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ABSTRACT 

Biomedical signals are generally contaminated with artifacts 
and noise. In case the artifacts dominate, the useful sig
nal can easily be extracted with projective subspace tech
niques. Then, biomedical signals which often represent one 
dimensional time series, need to be transformed to multi
dimensional signal vectors for the latter techniques to be ap
plicable. The transformation can be achieved by embedding 
an observed signal in its delayed coordinates. Using this 
embedding we propose to cluster the resulting feature vec
tors and apply a singular spectrum analysis (SSA) locally 
in each cluster to recover the undistorted signals. We also 
compare the reconstructed signals to results obtained with 
kernel-PCA. Both nonlinear subspace projection techniques 
are applied to artificial data to demonstrate the suppression 
of random noise signals as well as to an electroencephalo
gram (EEG) signal recorded in the frontal channel to extract 
its prominent electrooculogram (EOG) interference. 

1. INTRODUCTION 

In many biomedical signal processing applications a sensor 
signal is contaminated with artifactual signals as well as with 
noise signals of substantial amplitude. The former some
times can be the most prominent signal component regis
tered, while the latter is often assumed to be additive white 
normally distributed and non-correlated with the sen�or sig� 
nals. Often signal to noise ratios (SNR) are quite low. Hence 
to recover the signals of interest the task is to remove both 
the artifactual signal components as well as the superimposed 
noise contributions. 

Projective subspace techniques can then be used favor
ably to get rid of most of the noise contributions to mul
tidimensional signals [7]. But many biomedical signals 
represent one dimensional time series. Clearly projective 
subspace techniques are not available for one dimensional 
time series to suppress noise contributions, hence time se
ries analysis techniques often rely on embedding a one di
mensional sensor signal in a high-dimensional space of time
delayed coordinates [5], [2], [12]. Correlations in these mul
tidimensional signal vectors together with second order tech
niques can be used to decompose the signal into uncorrelated 
components. The multidimensional signal is then projected 
to the most significant directions computed using singular 
value decomposition (SVD) or principal component analysis 
(PCA). 

Singular spectrum analysis (SSA) [4] used in climatic, 
meteorologic and geophysics data analysis is the most widely 
used technique that follows this strategy. The general pur-

pose of SSA is to decompose the embedded signal vectors 
into additive components. This can be used to separate noise 
contributions from a recorded signal by estimating those di
rections, corresponding to the L largest eigenvalues, which 
can be associated with the eigenvectors spanning the signal 
subspace. The remaining orthogonal directions then can be 
associated with the noise subspace. Reconstructing the sig
nal using only those L dominant components then can re
sult in a substantial noise reduction of the recorded signals. 
Considering EEG signals one usually is not concerned with 
superimposed random noise but mainly deals with prominent 
artifacts like electrooculogram (EOG) and electrocardiogram 
(ECG) interferences, head movements, eye blinks etc. Hence 
we will in the following consider the artifactual contributions 
to the recorded EEG signals "the signal" and the actual EEG 
signals as "sort of a broadband noise". Consequently we can 
use the projective subspace techniques referred to above to 
separate the artifacts from the "pure" EEG signals. 

The time embedding of the sensor signals transforms one 
dimensional time series into multidimensional signal vectors. 
This is a necessary step to have subspace projection tech
niques available. However, this step unavoidably introduces 
a nonlinearity into the signal analysis process. Of course, 
there also exist generically nonlinear signal processing tech
niques like kernel-PCA (KPCA) which are often used for de
noising. So it will be of interest to explore these techniques 
in their ability to remove dominant artifacts and/or suppress 
noise. 

In this work we will introduce the concept of local SSA 
which means that after the time embedding we cluster the re
sulting multidimensional signal vectors and apply the linear 
signal decomposition techniques only locally in each clus
ter. We show that both non-linear techniques, local SSA 
or kernel-PCA [9], tum out to be more efficient than sim
ple SSA. Both methods will be presented following a ma
trix manipulation approach which is particularly suitable for 
dealing with the pre-image problem in kernel-PCA. Some 
toy data will illustrate the application of the methods to sup
press noise, while later on these methods are used to extract 
EOG artifacts from frontal EEG recordings. 

2. METHODS 

2.1 Embedding 

Embedding can be regarded as a mapping that transforms a 
one-dimensional time series x = (x[O],x[ l], ... ,x[N - 1]) to a 
multidimensional sequence of K = N -M + 1 lagged vectors 

Xk = [x[k- l +M- l], . . .  ,x[k- l]f, k= 1...K (1) 
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with M < N being the corresponding window length or the 
embedding dimension. The lagged vectors then constitute 
the columns of the trajectory matrix X = [Xl ··· XK] which 
represents a Toeplitz matrix. The further processing of this 
data matrix is performed by either applying local SSA or ker
nel PCA, two nonlinear projective techniques operating in a 
corresponding feature space. 

2.2 Local SSA 

Local SSA basically introduces a clustering step into the SSA 
technique [II] and operates in feature space. It encompasses 
the following steps: 

• After embedding, the column vectors Xk, k = I...K of the 
trajectory matrix are clustered using any clustering algo
rithm (like k-means [1]). After clustering, the set of in
dices of the columns of X is subdivided into q disjoint 
subsets Cl, C2, ... cq. Thus sub-trajectory matrix X(Ci) is 
formed with NCi columns of the matrix X which belong 
to the subset of indices Ci. 

• A covariance matrix is computed in each cluster using 
zero mean data obtained via 

(2) 

where jCi = [1, 1, . . .  ,IV is a vector with dimension NCi x 

I, and 1 is a NCi x NCi identity matrix. 
• Next, the eigenvalue decomposition of the covariance 

matrix is computed, i.e. 

(3) 

Afterwards denoising can be achieved by projecting the 
multidimensional signal into the subspace spanned by the 
eigenvectors corresponding to the LCi < M largest eigen
values. 

• The latter eigenvectors are also used in the reconstruction 
process. Considering the matrix U with LCi eigenvectors 
in its colunms, the reconstructed vectors in each cluster 
are obtained as 

• The clustering is reverted by forming an estimate X 
of the reconstructed, noise-free trajectory matrix using 
the columns of the extracted sub-trajectory matrices, 
X (Ci) , i = 1, .... , q according to the contents of subsets 
Ci· 

• Notice that in general elements along each descending di
agonal of X will not be identical like in case of the orig
inal trajectory matrix X. This can be cured by replacing 
the entries in each diagonal by their average. This pro
cedure assures that the Frobenius norm of the difference 
between the original matrix and the reconstructed matrix 
has minimum value among all possible solutions to get a 
matrix with all diagonals equal. 

• The noise-reduced one-dimensional signal, x[n], is then 
obtained by reverting the embedding. 

2.3 Kernel-PeA 

2.3.1 Covariances and kernels 

In kernel-PCA (KPCA) a multidimensional signal Xk, k = 

I...K, is considered to be mapped through a non-linear func
tion CP(Xk) into a feature space yielding the mapped data set 
<I> = [CP(Xl)CP(X2) ... CP(XK)]. In feature space then a linear 
PCA is performed estimating the eigenvectors and eigenval
ues of a matrix of outer products, called a covariance ma
trix or, for zero mean data, the non-normalized correlation 
matrix C = <I><I>T. It can be shown that these eigenvectors 
and -values are related to those of a matrix of inner prod
ucts, called a kernel matrix K = <I>T <I>. Using the kernel 
trick [9], this kernel matrix can be computed without explic
itly mapping the data. The centered kernel matrix Kc can be 
computed as follows 

(I 1 . .  T)<I>T<I>(I 1 . .  T) - "KJKJK - "KJKJK 

(I 1 . .  T)K(I 1 . .  T) - -JKJK - -JKJK K K (5) 

Notice that each element k(i,j) of the kernel matrices de
pends on the inner product cpT (Xi)CP(Xj) which can be com
puted using only the data Xk in input space. For instance if 
an RBF kernel is used, k(i,j) is calculated according to 

(6) 

where 0"2 is a parameter that is related to the variance of the 
data. 

Because the eigenvalues of the non-normalized covari
ance matrix coincide with the eigenvalues of the kernel ma
trix, their eigenvectors are related by 

(7) 

Where U is the matrix with L eigenvectors of the covariance 
matrix, V is the matrix with L eigenvectors of kernel matrix 
and D is a diagonal matrix with the corresponding L ::::; K 
largest eigenvalues of both matrices. Once a data point of the 
input space Y j is mapped to the feature space to obtain its im
age cP (y j)' the latter can be projected onto the L eigenvectors 
spanning the feature space to obtain 

. - D-
l/2VT(1 _ � .. T)k z} -

KJKJK Yj (8) 

where kYj = [k(Xl,yj ),k(X2,yj), . . .  ,k(XK,yj W is the vec
tor of inner products between the training data <I> and cP (y j ), 
naturally computed using the kernel trick. There are many 
applications where the projections are the only information 
that is needed. However, in denoising applications it is 
needed to reconstruct any point in feature space using the 
L eigenvectors and then estimate the position of the corre
sponding point in the input space, i.e. compute its pre-image 
[8, 10]. In this application, the multidimensional signal is 
denoised and the one-dimensional signal can be obtained by 
reverting the embedding as described in the two last steps of 
local SSA. 
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2.3.2 Reconstruction and Pre-Image 

The reconstruction of the point in the feature space is com
bined with the estimate of the pre-image in the input space. 
Combining these two steps the kernel trick can be used and 
the reconstruction never needs to be computed explicitly [8] 
avoiding to work in the feature space. The most recent work 
[8] to find the pre-image of a point of the feature space is 
based on the fact that it is possible to compute the coordi
nates of a new point if we know its distance to a set of known 
points [6]. The proposed method consists of the following 
steps: 

• The vector of squared distances d(2) between the recon
structed images �(YJ) and the training data set <I> are 

computed. Considering the reconstructed point � (Yj) = 
UZj and substituting eqn. 7, we can re-write �(Yj) = 
<I>g, where g is a K x 1 vector. Then using the kernel 
trick we obtain the row vector of distances 

• If an REF is considered, there is a relation between the 
input space distance d(2) and the corresponding feature 
space distance. Once the distance in feature space can 
also be computed as 

-(2) d(2) d = 2(jK - exp( --)) 2(}2 (10) 

the vector of distances in input space is then given by 

(11) 

• Considering a subset of neighbors of the reconstructed 
point � (y j) (i.e choosing the S points with smallest dis

tance d(2)), and given the corresponding points P = 
[PI , P2, ···ps] in input space, the coordinate system for 
the subset may be defined as the columns of the eigen
vector matrix E of their covariance matrix. After center
ing 

(12) 

the standard eigendecomposition is given by (P cpn = 
EDET. 

• Then W = ETp c represent the new coordinates of the 
points Pc. Their distance to the origin is obtained as 

d62) = [II WI 112, II w2 112 . . .  II Ws 112]. The new coordi
nates of the projected point in the input space are then 
given by 

The pre-image c of �(YJ) is finally obtained as 

(14) 

Note that not every point in feature space may have a 
corresponding pre-image in input space [9]. 

3. RESULTS AND DISCUSSION 

The methods were implemented in MATLAB using the tool
box provided by Franc [3], where basic pattern recognition 
tools and kernel methods can be found. In the following the 
methods discussed above will be applied to toy examples as 
well as EEG signals. 

(a) sinusoid 

(c) local SSA 

(b) sinusoid+noise 

..•. ��.-.-: .. -: ....... , ,: 
.�. 

'''. 

(d) Kernel-PCA 

". 

Figure 1: Signals embedded in time-delayed coordinates 
M=2 

3.1 Toy examples 

The first toy example to be discussed comprises an artifi
cially generated sinusoid, the other uses a chaotic time series 
given by Henon's equation. To both time seriesx[n] Gaussian 
white noise will be added x [n] = x[n] + r [n] corresponding to 
a signal-to-noise ratio SNR = 20dB. Afterwards the data is 
embedded in delayed coordinates using M = 2. 

3.1.1 Sinusoidal time series 

Figure I shows the 2-D representation of the corresponding 
vector signals. To achieve denoising, at first local SSA is ap
plied. The embedded data are grouped into q = 10 clusters 
using k-means clustering. In each cluster the covariance ma
trix of the data is calculated. As its size is only 2 x 2, we 
project the data on the eigenvector which corresponds to the 
largest eigenvalue. The other direction is considered to be 
related with the noise. Figure I shows that in each cluster 
the reconstructed data, following the direction of maximum 
variance locally, represents a good approximation to the un
derlying trajectory in phase space. 

KPCA was implemented using an REF kernel with width 
parameter (}2 = 1 and L = 3 principal components have been 
used for the PCA in feature space. To estimate the pre
images of the data using the distance method referred to 
above, S = 10 nearest neighbors were considered. Figure 1 
shows that KPCA results in a smoother approximation to the 
underlying phase space trajectory. But some outliers remain 
which probably result from bad estimates of the correspond
ing pre-images. 
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3.1.2 Henan time series 

The second example considers a nonlinear time series result
ing from the following dynamics x[n + 1] = 1- a·x2[n] +b· 
x[n - 1] where a = 1.4, b = 0.3 has been used. The result
ing data was embedded in delayed coordinates using M = 2. 
Figure 2-a) shows the phase space trajectories generated by 
this dynamical model known as the Henon map. Figure 2-
b) shows the corresponding data set with added Gausssian 
noise. Applying local SSA with q = 15 clusters results in the 
"denoised" trajectories shown in Figure 2-c). It can be seen 
that the local approximations to the underlying dynamics re
flect the general trend of the data very well. But it is also 
obvious that the mapping is not always smooth. This results 
from the structure of the local clusters which possess princi
pal directions deviating from the underlying dynamics due to 
noise. Also it can be seen that the fine structure of the Henon 
map cannot be captured where the spacing of segments of 
the trajectory are too closely spaced compared to the spread 
of the noise. The latter also holds in case of kernel-PC A us
ing an RBF kernel with a width parameter (J = 1 and L = 4 
principal components in feature space. The pre-images of the 
data reconstructed in feature space have been estimated using 
S = 10. Though the resulting trajectories are much smoother 
than in case of local SSA they also are much more noisy still. 

(a) Henan map (b) noisy Henan map 

(c) local SSA (d) Kernel-PCA 

Figure 2: Signals embedded in time-delayed coordinates 
M=2 

It has to be noticed that the projective subspace denois
ing (SSA) will result in a straight line corresponding to the 
direction of maximum variance of the data. Further note that 
unlike linear PCA, kernel-PCA allows to extract a number of 
principal components that exceeds the dimensionality of the 
input data. Notice that having K ?: M examples of data with 
dimension M, working in input space, the maximum num
ber of nonzero eigenvalues will also be M as can be seen by 
either computing the covariance matrix or the matrix of dot 
products. In kernel-PCA instead, the kernel matrix in fea
ture space will have size K x K and the number of nonzero 
eigenvalues can often be higher than M. 

3.2 EEG data 

Biomedical signals are often contaminated with artifactual 
signals which severely distort the signals to be investigated. 
As an example we will study the removal of the prominent 
EOG artefact from EEG recordings. Hence all remaining sig
nals in the EEG recording will be considered "noise" for the 
sake of the argument. Figure 3 gives an illustrative example 
of the results obtained. A local SSA analysis has been per-

o 3 5 
Time (sec) 

Figure 3: A segment of top: a recorded EEG signal, middle: 
an EOG signal extracted with kernel-PCA and bottom: the 
residual signal (corrected EEG) 

formed using N = 1536 samples recorded with a sampling 
rate of 128Hz. The data have been embedded in delayed co
ordinates using M = 41. The resulting columns of the tra
jectory matrix have been clustered choosing 6 clusters. The 
dimension of the signal subspace in each cluster has been 
estimated applying an MDL (minimum description length) 
criterion. The dimension of the signal subspace is different 
in each cluster and takes a value in the range [5 - lO] [11]. 
Figure 4-a) shows the power spectral densities (psd) of the 
recorded EEG signal, the extracted EOG signal and the resid
ual signal (corrected EEG). It can be seen that local SSA al
lows to remove both the EOG artefact as well as the 50 Hz 
line noise without distorting the remaining psd. But it seems 
to suppress the psd in the low frequency band too strongly, 
hence may remove other low frequency components as well. 

kernel-PCA could not be applied to the whole segment 
because of a prohibitive computational load, hence only sub
segments with N = 384 samples could be analyzed. With 
kernel-PC A an embedding dimension of M = 41 was used 
again; the width parameter of the RBF kernel was chosen 
as a fixed percentage of the variance of the data set, i.e. 
(JfwF = 0.5(JJala· For the reconstruction an 8-dim feature 
space corresponding to the eight largest eigenvalues has been 
chosen in accordance with the eigenvalue spectrum obtained. 
Figure 3 illustrates the extracted artifact as well as the cor
rected EEG signal within two subsegments. Figure 4-b) 
shows the resulting power spectral densities for the whole 
data segment. It can clearly be seen that kernel-PCA removes 
the EOG signal completely and does not suppress all low fre
quency contributions to the psd. However, it does not remove 
the 50 Hz line noise. It has to be noted that the correlation 
coefficients between the EOGs and the corrected EEGs ex
tracted by both methods amount to 0.99 and 0.81, respec-
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(b) Kernel-PCA 

Figure 4: Power spectral densities (psd) resulting from 
(a)local SSA (b) kernel-PCA 

tively. This demonstrates a rather good correspondence be
tween both methods concerning the extracted artifacts. The 
less good agreement concerning the corrected EEGs is due 
to some low frequency distortions remaining after the appli
cation of local SSA. The results shown here were achieved 
using the same embedding dimension for both methods but 
with Kernel-PCA that value can be decreased without affect
ing the performance of the algorithm. However, in the bio
medical example the dimension of the reconstruction space 
in kernel feature space never exceeds the dimension of the 
input space contrary to what is observed with toy examples. 

4. CONCLUSIONS 

The application of projective subspace techniques to one
dimensional time series relies on an embedding step which 
introduces a nonlinearity in the processing chain. This fact 
leads to the proposal of local SSA, which is the application of 
linear SSA to the clusters formed with the multidimensional 
signals resulting from the embedding step. This piecewise 
linear approximation is then compared to a generically non
linear subspace projection technique like KPCA. The toy ex
amples serve to illustrate that noise reduction of multidimen
sional signals cannot be achieved using plain SSA. Rather 
local SSA is needed which results in a piecewise linear ap
proximation of the original trajectory matrix of the data. The 
denoising performance turns out to be very effective. How
ever, those examples also seem to indicate that KPCA can 
be superior in complex cases like the Henon map where the 

local linear projection results in a too strong contraction of 
the data points to the low-dimensional submanifold. The su
perior performance of KPCA in this case results because the 
number of components to reconstruct the multidimensional 
signal can be larger than the input space dimension. In the 
extraction of EOG artifacts from EEG recordings, however, 
the number of components never exceeded the dimension of 
the input space and the signal extracted with KPCA is very 
similar to the one extracted with local SSA. However, KPCA 
seems to result in less distortions in the low frequency regime 
of the EEG spectrum. In summary, though local SSA is less 
complex hence much easier to implement, kernel-PCA re
sults in less distortions or over-fitting in the low frequency 
regime where the EOG artifact dominates. Further it has 
to be mentioned that with the prominent EOG artifact, lo
cal SSA is able to extract also the 50 Hz line noise artifact 
simultaneously which is not the case with KPCA. 
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