. Barges, Philip Knirsch,
Klaus-Robert Miiller, Grunnar Ratsch, and Alexander J.Smola, “In-
put space versus feature space in kernel-based methods,” IEEE Trans-
actions on Neural Networks, vol. 10, no. 5, pp. 1000-1016, 1999.

[5

[

James T. Kwok and Ivor W. Tsang, “The pre-image problem in kernel
methods,” IEEE Transactions on Neural Networks, vol. 15, no. 6, pp.
1517-1525, 2004.

[6

[t

Vojtéch Franc and Viclav Hlava¢, “Stastical pattern recognition tool-
box for matlab,” 2004.

[71 A. R. Teixeira, A. M. Tomé, E-W.Lang, P. Gruber, and A. Mar-
tins da Silva, “On the use of clustering and local singular spectrum
analysis to remove ocular artifacts from electroencephalograms,” in
IJCNN2005, Montréal, Canada, 2005, pp. 2514-2519, IEEE.

Authorized licensed use limited to: b:on Instituto Politecnico de Coimbra. Downloaded on April 12,2023 at 09:43:50 UTC from IEEE Xplore. Restrictions apply.



